JP6901688B2 - Vibration system control device and work transfer device - Google Patents

Vibration system control device and work transfer device Download PDF

Info

Publication number
JP6901688B2
JP6901688B2 JP2018080382A JP2018080382A JP6901688B2 JP 6901688 B2 JP6901688 B2 JP 6901688B2 JP 2018080382 A JP2018080382 A JP 2018080382A JP 2018080382 A JP2018080382 A JP 2018080382A JP 6901688 B2 JP6901688 B2 JP 6901688B2
Authority
JP
Japan
Prior art keywords
phase difference
vibration
phase
unit
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018080382A
Other languages
Japanese (ja)
Other versions
JP2019193339A (en
Inventor
峰尚 前田
峰尚 前田
哲行 木村
哲行 木村
孝信 大西
孝信 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2018080382A priority Critical patent/JP6901688B2/en
Priority to TW107131449A priority patent/TWI769300B/en
Priority to CN201811270543.XA priority patent/CN110386422B/en
Priority to KR1020180164104A priority patent/KR20190122121A/en
Publication of JP2019193339A publication Critical patent/JP2019193339A/en
Application granted granted Critical
Publication of JP6901688B2 publication Critical patent/JP6901688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/32Applications of devices for generating or transmitting jigging movements with means for controlling direction, frequency or amplitude of vibration or shaking movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/16Applications of devices for generating or transmitting jigging movements of vibrators, i.e. devices for producing movements of high frequency and small amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2812/00Indexing codes relating to the kind or type of conveyors
    • B65G2812/03Vibrating conveyors
    • B65G2812/0304Driving means or auxiliary devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jigging Conveyors (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Feeding Of Articles To Conveyors (AREA)

Description

本発明は、振動系の位相を高周波領域においても適切に制御できるようにした振動系の制御装置およびワーク搬送装置に関するものである。 The present invention relates to a vibration system control device and a work transfer device capable of appropriately controlling the phase of the vibration system even in a high frequency region.

従来より、進行波を利用してワークを搬送するワーク搬送装置が知られている(例えば特許文献1)。この種のワーク搬送装置は、図8に示すように搬送部aに周回可能な振動部を持つ構造となっており、この周回経路に沿って波打つような定在波モード(振動モード)を有している。このうち、空間的に位相が90°ずれた第1の振動部b1および第2の振動部b2に図9に示すような2つの定在波モード(0°モード、90°モード)を、時間的に位相を90°ずらして超音波領域で振動させるべく、それらの振動部b1、b2にそれぞれ圧電素子を用いた加振器c1、c2を設けて第1の振動系D1および第2の振動系D2を構成している。そして、駆動指令生成部eから正弦波をそれぞれアンプA1、A2を介して第1、第2の振動系D1、D2に入力し、その際にいずれかの振動系(図示例では第2の振動系D2)に対して位相器gで移相を90°ずらして駆動指令を入力することで、搬送部aに進行波を発生させている。 Conventionally, a work transfer device that conveys a work using a traveling wave has been known (for example, Patent Document 1). As shown in FIG. 8, this type of work transfer device has a structure in which the transfer portion a has a vibrating portion that can orbit, and has a standing wave mode (vibration mode) that undulates along this orbital path. doing. Of these, the first vibrating section b1 and the second vibrating section b2, which are spatially out of phase by 90 °, are subjected to two standing wave modes (0 ° mode and 90 ° mode) as shown in FIG. In order to vibrate in the ultrasonic region with a phase shift of 90 °, vibration units c1 and c2 using piezoelectric elements are provided in the vibrating parts b1 and b2, respectively, to provide the first vibration system D1 and the second vibration. It constitutes the system D2. Then, a sine wave is input from the drive command generation unit e to the first and second vibration systems D1 and D2 via the amplifiers A1 and A2, respectively, and at that time, one of the vibration systems (second vibration in the illustrated example). By shifting the phase shift by 90 ° with respect to the system D2) and inputting a drive command, a traveling wave is generated in the transport unit a.

特開2017−43431号公報Japanese Unexamined Patent Publication No. 2017-34331

このようなワーク搬送装置において、空間的に90°位相がずれた2つの定在波モードの共振周波数は近い値ながらも一致しておらず、このため加振信号に対する応答の位相差(機械的位相差)にずれがある(図10参照)。このずれがあるために、各モードへの加振信号の位相を90°ずらしても、その応答として生じる各モードの振動の位相は必ずしも90°とはならない。また、連続駆動時には温度変化などによって共振周波数が変化する現象があり、これに伴って各振動モードの位相関係にも変化が生じる。安定したワーク搬送のためには、このような位相のずれや変化に対応して、各モードの振動の位相差が90°となるように加振信号の位相差を調節することが必要である。 In such a work transfer device, the resonance frequencies of the two standing wave modes that are spatially out of phase by 90 ° are close but do not match, and therefore the phase difference (mechanical) of the response to the excitation signal. There is a deviation (phase difference) (see FIG. 10). Due to this deviation, even if the phase of the excitation signal to each mode is shifted by 90 °, the phase of the vibration of each mode generated as a response is not necessarily 90 °. Further, during continuous driving, there is a phenomenon that the resonance frequency changes due to a temperature change or the like, and the phase relationship of each vibration mode also changes accordingly. For stable workpiece transfer, it is necessary to adjust the phase difference of the vibration signal so that the phase difference of the vibration in each mode becomes 90 ° in response to such a phase shift or change. ..

しかし、従来においてはこのような調整はできておらず、適切な位相差とならずに進行波が悪化してワークを搬送できなくなる場合がある。この進行波の悪化は、進行波比の低下として捉えることができる。一般に進行波比は、どれだけ理想的な進行波に近いかを表す指標であって、以下の式で定義される。進行波比が1であれば完全な進行波、0であれば定在波、その間の値であれば進行波と定在波が混じった波であることを示す。
進行波比=進行波経路上の最小振幅/進行波経路上の最大振幅
However, in the past, such adjustment has not been made, and the traveling wave may deteriorate without an appropriate phase difference, making it impossible to convey the work. This deterioration of the traveling wave can be regarded as a decrease in the traveling wave ratio. In general, the traveling wave ratio is an index showing how close to an ideal traveling wave is, and is defined by the following equation. A traveling wave ratio of 1 indicates a complete traveling wave, a value of 0 indicates a standing wave, and a value in between indicates a wave in which a traveling wave and a standing wave are mixed.
Traveling wave ratio = minimum amplitude on the traveling wave path / maximum amplitude on the traveling wave path

そこで、従来においては一定値に設定して与えていた図8の加振信号の位相差「90°」を、位相検出を通じたフィードバック制御によって自動調整することで問題の解決を図ることが一つの手段として考えられる。 Therefore, one method is to solve the problem by automatically adjusting the phase difference "90 °" of the excitation signal in FIG. 8 which was conventionally set to a constant value by feedback control through phase detection. It can be considered as a means.

しかしながら、位相差を検出するための一般的手法であるゼロクロス検出をこのワーク搬送装置に採用することは難しい。ゼロクロス検出はサンプリング速度の問題があり、超音波領域になると高い分解能で位相差を検出することが困難になるためである。 However, it is difficult to adopt zero cross detection, which is a general method for detecting a phase difference, in this work transfer device. This is because zero-cross detection has a problem of sampling speed, and it becomes difficult to detect the phase difference with high resolution in the ultrasonic region.

本発明は、このような課題に着目してなされたものであって、超音波搬送を始めとして、高い周波数領域で位相制御を行う必要がある場合に好適に適用できる、新たな振動系の制御装置およびワーク搬送装置を実現することを目的としている。 The present invention has been made by paying attention to such a problem, and is suitable for controlling a new vibration system, which can be suitably applied when it is necessary to perform phase control in a high frequency region such as ultrasonic transfer. The purpose is to realize an apparatus and a workpiece transfer apparatus.

本発明は、これらの課題を有効に解決することを目的としている。 An object of the present invention is to effectively solve these problems.

そこで本発明は、かかる課題を解決するために、次のような手段を講じたものである。
すなわち、本発明に係る振動系の制御装置は、共振周波数の異なる2つの振動系を共通の駆動指令を通じて駆動すべく、前記2つの振動系の位相差を検出する位相差検出部と、前記振動系の何れか一方の駆動指令の位相を変更する位相調整部とを具備するものであって、前記位相差検出部は、前記2つの振動系の各々から振動を検出する振動検出部と、前記振動検出部で検出した信号同士を掛け合わせる乗算部と、掛け合わせた信号から掛け合わせ前の信号同士の位相差に応じた直流分を取り出すフィルタ部と、取り出した直流分を前記2つの振動系の振動振幅で除して正規化する除算部とを備え、前記位相調整部は、前記除算部から出力される実位相差を表す値を予め設定した目標位相差を表す値に一致させるように前記駆動指令の位相を調節することを特徴とする。
Therefore, the present invention has taken the following measures in order to solve such a problem.
That is, the vibration system control device according to the present invention has a phase difference detection unit that detects the phase difference between the two vibration systems and the vibration in order to drive the two vibration systems having different resonance frequencies through a common drive command. It includes a phase adjusting unit that changes the phase of one of the drive commands of the system, and the phase difference detecting unit includes a vibration detecting unit that detects vibration from each of the two vibration systems and the vibration detecting unit. A multiplication unit that multiplies the signals detected by the vibration detection unit, a filter unit that extracts the DC component from the multiplied signal according to the phase difference between the signals before multiplication, and the two vibration systems that extract the DC component. The phase adjusting unit is provided with a dividing unit that is normalized by dividing by the vibration amplitude of the above, so that the value representing the actual phase difference output from the dividing unit matches the value representing the preset target phase difference. It is characterized in that the phase of the drive command is adjusted.

ゼロクロス検出などの場合には、サンプリング速度の問題から高い分解能で位相差を検出することが困難であったが、このようにすれば位相差検出値を直流信号として取り出せるため、周波数が高くても高精度に位相差を検出することができる。しかも、位相差検出信号を正規化することで、制御の応答性等が振幅に依存することがなく、2つの振動系の位相差を高周波領域であっても安定して精度良く制御することが可能になる。 In the case of zero-cross detection, it was difficult to detect the phase difference with high resolution due to the problem of sampling speed. However, in this way, the phase difference detection value can be extracted as a DC signal, so even if the frequency is high. The phase difference can be detected with high accuracy. Moreover, by normalizing the phase difference detection signal, the responsiveness of control does not depend on the amplitude, and the phase difference between the two vibration systems can be controlled stably and accurately even in the high frequency region. It will be possible.

特に、前記実位相差および前記目標位相差を表す値は、位相差の余弦値または正弦値であり、この余弦値または正弦値に基づき実位相差と目標位相差の偏差が0となるように、前記駆動指令の位相を増減何れかの方向に移相することが好適である。 In particular, the values representing the actual phase difference and the target phase difference are the cosine value or the sine value of the phase difference, and the deviation between the actual phase difference and the target phase difference becomes 0 based on the cosine value or the sine value. , It is preferable to shift the phase of the drive command in either the increasing or decreasing direction.

このようにすれば、目標位相差も設定し易く、かつ極めて単純な実位相差との比較で位相調整部における調整方向を決定することができる。 In this way, the target phase difference can be easily set, and the adjustment direction in the phase adjusting unit can be determined by comparison with an extremely simple actual phase difference.

或いは、前記2つの振動系で検出した信号がともに変位信号同士、速度信号同士または加速度信号同士の何れかであって、前記位相調整部は目標位相差の余弦値または正弦値として0を与え、実位相差に係る余弦値または正弦値が0となるように、駆動指令の位相を調整することが好適である。 Alternatively, the signals detected by the two vibration systems are both displacement signals, velocity signals, or acceleration signals, and the phase adjusting unit gives 0 as the cosine value or sine value of the target phase difference. It is preferable to adjust the phase of the drive command so that the cosine value or the sine value related to the actual phase difference becomes 0.

変位と速度では90°位相が異なり、速度と加速度ではさらに90°位相が異なるが、同じ信号同士であれば扱い易い。そして、目標位相差の余弦値または正弦値が0である場合には、出てくる直流成分だけで位相調整を行うことができる。 Displacement and velocity differ in 90 ° phase, and velocity and acceleration further differ in 90 ° phase, but the same signals are easy to handle. Then, when the cosine value or the sine value of the target phase difference is 0, the phase adjustment can be performed only by the DC component that appears.

前記2つの振動系の振動が、90°の位相差で振動することにより進行波を発生させてワークを搬送するための2つの定在波振動である場合には、進行方向に応じて、目標位相差の余弦値0に対して実位相差の余弦値を0にするための移相の方向を、+90°に収斂させるか−90°に収斂させるかで切り替えることが望ましい。 When the vibrations of the two vibration systems are two standing wave vibrations for generating a traveling wave and transporting the work by vibrating with a phase difference of 90 °, the target is determined according to the traveling direction. It is desirable to switch the direction of phase shift for setting the cosine value of the actual phase difference to 0 with respect to the cosine value of the phase difference of 0, depending on whether it converges to + 90 ° or −90 °.

第1、第2の定在波があるとして、第1の定在波に対して第2の定在波の位相はワークの搬送方向が正の場合に+90°、負の場合に−90°になる。そして、目標値が90°である場合、cosφは90°を上回ると−に振れ、90°を下回ると+に振れる。一方、目標値が−90°である場合、−90°を上回ると+に振れ。下回ると−に振れる。よって、進行方向に応じて移相の方向を切り替えるだけで、搬送方向に応じた制御を行うことが可能になる。 Assuming that there are first and second standing waves, the phase of the second standing wave with respect to the first standing wave is + 90 ° when the work transport direction is positive and -90 ° when the work transport direction is negative. become. When the target value is 90 °, cosφ swings to − when it exceeds 90 ° and swings to + when it falls below 90 °. On the other hand, when the target value is -90 °, it swings to + when it exceeds -90 °. If it falls below, it swings to-. Therefore, it is possible to perform control according to the transport direction only by switching the phase shift direction according to the traveling direction.

本発明の好適な適用例としては、ワークを載置した状態で搬送する搬送部と、位相の異なる2つの定在波が合成されることにより前記搬送部をたわみ振動させるための進行波を発生させる進行波発生手段と、を備え、前記進行波発生手段の2つの定在波の生成に上記振動系の制御装置が適用されることが望ましい。 As a preferred application example of the present invention, a traveling wave for bending and vibrating the transporting portion is generated by synthesizing two standing waves having different phases and a transporting portion for transporting the workpiece in a mounted state. It is desirable that the traveling wave generating means for causing the traveling wave to be generated is provided, and the vibration system control device is applied to generate two standing waves of the traveling wave generating means.

このようなワーク搬送装置であれば、2つの定在波の位相差を正確に90°に近づけて、進行波比の高い高効率の搬送を行うことが可能になる。 With such a work transfer device, the phase difference between the two standing waves can be accurately brought close to 90 °, and highly efficient transfer with a high traveling wave ratio becomes possible.

以上、説明した本発明によれば、超音波搬送を始めとして、高い周波数領域で位相制御を的確に行うことが要求される用途に適用して極めて有用となる、新たな振動系の制御装置およびワーク搬送装置を提供することが可能となる。 According to the present invention described above, a new vibration system control device and a new vibration system control device that are extremely useful when applied to applications that require accurate phase control in a high frequency region, such as ultrasonic transfer. It becomes possible to provide a work transfer device.

本発明の一実施形態に係る振動系の制御装置を示すブロック図。The block diagram which shows the control device of the vibration system which concerns on one Embodiment of this invention. 図1の一部を具体的に示したブロック図。The block diagram which showed a part of FIG. 1 concretely. 同実施形態における実位相差を表す余弦値と位相差の関係を示すグラフ。The graph which shows the relationship between the cosine value which shows the real phase difference and the phase difference in the same embodiment. 同実施形態に係る制御装置の適用例であるワーク搬送装置としてのパーツフィーダを示す図。The figure which shows the parts feeder as a work transfer apparatus which is an application example of the control apparatus which concerns on the same embodiment. 同パーツフィーダを構成するボウルフィーダに対する制御ブロック図。The control block diagram for the bowl feeder which constitutes the part feeder. 同パーツフィーダを構成するリニアフィーダに対する制御ブロック図。The control block diagram for the linear feeder which constitutes the part feeder. 本発明の変形例を示す図2に対応したブロック図。The block diagram corresponding to FIG. 2 which shows the modification of this invention. 本発明と対比される従来の制御装置を説明するための原理図。The principle diagram for demonstrating the conventional control apparatus which is contrasted with this invention. 従来の制御における0°モードと90°モードの関係を示す図。The figure which shows the relationship between 0 ° mode and 90 ° mode in the conventional control. 同従来例における不具合を説明するためのグラフ。A graph for explaining a defect in the conventional example.

以下、本発明の一実施形態を、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本実施形態に係る振動系の制御装置Cをブロック図で示したものである。この制御装置Cは、第一、第二振動系1、2を持ち、各振動系1、2の共振周波数f1、f2が近い値にあるような振動部(1x、2x)を有する。このように共振周波数f1、f2が近い値にあるような振動系としては、例えば空間的位相差のある複数箇所を時間的位相差の下に複数の振動モードで加振することによって進行波を発生させるパーツフィーダ等の超音波振動系などが挙げられる。 FIG. 1 is a block diagram showing the vibration system control device C according to the present embodiment. This control device C has first and second vibration systems 1 and 2, and has vibration units (1x and 2x) such that the resonance frequencies f1 and f2 of the vibration systems 1 and 2 are close to each other. As a vibration system in which the resonance frequencies f1 and f2 are close to each other in this way, for example, a traveling wave is generated by vibrating a plurality of locations having a spatial phase difference in a plurality of vibration modes under a temporal phase difference. An ultrasonic vibration system such as a parts feeder to be generated can be mentioned.

この実施形態では、空間的位相が90°ずれた二つの定在波モード(0°モード、90°モード)を有する搬送部を駆動する場合を例に挙げている。 In this embodiment, a case of driving a transport unit having two standing wave modes (0 ° mode and 90 ° mode) in which the spatial phases are shifted by 90 ° is given as an example.

具体的には、第一、第二振動系1,2は、それぞれ0°モードを加振する第一加振器11および90°モードを加振する第二加振器21によって加振される。 Specifically, the first and second vibration systems 1 and 2 are vibrated by the first vibrating device 11 that vibrates the 0 ° mode and the second vibrating device 21 that vibrates the 90 ° mode, respectively. ..

第一、第二加振器11、21へは、発信器等の駆動指令生成部3で生成される、周波数可変で正弦波や矩形波などの周期信号が第一、第二増幅器12、22で増幅されて入力される。第二加振器21に関しては、第一加振器11での加振を基準とした相対的な位相差を与えるべく、駆動指令生成部3からの周期信号を移相器41において位相をずらして第二増幅器22で増幅したものが入力される。この位相のずれ量は外部信号によって調節可能とされる。 Periodic signals such as sine waves and square waves with variable frequencies generated by the drive command generator 3 of the transmitter etc. are sent to the first and second exciters 11 and 21 of the first and second amplifiers 12 and 22. It is amplified by and input. Regarding the second exciter 21, the phase of the periodic signal from the drive command generator 3 is shifted in the phase shifter 41 in order to give a relative phase difference based on the excitation in the first exciter 11. Then, what is amplified by the second amplifier 22 is input. The amount of this phase shift can be adjusted by an external signal.

すなわち、駆動指令生成部3からの周期信号は、第一増幅器12に入力されるとともに、移相器23によって位相をずらして第二増幅器22に入力される。 That is, the periodic signal from the drive command generation unit 3 is input to the first amplifier 12 and is input to the second amplifier 22 with the phase shifted by the phase shifter 23.

ここで、安定したワーク搬送のためには、各モードの振動の位相差を90°とすることが望ましい。そこで、2つの振動系の振動を検出して位相差が90°となるように、一方の振動系の駆動指令の位相を変える必要がある。 Here, for stable workpiece transfer, it is desirable that the phase difference of vibration in each mode is 90 °. Therefore, it is necessary to change the phase of the drive command of one of the vibration systems so that the vibrations of the two vibration systems are detected and the phase difference becomes 90 °.

しかしながら、前述したように位相差を検出するための一般的手法であるゼロクロス検出は、本実施形態のような用途に採用することが難しい。ゼロクロス検出はサンプリング速度の問題があり、超音波領域になると高い分解能で位相差を検出することが困難になるためである。 However, as described above, it is difficult to adopt zero-cross detection, which is a general method for detecting a phase difference, in an application such as this embodiment. This is because zero-cross detection has a problem of sampling speed, and it becomes difficult to detect the phase difference with high resolution in the ultrasonic region.

そこで本実施形態は、ゼロクロス以外の手法によって位相差を検出する構成を採用する。 Therefore, this embodiment employs a configuration in which the phase difference is detected by a method other than zero cross.

具体的には、一方の振動系すなわち第二振動系2に入力される駆動指令の位相を前記移相器41を通じて変更する位相調整部4と、2つの振動系すなわち第一、第二振動系1、2の位相差を検出して直流分として出力する位相差検出部5とを具備している。 Specifically, the phase adjusting unit 4 that changes the phase of the drive command input to one of the vibration systems, that is, the second vibration system 2, through the phase shifter 41, and the two vibration systems, that is, the first and second vibration systems. It is provided with a phase difference detecting unit 5 that detects the phase difference of 1 and 2 and outputs it as a direct current component.

位相差検出部5は、0°モード、90°モードの振動波形を検出する第一、第二の振動検出器51、52と、第一、第二の振動検出器51、52の信号を入力し、それらの位相差に応じた信号を出力する位相差検出器53とを含んで構成される。この実施形態において、第一、第二の振動検出器51、52が検出するのは、変位信号同士、速度信号同士または加速度信号同士の何れかとされる。 The phase difference detection unit 5 inputs signals of the first and second vibration detectors 51 and 52 for detecting vibration waveforms in 0 ° mode and 90 ° mode, and the signals of the first and second vibration detectors 51 and 52. A phase difference detector 53 that outputs a signal corresponding to the phase difference thereof is included. In this embodiment, the first and second vibration detectors 51 and 52 detect either displacement signals, velocity signals, or acceleration signals.

また、位相調整部4は、第一、第二振動系1、2の振動位相差に目標を設定し、それに応じた信号を出力する位相差設定器42と、位相差検出器53の出力信号と位相差設定器42の出力信号を比較する比較器たる差分器43と、この差分器43における偏差が0となるような制御量を算出する制御量算出部たるPI制御部44と、PI制御部44の出力信号によって移相量を操作する移相器41とを含んで構成される。 Further, the phase adjusting unit 4 sets a target for the vibration phase difference of the first and second vibration systems 1 and 2, and outputs a signal corresponding to the target, and an output signal of the phase difference detector 53. The difference device 43, which is a comparison device that compares the output signals of the phase difference setting device 42, and the PI control unit 44, which is a control amount calculation unit that calculates the control amount so that the deviation in the difference device 43 becomes 0, and PI control. It is configured to include a phase shifter 41 that controls the phase shift amount by the output signal of the unit 44.

位相差検出器53は、より具体的には図2のように構成される。この位相差検出器53は、第一振動検出器51と第二振動検出器52の信号を乗算する乗算部たる乗算器53aと、乗算器53aの出力信号から直流成分を取り出すフィルタ部たるローパスフィルタ53bと、第一、第二振動検出器51、52の信号の振幅を検出する第一、第二振幅検出器53c、53dと、ローパスフィルタ53bを通過後の信号を、第一、第二振幅検出器53c、53dの検出信号によって除算する除算部たる除算器53e、53fとを備え、除算後の信号を位相差検出信号S1としてフィードバックしている。 More specifically, the phase difference detector 53 is configured as shown in FIG. The phase difference detector 53 includes a multiplier 53a, which is a multiplication unit that multiplies the signals of the first vibration detector 51 and the second vibration detector 52, and a low-pass filter, which is a filter unit that extracts a DC component from the output signal of the multiplier 53a. The first and second amplitudes of the signals after passing through the 53b, the first and second amplitude detectors 53c and 53d that detect the amplitudes of the signals of the first and second vibration detectors 51 and 52, and the low pass filter 53b. The dividers 53e and 53f, which are division units for dividing by the detection signals of the detectors 53c and 53d, are provided, and the divided signal is fed back as the phase difference detection signal S1.

この場合、0°モードと90°モードの位相差をφ12とすると、位相差検出器53の信号はcosφ12に比例した信号となる。したがって、0°モードと90°モードの位相差が±90°(φ12=±90°)の場合、位相差検出器53の信号の値はcos±90°すなわち0となる。 In this case, assuming that the phase difference between the 0 ° mode and the 90 ° mode is φ12, the signal of the phase difference detector 53 is a signal proportional to cos φ12. Therefore, when the phase difference between the 0 ° mode and the 90 ° mode is ± 90 ° (φ12 = ± 90 °), the signal value of the phase difference detector 53 is cos ± 90 °, that is, 0.

0°モードと90°モードの位相差を±90°(φ12=±90°)とするために、位相差設定器42の設定値を図2に示すように0とする。この場合は敢えて位相差設定器42を設けずともよい。 In order to set the phase difference between the 0 ° mode and the 90 ° mode to ± 90 ° (φ12 = ± 90 °), the set value of the phase difference setting device 42 is set to 0 as shown in FIG. In this case, it is not necessary to dare to provide the phase difference setting device 42.

このように構成した場合の作用は以下のようになる。
第一振動検出器51の信号をv1cos(ωt+φ1)、第二振動検出器52の信号をv2cos(ωt+φe+φ2)とする。φeは90°モードの指令信号に対する応答の位相差である。また、v1、v2は0°モード、90°モードの振幅に比例した値である。ここで、φe+φ2-φ1=φ12とすると、第二振動検出器52の信号はv2cos(ωt+φ1+φ12)となり、φ12は0°モードに対する90°モードの振動の位相差を表す。第一振動検出器51の信号と第二振動検出器52の信号は、乗算器53aで乗算された後にローパスフィルタ53bに通される。乗算された後の信号は以下のようになる。
The operation when configured in this way is as follows.
Let the signal of the first vibration detector 51 be v1cos (ωt + φ1) and the signal of the second vibration detector 52 be v2cos (ωt + φe + φ2). φe is the phase difference of the response to the command signal in 90 ° mode. Further, v1 and v2 are values proportional to the amplitudes of the 0 ° mode and the 90 ° mode. Here, if φe + φ2-φ1 = φ12, the signal of the second vibration detector 52 is v2cos (ωt + φ1 + φ12), and φ12 represents the phase difference of the vibration in the 90 ° mode with respect to the 0 ° mode. The signal of the first vibration detector 51 and the signal of the second vibration detector 52 are multiplied by the multiplier 53a and then passed through the low-pass filter 53b. The signal after multiplication is as follows.

v1cos(ωt+φ1)×v2cos(ωt+φ1+φ12)
=v1・v2{cos2(ωt+φ1)cosφ12-cos(ωt+φ1)sin(ωt+φ1)sinφ12} …(1)
v1cos (ωt + φ1) × v2cos (ωt + φ1 + φ12)
= v1 ・ v2 {cos 2 (ωt + φ1) cos φ12-cos (ωt + φ1) sin (ωt + φ1) sin φ12}… (1)

この信号をローパスフィルタ53bに通すと、直流成分のみが取り出され、
(1/2)v1・v2cosφ12 …(2)
となる。
When this signal is passed through the low-pass filter 53b, only the DC component is extracted and
(1/2) v1 ・ v2cos φ12… (2)
Will be.

さらに、除算器53e、53fでは、第一、第二振幅検出器53c、53dで検出された振幅比例信号(v1、v2に比例した信号)によって除算を行う(正規化する)。これにより得られる信号は、振幅に依存せずcosφ12に比例した位相差検出信号S1となり、この位相差検出信号S1をフィードバックしてPI制御部44で制御を行う。 Further, in the dividers 53e and 53f, division is performed (normalized) by the amplitude proportional signals (signals proportional to v1 and v2) detected by the first and second amplitude detectors 53c and 53d. The signal obtained thereby becomes a phase difference detection signal S1 proportional to cos φ12 without depending on the amplitude, and the phase difference detection signal S1 is fed back and controlled by the PI control unit 44.

ここで、図3に示すように、φ12=90°のときcosφ12=0であり、この付近ではφ12の増加に対してcosφ12は単調に減少する。また、φ12=−90°のときcosφ12=0であり、この付近ではφ12の増加に対してcosφ12は単調に増加する。φ12(=φe+φ2−φ1)は移相量φeによって調節可能である。したがって、PI制御部44において下記のような操作を行うことにより、0°モードと90°モードの振動の位相差φ12を+90°又は−90°に保つことができる。 Here, as shown in FIG. 3, when φ12 = 90 °, cos φ12 = 0, and in this vicinity, cos φ12 decreases monotonically with respect to the increase in φ12. Further, when φ12 = −90 °, cos φ12 = 0, and in this vicinity, cos φ12 increases monotonically with respect to the increase in φ12. φ12 (= φe + φ2-φ1) can be adjusted by the phase shift amount φe. Therefore, the phase difference φ12 between the vibrations in the 0 ° mode and the 90 ° mode can be maintained at + 90 ° or −90 ° by performing the following operations in the PI control unit 44.

+90°に収斂させる必要のある制御においては、cosφ12<0の場合にはφeを減少させ、cosφ12>0の場合にはφeを増加させる。
−90°に収斂させる必要のある制御においては、cosφ12<0の場合にはφeを増加させ、cosφ12>0の場合にはφeを減少させる。
In the control that needs to converge to + 90 °, φe is decreased when cosφ12 <0, and φe is increased when cosφ12> 0.
In the control that needs to converge to −90 °, φe is increased when cos φ12 <0, and φe is decreased when cos φ12> 0.

適用対象によって、+90°または−90°の何れに収斂させればよいかは予め明らかであるため、このような制御によって、0°モードと90°モードの特性の差や共振周波数の変化があったとしても、0°モードと90°モードの振動の位相差が±90°に保たれ、安定した進行波生成が可能となる。 Since it is clear in advance whether to converge to + 90 ° or -90 ° depending on the application target, such control may cause a difference in characteristics between the 0 ° mode and the 90 ° mode and a change in the resonance frequency. Even so, the phase difference between the vibrations in the 0 ° mode and the 90 ° mode is maintained at ± 90 °, and stable traveling wave generation becomes possible.

図4は、本実施系に係る振動系の制御装置Cが適用される一例としてのワーク搬送装置たるパーツフィーダPFを示している。このパーツフィーダPFは、投入されるワークを螺旋搬送部T1に沿って登坂させるボウルフィーダBfと、このボウルフィーダBfから排出されるワークに対し整列搬送部t1で整列や方向判別等を行って適正姿勢のワークのみを通過させるとともに不適切なワークをリターン搬送部t2を通じてボウルフィーダBfにリターンさせるリニアフィーダLfとから構成される。 FIG. 4 shows a parts feeder PF as a work transfer device as an example to which the vibration system control device C according to the present implementation system is applied. The parts feeder PF is appropriate by aligning and determining the direction of the bowl feeder Bf that causes the loaded work to climb along the spiral transport portion T1 and the work discharged from the bowl feeder Bf by the alignment transport portion t1. It is composed of a linear feeder Lf that allows only the work in the posture to pass and returns an inappropriate work to the bowl feeder Bf through the return transport unit t2.

このうちボウルフィーダBfは、図5に示すように、フィーダ本体底面の円環状の振動領域のうち、第一領域にあって0°モードで振動する第一振動系1の振動部1x、および第二領域にあって90°モードで振動する第二振動系の振動部2xに対して、圧電素子を用いた第一加振器11および第二加振器12を通じて加振することで、位相の異なる定在波が合成されることにより前記搬送部T1をたわみ振動させるための進行波を発生させる進行波発生手段BZが構成されている。そして、このボウルフィーダBfに上記制御装置Cを適用する場合、進行波発生手段BZの第一、第二加振器11、21に図1及び図2に示した第一、第二増幅器12、22で増幅された周期信号が入力され、第一、第二振動系1(1x)、2(2x)の振動が第一、第二振動検出器51、52を通じて取り出されるように構成すればよい。図5において制御装置C(図1及び図2参照)の他の部分は省略してあり、構成及び制御方法は上記実施形態と同様である。 Of these, as shown in FIG. 5, the bowl feeder Bf is the vibrating portion 1x of the first vibrating system 1 that vibrates in the 0 ° mode in the first region of the annular vibrating region on the bottom surface of the feeder body, and the third vibration region. By vibrating the vibrating part 2x of the second vibrating system that vibrates in the 90 ° mode in two regions through the first vibrating device 11 and the second vibrating device 12 using a piezoelectric element, the phase can be changed. A traveling wave generating means BZ for generating a traveling wave for flexing and vibrating the transport portion T1 by synthesizing different standing waves is configured. When the control device C is applied to the bowl feeder Bf, the first and second vibrators 11 and 21 of the traveling wave generating means BZ have the first and second amplifiers 12 shown in FIGS. 1 and 2. The periodic signal amplified by 22 may be input, and the vibrations of the first and second vibration systems 1 (1x) and 2 (2x) may be taken out through the first and second vibration detectors 51 and 52. .. In FIG. 5, other parts of the control device C (see FIGS. 1 and 2) are omitted, and the configuration and control method are the same as those in the above embodiment.

このようなパーツフィーダPFを駆動する場合、各加振部1x、2xでの共振周波数はぼほ同じとみて駆動するのが通例であり、振動部1x、2xの底面に圧電素子を貼り付けると圧電素子の発熱によって複数の加振点での共振周波数が数%変化し、定在波比が低下して搬送効率が著しく損なわれる可能性があったが、制御装置Cを通じた制御によって、かかる課題を有効に解決することが可能となる。 When driving such a parts feeder PF, it is customary to drive the parts feeder PF by assuming that the resonance frequencies of the vibration units 1x and 2x are almost the same. There was a possibility that the resonance frequency at a plurality of vibration points would change by several percent due to the heat generated by the piezoelectric element, the standing wave ratio would decrease, and the transfer efficiency would be significantly impaired. It becomes possible to solve the problem effectively.

一方、図4のリニアフィーダLfは、図6に示すように、フィーダ本体底面の長円状の振動領域のうち、第一領域にあって0°モードで振動する第一振動系1の振動部1x、および第二領域にあって90°モードで振動する第二振動系の振動部2xに対して、圧電素子を用いた第一加振器11および第二加振器12を通じて加振することで、位相の異なる定在波が合成されることにより前記搬送部t1、t2をたわみ振動させるための進行波を発生させる進行波発生手段LZが構成されている。そして、このリニアフィーダLfに上記制御装置Cを適用する場合も、進行波発生手段LZに第一、第二加振器11、21に図1及び図2に示した第一、第二増幅器12、22で増幅された周期信号が入力され、第一、第二振動系1(1x)、2(2x)の振動が第一、第二振動検出器51、52を通じて取り出されるように構成すればよい。図6においても制御装置C(図1及び図2参照)の他の部分は省略してあり、構成及び制御方法は上記実施形態と同様である。 On the other hand, as shown in FIG. 6, the linear feeder Lf of FIG. 4 is a vibrating portion of the first vibrating system 1 that is in the first region of the oval vibration region of the bottom surface of the feeder body and vibrates in the 0 ° mode. To vibrate 1x and the vibrating part 2x of the second vibrating system that vibrates in the 90 ° mode in the second region through the first vibrating device 11 and the second vibrating device 12 using a piezoelectric element. Therefore, a traveling wave generating means LZ for generating a traveling wave for flexing and vibrating the conveying portions t1 and t2 by synthesizing standing waves having different phases is configured. When the control device C is applied to the linear feeder Lf, the first and second vibrators 11 and 21 are used for the traveling wave generating means LZ, and the first and second amplifiers 12 shown in FIGS. 1 and 2 are used for the traveling wave generating means LZ. If the periodic signal amplified in 22 and 22 is input and the vibrations of the first and second vibration systems 1 (1x) and 2 (2x) are taken out through the first and second vibration detectors 51 and 52. Good. In FIG. 6, other parts of the control device C (see FIGS. 1 and 2) are omitted, and the configuration and control method are the same as those in the above embodiment.

そして、ボウルフィーダBfやリニアフィーダLfでは、第1振動系1に対して第2振動系の位相差を±90°で反転させれば搬送方向が逆向きになるため、このような制御を行うことはワーク詰まり等が発生した場合の対応措置となり得る。 Then, in the bowl feeder Bf and the linear feeder Lf, if the phase difference of the second vibration system is inverted by ± 90 ° with respect to the first vibration system 1, the transport direction becomes opposite, so such control is performed. This can be a countermeasure in the event of work clogging.

そして、図3に基づいて説明したように、+90°に収斂させる制御においては、cosφ12<0の場合にφeを減少させ、cosφ12>0の場合にはφeを増加させる制御を行い、−90°に収斂させる制御においては、cosφ12<0の場合にはφeを増加させ、cosφ12>0の場合にはφeを減少させる制御を行えばよい。 Then, as described with reference to FIG. 3, in the control for convergence to + 90 °, φe is reduced when cosφ12 <0, and φe is increased when cosφ12> 0, and −90 ° In the control of converging to, φe may be increased when cosφ12 <0, and φe may be decreased when cosφ12> 0.

以上のように、本実施形態に係る振動系の制御装置Cは、共振周波数がそれぞれf1、f2と異なる第一、第二振動系1、2を共通の駆動指令を通じて駆動すべく、前記2つの振動系1、2の位相差φ12を検出する位相差検出部5と、第二振動系2の駆動指令の位相を変更する位相調整部4とを具備するものである。そして具体的に位相差検出部5は、第一、第二振動系1、2の各々から振動を検出する振動検出部たる第一振動検出器51及び第二振動検出器52と、これら両振動検出器51、52で検出した信号同士を掛け合わせる乗算部たる乗算器53aと、掛け合わせた信号から掛け合わせ前の信号同士の位相差φ12に応じた直流分を取り出すフィルタ部たるローパスフィルタ53bと、取り出した直流分を2つの振動系1、2の振動振幅v1、v2で除して正規化する除算部たる除算器53e、53fとを備え、位相調整部4は、除算器53e、53fから出力される実位相差を表す値を位相差設定器42で設定される目標位相差を表す値と一致させるように第二振動系2への駆動指令の位相を移相器41で調節するように構成されている. As described above, the vibration system control device C according to the present embodiment has the above two vibration systems 1 and 2 having resonance frequencies different from those of f1 and f2, respectively, in order to drive them through a common drive command. It includes a phase difference detecting unit 5 for detecting the phase difference φ12 of the vibration systems 1 and 2, and a phase adjusting unit 4 for changing the phase of the drive command of the second vibration system 2. Specifically, the phase difference detection unit 5 includes a first vibration detector 51 and a second vibration detector 52, which are vibration detection units that detect vibrations from each of the first and second vibration systems 1 and 2, and both of these vibrations. A multiplier 53a, which is a multiplying unit that multiplies the signals detected by the detectors 51 and 52, and a low-pass filter 53b, which is a filter unit that extracts a DC component corresponding to the phase difference φ12 between the signals before crossing from the crossed signals. The phase adjusting unit 4 is provided with the dividers 53e and 53f, which are the dividers 53e and 53f, which normalize the extracted DC component by dividing it by the vibration amplitudes v1 and v2 of the two vibration systems 1 and 2. The phase shifter 41 adjusts the phase of the drive command to the second vibration system 2 so that the output value representing the actual phase difference matches the value representing the target phase difference set by the phase difference setter 42. It is composed of.

ゼロクロス検出などの場合には、サンプリング速度の問題から高い分解能で位相差を検出することが困難であったが、このようにすれば位相差検出値を直流信号として取り出せるため、周波数が高くても高精度に位相差を検出することができる。しかも、取り出した直流信号を正規化して位相差検出信号S1とすることで、制御の応答性等が振幅に依存することがなく、2つの振動系1、2の位相差φ12を高周波領域であっても安定して精度良く制御することが可能になる。 In the case of zero-cross detection, it was difficult to detect the phase difference with high resolution due to the problem of sampling speed. However, in this way, the phase difference detection value can be extracted as a DC signal, so even if the frequency is high. The phase difference can be detected with high accuracy. Moreover, by normalizing the extracted DC signal to obtain the phase difference detection signal S1, the responsiveness of control does not depend on the amplitude, and the phase difference φ12 of the two vibration systems 1 and 2 is in the high frequency region. However, stable and accurate control becomes possible.

特にこの実施形態において、実位相差および目標位相差を表す値は、位相差の余弦値すなわちcosφであり、この余弦値cosφに基づき実位相差と目標位相差の偏差が0となるように、駆動指令の位相を増減何れかの方向に移相するようにしている。このため、目標位相差も設定し易く、かつ極めて単純な実位相差との比較で位相調整部4における調整方向を決定することができる。 In particular, in this embodiment, the values representing the actual phase difference and the target phase difference are the cosine value of the phase difference, that is, cosφ, and the deviation between the actual phase difference and the target phase difference becomes 0 based on the cosine value cosφ. The phase of the drive command is shifted in either the increasing or decreasing direction. Therefore, the target phase difference can be easily set, and the adjustment direction in the phase adjusting unit 4 can be determined by comparison with an extremely simple actual phase difference.

またこの実施形態では、第一、第二の振動系1、2で検出した信号はともに変位信号同士、速度信号同士または加速度信号同士の何れかであって、位相調整部4は目標位相差の余弦値または正弦値として0を与え、実位相差に係る余弦値または正弦値が0となるように、駆動指令の位相を調整するようにしている。すなわち、変位と速度では90°位相が異なり、速度と加速度ではさらに90°位相が異なるが、同じ信号同士であれば扱い易い。そのうえ、目標位相差の余弦値または正弦値を0としているため、出てくる直流成分だけで位相調整を行うことができる。 Further, in this embodiment, the signals detected by the first and second vibration systems 1 and 2 are both displacement signals, velocity signals, or acceleration signals, and the phase adjusting unit 4 has a target phase difference. 0 is given as the cosine value or the sine value, and the phase of the drive command is adjusted so that the cosine value or the sine value related to the actual phase difference becomes 0. That is, although the displacement and velocity have different 90 ° phases, and the velocity and acceleration have further different 90 ° phases, the same signals are easy to handle. Moreover, since the cosine value or the sine value of the target phase difference is set to 0, the phase adjustment can be performed only by the DC component that appears.

具体的には、この実施形態における第一、第二の振動系1、2が、90°の位相差で振動することにより進行波を発生させてワークを搬送するための2つの定在波振動であり、進行方向に応じて、目標位相差の余弦値0に対して実位相差の余弦値を0にするための移相の方向を、+90°に収斂させるか−90°に収斂させるかで切り替えるようにしている。すなわち、第1の定在波に対して第2の定在波の位相はワークの搬送方向が正の場合に+90°とすると、負の場合に−90°になる。そして、目標値が90°である場合、cosφは90°を上回ると−に振れ、90°を下回ると+に振れる。一方、目標値が−90°である場合、−90°を上回ると+に振れ。下回ると−に振れる。よって、進行方向に応じて移相の方向を切り替えるだけで、搬送方向に応じた制御を行うことが可能になる。 Specifically, the first and second vibration systems 1 and 2 in this embodiment vibrate with a phase difference of 90 ° to generate a traveling wave and convey the work. Therefore, depending on the traveling direction, whether the direction of phase shift for making the cosine value of the actual phase difference 0 with respect to the cosine value 0 of the target phase difference converges to + 90 ° or −90 °. I try to switch with. That is, the phase of the second standing wave with respect to the first standing wave is + 90 ° when the work transport direction is positive, and −90 ° when it is negative. When the target value is 90 °, cosφ swings to − when it exceeds 90 ° and swings to + when it falls below 90 °. On the other hand, when the target value is -90 °, it swings to + when it exceeds -90 °. If it falls below, it swings to-. Therefore, it is possible to perform control according to the transport direction only by switching the phase shift direction according to the traveling direction.

そして、この実施形態の適用対象であるワーク搬送装置たるパーツフィーダPFは、ワークを載置した状態で搬送する搬送部T1、t1、t2と、位相の異なる2つの定在波が合成されることにより搬送部T1、t1、t2をたわみ振動させるための進行波を発生させる進行波発生手段BZ、LZと、を備え、進行波発生手段BZ、LZの2つの定在波の生成に上記振動系の制御装置Cを適用して構成したものである。 Then, in the parts feeder PF which is the work transfer device to which this embodiment is applied, two standing waves having different phases are combined with the transfer units T1, t1 and t2 which transfer the work in a mounted state. The traveling wave generating means BZ and LZ for generating the traveling wave for flexing and vibrating the transport units T1, t1 and t2 are provided, and the vibration system is used to generate two standing waves of the traveling wave generating means BZ and LZ. It is configured by applying the control device C of.

このため、2つの定在波の位相差を正確に90°に近づけて、進行波比の高い高効率の搬送装置として稼働させることが可能になる。 Therefore, the phase difference between the two standing waves can be accurately brought close to 90 °, and the device can be operated as a highly efficient transport device having a high traveling wave ratio.

以上、本発明の一実施形態について説明したが、各部の具体的な構成は上述した実施形態のみに限定されるものではない。 Although one embodiment of the present invention has been described above, the specific configuration of each part is not limited to the above-described embodiment.

例えば、前記実施形態において制御量算出部44はPI制御を用いたが、これに限らず偏差を0にするような様々な制御方法を採用することができる。 For example, in the above-described embodiment, the control amount calculation unit 44 uses PI control, but the present invention is not limited to this, and various control methods such as setting the deviation to 0 can be adopted.

また、上記実施形態において、振動検出器51、52によって検出するのは、振動変位同士、振動速度同士、振動加速度同士のいずれかであったが、第一、第二振動検出器の一方は振動変位を検出し、他方は振動加速度を検出してもよい。この場合も、2つの検出信号の位相差が90°となるように制御を行う。また、第一、第二振動検出器51、52の一方は振動変位を検出し、他方は振動速度を検出してもよいし、一方は振動速度を検出し、他方は振動加速度を検出してもよい。この場合、2つの検出信号の位相差が0°(同相)または180°(逆相)となるように制御を行う。ただし、図2に示した位相差検出の方法は使用できないため、これに準ずる構成が採用される。 Further, in the above embodiment, the vibration detectors 51 and 52 detect any of the vibration displacements, the vibration speeds, and the vibration accelerations, but one of the first and second vibration detectors vibrates. The displacement may be detected and the other may detect the vibration acceleration. In this case as well, control is performed so that the phase difference between the two detection signals is 90 °. Further, one of the first and second vibration detectors 51 and 52 may detect the vibration displacement and the other may detect the vibration velocity, one may detect the vibration velocity and the other may detect the vibration acceleration. May be good. In this case, control is performed so that the phase difference between the two detection signals is 0 ° (in-phase) or 180 ° (opposite phase). However, since the method of phase difference detection shown in FIG. 2 cannot be used, a configuration similar to this is adopted.

さらにまた、正規化に用いた振幅検出器53c、53dの信号を利用して、振幅を一定に保つ制御(定振幅制御)を同時に行ってもよい。これにより、新たな検出器を設けることなく、より安定した駆動が可能となる。 Furthermore, control for keeping the amplitude constant (constant amplitude control) may be performed at the same time by using the signals of the amplitude detectors 53c and 53d used for normalization. As a result, more stable driving becomes possible without providing a new detector.

また、図2に示した具体例では、位相差設定器の値を0としたが、図1に示した位相設定器42で任意の値に設定できるようにしてもよい。これにより、第一、第二の振動検出器51、52の信号の位相差を±90°以外の値に制御することができ、例えば振動検出器の検出信号に遅れが生じている場合にそのずれを補正するなどの調整を行うことが可能となる。 Further, in the specific example shown in FIG. 2, the value of the phase difference setting device is set to 0, but the phase setting device 42 shown in FIG. 1 may be used to set an arbitrary value. As a result, the phase difference between the signals of the first and second vibration detectors 51 and 52 can be controlled to a value other than ± 90 °. For example, when the detection signal of the vibration detector is delayed, the phase difference can be controlled. It is possible to make adjustments such as correcting the deviation.

さらに、図2に示した具体例では、除算後の信号(cosφ12に比例した信号)をそのままフィードバックしたが、演算あるいはマッピングによって位相差φ12そのものの値(ラジアン値など)に変換してフィードバックしてもよい。このようにすると、演算あるいはマッピングの処理が余分に必要となるが、その後の処理内容が理解しやすく、容易になる。 Further, in the specific example shown in FIG. 2, the signal after division (the signal proportional to cos φ12) is fed back as it is, but it is converted into the value of the phase difference φ12 itself (radian value, etc.) by calculation or mapping and fed back. May be good. In this way, extra processing of calculation or mapping is required, but the subsequent processing contents are easy to understand and easy.

また、以上は2つの振動系の位相差を所望の値に制御するために本発明を適用したものであるが、図7に示すように1つの振動系の位相制御のために本発明を適用することもできる。
例えば、制御対象ではないある振動系から取り出した振動信号に対して、制御対象である振動系を所定の位相差に制御したい場合や、外部から周期信号として与えられる振動系に起因しない基準信号に対して、制御対象である振動系を所定の位相差に制御したい場合などが適用例として挙げられる。
Further, the above is the application of the present invention for controlling the phase difference between the two vibration systems to a desired value, but as shown in FIG. 7, the present invention is applied for the phase control of one vibration system. You can also do it.
For example, when it is desired to control the vibration system to be controlled to a predetermined phase difference with respect to the vibration signal extracted from a vibration system which is not the control target, or to a reference signal which is not caused by the vibration system given as a periodic signal from the outside. On the other hand, an application example is when the vibration system to be controlled is to be controlled to a predetermined phase difference.

そして、そのための具体的な構成として、図7に示す振動系の制御装置は、上述したある振動系から取り出した振動信号や外部から周期信号として与えられる基準信号を「参照信号」とした場合に、振動系101を駆動指令を通じて駆動すべく、外部から周期信号として参照信号入力部103に取得される参照信号に対して振動系101の実際の振動位相との位相差を検出する位相差検出部105と、前記参照信号に対する前記駆動指令の位相を変更する位相調整部104とを具備するものであって、前記位相差検出部105は、前記振動系101から振動を検出する振動検出部151と、前記参照指令に係る信号と前記振動系101の振動検出部105で検出した信号とから位相差を検出する位相差検出器153とを備える。この位相差検出器153は、前記参照指令に係る信号と振動系101の振動検出部105で検出した信号とを掛け合わせる乗算部たる乗算器153aと、掛け合わせた信号から掛け合わせ前の信号同士の位相差に応じた直流分を取り出すフィルタ部たるローパスフィルタ153bと、取り出した直流分を前記振動系101の振動振幅で除する除算部153eとを備え、前記位相調整部104は、前記除算部153eから出力される実位相差を表す値を予め設定した目標位相差を表す値に一致させるように前記駆動指令の位相を調節するように構成されている。 Then, as a specific configuration for that purpose, in the vibration system control device shown in FIG. 7, when the vibration signal taken out from the above-mentioned vibration system or the reference signal given as a periodic signal from the outside is used as a "reference signal". , A phase difference detection unit that detects the phase difference between the reference signal acquired by the reference signal input unit 103 as a periodic signal from the outside and the actual vibration phase of the vibration system 101 in order to drive the vibration system 101 through a drive command. The 105 is provided with a phase adjusting unit 104 that changes the phase of the drive command with respect to the reference signal, and the phase difference detecting unit 105 is a vibration detecting unit 151 that detects vibration from the vibration system 101. A phase difference detector 153 that detects a phase difference from the signal related to the reference command and the signal detected by the vibration detection unit 105 of the vibration system 101 is provided. The phase difference detector 153 includes a multiplier 153a, which is a multiplication unit that multiplies the signal related to the reference command and a signal detected by the vibration detection unit 105 of the vibration system 101, and the signal before multiplication from the multiplied signal. The low-pass filter 153b, which is a filter unit for extracting the DC component corresponding to the phase difference of the above, and the dividing unit 153e, which divides the extracted DC component by the vibration amplitude of the vibration system 101, are provided, and the phase adjusting unit 104 is the dividing unit. The phase of the drive command is adjusted so that the value representing the actual phase difference output from the 153e matches the preset value representing the target phase difference.

図7において、移相器141は前記実施形態の移相器41に相当し、増幅器112は前記実施形態の第一増幅器12に相当し、加振器111は前記実施形態の加振器11に相当する。また、振幅検出器153dは前記実施形態の振幅検出器53dに相当し、位相差設定器142は前記実施形態の位相差設定器42に相当し、差分器143は前記実施形態の差分器43に相当し、制御量算出部であるPI制御部144は前記実施形態のPI制御部44に相当している。 In FIG. 7, the phase shifter 141 corresponds to the phase shifter 41 of the embodiment, the amplifier 112 corresponds to the first amplifier 12 of the embodiment, and the exciter 111 corresponds to the exciter 11 of the embodiment. Equivalent to. Further, the amplitude detector 153d corresponds to the amplitude detector 53d of the embodiment, the phase difference setting device 142 corresponds to the phase difference setting device 42 of the embodiment, and the differential device 143 corresponds to the differential device 43 of the embodiment. The PI control unit 144, which is a control amount calculation unit, corresponds to the PI control unit 44 of the embodiment.

このようにすれば、1つの振動系の位相を他の制御対象ではない振動系の振動信号や制御系に起因しない周期信号などの基準信号に基づき、制御対象を目標位相に制御する場合であっても、上記に準じて適用することで、高周波領域においても適切な位相差制御を実現することができる。 In this way, the phase of one vibration system is controlled to the target phase based on a reference signal such as a vibration signal of a vibration system that is not another control target or a periodic signal that is not caused by the control system. However, by applying according to the above, appropriate phase difference control can be realized even in a high frequency region.

その他の構成も、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 Other configurations can be modified in various ways without departing from the spirit of the present invention.

1…第一振動系
2…第二振動系
4…位相調整部
5…位相差検出部
41…移相器
42…位相差設定器
43…差分器
51、52…振動検出部
53…位相差検出器
53a…乗算部(乗算器)
53b…フィルタ部(ローパスフィルタ)
53e、53f…除算部(除算器)
101…振動系
104…位相調整部
105…位相差検出部
151…振動検出部
153…位相差検出器
153a…乗算部(乗算器)
153b…フィルタ部(ローパスフィルタ)
153e…除算部(除算器)
BZ、LZ…進行波発生手段
C…振動系の制御装置
f1、f2…共振周波数
PF…ワーク搬送装置(パーツフィーダ)
T1、t1、t2…搬送部
1 ... 1st vibration system 2 ... 2nd vibration system 4 ... Phase adjustment unit 5 ... Phase difference detection unit 41 ... Phase shifter 42 ... Phase difference setting device 43 ... Difference device 51, 52 ... Vibration detection unit 53 ... Phase difference detection Instrument 53a ... Multiplying unit (multiplier)
53b ... Filter unit (low-pass filter)
53e, 53f ... Divider (divider)
101 ... Vibration system 104 ... Phase adjustment unit 105 ... Phase difference detection unit 151 ... Vibration detection unit 153 ... Phase difference detector 153a ... Multiplier unit (multiplier)
153b ... Filter unit (low-pass filter)
153e ... Divider (divider)
BZ, LZ ... Traveling wave generating means C ... Vibration system control device f1, f2 ... Resonance frequency PF ... Work transfer device (parts feeder)
T1, t1, t2 ... Transport section

Claims (5)

共振周波数の異なる2つの振動系を共通の駆動指令を通じて駆動すべく、前記2つの振動系の位相差を検出する位相差検出部と、前記振動系の何れか一方の駆動指令の位相を変更する位相調整部とを具備するものであって、
前記位相差検出部は、前記2つの振動系の各々から振動を検出する振動検出部と、前記振動検出部で検出した信号同士を掛け合わせる乗算部と、掛け合わせた信号から掛け合わせ前の信号同士の位相差に応じた直流分を取り出すフィルタ部と、取り出した直流分を前記2つの振動系の振動振幅で除して正規化する除算部とを備え、前記位相調整部は、前記除算部から出力される実位相差を表す値を予め設定した目標位相差を表す値に一致させるように前記一方の駆動指令の位相を調節することを特徴とする振動系の制御装置。
In order to drive two vibration systems having different resonance frequencies through a common drive command, the phase difference detection unit that detects the phase difference between the two vibration systems and the phase of one of the drive commands of the vibration system are changed. It is provided with a phase adjusting unit and has a phase adjusting unit.
The phase difference detection unit includes a vibration detection unit that detects vibration from each of the two vibration systems, a multiplication unit that multiplies the signals detected by the vibration detection unit, and a signal before multiplication from the multiplied signal. The phase adjustment unit includes a filter unit that extracts a DC component according to the phase difference between the two, and a division unit that divides the extracted DC component by the vibration amplitudes of the two vibration systems to normalize the frequency adjustment unit. A vibration system control device, characterized in that the phase of one of the drive commands is adjusted so that a value representing the actual phase difference output from is matched with a preset value representing the target phase difference.
前記実位相差および前記目標位相差を表す値は、位相差の余弦値または正弦値であり、この余弦値または正弦値に基づき実位相差と目標位相差の偏差が0となるように、前記駆動指令の位相を増減何れかの方向に移相する請求項1に記載の振動系の制御装置。 The values representing the real phase difference and the target phase difference are cosine values or sine values of the phase difference, and the deviation between the real phase difference and the target phase difference becomes 0 based on the cosine value or the sine value. The vibration system control device according to claim 1, wherein the phase of the drive command is shifted in any direction of increase or decrease. 前記2つの振動系で検出した信号がともに変位信号同士、速度信号同士または加速度信号同士の何れかであって、前記位相調整部は目標位相差の余弦値または正弦値として0を与え、実位相差に係る余弦値または正弦値が0となるように、駆動指令の位相を調整する請求項1又は2に記載の振動系の制御装置。 The signals detected by the two vibration systems are both displacement signals, velocity signals, or acceleration signals, and the phase adjusting unit gives 0 as the cosine value or sine value of the target phase difference, and the actual position is set. The vibration system control device according to claim 1 or 2, wherein the phase of the drive command is adjusted so that the cosine value or the sine value related to the phase difference becomes 0. 前記2つの振動系の振動が、90°の位相差で振動することにより進行波を発生させてワークを搬送するための2つの定在波振動であり、進行方向に応じて、目標位相差の余弦値0に対して実位相差の余弦値を0にするための移相の方向を、+90°に収斂させるか−90°に収斂させるかで切り替える請求項3に記載の振動系の制御装置。 The vibrations of the two vibration systems are two standing wave vibrations for generating a traveling wave by vibrating with a phase difference of 90 ° to convey the work, and the target phase difference is increased according to the traveling direction. The vibration system control device according to claim 3, wherein the direction of phase shift for making the cosine value of the actual phase difference 0 with respect to the cosine value 0 is switched depending on whether the cosine value is converged to + 90 ° or −90 °. .. ワークを載置した状態で搬送する搬送部と、位相の異なる2つの定在波が合成されることにより前記搬送部をたわみ振動させるための進行波を発生させる進行波発生手段と、を備え、前記進行波発生手段の2つの定在波の生成に請求項1〜4の何れかに記載の振動系の制御装置が適用されることを特徴とするワーク搬送装置。
A traveling wave generating means for generating a traveling wave for flexing and vibrating the transporting portion by synthesizing two standing waves having different phases is provided. A work transfer device, wherein the vibration system control device according to any one of claims 1 to 4 is applied to generate two standing waves of the traveling wave generating means.
JP2018080382A 2018-04-19 2018-04-19 Vibration system control device and work transfer device Active JP6901688B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018080382A JP6901688B2 (en) 2018-04-19 2018-04-19 Vibration system control device and work transfer device
TW107131449A TWI769300B (en) 2018-04-19 2018-09-07 Vibration system control device and workpiece conveying device
CN201811270543.XA CN110386422B (en) 2018-04-19 2018-10-29 Control device for vibration system and workpiece conveying device
KR1020180164104A KR20190122121A (en) 2018-04-19 2018-12-18 Control device for vibration system and work conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018080382A JP6901688B2 (en) 2018-04-19 2018-04-19 Vibration system control device and work transfer device

Publications (2)

Publication Number Publication Date
JP2019193339A JP2019193339A (en) 2019-10-31
JP6901688B2 true JP6901688B2 (en) 2021-07-14

Family

ID=68284871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018080382A Active JP6901688B2 (en) 2018-04-19 2018-04-19 Vibration system control device and work transfer device

Country Status (4)

Country Link
JP (1) JP6901688B2 (en)
KR (1) KR20190122121A (en)
CN (1) CN110386422B (en)
TW (1) TWI769300B (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193836A (en) * 1989-01-19 1990-07-31 Canon Inc Sheet feed device
JP3068651B2 (en) * 1990-12-20 2000-07-24 キヤノン株式会社 Motor control device
JPH05232207A (en) * 1992-02-24 1993-09-07 Toyota Motor Corp Antenna-attitude control apparatus
JP3531278B2 (en) * 1995-03-31 2004-05-24 神鋼電機株式会社 Vibration device
US5804733A (en) * 1995-03-31 1998-09-08 Shinko Electric Co., Ltd. Elliptical vibratory apparatus
JP2002362723A (en) * 2001-06-04 2002-12-18 Ykk Corp Control method for part feeder
JP4541785B2 (en) * 2003-09-01 2010-09-08 キヤノン株式会社 Vibration type actuator drive control device and vibration type actuator drive control method
CN100338538C (en) * 2004-08-20 2007-09-19 东南大学 Vibration material feeding controller with self-adapting frequency self maintaining amplitude and its control method
JP2011105444A (en) * 2009-11-17 2011-06-02 Ntn Corp Vibrating type component feeder
JP5936479B2 (en) * 2012-08-03 2016-06-22 キヤノン株式会社 Measuring apparatus, lithography apparatus, and article manufacturing method
JP6817513B2 (en) 2015-08-24 2021-01-20 シンフォニアテクノロジー株式会社 Work transfer device

Also Published As

Publication number Publication date
TWI769300B (en) 2022-07-01
TW201943624A (en) 2019-11-16
JP2019193339A (en) 2019-10-31
CN110386422B (en) 2022-05-17
KR20190122121A (en) 2019-10-29
CN110386422A (en) 2019-10-29

Similar Documents

Publication Publication Date Title
US5806364A (en) Vibration-type angular velocity detector having sensorless temperature compensation
US8042393B2 (en) Arrangement for measuring a rate of rotation using a vibration sensor
US6584842B2 (en) Angular velocity sensor
JP6219545B1 (en) Vibration type angular velocity sensor
JP6901688B2 (en) Vibration system control device and work transfer device
EP2306148A2 (en) Angular velocity detecting apparatus
KR101298289B1 (en) Driving circuit, system and driving method for gyro sensor
JP6820484B2 (en) Vibration system control device and work transfer device
US11274925B2 (en) Readout circuit for a MEMS gyroscope and method for operating such a readout circuit
JP6882685B2 (en) Vibration system control device and work transfer device
JP5183374B2 (en) Angular velocity detector
RU2308682C1 (en) Method of adjusting resonance frequency of suspension of movable mass of gyroscope
JP7302129B2 (en) Gyro device and control method for gyro device
US20150033851A1 (en) Apparatus for driving gyro sensor and method for controllong thereof
JP2008070131A (en) Angular velocity sensor
JP2023127142A (en) Gyro device and control method for gyro device
JP3783893B2 (en) Piezoelectric vibration angular velocity meter
JPH03156312A (en) Oscillating type angular velocity detecting apparatus
JPH0814915A (en) Vibration gyroscope
JP2020025412A (en) Actuator driving circuit and electronic apparatus
SU729501A1 (en) Device for measuring elastic and unelastic properties of materials
JP2000288469A (en) Optimum mode selecting resonance type vibrating classifier
JP2010223854A (en) Three-axis detection angular velocity sensor
JPH0571969A (en) Oscillation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6901688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250