JPH02193836A - Sheet feed device - Google Patents

Sheet feed device

Info

Publication number
JPH02193836A
JPH02193836A JP1010380A JP1038089A JPH02193836A JP H02193836 A JPH02193836 A JP H02193836A JP 1010380 A JP1010380 A JP 1010380A JP 1038089 A JP1038089 A JP 1038089A JP H02193836 A JPH02193836 A JP H02193836A
Authority
JP
Japan
Prior art keywords
sheet
power supply
supply means
phase difference
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1010380A
Other languages
Japanese (ja)
Inventor
Kenichi Kataoka
健一 片岡
Yoshibumi Nishimoto
義文 西本
Masahiko Igaki
正彦 井垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1010380A priority Critical patent/JPH02193836A/en
Priority to US07/466,952 priority patent/US5062622A/en
Publication of JPH02193836A publication Critical patent/JPH02193836A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/008Feeding articles separated from piles; Feeding articles to machines using vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To improve high speed stability at low speed sheet carriage and ensure high precision sheet carriage control by changing a phase difference between the progressive vibration waves of two vibration bodies for changing a sheet carriage speed. CONSTITUTION:A pair of vibration bodies 1 and 5 of an elastic material for clamping a sheet 9 constitutes two groups of electrical-mechanical energy conver sion element cells 3 and 4, and 7 and 8, and is applied with a.c. voltage having a 90 deg. time phase difference from an oscillator 14 via power amplifiers 17 and 18 directly or via 90-degree phase converters 15 and 16, thereby generating a progressive wave as a synthesis of two standing waves dephased lambda/4 from each other and carrying the sheet 9. In this case, a deviation between a sheet carriage amount control signal and a phase difference detected with a detector 10 is applied to a voltage controller 13 via a differential amplifier 11, thereby causing a change in a phase difference between the progressive vibration waves of the vibration bodies 1 and 5, and stably changing the carriage speed of the sheet 9 to a low speed range. According to the aforesaid construction, it becomes possible to control the carriage of sheets with high precision.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、計算機、複写機、プリンターファクシミリ、
ワードプロセッサー、タイプライタ−等に装備されるシ
ート送り装置装置に係り、詳しくは進行性振動波を利用
してシートを送るシート送り装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention is applicable to computers, copying machines, printer facsimiles,
The present invention relates to a sheet feeding device installed in word processors, typewriters, etc., and specifically relates to a sheet feeding device that feeds sheets using progressive vibration waves.

[従来の技術J 従来、進行性振動波を利用したシート送り装置としては
、例えば特開昭59−177243号がある。このシー
ト送り装置は、適度な押圧力で接する1組の弾性材料か
らなる振動体間にシートを挟持し、該各県動体に進行性
振動波を発生させることにより挟持したシートを搬送す
るようにしたものである0両振動体には、2群の圧電素
子等の電気−機械エネルギー変換素子が接着又は圧接さ
れ、各群間にはλ/4の奇数倍のづれがあるように圧電
素子が配置され、また各群内では圧電素子がλ/2のピ
ッチで且交互に逆の伸縮極性となるように配列されてい
る。そして、両種動体の各一方の圧電素子群に両種動体
の固有振動数近傍の周波数(実際には一方の振動体の固
有振動数)の交流電界を印加すると供に、両種動体の各
他方の圧電素子群にはπ72位相器を通してπ12だけ
位相のづれた交流電界を印加することにより、各振動体
にシートの搬送面に対して対称に進行性振動波を発生さ
せる。すなわち、振動体に進行性振動波が発生すると、
圧電素子が設けられる面と反対側の面の各点が一種の楕
円運動を行ない、両種動体の対向する面の各点がシート
搬送面に対し対称に楕円運動することにより、シートを
搬送するようになっている。そして、各振動体に形成さ
れる進行性振動波の振幅を変化させることにより、シー
トと振動体間の摩擦力によって移送力を与えられて搬送
されるシートの移送速度を変化させるようにしている。
[Prior Art J] Conventionally, as a sheet feeding device using progressive vibration waves, there is, for example, Japanese Patent Application Laid-open No. 177243/1983. This sheet feeding device sandwiches a sheet between a pair of vibrating bodies made of an elastic material that are in contact with each other with an appropriate pressing force, and conveys the sandwiched sheet by generating progressive vibration waves in each of the vibrating bodies. Two groups of electro-mechanical energy converting elements such as piezoelectric elements are bonded or pressed to the two vibrating bodies, and the piezoelectric elements are arranged so that there is an offset of an odd multiple of λ/4 between each group. Within each group, the piezoelectric elements are arranged at a pitch of λ/2 and so as to alternately have opposite expansion and contraction polarities. Then, an alternating current electric field with a frequency near the natural frequency of both types of moving bodies (actually, the natural frequency of one of the vibrating bodies) is applied to each piezoelectric element group of both types of moving bodies, and each of the piezoelectric elements of both types of moving bodies is By applying an alternating current electric field with a phase difference of π12 through a π72 phase shifter to the other piezoelectric element group, progressive vibration waves are generated in each vibrating body symmetrically with respect to the conveying surface of the sheet. In other words, when a progressive vibration wave is generated in a vibrating body,
Each point on the surface opposite to the surface on which the piezoelectric element is provided performs a kind of elliptical motion, and each point on the opposing surface of both types of moving bodies moves elliptically symmetrically with respect to the sheet conveyance surface, thereby conveying the sheet. It looks like this. By changing the amplitude of the progressive vibration waves formed in each vibrating body, the conveying speed of the sheet, which is conveyed by being given a conveying force by the frictional force between the sheet and the vibrating body, is changed. .

第5図はこのような進行性振動波によるシート搬送力の
発生原理を説明する概略図で、振動体重及び5によりシ
ート9を適度な押圧力で挟持し、振動体l及び5には図
に示すように進行性の曲げ振動が形成されている。この
とき、両種動体1.5の表面のある質点に注目すると、
質点は一般には楕円軌道を描く運動をする。そして、振
動体1について言えば、進行性曲げ振動が図中時で示す
右方向に進む場合、表面の質点は時計回りの楕円軌跡を
描くことになる。ここで、振動体l及び5に形成される
進行性の曲げ振動の位相差は空間的に1110°になる
ように構成されているので、各振動体の曲げ振動はシー
ト側に凸の部分が常に対向するように進行する。凸部の
質点の移動方向は振動体l及び5いずれも振動の進行方
向逆方向であるので、この場合は矢印一方向にシート搬
送力が発生する。一方、凹部においては、進行方向と同
方向にシート搬送力が働くが凸部に比較して圧力が小さ
いので、シートと振動体の摩擦力は小さく、シート搬送
力も小さくなるので、シート搬送力の総和としては、曲
げ振動の進行方向とは逆方向に働くことになる。
FIG. 5 is a schematic diagram illustrating the principle of generation of sheet conveying force by such progressive vibration waves, in which the sheet 9 is held between the vibrating weight and 5 with an appropriate pressing force, and the vibrating bodies 1 and 5 are As shown, progressive bending vibration is formed. At this time, if we focus on a certain mass point on the surface of both types of moving object 1.5,
A mass point generally moves in an elliptical orbit. Regarding the vibrating body 1, when the progressive bending vibration advances in the right direction indicated by time in the figure, the mass points on the surface draw a clockwise elliptical locus. Here, since the phase difference of the progressive bending vibrations formed in the vibrating bodies 1 and 5 is spatially configured to be 1110°, the bending vibration of each vibrating body is caused by the convex portion on the sheet side. Always proceed in opposition. Since the movement direction of the mass point of the convex portion is opposite to the direction of vibration of the vibrators 1 and 5, in this case, sheet conveying force is generated in the direction of the arrow. On the other hand, in the concave portion, the sheet conveying force acts in the same direction as the traveling direction, but the pressure is smaller than in the convex portion, so the frictional force between the sheet and the vibrating body is small, and the sheet conveying force is also small, so the sheet conveying force is reduced. In total, the vibration acts in the direction opposite to the direction in which the bending vibration travels.

また、特開昭62−85684号においては、このよう
な進行性振動波を利用したモータが示されていて、振動
体に上記した2群の圧電素子群の他に、振動検出用圧電
素子を設け、振動検出用圧電素子の出力信号と、一方の
圧電素子群に印加する交流電圧との間の位相差が、該振
動体の共振振動時における位相差を保つように印加電圧
の周波数を制御することで、振動体を効率よく安定に振
動させるようにしている。
In addition, Japanese Patent Application Laid-Open No. 62-85684 discloses a motor that utilizes such progressive vibration waves, and in addition to the two groups of piezoelectric elements mentioned above, a piezoelectric element for vibration detection is installed in the vibrating body. and control the frequency of the applied voltage so that the phase difference between the output signal of the piezoelectric element for vibration detection and the AC voltage applied to one piezoelectric element group maintains the phase difference during resonance vibration of the vibrating body. This allows the vibrating body to vibrate efficiently and stably.

[発明が解決しようとする課題] ところで、このようなシート搬送装置において、シート
の搬送速度制御は、各振動体に発生させる進行波の振幅
変化に依存していることから、低速でシートを移送する
場合には進行波の振幅が小さくなるために、振動が不安
定になり安定した低速度でシートを搬送させることが難
しくなり、またシートの厚みムラの影響が大きくなって
シート搬送の速度ムラが大きくなる難を招く欠点があっ
た。
[Problems to be Solved by the Invention] Incidentally, in such a sheet conveying device, since the sheet conveying speed control depends on the amplitude change of the traveling wave generated in each vibrating body, it is difficult to convey the sheet at a low speed. In this case, the amplitude of the traveling wave becomes small, making the vibration unstable and making it difficult to convey the sheet at a stable low speed.Also, the influence of uneven sheet thickness increases, causing uneven sheet conveying speed. There was a drawback that this resulted in increased difficulties.

本発明の目的は、上記した従来の問題を解消し、低速度
でも安定にシートの搬送を可能とするシート搬送装置を
提供するものでる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sheet conveying device that solves the above-mentioned conventional problems and can stably convey sheets even at low speeds.

[課題を解決するための手段] 本発明の目的を達成するための代表的なシート送り装置
は1弾性材料製の一対の振動体間に被搬送体のシートを
挟持し、該一対の振動体には夫々2群の電気−機械エネ
ルギー変換素子区画を、群内では等ピッチλ/2にて且
つ電圧印加時の伸縮の極性が交互に逆であるように、而
して群間にはλ/4の奇数倍のずれがあるように配列固
着し、該各振動体の各電気−機械エネルギー変換素子区
画の2群間に90”の時間的位相差を有する交流電圧を
夫々印加することによって、該各振動体に上記夫々の群
によって発生された互いにλ/4だけずれた2つの定在
波(波長λ)の合成として波長λの進行波を生ぜじめ、
以て双方の振動体に挟持されるシートを進行性振動波の
進行方向と逆方向に搬送するシート送り装置において、
該2つの振動体の振動状態を夫々検出して双方の該振動
体の時間的位相差を検出する振動状態検出手段と、該振
動状態検出手段から出力される位相差と任意に設定した
シート搬送速度に対応した位相差とを比較して、双方の
該振動体に任意に設定したシート搬送速度に対応した位
相差を有して駆動制御する制御手段とを備えたことを特
徴とするものである。
[Means for Solving the Problems] A typical sheet feeding device for achieving the object of the present invention sandwiches a sheet of an object to be conveyed between a pair of vibrating bodies made of an elastic material. In each case, two groups of electric-mechanical energy conversion element sections are arranged at equal pitch λ/2 within each group, and the polarity of expansion and contraction when voltage is applied is alternately opposite, and between groups λ By arranging and fixing the elements so that there is a shift of an odd multiple of /4, and applying an alternating current voltage having a temporal phase difference of 90'' between the two groups of each electro-mechanical energy conversion element section of each vibrator. , generate a traveling wave of wavelength λ as a synthesis of two standing waves (wavelength λ) shifted by λ/4 from each other generated by the respective groups in each vibrating body,
In a sheet feeding device that conveys a sheet held between both vibrating bodies in a direction opposite to the traveling direction of progressive vibration waves,
vibration state detection means that detects the vibration states of the two vibrating bodies and detects a temporal phase difference between the two vibrating bodies, and sheet conveyance that is arbitrarily set to the phase difference output from the vibration state detection means. The apparatus is characterized by comprising a control means for comparing the phase difference corresponding to the speed and controlling the drive of both vibrating bodies with a phase difference corresponding to the arbitrarily set sheet conveyance speed. be.

[作 用] 上記の如く構成したシート送り装置は、双方の振動体の
進行性振動波間の位相差を変化させてシートの移送速度
を変化させるようにしているので、進行性振動波の振幅
を充分安定に駆動できる大きな振幅に保ったまま、シー
トの移送速度を低速領域まで安定に駆動できる。
[Function] The sheet feeding device configured as described above changes the phase difference between the progressive vibration waves of both vibrators to change the sheet transport speed, so the amplitude of the progressive vibration waves can be changed. The sheet can be stably driven down to a low speed range while maintaining a sufficiently large amplitude for stable driving.

[実施例] 以下本発明を図面に示す実施例に基づいて詳細に説明す
る。
[Example] The present invention will be described in detail below based on an example shown in the drawings.

実施例1 第1図は本発明によるシート搬送装置の実施例1を示す
概略ブロック図である。
Embodiment 1 FIG. 1 is a schematic block diagram showing Embodiment 1 of a sheet conveying device according to the present invention.

l及び5は長円形状に形成された厚みのある振動体(以
下第1振動体、第2振動体と称す)で、適度な圧力にて
シート9を挟持しており、対向面と反対面には、位置的
にん/4(λは波長)及び時間的に90°の位相がずれ
た2つの定在波を形成し、その合成によって進行性振動
波を形成するための2群の圧電素子区画3及び4.7及
び8が夫々設けられ、また振動体l及び5上に形成され
た進行性振動波の振動状態を検出するための検出用圧電
素子2及び6が夫々設けられている。なお、第1振動体
1及び第2振動体5は電気的にはグランド電位にしであ
る。
1 and 5 are thick vibrating bodies formed in an oval shape (hereinafter referred to as the first vibrating body and the second vibrating body), which sandwich the sheet 9 with moderate pressure, and In this method, two groups of piezoelectrics are used to form two standing waves with a phase shift of 90° in position and 90° in time, and to form a progressive vibration wave by combining them. Element sections 3 and 4, 7 and 8 are provided, respectively, and detection piezoelectric elements 2 and 6 are provided for detecting the vibration state of the progressive vibration waves formed on the vibrators 1 and 5, respectively. . Note that the first vibrating body 1 and the second vibrating body 5 are electrically connected to the ground potential.

lOは位相差検出器で、両県動体1.5に夫々形成され
た進行波の同じ空間的位置での時間的な位相差を第1検
出用圧電素子2からの信号と、第2検出用圧電素子6か
らの信号との位相差として検出する。 11は位相差検
出器lOの検出した位相差と、シート移送量設定手段(
不図示)で設定されたシート移送量制御信号に対応する
位相差との差を増幅する差動増幅器、12は差動増幅器
11の出力信号を増幅及び積分するローパスフィルタ(
L、P、F ) 、 13はローパスフィルタ12の出
力信号に応じ、発振器14の出力信号の位相に対して位
相のずれた信号を出力するための電圧制御型移相器であ
る。
1O is a phase difference detector which detects the temporal phase difference at the same spatial position of the traveling waves formed on both prefectural moving objects 1.5 and the signal from the piezoelectric element 2 for first detection and the signal for second detection. It is detected as a phase difference with the signal from the piezoelectric element 6. Reference numeral 11 indicates the phase difference detected by the phase difference detector lO and the sheet transport amount setting means (
A differential amplifier 12 amplifies the difference between the sheet transport amount control signal and the phase difference corresponding to the sheet transport amount control signal (not shown); 12 is a low-pass filter (12) that amplifies and integrates the output signal of the differential amplifier 11;
L, P, F), 13 is a voltage-controlled phase shifter for outputting a signal whose phase is shifted from the phase of the output signal of the oscillator 14 according to the output signal of the low-pass filter 12.

14は第1振動体1及び第2振動体5の各圧電素子区画
3.4及び7.8に印加する交流電圧の基準信号を発生
させるための発振器で、第2振動体5の圧電素子区画7
.8に対しては電圧制御型移相器13を介して出力され
る。
Reference numeral 14 denotes an oscillator for generating a reference signal of an AC voltage to be applied to each piezoelectric element section 3.4 and 7.8 of the first vibrating body 1 and the second vibrating body 5; 7
.. 8 is output via a voltage controlled phase shifter 13.

l5は発振器14の基準信号を基にして、移送方向設定
手段(不図示)からの移送方向切換信号に応じて位相を
+90°、又は−90°ずらした信号を作るための第1
の90°移相器で、第1振動体1の圧電素子区画3を圧
電素子区画4に対して駆動周波数の位相を90°ずらず
ようにしている。16は電圧制御型移相器13の出力信
号を基にして、移送方向切換信号に応じて位相を+90
°、又は−90°ずらした信号を作るための第2の90
’移相器で、第2振動体5の圧電素子区画7を圧電素子
区画8に対して駆動周波数の位相を90°ずらすように
している。17は発振器14及び第1の90°移相器1
5の出力信号を適当な増幅率で増幅し、第1振動体1の
圧電素子区画3.4に印加するための第1パワーアンプ
、18は電圧制御型移相器13の出力信号及び第2の9
0°移相器16の出力信号を増幅して夫々第2振動体5
の圧電素子区画3及び7に印加するための第2パワーア
ンプである。
15 is a first oscillator for generating a signal whose phase is shifted by +90° or −90° based on the reference signal of the oscillator 14 in accordance with the transport direction switching signal from the transport direction setting means (not shown).
With the 90° phase shifter, the phase of the driving frequency of the piezoelectric element section 3 of the first vibrating body 1 is shifted by 90 degrees with respect to the piezoelectric element section 4. 16 is based on the output signal of the voltage-controlled phase shifter 13 and changes the phase by +90 in accordance with the transfer direction switching signal.
a second 90° to create a signal shifted by -90° or -90°.
'A phase shifter is used to shift the phase of the drive frequency of the piezoelectric element section 7 of the second vibrating body 5 with respect to the piezoelectric element section 8 by 90 degrees. 17 is an oscillator 14 and a first 90° phase shifter 1
A first power amplifier 18 amplifies the output signal of the voltage-controlled phase shifter 13 with an appropriate amplification factor and applies the amplified signal to the piezoelectric element section 3.4 of the first vibrating body 1; No.9
The output signal of the 0° phase shifter 16 is amplified and transmitted to the second vibrating body 5.
a second power amplifier for applying voltage to piezoelectric element sections 3 and 7 of .

以上が本実施例の構造であるが、その動作を第2図に示
す図表を参照して説明する。
The structure of this embodiment has been described above, and its operation will be explained with reference to the diagram shown in FIG.

第2図は位相差検出器lOの出力とシート移送速度との
関係を示したもので、図から明らかなように位相差0度
で移送速度が最も高く、位相差が180度に近づ(につ
れて単調に移送速度が低くなり、位相差180度近傍で
は移送速度が0になる。
Figure 2 shows the relationship between the output of the phase difference detector IO and the sheet transport speed.As is clear from the figure, the transport speed is highest when the phase difference is 0 degrees, and as the phase difference approaches 180 degrees ( As the phase difference approaches 180 degrees, the transport speed becomes 0.

ここで、シート移送量制御信号が最高速である位相差0
度に対応する信号のときに位相差検出器lOの出力が0
度であったとする。そして、この時にシート移送量制御
信号を位相差45度に対応する信号に切換えると、差動
増幅器11の出力は負の出力となり、ローパスフィルタ
12の出力は減少して行き、電圧制御型移相器13の出
力信号の位相は遅れて行き、発振器14の基準信号で駆
動される第1振動体lと、電圧制御型移相器13の出力
信号で駆動される第2振動体とは、振動振幅は同じであ
るが進行波の位相が異なってくる。そして、各振動体1
及び5の進行波の位相状態は、夫々第1振動検出用圧電
素子2と第2振動検出用圧電素子6とにより検出され、
その差を差動増幅器に入力していることから、第1振動
体lの第1振動検出用圧電素子2の出力信号の位相が第
2振動体5の振動検出用圧電素子6の出力信号の位相よ
り45度進むようにフィードバック制御され、シート9
は第2図に示す位相差に応じたシート搬送速度で所定方
向に搬送されることとなる。
Here, the phase difference is 0, which is the maximum speed of the sheet transport amount control signal.
The output of the phase difference detector lO is 0 when the signal corresponds to
Suppose it was degree. At this time, when the sheet transport amount control signal is switched to a signal corresponding to a phase difference of 45 degrees, the output of the differential amplifier 11 becomes a negative output, the output of the low-pass filter 12 decreases, and the voltage-controlled phase shift The phase of the output signal of the voltage-controlled phase shifter 13 is delayed, and the first vibrating body l driven by the reference signal of the oscillator 14 and the second vibrating body l driven by the output signal of the voltage-controlled phase shifter 13 are caused to vibrate. Although the amplitude is the same, the phase of the traveling wave is different. And each vibrating body 1
The phase states of the traveling waves of and 5 are detected by the first vibration detection piezoelectric element 2 and the second vibration detection piezoelectric element 6, respectively,
Since the difference is input to the differential amplifier, the phase of the output signal of the first vibration detecting piezoelectric element 2 of the first vibrating body l is the same as that of the output signal of the vibration detecting piezoelectric element 6 of the second vibrating body 5. Feedback control is performed to advance the phase by 45 degrees, and sheet 9
is conveyed in a predetermined direction at a sheet conveyance speed corresponding to the phase difference shown in FIG.

実施例2 上記した実施例1は各振動体1.5に振動検出用の圧電
素子2.6を設けて、2つの振動体の振動を検出し、2
つの信号の位相を一定に保つように制御しているが、本
実施例はこのような振動検出用の圧電素子を用いず、駆
動用の圧電素子区画に交流電圧を印加したときに流入す
る電圧を検出し、駆動用の圧電素子区画4゜8又は3,
7に流入する電流の位相がシート移送量制御信号に対応
する位相となるように、駆動用の圧電素子区画4.8又
は3.7に印加する交流電圧間の位相差を制御するよう
にしだものである。第3図に本実施例の概略図を示す。
Example 2 In the above-mentioned Example 1, each vibrating body 1.5 is provided with a piezoelectric element 2.6 for vibration detection, and the vibrations of the two vibrating bodies are detected.
However, this embodiment does not use such a piezoelectric element for vibration detection, and the voltage that flows when an AC voltage is applied to the piezoelectric element section for driving is controlled to keep the phase of two signals constant. Detects the driving piezoelectric element section 4°8 or 3,
The phase difference between the AC voltages applied to the drive piezoelectric element section 4.8 or 3.7 is controlled so that the phase of the current flowing into the drive section 7 corresponds to the sheet transport amount control signal. It is something. FIG. 3 shows a schematic diagram of this embodiment.

19及び20は、抵抗21.22の両端の電圧の差を増
幅することによって、駆動用の圧電素子区画4.8に流
入する電流を検出するための差動増幅器である。そして
各差動増幅器19.20の出力を位相差検出器lOに出
力している。なお、他の構成は各振動体1.5に振動検
出用の圧電素子を設けていない点を除いて上記した実施
例1と同様に構成されているので、その説明は省略する
19 and 20 are differential amplifiers for detecting the current flowing into the drive piezoelectric element section 4.8 by amplifying the voltage difference across the resistor 21.22. The outputs of the respective differential amplifiers 19 and 20 are output to the phase difference detector lO. Note that the other configurations are the same as those of the first embodiment described above, except that each vibrating body 1.5 is not provided with a piezoelectric element for vibration detection, so a description thereof will be omitted.

すなわち、上記した実施例1においては、振動検出用の
圧電素子2.6の出力電圧により位相を検出しているの
に対し、本実施例では駆動用圧電素子区画4.8に流入
する電流から位相を検出するようにしているもので、差
動増幅器19、20の出力から振動体1.5の進行波の
位相差を検出することにより、上記の実施例1と同様の
動作を行なって、シート搬送速度の制御を行なう。
That is, in the first embodiment described above, the phase is detected from the output voltage of the piezoelectric element 2.6 for vibration detection, whereas in this embodiment, the phase is detected from the current flowing into the drive piezoelectric element section 4.8. It is designed to detect the phase, and by detecting the phase difference between the traveling waves of the vibrating body 1.5 from the outputs of the differential amplifiers 19 and 20, the same operation as in the first embodiment is performed. Controls sheet conveyance speed.

実施例3 上記した各実施例1,2は長円形の形状の振動体を用い
たが、本実施例は振動体として有端の板状のものを用い
ている。
Embodiment 3 In each of the first and second embodiments described above, an oval-shaped vibrating body was used, but in this embodiment, a plate-shaped vibrating body with ends is used.

上記した各実施例は、振動体に設けた2群の圧電素子区
画に交流電圧を印加し、各圧電素子区画の振動にて発生
した定在波の合成として進行波を発生させるようにして
いるが、振動体にに対して進行波を以下に述べるような
方法によっても発生させることができる。
In each of the above-mentioned embodiments, an AC voltage is applied to two groups of piezoelectric element sections provided in a vibrating body, and a traveling wave is generated as a composite of standing waves generated by vibration of each piezoelectric element section. However, traveling waves can also be generated in the vibrating body by the method described below.

この方法の原理は、第6図に示すように、振動体lot
に発振器105により振動を与える振動体駆動用振動子
102の他に、整合用振動子103を設けると共に、こ
の振動子103に発生する電圧を終端抵抗104で終端
することにより、振動エネルギーを電気エネルギーに変
換し、且つ終端抵抗104で消費させ、駆動用振動子1
02から出たエネルギーを一方向に流し、これにより、
振動体101上の振動を進行波を発生させている。
The principle of this method is as shown in Fig. 6.
In addition to the vibrating body driving vibrator 102 which gives vibrations to the vibrator 105 using an oscillator 105, a matching vibrator 103 is provided, and by terminating the voltage generated in this vibrator 103 with a terminating resistor 104, vibration energy can be converted into electrical energy. and consumed by the terminating resistor 104, the drive vibrator 1
The energy emitted from 02 flows in one direction, and as a result,
The vibrations on the vibrating body 101 generate traveling waves.

すなわち、発振器105によって振動子102を振動さ
せると、振動波は振動体101上を図中右方向に伝わっ
て行(。このとき、整合用振動子103及び抵抗104
がなければ、振動体101の右端で波が反射して左方向
に反射波が伝わって行き、振動体101上には、振動周
波数が振動体101の固有振動数であれば定在波が形成
されることになる。しかし、整合用振動子103及び抵
抗104がある場合には、振動体の右端で反射波が戻っ
て行かない用に振動波のエネルギーを抵抗104で消費
してしまい、振動体lot上には左から右方向に伝わる
進行波が形成されることとなる。
That is, when the vibrator 102 is vibrated by the oscillator 105, the vibration wave propagates on the vibrator 101 in the right direction in the figure (at this time, the matching vibrator 103 and the resistor 104
If not, the wave will be reflected at the right end of the vibrating body 101 and the reflected wave will propagate to the left, and if the vibration frequency is the natural frequency of the vibrating body 101, a standing wave will be formed on the vibrating body 101. will be done. However, when there is a matching vibrator 103 and a resistor 104, the energy of the vibration wave is consumed by the resistor 104 to prevent the reflected wave from returning at the right end of the vibrating body, and the left A traveling wave that propagates to the right is formed.

本実施例は、このような進行波の発生原理を利用したも
ので、31.32は振動体、33及び34゜23及び2
4は駆動用圧電素子、25.26は駆動用圧電素子33
.34及び23.24の役割を加振用と吸振用に分け、
これを移送方向切換え信号に応じて切換えるためのアナ
ログスイッチ、27.28は吸振用の抵抗、29.30
は発振器14及び電圧制御型移相器13の出力電圧を増
幅するためのパワーアンプである。この回路は、移送方
向切換信号によってシートを第4図の紙面右方向へ動か
すときには、駆動用圧電素子33.34を加振用に、駆
動用圧電素子23.24を吸振用になるようにアナログ
スイッチ25.26を設定し、逆方向へ動かすときには
、加振用だった駆動用圧電素子と吸振用だった圧電素子
の役割を交換することによって行なう。また、シート移
送量制御信号を変化させることによって、電圧制御型移
相器13の移相量を変化させ、駆動用圧電素子33.3
4又は23、24に印加する交流電圧間の位相差が変化
すると、振動体31と32上に形成される進行波間の位
相が変化し、シートの移送速度が変化する。
This embodiment utilizes the principle of generation of such a traveling wave, and 31 and 32 are vibrating bodies, 33 and 34 degrees, 23 and 2
4 is a drive piezoelectric element, 25.26 is a drive piezoelectric element 33
.. 34 and 23. The role of 24 is divided into vibration excitation and vibration absorption.
An analog switch for switching this according to the transfer direction switching signal, 27.28 is a vibration absorption resistor, 29.30
is a power amplifier for amplifying the output voltages of the oscillator 14 and the voltage-controlled phase shifter 13. When the sheet is moved to the right on the paper in FIG. 4 by the transfer direction switching signal, this circuit uses analog drive piezoelectric elements 33 and 34 for vibration excitation and drive piezoelectric elements 23 and 24 for vibration absorption. When the switches 25 and 26 are set and moved in the opposite direction, this is done by exchanging the roles of the drive piezoelectric element, which was used for excitation, and the piezoelectric element, which was used for vibration absorption. Further, by changing the sheet transport amount control signal, the amount of phase shift of the voltage-controlled phase shifter 13 is changed, and the driving piezoelectric element 33.3 is changed.
When the phase difference between the alternating current voltages applied to the vibrating bodies 31 and 32 changes, the phase between the traveling waves formed on the vibrating bodies 31 and 32 changes, and the sheet transport speed changes.

なお上記した各実施例においては、シートの実際の移送
速度を検出し、この検出した速度に基づきシート移送量
制御信号をフィードバック制御するようにしていないが
、シートにゴムローラ等を接触させてその回転角をロー
タリーエンコーダ等で検出したり、レーザ・ドラルブラ
方式等の非接触速度検出法等で速度を検出し、この検出
した速度情報に応じてシート移送量制御信号を増減させ
ることで、さらに安定した速度制御を行なうようにして
もよい。
In each of the embodiments described above, the actual transport speed of the sheet is not detected and the sheet transport amount control signal is not feedback-controlled based on the detected speed, but the rotation of the sheet is controlled by bringing a rubber roller or the like into contact with the sheet. By detecting the corner using a rotary encoder, etc., or by detecting the speed using a non-contact speed detection method such as a laser/dral bra method, and increasing/decreasing the sheet transport amount control signal according to the detected speed information, more stable Speed control may also be performed.

[発明の効果] 以上説明してきたように、本発明によれば、シートを挟
持して送る2つの振動体に対し大振幅の進行性振動波を
発生させたままシート移送速度をできるので、低速搬送
時における速度安定性が向上し、高精度なシート搬送制
御ができ、例えばファクシミリ等に使用すれば、高精細
な画像印刷処理が可能になる。
[Effects of the Invention] As explained above, according to the present invention, the sheet can be transported at a low speed while generating large-amplitude progressive vibration waves in the two vibrating bodies that sandwich and transport the sheet. Speed stability during conveyance is improved, highly accurate sheet conveyance control is possible, and if used for facsimile, for example, high-definition image printing processing becomes possible.

また低速精度のみならず、高速応答が可能になる。Furthermore, not only low-speed accuracy but also high-speed response is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるシート送り装置の実施例1の概略
ブロック図、第2図は2つの振動体上に形成される進行
性振動波間の位相差とシート移送速度との関係を示す図
表、第3図は実施例2の概略ブロック図、第4図は実施
例3の概略ブロック図、第5図はシート送り装置の動作
原理を説明するための図、第6図は実施例3の駆動原理
を説明するための図である。 ■、5:振動体 2.6=振動検出用圧電素子 3.4,7.8:圧電素子区画 9:シート lO:位相検出器 ll:差動増幅器 12:ローバスフィルタ 13:電圧制御型移相器 14:発振器 15、16: 90’移相器 17、18:パワーアンプ 19、20:差動増幅器 25、26:アナログスイッチ 29、30:パワーアンプ ・ハーニ需頽壇受
FIG. 1 is a schematic block diagram of Embodiment 1 of a sheet feeding device according to the present invention, and FIG. 2 is a chart showing the relationship between the phase difference between progressive vibration waves formed on two vibrating bodies and the sheet transport speed. Fig. 3 is a schematic block diagram of the second embodiment, Fig. 4 is a schematic block diagram of the third embodiment, Fig. 5 is a diagram for explaining the operating principle of the sheet feeding device, and Fig. 6 is the drive of the third embodiment. FIG. 3 is a diagram for explaining the principle. ■, 5: Vibrating body 2.6 = Piezoelectric element for vibration detection 3.4, 7.8: Piezoelectric element section 9: Sheet 1O: Phase detector 11: Differential amplifier 12: Low-pass filter 13: Voltage-controlled transfer Phase shifter 14: Oscillator 15, 16: 90' phase shifter 17, 18: Power amplifier 19, 20: Differential amplifier 25, 26: Analog switch 29, 30: Power amplifier Harney demand center

Claims (1)

【特許請求の範囲】 1、弾性材料製の一対の振動体間に被搬送体のシートを
挾持し、該一対の振動体には夫々 2群の電気−機械エネルギー変換素子区画 を、群内では等ピッチλ/2にて且つ電圧印加時の伸縮
の極性が交互に逆であるように、而して群間にはλ/4
の奇数倍のずれがあるように配列固着し、該各振動体の
各電気−機械エネルギー変換素子区画の2群間に90゜
の時間的位相差を有する交流電圧を夫々印加することに
よって、該各振動体に上記夫々の群に よって発生された互いにλ/4だけずれた2つの定在波
(波長λ)の合成として波長λの進行波を生ぜじめ、以
て双方の振動体に挟持されるシートを進行性振動波の進
行方向と逆方向に搬送するシート送り装置において、 該2つの振動体の振動状態を夫々検出して 双方の該振動体の時間的位相差を検出する振動状態検出
手段と、該振動状態検出手段から出力される位相差と任
意に設定したシート搬送速度に対応した位相差とを比較
して、双方の該振動体に任意に設定したシート搬送速度
に対応した位相差を有して駆動制御する制御手段とを備
えたことを特徴とするシート送り装置。 2、被搬送体のシートを挟持する弾性材料製の一対の有
端の振動体と、該一対の各振動体にシート搬送方向に沿
って夫々設けられ、交流電圧の印加により振動体を振動
させる第1電気−機械エネルギー変換手段及び第2電気 −機械エネルギー変換手段と、該各第1及び第2電気−
機械エネルギー変換手段に駆動用の交流電圧を供給する
駆動電源供給手段と、該各第1電気−機械エネルギー変
換手段と該駆動電源供給手段とを接続すると該各第2電
気−機械エネルギー変換手段とエネルギー消費用抵抗器
とを接続し、該各第2電気−機械エネルギー変換手段と
該駆動電源供給手段とを接続すると該各第1電気−機械
エネルギー変換手段と該エネルギー消費用抵抗器とを接
続するように切換えるスイッチ手段とを備 え、該駆動電源供給手段はシート移送速度情報に応じて
供給する2系統の交流電圧間に位相差を生じさせる位相
器を有することを特徴とするシート送り装置。
[Claims] 1. A sheet of an object to be conveyed is sandwiched between a pair of vibrating bodies made of an elastic material, and each of the pair of vibrating bodies has two groups of electric-mechanical energy conversion element sections. At equal pitch λ/2, and so that the polarity of expansion and contraction during voltage application is alternately reversed, there is λ/4 between the groups.
By applying an alternating current voltage having a temporal phase difference of 90° between two groups of each electro-mechanical energy conversion element section of each vibrating body, A traveling wave of wavelength λ is generated in each vibrating body as a composite of two standing waves (wavelength λ) that are shifted by λ/4 from each other and generated by each of the above groups, and is thus sandwiched between both vibrating bodies. In a sheet feeding device that conveys a sheet in a direction opposite to the traveling direction of progressive vibration waves, vibration state detection detects the vibration state of each of the two vibrating bodies and detects a temporal phase difference between the two vibrating bodies. and compares the phase difference output from the vibration state detection means with the phase difference corresponding to the arbitrarily set sheet conveyance speed, and determines the position of both vibrating bodies corresponding to the arbitrarily set sheet conveyance speed. A sheet feeding device comprising: a control means for controlling drive with a phase difference. 2. A pair of vibrating bodies made of an elastic material with ends that sandwich the sheet of the conveyed object, and each vibrating body of the pair is provided along the sheet conveying direction, and the vibrating bodies are vibrated by applying an alternating voltage. a first electrical-to-mechanical energy conversion means and a second electrical-to-mechanical energy conversion means;
A drive power supply means for supplying an AC voltage for driving to the mechanical energy conversion means, and when each of the first electric-mechanical energy conversion means and the drive power supply means are connected, each of the second electric-mechanical energy conversion means When the energy consuming resistors are connected, and the respective second electrical-mechanical energy conversion means and the drive power supply means are connected, the respective first electrical-mechanical energy conversion means and the energy consuming resistors are connected. 1. A sheet feeding apparatus, comprising: a switch means for switching the drive power supply means to switch the driving power supply means to switch the driving power supply means to switch the driving power supply means to switch the driving power supply means to switch the driving power supply means to switch the driving power supply means to switch the driving power supply means to switch the driving power supply means to switch the driving power supply means to switch the driving power supply means, the driving power supply means having a phase shifter for creating a phase difference between two systems of alternating current voltages supplied in accordance with sheet transport speed information.
JP1010380A 1989-01-19 1989-01-19 Sheet feed device Pending JPH02193836A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1010380A JPH02193836A (en) 1989-01-19 1989-01-19 Sheet feed device
US07/466,952 US5062622A (en) 1989-01-19 1990-01-18 Vibratory sheet feeder which uses phase adjustment to control the sheet feeding speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010380A JPH02193836A (en) 1989-01-19 1989-01-19 Sheet feed device

Publications (1)

Publication Number Publication Date
JPH02193836A true JPH02193836A (en) 1990-07-31

Family

ID=11748523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010380A Pending JPH02193836A (en) 1989-01-19 1989-01-19 Sheet feed device

Country Status (1)

Country Link
JP (1) JPH02193836A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739173A (en) * 1993-07-23 1995-02-07 Nikon Corp Drive controller for ultrasonic motor
JP2002509688A (en) * 1997-12-15 2002-03-26 ナノモーション リミテッド Conveying means and method
JP2002112563A (en) * 2000-09-29 2002-04-12 Minolta Co Ltd Driving method and apparatus for actuator
JP2015184293A (en) * 2014-03-20 2015-10-22 北陸電気工業株式会社 Display element and display device
CN110386422A (en) * 2018-04-19 2019-10-29 昕芙旎雅有限公司 The control device and work transfer device of vibrational system
JP2019193340A (en) * 2018-04-19 2019-10-31 シンフォニアテクノロジー株式会社 Control device for vibration system and work transfer device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739173A (en) * 1993-07-23 1995-02-07 Nikon Corp Drive controller for ultrasonic motor
JP2002509688A (en) * 1997-12-15 2002-03-26 ナノモーション リミテッド Conveying means and method
JP2002112563A (en) * 2000-09-29 2002-04-12 Minolta Co Ltd Driving method and apparatus for actuator
JP2015184293A (en) * 2014-03-20 2015-10-22 北陸電気工業株式会社 Display element and display device
CN110386422A (en) * 2018-04-19 2019-10-29 昕芙旎雅有限公司 The control device and work transfer device of vibrational system
JP2019193339A (en) * 2018-04-19 2019-10-31 シンフォニアテクノロジー株式会社 Control device for vibration system and work transfer device
JP2019193340A (en) * 2018-04-19 2019-10-31 シンフォニアテクノロジー株式会社 Control device for vibration system and work transfer device
CN110386422B (en) * 2018-04-19 2022-05-17 昕芙旎雅有限公司 Control device for vibration system and workpiece conveying device
TWI769300B (en) * 2018-04-19 2022-07-01 日商昕芙旎雅股份有限公司 Vibration system control device and workpiece conveying device

Similar Documents

Publication Publication Date Title
EP0471495B1 (en) Vibratory sheet feeder
JPH02193836A (en) Sheet feed device
JP2705820B2 (en) Vibration wave motor device
JP3245245B2 (en) Ultrasonic motor and ultrasonic transfer device
US5348287A (en) Sheet feeding apparatus using a vibration wave to convey sheets
JPH02193835A (en) Sheet feed device
US5094444A (en) Sheet feeding device
JPH02225246A (en) Sheet sending device
JPH02225247A (en) Sheet feeding device
JP2605355B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH01122375A (en) Controlling method for piezoelectric motor
JPH04355678A (en) Ultrasonic wave actuator for conveyer and converter thereof
JP2624392B2 (en) Transfer method and transfer ultrasonic actuator
JPH03272927A (en) Method of transfer and actuator therefor
JPH01174281A (en) Ultrasonic motor
JP2004350413A (en) Driving method and drive unit for ultrasonic motor
JPH01110070A (en) Driving method for supersonic motor
JPH01126176A (en) Vibrator for ultrasonic motor
JP4313604B2 (en) Ultrasonic motor drive circuit and electronic device with ultrasonic motor
JPH04116038A (en) Sheet feeding device
JPH0986725A (en) Skew adjusting device
JPH0669303B2 (en) Ultrasonic motor oscillator
JPH08140376A (en) Driver employing ultrasonic motor
JPH01126177A (en) Vibrator for ultrasonic motor
JPH01110071A (en) Driving method for supersonic motor