JP4313604B2 - Ultrasonic motor drive circuit and electronic device with ultrasonic motor - Google Patents

Ultrasonic motor drive circuit and electronic device with ultrasonic motor Download PDF

Info

Publication number
JP4313604B2
JP4313604B2 JP2003127886A JP2003127886A JP4313604B2 JP 4313604 B2 JP4313604 B2 JP 4313604B2 JP 2003127886 A JP2003127886 A JP 2003127886A JP 2003127886 A JP2003127886 A JP 2003127886A JP 4313604 B2 JP4313604 B2 JP 4313604B2
Authority
JP
Japan
Prior art keywords
phase
circuit
piezoelectric element
ultrasonic motor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003127886A
Other languages
Japanese (ja)
Other versions
JP2004336858A (en
Inventor
朗弘 飯野
聖士 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003127886A priority Critical patent/JP4313604B2/en
Publication of JP2004336858A publication Critical patent/JP2004336858A/en
Application granted granted Critical
Publication of JP4313604B2 publication Critical patent/JP4313604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超音波モータおよび超音波モータを用いた電子機器に係り、特に超音波モータの駆動回路及びそれにより駆動される超音波モータ付き電子機器に関する。
【0002】
【従来の技術】
次世代アクチュエータとして期待された超音波モータも様々な方式が考案され、最近ではその中でもリニヤ型の超音波モータが注目されている。その駆動原理としては例えば矩形板の縦振動と屈曲振動を用いる場合が多く行われている。この場合、圧電素子に二つ信号を印加させることで振動体の側面に楕円運動を発生させ、振動体と接する移動体を駆動させる。この楕円運動を発生させる為、そして楕円運動の方向を切り替え、移動体の駆動方向を切り替える為に、二つの信号の位相を変えることが行われている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2000−116162号公報(第5−7頁、第4−5図)
【0004】
【発明が解決しようとする課題】
しかしながら二つの異なる振動、例えば縦振動と屈曲振動の共振点の差はモータ個々で異なるとともに二つの振動の励振力も異なるため入力信号に対して発生する振動変位の位相が各振動モードに、しかも駆動周波数によって変化してしまう。これらから、従来の駆動回路による駆動方法では移動方向によって移動体の移動速度、推進力といった出力特性が異なってしまった。そして、超音波モータ個々でも二つの振動モードの固有周波数が若干異なる為、出力特性もばらつきが大きいものになってしまった。そしてこれらの現象の影響度は駆動周波数によっても変化し、温度や負荷等の外部環境によって生じる出力特性の変化も大きかった。
【0005】
【課題を解決するための手段】
そこで上記課題を解決するために、本発明では圧電素子を有する振動体の前記圧電素子に第一の信号と第二の信号を印加することにより前記振動体と接する移動体を駆動する超音波モータの駆動回路において、前記第二の信号は前記第一の信号から位相を第一の位相量だけずらす位相設定回路と、前記位相設定回路からの出力信号を第二の位相量だけ進ませるか遅らせるかを切換る位相切換回路を経て得られた信号であることを特徴とする駆動回路とする。これによればモータ個々、並びに移動方向に対する出力特性のばらつきは小さくなる。特に前記第二の位相量を90度とすることでモータ効率は良好となる。
【0006】
また圧電素子を有する振動体の前記圧電素子に第一の信号と第二の信号を印加することにより前記振動体と接する移動体を駆動する超音波モータの駆動回路において、前記第二の信号は前記第一の信号から位相を第一の位相量だけずらす位相設定回路と、前記位相設定回路からの出力信号を第二の位相量だけ遅らせるか否か、もしくは第二の位相量だけ進ませるか否かを切換る位相切換回路を経て得られた信号であることを特徴とする駆動回路とする。これによればモータ個々、並びに移動方向に対する出力特性のばらつきは小さくなるとともに駆動回路の構成も簡単になる。
【0007】
特に、前記第二の位相量を180度とすることでモータ効率は良好となると共に駆動回路の構成も簡単になり、自励発振回路への適用も容易となる。
【0008】
また、以上の回路構成において前記第一の位相量もしくは前記第二の位相量は前記振動体もしくは前記移動体の駆動状態に応じて可変される様にすることで、温度や負荷等が変化した場合にもモータの出力特性の変化並びに移動方向による出力特性の差は少ない。
【0009】
そしてこれらの駆動回路並びにこれで駆動される超音波モータを電子機器に搭載することで小型、低消費電力であることはもとより外部環境に影響されにくく製品個々のばらつきの少ない電子機器が実現できる。
【0010】
【発明の実施の形態】
本発明の実施の形態を図面を基に説明する。
【0011】
(実施の形態1)
図5は本発明の駆動回路で駆動される超音波モータの構成例を示したものである。圧電素子1で構成される振動体は図示しない支持部材で支持されると共に、図示しない加圧機構26にて図中矢印の方向に加圧力が加えられ摩擦部材24と移動体6の間には適度な摩擦力が働く。移動体6は案内部材25により案内されている。ここで振動体は圧電素子1のみで構成してもよいし、金属等の弾性体と一緒に構成してもかまわない。振動体に縦振動と屈曲振動を同時に励振することにより振動体に設けた摩擦部材24には移動体6の移動方向の変位と加圧力方向の変位が同時に発生し、この合成変位により移動体は駆動される。また移動体6を固定して、振動体を駆動しても構わない。
【0012】
本発明の超音波モータに適用可能な振動体の構成を図4、6を用いて説明する。図4において振動体は圧電素子1のみで構成されている。圧電素子1は圧電素子1a、1bを積層して構成されている。圧電素子1aの一方には四等分された電極2a、2b、2c、2dが設けられ、圧電素子1の第一の電極2を構成している。圧電素子1bの一方の面にはほぼ全面にわたって電極3が設けられ、圧電素子1の第二の電極を構成している。圧電素子1aと1bの接合面には電極4が設けられ、圧電素子1aと1bの共通電極となっている。圧電素子1aは図中+、−の方向に厚み方向に分極されている。圧電素子1bは全体に渡って厚み方向に同一方向に分極されている。圧電素子1aの電極2と共通電極4の間に駆動信号を印加すると圧電素子1全体に二次の屈曲振動が励振され、圧電素子1bの電極3と共通電極4の間に駆動信号を印加すると一次の縦振動が励振される。ところで、ここで圧電素子1a、1bの枚数、積層の順序には拘らない。
【0013】
本振動体を用いて超音波モータを構成し、移動体6の移動方向を変える為には圧電素子1aと1bに加える駆動信号の位相を逆転する必要がある。例えば、周波数発生回路8からの周波信号を増幅回路1aで増幅し、圧電素子1aに印加すると共に、周波数発生回路8からの周波信号を移送回路13を経た後、増幅回路9bで増幅し、圧電素子1bに加える。移送回路13で位相を反転することにより二つの異なる振動、即ち縦振動と屈曲振動の位相を反転し、移動体6の移動方向を変える。しかしながら先に述べた様に移動方向によって超音波モータの出力特性が異なることがある。ところで、移送回路13で変える位相の量を徐々に変えて(増やして)いった場合の推進力の変化を測定した一例を図6に示すが、90度もしくは−90度(270度)で推進力が最大とならず、ある位相〜更に90度もしくは−90度ずれた点で最大となっている。またこの傾向は駆動周波数によってシフトしており、駆動周波数83kHzの場合には150度で右方向の駆動力が最大となり、330度(−30度)で左方向の推進力が最大となる。駆動周波数85kHzを例にとると位相量120度を中心にそこから±に同じ量だけ位相をずらすことにより移動方向による超音波モータの出力特性の差は無くなる。特にずらす位相量を90度とすることにより最も大きな推進力が得られる。また、移送回路13でずらす位相量をある値とするか、もしくはその値から更に一定量の位相をずらすかを選択することにより移動方向による超音波モータの出力特性の差は無くなる。例えば、駆動周波数83kHzの場合、ずらす位相の量を150度とするか、そこから更に180度ずらすこと即ち330度(−30度)ずらせばよい。ところで、図中の+、−は移動体の移動方向の違いを示すものである。
【0014】
次に具体的な駆動回路の構成について図1、2を用いて説明する。図1において、周波信号発生回路12で得られた特定の周波数の信号は増幅回路9aで増幅された後、圧電素子1の第一の電極2に加えられる共に、位相設定回路11で第一の位相量だけ位相がずらされると共に、図示しない外部の制御信号を受け位相切換回路10で第二の位相量だけ位相を進ませるか遅らせるかが決定される。
【0015】
先の例(駆動周波数85kHz)においては例えば位相設定回路11で第一の位相量が120度に設定されると共に、位相切換回路10で第二の位相量が90度に設定される。そしてこの信号が圧電素子1の第二の電極3に印加される。移動体6の移動方向は位相切換回路10で位相が進ませられたか、遅らせられたかによって決まる。
【0016】
また図1において、位相設定回路11で第一の位相量だけ位相がずらされると共に、位相切換回路10で第二の位相量だけ位相を進ませるか否か、もしくは遅らせるか否かが決定される方式としても良い。先の例(駆動周波数85kHz)においては位相設定回路11で210度に設定されると共に、位相切換回路10で第二の位相量を180度遅らせるか否かが決定される。この場合、位相切換回路10では第二の位相量をずらすか否かを選択するのみで良く、駆動回路が簡素化される。
【0017】
ところで、ここでは第二の電極に周波信号発生回路12から位相をずらした信号を印加したが、第一の電極にこの信号を印加し、第二の電極には周波信号発生回路12と同じ位相の信号を加えてもかまわない。
【0018】
これら第一の位相量、第二の位相量はモータ個々で例えば製造段階において設定されればモータ個々の特性のばらつきは極めて小さくなる。例えば、駆動回路上においてこれらの設定を、可変抵抗や可変容量で変えられる様にすれば良い。
【0019】
本実施の形態に示す振動体では、二つの信号によって縦振動と屈曲振動が独立に励振される為、本発明の効果は絶大である。しかしながら、同じ信号で縦振動と屈曲振動の両方を励振する方式であっても二つの位相の異なる信号を用いて駆動する方式であれば同様の効果が期待出来る。
【0020】
(実施の形態2)
図2に実施の形態1の変形例を示す。ここでは図1との違いのみを述べる。先に述べた様に、第二の電極3に印加する信号の位相のずれ量と出力の関係は、駆動周波数によって変化する。即ち温度や負荷等の環境によってこの関係は変化することが推測される。そこで、本実施の形態では移動体6の駆動状態や振動体の振動状態をフィ−ドバックすることにより、実施の形態1における第一の位相量、第二の位相量を最適なものとする。
【0021】
即ち、移動体6の速度をエンコーダ等のセンサ7によって計測するか、圧電素子1に設けた第三の電極から得られる信号を検出し、振動体の振動状態を検出し、これらを最適状態に保たれる様に、周波信号発生回路12の周波数、位相設定回路11での第一の位相量、位相切換回路10での第二の位相量の何れか、あるいは複数の設定値を可変する。これにより外部の環境によらずモータの特性は安定となる。
【0022】
(実施の形態3)
図3は実施の形態1、2を自励発振回路に応用した例である。圧電素子1、コンデンサ22、23で位相が180度変化する共振回路を構成する。共通電極4、コンデンサ23を経て得られた信号は抵抗14とスリーステートインバータ15とで構成される増幅回路により増幅される。そして、コンデンサ22、バッファ16を経て第二の電極2に戻され、所定の共振周波数近傍で発振が持続する自励発振回路を構成する。ところで、この発振信号はバッファとなるインバータ17を介して取り出され、抵抗18、コンデンサ19からなるローパスフィルタで第一の位相量だけ位相がずらされると共に、スリーステートバッファ20もしくはスリーステートインバータ21の何れかを通して位相が反転するか否かが決定され、第二の電極3に加えられる。
【0023】
この様に、自励発振回路で周波信号発生回路12を構成し、インバータ17、抵抗18、コンデンサ19で位相設定回路11を構成し、スリーステートバッファ20、スリーステートインバータ21で位相切換回路10を構成する。バッファ16並びにスリーステートバッファ20、スリーステートインバータ21は増幅回路9a並びに9bとしても働く。
【0024】
本実施の形態によればこの様に、簡単な構成で自励発振回路が構成される。
【0025】
(実施の形態4)
図7は本発明の駆動回路により駆動される超音波モータ100を電子機器の駆動源に適用したブロック図を示したものであり、圧電素子1と圧電素子1に接合された摩擦部材24により摩擦駆動される移動体6と移動体6と一体に動作する伝達機構27と、伝達機構27の動作に基づいて動作する出力機構28からなる。
【0026】
ここで、伝達機構27は例えば歯車列、摩擦車等の伝達車を用いる。出力機構28としては、プリンタにおいては紙送り機構、カメラにおいてはシャッタ駆動機構、レンズ駆動機構、フィルム巻き上げ機構等を、また電子機器や計測器においては指針等を、ロボットにおいてはアーム機構、工作機械においては歯具送り機構や加工部材送り機構等を用いる。
【0027】
尚、本実施の形態における電子機器としては電子時計、計測器、カメラ、プリンタ、印刷機、ロボット、工作機、ゲーム機、光情報機器、医療機器、移動装置等を実現できる。さらに移動体6に出力軸を設け、出力軸からのトルクを伝達するための動力伝達機構を有する構成とすれば、超音波モータ駆動装置を実現できる。
【0028】
【発明の効果】
本発明では、移動体の移動方向を可変する場合の位相の基準点を位相設定回路によって設定し、そこを基準に位相を切換る。この様な構成とすることで、移動体の移動方向の違いによって生じる出力特性の差を小さくすることが出来る。また、位相設定回路で設定される位相をモータ個々で設定することでモータ個々の特性の差を小さくすることが可能となる。更には移動体の速度等の駆動状態あるいは振動体の振動状態等の情報をフィードバックし、駆動周波数、位相設定回路で設定される位相量、あるいは位相切換回路で設定される位相量を可変することで、常に最適な駆動状態となるため温度や負荷等の外部環境の変化に対してもモータの出力特性の差は小さく、また移動体の移動方向による出力特性の差、モータ個々の出力特性のばらつきも小さく出来る。
【図面の簡単な説明】
【図1】本発明の超音波モータ駆動回路の回路構成を示す図である。
【図2】本発明の超音波モータ駆動回路の回路構成の別の例を示す図である。
【図3】本発明の超音波モータの駆動回路を自励発振回路に応用した例を示す図である。
【図4】本発明の超音波モータの振動体の例を示す図である。
【図5】本発明の超音波モータの構成の例を示す図である。
【図6】本発明の超音波モータの駆動信号の位相差と推進力の関係を示す図である。
【図7】本発明の超音波モータを電子機器に応用した場合のブロック図である。
【符号の説明】
1 圧電素子
2、3、4、5 電極
6 移動体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic motor and an electronic device using the ultrasonic motor, and more particularly, to an ultrasonic motor driving circuit and an electronic device with an ultrasonic motor driven by the driving circuit.
[0002]
[Prior art]
Various types of ultrasonic motors expected as next-generation actuators have been devised, and recently, linear type ultrasonic motors are attracting attention. As the driving principle, for example, longitudinal vibration and bending vibration of a rectangular plate are often used. In this case, by applying two signals to the piezoelectric element, an elliptical motion is generated on the side surface of the vibrating body, and the moving body in contact with the vibrating body is driven. In order to generate this elliptical motion, and to switch the direction of the elliptical motion and switch the driving direction of the moving body, the phases of the two signals are changed (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-116162 (pages 5-7 and 4-5)
[0004]
[Problems to be solved by the invention]
However, the difference between the resonance points of two different vibrations, for example, longitudinal vibration and flexural vibration, is different for each motor and the excitation force of the two vibrations is also different, so the phase of the vibration displacement generated for the input signal is driven by each vibration mode. It changes with frequency. From these, in the driving method using the conventional driving circuit, the output characteristics such as the moving speed and the propulsive force of the moving body differ depending on the moving direction. And even in the individual ultrasonic motors, the natural frequency of the two vibration modes is slightly different, so that the output characteristics also vary greatly. The degree of influence of these phenomena also changes depending on the drive frequency, and the change in output characteristics caused by the external environment such as temperature and load is large.
[0005]
[Means for Solving the Problems]
Therefore, in order to solve the above-described problem, in the present invention, an ultrasonic motor that drives a moving body in contact with the vibrating body by applying a first signal and a second signal to the piezoelectric element of the vibrating body having a piezoelectric element. In the driving circuit, the second signal has a phase setting circuit that shifts the phase from the first signal by a first phase amount, and an output signal from the phase setting circuit is advanced or delayed by a second phase amount. The driving circuit is characterized in that it is a signal obtained through a phase switching circuit for switching between the two. According to this, variation in output characteristics with respect to individual motors and moving directions is reduced. In particular, motor efficiency is improved by setting the second phase amount to 90 degrees.
[0006]
In the driving circuit of the ultrasonic motor that drives the moving body in contact with the vibrating body by applying the first signal and the second signal to the piezoelectric element of the vibrating body having the piezoelectric element, the second signal is A phase setting circuit that shifts the phase from the first signal by a first phase amount, and whether the output signal from the phase setting circuit is delayed by a second phase amount or whether the output signal is advanced by a second phase amount The drive circuit is characterized in that it is a signal obtained through a phase switching circuit for switching whether or not. According to this, variation in output characteristics with respect to each motor and the moving direction is reduced, and the configuration of the drive circuit is simplified.
[0007]
In particular, by setting the second phase amount to 180 degrees, the motor efficiency is improved, the configuration of the drive circuit is simplified, and the application to the self-excited oscillation circuit is facilitated.
[0008]
In the circuit configuration described above, the first phase amount or the second phase amount can be varied according to the driving state of the vibrating body or the moving body, so that the temperature, load, etc. have changed. Even in this case, there is little difference in the output characteristics depending on the change of the motor output characteristics and the moving direction.
[0009]
By mounting these drive circuits and ultrasonic motors driven by these on an electronic device, it is possible to realize an electronic device that is small in size and has low power consumption and is not easily affected by the external environment and has little variation among individual products.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0011]
(Embodiment 1)
FIG. 5 shows an example of the configuration of an ultrasonic motor driven by the drive circuit of the present invention. The vibrating body constituted by the piezoelectric element 1 is supported by a support member (not shown), and pressure is applied in the direction of the arrow in the drawing by a pressure mechanism 26 (not shown) between the friction member 24 and the moving body 6. Appropriate frictional force works. The moving body 6 is guided by a guide member 25. Here, the vibrating body may be constituted only by the piezoelectric element 1 or may be constituted together with an elastic body such as metal. Displacement in the moving direction of the moving body 6 and displacement in the pressurizing direction are simultaneously generated in the friction member 24 provided on the vibrating body by exciting the vibration body with longitudinal vibration and bending vibration simultaneously. Driven. Further, the movable body 6 may be fixed and the vibrating body may be driven.
[0012]
A configuration of a vibrating body applicable to the ultrasonic motor of the present invention will be described with reference to FIGS. In FIG. 4, the vibrating body is composed only of the piezoelectric element 1. The piezoelectric element 1 is configured by laminating piezoelectric elements 1a and 1b. One of the piezoelectric elements 1a is provided with quartered electrodes 2a, 2b, 2c, and 2d to constitute the first electrode 2 of the piezoelectric element 1. On one surface of the piezoelectric element 1b, an electrode 3 is provided over almost the entire surface, and constitutes a second electrode of the piezoelectric element 1. An electrode 4 is provided on the joint surface between the piezoelectric elements 1a and 1b, and serves as a common electrode for the piezoelectric elements 1a and 1b. The piezoelectric element 1a is polarized in the thickness direction in the + and-directions in the figure. The piezoelectric element 1b is polarized in the same direction in the thickness direction throughout. When a drive signal is applied between the electrode 2 of the piezoelectric element 1a and the common electrode 4, secondary bending vibration is excited in the entire piezoelectric element 1, and when a drive signal is applied between the electrode 3 and the common electrode 4 of the piezoelectric element 1b. A primary longitudinal vibration is excited. Incidentally, here, the number of piezoelectric elements 1a and 1b and the order of lamination are not concerned.
[0013]
In order to configure an ultrasonic motor using this vibrating body and change the moving direction of the moving body 6, it is necessary to reverse the phase of the drive signal applied to the piezoelectric elements 1a and 1b. For example, the frequency signal from the frequency generation circuit 8 is amplified by the amplification circuit 1a and applied to the piezoelectric element 1a, and the frequency signal from the frequency generation circuit 8 passes through the transfer circuit 13 and then is amplified by the amplification circuit 9b to be piezoelectric. Add to element 1b. By reversing the phase by the transfer circuit 13, two different vibrations, that is, the phase of longitudinal vibration and bending vibration are reversed, and the moving direction of the moving body 6 is changed. However, as described above, the output characteristics of the ultrasonic motor may differ depending on the moving direction. By the way, FIG. 6 shows an example of measuring the change in propulsive force when the amount of phase changed by the transfer circuit 13 is gradually changed (increased), and propulsion is performed at 90 degrees or −90 degrees (270 degrees). The force is not maximized, but is maximized at a point shifted from a certain phase to 90 degrees or -90 degrees. This tendency shifts with the driving frequency. When the driving frequency is 83 kHz, the right driving force is maximum at 150 degrees, and the left driving force is maximum at 330 degrees (−30 degrees). Taking a drive frequency of 85 kHz as an example, the difference in the output characteristics of the ultrasonic motor due to the moving direction is eliminated by shifting the phase by ± the same amount around the phase amount of 120 degrees. In particular, the largest driving force can be obtained by setting the phase amount to be shifted to 90 degrees. Further, by selecting whether the phase amount shifted by the transfer circuit 13 is a certain value, or by shifting a certain amount of phase from that value, the difference in the output characteristics of the ultrasonic motor due to the moving direction is eliminated. For example, in the case of a driving frequency of 83 kHz, the amount of phase to be shifted may be set to 150 degrees, or may be further shifted 180 degrees therefrom, that is, shifted by 330 degrees (-30 degrees). By the way, + and-in a figure show the difference in the moving direction of a moving body.
[0014]
Next, a specific configuration of the drive circuit will be described with reference to FIGS. In FIG. 1, a signal of a specific frequency obtained by the frequency signal generation circuit 12 is amplified by the amplification circuit 9a and then applied to the first electrode 2 of the piezoelectric element 1, and the phase setting circuit 11 The phase is shifted by the phase amount, and an external control signal (not shown) is received and the phase switching circuit 10 determines whether to advance or delay the phase by the second phase amount.
[0015]
In the previous example (drive frequency 85 kHz), for example, the phase setting circuit 11 sets the first phase amount to 120 degrees, and the phase switching circuit 10 sets the second phase amount to 90 degrees. This signal is applied to the second electrode 3 of the piezoelectric element 1. The moving direction of the moving body 6 is determined by whether the phase is advanced or delayed by the phase switching circuit 10.
[0016]
In FIG. 1, the phase setting circuit 11 shifts the phase by the first phase amount, and the phase switching circuit 10 determines whether the phase is advanced or delayed by the second phase amount. It may be a method. In the previous example (driving frequency 85 kHz), the phase setting circuit 11 sets 210 degrees, and the phase switching circuit 10 determines whether or not to delay the second phase amount by 180 degrees. In this case, the phase switching circuit 10 only needs to select whether or not to shift the second phase amount, and the drive circuit is simplified.
[0017]
By the way, although the signal shifted in phase from the frequency signal generation circuit 12 is applied to the second electrode here, this signal is applied to the first electrode, and the same phase as the frequency signal generation circuit 12 is applied to the second electrode. You may add the signal.
[0018]
If the first phase amount and the second phase amount are set for each motor, for example, at the manufacturing stage, the variation in characteristics of each motor becomes extremely small. For example, these settings may be changed by a variable resistor or a variable capacitor on the drive circuit.
[0019]
In the vibrating body shown in the present embodiment, the longitudinal vibration and the bending vibration are independently excited by two signals, so that the effect of the present invention is great. However, even if the system uses both the longitudinal vibration and the bending vibration with the same signal, the same effect can be expected if the system is driven using two signals having different phases.
[0020]
(Embodiment 2)
FIG. 2 shows a modification of the first embodiment. Here, only the differences from FIG. 1 will be described. As described above, the relationship between the amount of phase shift of the signal applied to the second electrode 3 and the output varies depending on the drive frequency. That is, it is estimated that this relationship changes depending on the environment such as temperature and load. Therefore, in the present embodiment, the first phase amount and the second phase amount in the first embodiment are optimized by feeding back the driving state of the moving body 6 and the vibration state of the vibrating body.
[0021]
That is, the speed of the moving body 6 is measured by a sensor 7 such as an encoder, or a signal obtained from the third electrode provided on the piezoelectric element 1 is detected to detect the vibration state of the vibration body, and these are set to an optimum state. In order to be maintained, either the frequency of the frequency signal generation circuit 12, the first phase amount in the phase setting circuit 11, the second phase amount in the phase switching circuit 10, or a plurality of setting values are varied. This stabilizes the motor characteristics regardless of the external environment.
[0022]
(Embodiment 3)
FIG. 3 shows an example in which the first and second embodiments are applied to a self-excited oscillation circuit. The piezoelectric element 1 and the capacitors 22 and 23 constitute a resonance circuit whose phase changes by 180 degrees. A signal obtained through the common electrode 4 and the capacitor 23 is amplified by an amplifier circuit composed of a resistor 14 and a three-state inverter 15. Then, it returns to the second electrode 2 through the capacitor 22 and the buffer 16, and constitutes a self-excited oscillation circuit in which oscillation continues in the vicinity of a predetermined resonance frequency. By the way, this oscillation signal is taken out through an inverter 17 serving as a buffer, and the phase is shifted by a first phase amount by a low-pass filter including a resistor 18 and a capacitor 19, and either the three-state buffer 20 or the three-state inverter 21 is used. Whether the phase is reversed or not is determined and applied to the second electrode 3.
[0023]
Thus, the self-excited oscillation circuit constitutes the frequency signal generation circuit 12, the inverter 17, the resistor 18, and the capacitor 19 constitute the phase setting circuit 11, and the three-state buffer 20 and the three-state inverter 21 constitute the phase switching circuit 10. Constitute. The buffer 16, the three-state buffer 20, and the three-state inverter 21 also function as amplifier circuits 9a and 9b.
[0024]
According to the present embodiment, the self-excited oscillation circuit is configured with a simple configuration as described above.
[0025]
(Embodiment 4)
FIG. 7 shows a block diagram in which an ultrasonic motor 100 driven by the drive circuit of the present invention is applied to a drive source of an electronic device, and friction is caused by the piezoelectric element 1 and the friction member 24 joined to the piezoelectric element 1. The movable body 6 to be driven includes a transmission mechanism 27 that operates integrally with the mobile body 6, and an output mechanism 28 that operates based on the operation of the transmission mechanism 27.
[0026]
Here, the transmission mechanism 27 uses a transmission wheel such as a gear train and a friction wheel, for example. As the output mechanism 28, a paper feed mechanism in a printer, a shutter drive mechanism, a lens drive mechanism, a film winding mechanism in a camera, a pointer in an electronic device or a measuring instrument, an arm mechanism in a robot, a machine tool In this case, a tooth tool feeding mechanism, a processing member feeding mechanism, or the like is used.
[0027]
Note that an electronic timepiece, a measuring instrument, a camera, a printer, a printing machine, a robot, a machine tool, a game machine, an optical information device, a medical device, a moving device, and the like can be realized as the electronic device in this embodiment. Furthermore, if the moving body 6 is provided with an output shaft and has a power transmission mechanism for transmitting torque from the output shaft, an ultrasonic motor driving device can be realized.
[0028]
【The invention's effect】
In the present invention, a phase reference point is set by the phase setting circuit when changing the moving direction of the moving body, and the phase is switched based on the reference point. With such a configuration, it is possible to reduce a difference in output characteristics caused by a difference in moving direction of the moving body. In addition, by setting the phase set by the phase setting circuit for each motor, it is possible to reduce the difference in characteristics of each motor. Furthermore, feedback of information on the driving state such as the speed of the moving body or the vibration state of the vibrating body, and the driving frequency, the phase amount set by the phase setting circuit, or the phase amount set by the phase switching circuit can be varied. Therefore, the optimum driving state is always achieved, so the difference in the output characteristics of the motor is small even with changes in the external environment such as temperature and load. Variation can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a circuit configuration of an ultrasonic motor driving circuit according to the present invention.
FIG. 2 is a diagram showing another example of the circuit configuration of the ultrasonic motor drive circuit of the present invention.
FIG. 3 is a diagram showing an example in which the driving circuit of the ultrasonic motor of the present invention is applied to a self-excited oscillation circuit.
FIG. 4 is a diagram showing an example of a vibrating body of the ultrasonic motor of the present invention.
FIG. 5 is a diagram showing an example of the configuration of an ultrasonic motor according to the present invention.
FIG. 6 is a diagram showing the relationship between the phase difference of the drive signal and the propulsive force of the ultrasonic motor of the present invention.
FIG. 7 is a block diagram when the ultrasonic motor of the present invention is applied to an electronic device.
[Explanation of symbols]
1 Piezoelectric element 2, 3, 4, 5 Electrode 6 Moving object

Claims (6)

屈曲振動のみを励振する圧電素子と、縦振動のみを励振する圧電素子で構成された振動体の前記屈曲振動のみを励振する圧電素子に第一の信号を、前記縦振動のみを励振する圧電素子に第二の信号を印加することにより前記振動体と接する移動体を駆動する超音波モータの駆動回路であって、
前記第一の信号から位相を第一の位相量だけずらす位相設定回路と、
前記位相設定回路からの出力信号を90度だけ進ませるか遅らせるかを切換る位相切換回路を有し、
前記第二の信号が、前記位相設定回路と前記位相切換回路を経て得られた信号である超音波モータの駆動回路。
A piezoelectric element that excites only the longitudinal vibration, and a piezoelectric element that excites only the longitudinal vibration, and a piezoelectric element that excites only the longitudinal vibration, and a piezoelectric element that excites only the longitudinal vibration. A drive circuit of an ultrasonic motor that drives a moving body that contacts the vibrating body by applying a second signal to
A phase setting circuit for shifting the phase from the first signal by a first phase amount;
A phase switching circuit for switching whether the output signal from the phase setting circuit is advanced or delayed by 90 degrees ;
The ultrasonic motor drive circuit, wherein the second signal is a signal obtained through the phase setting circuit and the phase switching circuit.
屈曲振動のみを励振する圧電素子と、縦振動のみを励振する圧電素子で構成された振動体の前記屈曲振動のみを励振する圧電素子に第一の信号を、前記縦振動のみを励振する圧電素子に第二の信号を印加することにより前記振動体と接する移動体を駆動する超音波モータの駆動回路であって、
前記第二の信号は前記第一の信号から位相を第一の位相量だけずらす位相設定回路と、前記位相設定回路からの出力信号を180度だけ遅らせるか否か、
もしくは進ませるか否かを切換る位相切換回路を有し、
前記第二の信号が前記位相設定回路と前記位相切換回路を経て得られた信号である超音波モータの駆動回路。
A piezoelectric element that excites only the longitudinal vibration, and a piezoelectric element that excites only the longitudinal vibration, and a piezoelectric element that excites only the longitudinal vibration, and a piezoelectric element that excites only the longitudinal vibration. A drive circuit of an ultrasonic motor that drives a moving body that contacts the vibrating body by applying a second signal to
The second signal is a phase setting circuit that shifts the phase from the first signal by a first phase amount, and whether or not to delay the output signal from the phase setting circuit by 180 degrees,
Or it has a phase switching circuit that switches whether to advance,
An ultrasonic motor drive circuit, wherein the second signal is a signal obtained through the phase setting circuit and the phase switching circuit.
前記振動体は屈曲振動のみを励振する圧電素子と、縦振動のみを励振する圧電素子を積層して構成されたものであることを特徴とする請求項1または2に記載の超音波モータの駆動回路。 3. The ultrasonic motor drive according to claim 1, wherein the vibrating body is configured by stacking a piezoelectric element that excites only bending vibration and a piezoelectric element that excites only longitudinal vibration. 4. circuit. 前記屈曲振動は二次の振動であり、前記縦振動は一次の振動であることを特徴とする請求項1から3のいずれか一項に記載の超音波モータの駆動回路。The drive circuit for an ultrasonic motor according to any one of claims 1 to 3, wherein the bending vibration is a secondary vibration, and the longitudinal vibration is a primary vibration . 前記第一の位相量は前記振動体もしくは前記移動体の駆動状態に応じて可変されることを特徴とする請求項1から4のいずれか一項に記載の超音波モータの駆動回路。  5. The ultrasonic motor driving circuit according to claim 1, wherein the first phase amount is variable according to a driving state of the vibrating body or the moving body. 6. 請求項1から5のいずれか一項に記載の超音波モータの駆動回路により駆動され、Driven by the drive circuit of the ultrasonic motor according to any one of claims 1 to 5,
圧電素子と、A piezoelectric element;
前記圧電素子に接合された摩擦部材により摩擦駆動される移動体と、A moving body frictionally driven by a friction member joined to the piezoelectric element;
前記移動体と一体に動作する伝達機構と、A transmission mechanism that operates integrally with the moving body;
前記伝達機構の動作に基づいて動作する出力機構からなる超音波モータ付き電子機器。An electronic apparatus with an ultrasonic motor comprising an output mechanism that operates based on the operation of the transmission mechanism.
JP2003127886A 2003-05-06 2003-05-06 Ultrasonic motor drive circuit and electronic device with ultrasonic motor Expired - Lifetime JP4313604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127886A JP4313604B2 (en) 2003-05-06 2003-05-06 Ultrasonic motor drive circuit and electronic device with ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127886A JP4313604B2 (en) 2003-05-06 2003-05-06 Ultrasonic motor drive circuit and electronic device with ultrasonic motor

Publications (2)

Publication Number Publication Date
JP2004336858A JP2004336858A (en) 2004-11-25
JP4313604B2 true JP4313604B2 (en) 2009-08-12

Family

ID=33504231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127886A Expired - Lifetime JP4313604B2 (en) 2003-05-06 2003-05-06 Ultrasonic motor drive circuit and electronic device with ultrasonic motor

Country Status (1)

Country Link
JP (1) JP4313604B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5760748B2 (en) * 2011-06-29 2015-08-12 セイコーエプソン株式会社 Piezoelectric actuator driving method and driving unit

Also Published As

Publication number Publication date
JP2004336858A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US6396194B1 (en) Ultrasound motor and electronic apparatus equipped with ultrasonic motor
US20100085649A1 (en) Optical objective module
US6707232B2 (en) Piezoelectric driving body, ultrasonic motor and electronic apparatus having an ultrasonic motor
JPH08182357A (en) Ultrasonic motor driving circuit
JP2008043123A (en) Ultrasonic motor and vibration detection method of ultrasonic motor
JPH0819275A (en) Vibration wave device
JP2004260990A (en) Driver and operation unit
JP4459317B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JP4313604B2 (en) Ultrasonic motor drive circuit and electronic device with ultrasonic motor
JP4499877B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4641709B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JP4485238B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4672828B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4634174B2 (en) Ultrasonic motor and electronic device using the same
JP4150056B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP5357127B2 (en) Ultrasonic motor and electronic equipment and stage using the same
JP4313610B2 (en) Ultrasonic motor, method for manufacturing the same, and electronic apparatus equipped with ultrasonic motor
JP5080518B2 (en) Multilayer piezoelectric element, method for manufacturing multilayer piezoelectric element, and electronic apparatus provided with multilayer piezoelectric element
JP4672999B2 (en) Ultrasonic motor, laminated piezoelectric element and electronic device
JP2005012192A (en) Ultrasonic motor using laminated piezoelectric element, electronic apparatus therewith, and manufacturing method thereof
JP5216822B2 (en) Ultrasonic motor using laminated piezoelectric vibrator and electronic device using the same
JP4527211B2 (en) Ultrasonic motor drive circuit and electronic device with ultrasonic motor
JP4714405B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP3711935B2 (en) Drive device
JP2004187334A (en) Ultrasonic motor and electronic apparatus fitted therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4313604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term