JP6901327B2 - Fillers, moldings, and heat dissipation materials - Google Patents

Fillers, moldings, and heat dissipation materials Download PDF

Info

Publication number
JP6901327B2
JP6901327B2 JP2017115360A JP2017115360A JP6901327B2 JP 6901327 B2 JP6901327 B2 JP 6901327B2 JP 2017115360 A JP2017115360 A JP 2017115360A JP 2017115360 A JP2017115360 A JP 2017115360A JP 6901327 B2 JP6901327 B2 JP 6901327B2
Authority
JP
Japan
Prior art keywords
filler
resin composition
molded product
porosity
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017115360A
Other languages
Japanese (ja)
Other versions
JP2019001849A (en
Inventor
拓弥 諌山
拓弥 諌山
伸映 加藤
伸映 加藤
和人 佐藤
和人 佐藤
扇谷 聡
聡 扇谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2017115360A priority Critical patent/JP6901327B2/en
Publication of JP2019001849A publication Critical patent/JP2019001849A/en
Application granted granted Critical
Publication of JP6901327B2 publication Critical patent/JP6901327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はフィラー、成形体、及び放熱材料に関する。 The present invention relates to fillers, molded articles, and heat radiating materials.

プラスチック、硬化性樹脂、ゴム等の樹脂とフィラーとを含有する樹脂組成物の成形体においては、空隙率が高いと、強度が低下したり熱伝導率が悪くなったりするという問題があった。そのため、フィラーの粒度、材質、追従性等を工夫することによって、樹脂組成物の成形体の強度や熱伝導率を高めていた(例えば特許文献1、2を参照)。しかしながら、樹脂組成物の成形体の強度や熱伝導率を高めるためのさらなる工夫が求められていた。 In a molded product of a resin composition containing a resin such as plastic, a curable resin, and rubber and a filler, if the void ratio is high, there is a problem that the strength is lowered and the thermal conductivity is deteriorated. Therefore, the strength and thermal conductivity of the molded product of the resin composition have been increased by devising the particle size, material, followability, etc. of the filler (see, for example, Patent Documents 1 and 2). However, further measures have been required to increase the strength and thermal conductivity of the molded product of the resin composition.

特開2009−184866号公報Japanese Unexamined Patent Publication No. 2009-184866 国際公開第2016/031476号International Publication No. 2016/031476

本発明は、プラスチック、硬化性樹脂、ゴム等の樹脂に配合されて、得られる樹脂組成物の成形体の強度、熱伝導率を高めることができるフィラー、並びに、強度、熱伝導率が高い成形体及び放熱材料を提供することを課題とする。 INDUSTRIAL APPLICABILITY The present invention includes a filler that can be blended with a resin such as plastic, a curable resin, or rubber to increase the strength and thermal conductivity of a molded product of the obtained resin composition, and molding having high strength and thermal conductivity. An object of the present invention is to provide a body and a heat-dissipating material.

本発明の一態様に係るフィラーは、内部に空隙部を有し且つ空隙率が3体積%以上60体積%以下であることを要旨とする。
本発明の他の態様に係る成形体は、上記の一態様に係るフィラーと樹脂とを含有する樹脂組成物の成形体であることを要旨とする。
本発明のさらに他の態様に係る放熱材料は、上記の他の態様に係る成形体を備えることを要旨とする。
It is a gist that the filler according to one aspect of the present invention has a void portion inside and has a porosity of 3% by volume or more and 60% by volume or less.
It is a gist that the molded product according to another aspect of the present invention is a molded product of a resin composition containing the filler and the resin according to the above one aspect.
It is a gist that the heat radiating material according to still another aspect of the present invention includes a molded body according to the other aspect described above.

本発明のフィラーは、プラスチック、硬化性樹脂、ゴム等の樹脂に配合されて、得られる樹脂組成物の成形体の強度、熱伝導率を高めることができる。また、本発明の成形体及び放熱材料は、強度、熱伝導率が高い。 The filler of the present invention can be blended with a resin such as plastic, a curable resin, or rubber to increase the strength and thermal conductivity of the molded product of the obtained resin composition. Further, the molded product and the heat radiating material of the present invention have high strength and thermal conductivity.

実施例及び比較例の成形体の切断面のSEM画像である。It is an SEM image of the cut surface of the molded article of an Example and a comparative example. 実施例及び比較例の成形体の熱伝導率を示すグラフである。It is a graph which shows the thermal conductivity of the molded article of an Example and a comparative example.

本発明の一実施形態について詳細に説明する。なお、以下の実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、以下の実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described in detail. The following embodiments show an example of the present invention, and the present invention is not limited to the present embodiment. In addition, various changes or improvements can be added to the following embodiments, and the modified or improved forms may be included in the present invention.

本実施形態のフィラーは、内部に空隙部を有し且つ空隙率が3体積%以上60体積%以下である。本実施形態のフィラーは、内部に空隙部を有しているならば全体が一体的に構成されている一次粒子でもよいが、空隙部が内部に形成されるように複数の一次粒子が結合してなる二次粒子であってもよい。このような二次粒子の例としては、内部に空隙部が形成されるように複数の一次粒子を焼結によって結合させて造粒した造粒焼結粉があげられる。
なお、フィラーの空隙率(%)は、粒度及び外形が同一である中実な球状のフィラー及び造粒焼結粉のタップ密度から算出することができる。すなわち、([中実な球状のフィラーのタップ密度(空隙率は0%)]−[造粒焼結粉のタップ密度])/[中実な球状のフィラーのタップ密度(空隙率は0%)]なる式により求めることができる。
The filler of the present embodiment has a void portion inside and has a porosity of 3% by volume or more and 60% by volume or less. The filler of the present embodiment may be primary particles that are integrally formed as a whole as long as it has voids inside, but a plurality of primary particles are bonded so that the voids are formed inside. It may be a secondary particle. An example of such a secondary particle is a granulated sintered powder obtained by bonding a plurality of primary particles by sintering so as to form an air gap inside.
The porosity (%) of the filler can be calculated from the tap densities of the solid spherical filler and the granulated sintered powder having the same particle size and outer shape. That is, ([Tap density of solid spherical filler (porosity is 0%)]-[Tap density of granulated sintered powder]) / [Tap density of solid spherical filler (porosity is 0%) )] Can be obtained by the formula.

本実施形態のフィラーは、プラスチック、硬化性樹脂、ゴム等の樹脂に配合して樹脂組成物とすることができる。この樹脂組成物は、本実施形態のフィラーと樹脂のみから構成してもよいが、本実施形態のフィラーと樹脂に補強材、添加剤等の他の成分を配合して構成してもよい。そして、その樹脂組成物を成形した成形体は、例えば放熱材料として用いることができる。成形体の形状や成形方法は特に限定されない。 The filler of the present embodiment can be blended with a resin such as plastic, a curable resin, or rubber to form a resin composition. This resin composition may be composed of only the filler and the resin of the present embodiment, but may be composed by blending the filler and the resin of the present embodiment with other components such as a reinforcing material and an additive. Then, the molded body obtained by molding the resin composition can be used as, for example, a heat radiating material. The shape and molding method of the molded product are not particularly limited.

本実施形態の空隙部を有するフィラーと、空隙部を有しない一般的な中実フィラーとを比べると、樹脂組成物中の質量基準又は体積基準での含有量(充填率)とフィラーの大きさ(径)が同一である場合には、本実施形態の空隙部を有するフィラーの方が、樹脂組成物中に含有されるフィラーの単位質量又は単位体積当りの個数が多くなる。よって、樹脂組成物の成形体におけるフィラー同士の接触点が多くなるので、樹脂組成物の成形体の熱伝導率が高くなる。 Comparing the filler having voids and the general solid filler having no voids of the present embodiment, the content (filling ratio) and the size of the filler in the resin composition on a mass or volume basis are compared. When the (diameter) is the same, the filler having the void portion of the present embodiment has a larger number of fillers per unit mass or unit volume contained in the resin composition. Therefore, since the number of contact points between the fillers in the molded product of the resin composition increases, the thermal conductivity of the molded product of the resin composition increases.

また、本実施形態のフィラーにあっては、フィラーの空隙部内に樹脂が入り込むため、フィラーによる補強効果が高まり、樹脂組成物の成形体の強度が向上するという効果も併せて奏される。さらに、本実施形態のフィラーにあっては、フィラーの空隙部内に樹脂が入り込むため、樹脂組成物の成形体からのフィラーの脱落が生じにくいという効果も併せて奏される。 Further, in the filler of the present embodiment, since the resin enters the voids of the filler, the reinforcing effect of the filler is enhanced, and the strength of the molded product of the resin composition is also improved. Further, in the filler of the present embodiment, since the resin enters the voids of the filler, the effect that the filler does not easily fall off from the molded body of the resin composition is also exhibited.

よって、本実施形態のフィラーを含有する樹脂組成物の成形体は高強度であるため、強度を求められる種々の部材として利用可能である。また、本実施形態のフィラーを含有する樹脂組成物の成形体は熱伝導率が高いので、放熱材料として好適である。
以下に、本実施形態のフィラー、樹脂組成物の成形体、及び放熱材料について、さらに詳細に説明する。
Therefore, since the molded product of the resin composition containing the filler of the present embodiment has high strength, it can be used as various members for which strength is required. Further, the molded product of the resin composition containing the filler of the present embodiment has high thermal conductivity, and is therefore suitable as a heat radiating material.
Hereinafter, the filler of the present embodiment, the molded product of the resin composition, and the heat radiating material will be described in more detail.

フィラーの材質は特に限定されるものではなく、アルミナ、シリカ、ジルコニア、マグネシア、チタニア、炭化ケイ素、窒化ケイ素、窒化アルミニウム、窒化ホウ素、カーボン等のセラミックや、金属を用いることができる。セラミックの結晶構造の種類は特に限定されるものではなく、例えばアルミナの場合であれば、α−アルミナ、β−アルミナ、γ−アルミナ等を用いることができる。 The material of the filler is not particularly limited, and ceramics such as alumina, silica, zirconia, magnesia, titania, silicon carbide, silicon nitride, aluminum nitride, boron nitride, and carbon, and metals can be used. The type of ceramic crystal structure is not particularly limited. For example, in the case of alumina, α-alumina, β-alumina, γ-alumina and the like can be used.

フィラーの内部の空隙率は、3体積%以上60体積%以下である必要がある。60体積%超過であると、フィラーの強度が低くなり、フィラーを含有する樹脂組成物の成形時等にフィラーが破損するおそれがある。3体積%未満であると、所定の質量及び体積のフィラーを樹脂に配合して樹脂組成物とした場合に、樹脂組成物に含有されるフィラーの個数が、内部に空隙部を有しない中実のフィラーと同程度となるため、熱伝導率の十分な向上が期待できない。 The porosity inside the filler needs to be 3% by volume or more and 60% by volume or less. If it exceeds 60% by volume, the strength of the filler is lowered, and the filler may be damaged during molding of the resin composition containing the filler. When it is less than 3% by volume, when a filler having a predetermined mass and volume is mixed with the resin to prepare a resin composition, the number of fillers contained in the resin composition is solid without any voids inside. Since it is about the same as the filler in the above, it cannot be expected that the thermal conductivity will be sufficiently improved.

フィラーの形状は特に限定されるものではなく、球状、針状、棒状等とすることができるが、樹脂への充填時に均質性を得やすい、混練装置の摩耗による損傷が少ないといった観点から球状が好ましい。球状のフィラーの製造方法は特に限定されるものではないが、焼結によって複数の一次粒子を結合させて造粒する方法があげられる。内部に空隙部が形成されるように焼結によって複数の一次粒子を結合させて造粒し造粒焼結粉(二次粒子)とすれば、内部に空隙部を有する球状のフィラーを得ることができる。 The shape of the filler is not particularly limited and may be spherical, needle-shaped, rod-shaped, etc., but the spherical shape is formed from the viewpoint that homogeneity can be easily obtained when filling the resin and there is little damage due to wear of the kneading device. preferable. The method for producing the spherical filler is not particularly limited, and examples thereof include a method in which a plurality of primary particles are combined and granulated by sintering. If a plurality of primary particles are combined by sintering so that voids are formed inside to form granulated sintered powder (secondary particles), a spherical filler having voids inside can be obtained. Can be done.

造粒焼結粉の原料となる一次粒子の平均一次粒子径は特に限定されるものではないが、0.1μm以上50μm以下としてもよい。平均一次粒子径が0.1μm未満であると、造粒焼結粉が緻密になりすぎるため、十分な空隙率とならないおそれがある。一方、平均一次粒子径が50μm超過であると、造粒が困難となり造粒焼結粉が得られないおそれがある。 The average primary particle size of the primary particles used as a raw material for the granulated sintered powder is not particularly limited, but may be 0.1 μm or more and 50 μm or less. If the average primary particle size is less than 0.1 μm, the granulated sintered powder becomes too dense, and the porosity may not be sufficient. On the other hand, if the average primary particle size exceeds 50 μm, granulation becomes difficult and there is a risk that granulated sintered powder cannot be obtained.

フィラーの平均粒子径(フィラーが造粒焼結粉である場合には平均二次粒子径)は特に限定されるものではないが、1μm以上200μm以下としてもよい。フィラーの平均粒子径が1μm未満であると、フィラーの界面抵抗が上昇し、樹脂組成物の成形体の熱伝導率が低くなるおそれがある。また、樹脂組成物の成形性が低下するおそれがある。一方、フィラーの平均粒子径が200μm超過であると、シートの厚さに対してフィラーの粒子径が大きくなるため、シートを形成しにくいという不都合が生じるおそれがある。 The average particle size of the filler (the average secondary particle size when the filler is a granulated sintered powder) is not particularly limited, but may be 1 μm or more and 200 μm or less. If the average particle size of the filler is less than 1 μm, the interfacial resistance of the filler may increase and the thermal conductivity of the molded product of the resin composition may decrease. In addition, the moldability of the resin composition may decrease. On the other hand, if the average particle size of the filler exceeds 200 μm, the particle size of the filler becomes larger than the thickness of the sheet, which may cause a disadvantage that it is difficult to form the sheet.

フィラーの強度、例えば、変形率10%の変形がフィラーに生じる圧縮力である10%圧縮変形強度は特に限定されるものではないが、19.6MPa(2kgf/mm)以上294MPa(30kgf/mm)以下としてもよい。10%圧縮変形強度が19.6MPa未満であると、樹脂組成物の成形時にフィラーが破損し界面抵抗が上昇するため、樹脂組成物の成形体の強度及び熱伝導率を高める効果が十分に奏されないおそれがある。また、成形時に樹脂組成物の溶融粘度が高くなり、成形性が低下するおそれがある。一方、10%圧縮変形強度が294MPa超過であるということは、フィラーの空隙部が少ない(空隙率が低い)ことを意味する。そのため、樹脂組成物の成形体の強度及び熱伝導率を高める効果が十分に奏されないおそれがある。 The strength of the filler, for example, the 10% compressive deformation strength, which is the compressive force generated by the filler with a deformation rate of 10%, is not particularly limited, but is 19.6 MPa (2 kgf / mm 2 ) or more and 294 MPa (30 kgf / mm). 2 ) It may be as follows. If the 10% compressive deformation strength is less than 19.6 MPa, the filler is damaged during molding of the resin composition and the interfacial resistance increases, so that the effect of increasing the strength and thermal conductivity of the molded product of the resin composition is sufficiently exhibited. It may not be done. In addition, the melt viscosity of the resin composition may increase during molding, and the moldability may decrease. On the other hand, when the 10% compressive deformation strength exceeds 294 MPa, it means that there are few voids (porosity is low) in the filler. Therefore, the effect of increasing the strength and thermal conductivity of the molded product of the resin composition may not be sufficiently exhibited.

フィラーの比表面積は特に限定されるものではないが、0.05m/g以上8m/g以下としてもよい。フィラーの比表面積が8m/g超過であるということは、造粒時の一次粒子同士のネッキングが十分でないことを意味し、フィラーの界面抵抗の上昇により樹脂組成物の成形体の強度及び熱伝導率を高める効果が十分に奏されないおそれがある。一方、フィラーの比表面積が0.05m/g未満であるということは、フィラーの空隙部が少ない(空隙率が低い)ことを意味する。そのため、樹脂組成物の成形体の強度及び熱伝導率を高める効果が十分に奏されないおそれがある。 Although the specific surface area of the filler is not particularly limited, and may be less 0.05 m 2 / g or more 8m 2 / g. The fact that the specific surface area of the filler exceeds 8 m 2 / g means that the necking between the primary particles during granulation is not sufficient, and the strength and heat of the molded product of the resin composition due to the increase in the interfacial resistance of the filler. The effect of increasing the conductivity may not be sufficiently achieved. On the other hand, when the specific surface area of the filler is less than 0.05 m 2 / g, it means that the void portion of the filler is small (porosity is low). Therefore, the effect of increasing the strength and thermal conductivity of the molded product of the resin composition may not be sufficiently exhibited.

フィラーの表面の凹凸形状(フラクタルディメンジョン)は、フィラー同士の接触点を増加させ樹脂組成物の成形体の熱伝導率を向上させる作用を有するため、大きい方が好ましい。
樹脂組成物中に含有されるフィラーの単位質量又は単位体積当りの個数は、より多い方が好ましい。フィラーの単位質量又は単位体積当りの個数が多い方がフィラー同士の接触点が多くなるので、樹脂組成物の成形体の熱伝導率が高くなる。
The uneven shape (fractal dimension) of the surface of the filler is preferably large because it has an effect of increasing the contact points between the fillers and improving the thermal conductivity of the molded product of the resin composition.
It is preferable that the number of fillers contained in the resin composition per unit mass or unit volume is larger. As the number of fillers per unit mass or unit volume increases, the number of contact points between the fillers increases, so that the thermal conductivity of the molded product of the resin composition increases.

〔実施例〕
以下に実施例及び比較例を示し、本発明をさらに具体的に説明する。フィラーと樹脂からなる樹脂組成物を成形してシートを作製し、その熱伝導率等を評価した。まず、シートの作製方法を説明する。三菱化学株式会社製のエポキシ樹脂157S70と828USと4275とを4:1:1の質量比で混合し、得られたエポキシ樹脂の混合物とメチルエチルケトンとを66:34の質量比で混合して、エポキシ樹脂液を得た。
〔Example〕
Examples and comparative examples are shown below, and the present invention will be described in more detail. A resin composition composed of a filler and a resin was molded to prepare a sheet, and its thermal conductivity and the like were evaluated. First, a method for producing a sheet will be described. Epoxy resin 157S70, 828US and 4275 manufactured by Mitsubishi Chemical Corporation are mixed at a mass ratio of 4: 1: 1, and the obtained mixture of epoxy resin and methyl ethyl ketone are mixed at a mass ratio of 66:34 to make an epoxy. A resin solution was obtained.

このエポキシ樹脂液4.06g、フィラー6.03g、シクロヘキサノン0.92g、四国化成工業株式会社製のイミダゾール系エポキシ樹脂硬化剤キュアゾールC11Z−CN 0.08g、及びビッグケミー・ジャパン株式会社製の分散剤DISPERBYK−2155 0.1gを、容量25mLの攪拌容器に入れ、株式会社シンキー製の自転・公転ミキサーあわとり練太郎AR−250を用いて30分間撹拌し、スラリーを得た。 This epoxy resin liquid 4.06 g, filler 6.03 g, cyclohexanone 0.92 g, imidazole epoxy resin curing agent Curesol C11Z-CN 0.08 g manufactured by Shikoku Kasei Kogyo Co., Ltd., and dispersant DISPERBYK manufactured by Big Chemie Japan Co., Ltd. -2155 0.1 g was placed in a stirring container having a capacity of 25 mL, and stirred for 30 minutes using a rotating / revolving mixer Awatori Rentaro AR-250 manufactured by Shinky Co., Ltd. to obtain a slurry.

このスラリーを、ドクターブレードを用いて東洋紡株式会社製のシリコーン系離型フィルムE7002(厚さ100μm)の上に膜状に塗布し、3日間自然乾燥した。塗布膜の設定厚さは1000μmとした。そして、自然乾燥した塗布膜を120℃で2時間さらに加熱乾燥した後に、熱硬化させてシートを得た。シート中のフィラーの充填率は40体積%とした。 This slurry was applied in a film form on a silicone-based release film E7002 (thickness 100 μm) manufactured by Toyobo Co., Ltd. using a doctor blade, and air-dried for 3 days. The set thickness of the coating film was 1000 μm. Then, the naturally dried coating film was further heated and dried at 120 ° C. for 2 hours, and then heat-cured to obtain a sheet. The filling rate of the filler in the sheet was 40% by volume.

フィラーとしては、5種類のアルミナ粉を用いた。実施例1のシートには、内部に空隙部が形成されるように複数のα−アルミナ粒子(一次粒子)を焼結によって結合させて造粒した造粒焼結粉(二次粒子)を用いた。造粒焼結粉の空隙率は焼結温度によって調整した。α−アルミナ粒子(一次粒子)の平均一次粒子径は2.0μmである。この造粒焼結粉の平均粒子径(平均二次粒子径D50%)は38μm、空隙率は5体積%、10%圧縮変形強度は19.6MPa(2kgf/mm)以上である。また、この造粒焼結粉の真密度は表1に示す通りである。 As the filler, five kinds of alumina powders were used. For the sheet of Example 1, granulated sintered powder (secondary particles) obtained by bonding a plurality of α-alumina particles (primary particles) by sintering so as to form voids inside is used. There was. The porosity of the granulated sintered powder was adjusted by the sintering temperature. The average primary particle size of α-alumina particles (primary particles) is 2.0 μm. The average particle size (average secondary particle size D50%) of this granulated sintered powder is 38 μm, the porosity is 5% by volume, and the 10% compressive deformation strength is 19.6 MPa (2 kgf / mm 2 ) or more. The true density of this granulated sintered powder is as shown in Table 1.

実施例2のシートには、内部に空隙部が形成されるように複数のα−アルミナ粒子(一次粒子)を焼結によって結合させて造粒した造粒焼結粉(二次粒子)を用いた。造粒焼結粉の空隙率は焼結温度によって調整した。α−アルミナ粒子(一次粒子)の平均一次粒子径は2μmである。この造粒焼結粉の空隙率は15体積%、平均粒子径(平均二次粒子径D50%)は38μm、10%圧縮変形強度は19.6MPa(2kgf/mm)以上である。また、この造粒焼結粉の真密度、タップ密度、比表面積は、表1に示す通りである。 For the sheet of Example 2, granulated sintered powder (secondary particles) obtained by bonding a plurality of α-alumina particles (primary particles) by sintering so as to form voids inside is used. There was. The porosity of the granulated sintered powder was adjusted by the sintering temperature. The average primary particle size of α-alumina particles (primary particles) is 2 μm. The porosity of the granulated sintered powder is 15% by volume, the average particle size (average secondary particle size D50%) is 38 μm, and the 10% compressive deformation strength is 19.6 MPa (2 kgf / mm 2 ) or more. The true density, tap density, and specific surface area of this granulated sintered powder are as shown in Table 1.

実施例3のシートには、内部に空隙部が形成されるように複数のα−アルミナ粒子(一次粒子)を焼結によって結合させて造粒した造粒焼結粉(二次粒子)を用いた。造粒焼結粉の空隙率は焼結温度によって調整した。α−アルミナ粒子(一次粒子)の平均一次粒子径は2μmである。この造粒焼結粉の平均粒子径(平均二次粒子径D50%)は38μm、空隙率は25体積%、10%圧縮変形強度は19.6MPa(2kgf/mm)以上である。また、この造粒焼結粉の真密度は表1に示す通りである。 For the sheet of Example 3, granulated sintered powder (secondary particles) obtained by bonding a plurality of α-alumina particles (primary particles) by sintering so as to form voids inside is used. There was. The porosity of the granulated sintered powder was adjusted by the sintering temperature. The average primary particle size of α-alumina particles (primary particles) is 2 μm. The average particle size (average secondary particle size D50%) of this granulated sintered powder is 38 μm, the porosity is 25% by volume, and the 10% compressive deformation strength is 19.6 MPa (2 kgf / mm 2 ) or more. The true density of this granulated sintered powder is as shown in Table 1.

比較例1のシートには、内部に空隙部を有していない中実なα−アルミナ粒子(一次粒子)を用いた。比較例1のシートに用いた中実なα−アルミナ粒子を、以下「微粉」と記す。この微粉の空隙率は0体積%、平均一次粒子径は2μm、10%圧縮変形強度は19.6MPa(2kgf/mm)以上である。また、この造粒焼結粉の真密度、タップ密度、比表面積は、表1に示す通りである。 For the sheet of Comparative Example 1, solid α-alumina particles (primary particles) having no voids inside were used. The solid α-alumina particles used in the sheet of Comparative Example 1 are hereinafter referred to as “fine powder”. The porosity of the fine powder is 0% by volume, the average primary particle size is 2 μm, and the 10% compressive deformation strength is 19.6 MPa (2 kgf / mm 2 ) or more. The true density, tap density, and specific surface area of this granulated sintered powder are as shown in Table 1.

比較例2のシートには、内部に空隙部を有していない中実なα−アルミナ粒子(一次粒子)を用いた。比較例2のシートに用いた中実なα−アルミナ粒子を、以下「球状粉」と記す。この球状粉の空隙率は0体積%、平均一次粒子径は38μm、10%圧縮変形強度は19.6MPa(2kgf/mm)以上である。また、この造粒焼結粉の真密度、タップ密度、比表面積は、表1に示す通りである。 For the sheet of Comparative Example 2, solid α-alumina particles (primary particles) having no voids inside were used. The solid α-alumina particles used in the sheet of Comparative Example 2 are hereinafter referred to as “spherical powder”. The porosity of the spherical powder is 0% by volume, the average primary particle size is 38 μm, and the 10% compressive deformation strength is 19.6 MPa (2 kgf / mm 2 ) or more. The true density, tap density, and specific surface area of this granulated sintered powder are as shown in Table 1.

なお、実施例1〜3のシートに用いた造粒焼結粉は、以下のようにして製造した。まず、α−アルミナ粒子(一次粒子)と濃度2質量%のバインダーの水溶液とを混合し、スラリーを調製した。このスラリーを噴霧造粒機を用いて平均二次粒子径D50%が38μmとなるように造粒し、大気焼成炉にて任意の温度で2時間焼結を行った。焼結後の粉末を解砕した後に、振動式篩機及び気流式分級機を用いて20〜75μmの粒度分布となるように分級して、目的の造粒焼結粉(二次粒子)を調製した。
また、タップ密度は、筒井理化学器械株式会社製のA.B.D.粉体特性測定装置を用いて、定質量測定法により測定した。タップ密度の測定条件は以下の通りである。
容器 :SUS304製シリンダー
容器の寸法 :半径14mm、高さ40mm
タッピング高さ:15mm
タッピング速度:60回/min
衝撃面の材料 :SUS304
タッピング回数:180回
The granulated sintered powder used for the sheets of Examples 1 to 3 was produced as follows. First, α-alumina particles (primary particles) and an aqueous solution of a binder having a concentration of 2% by mass were mixed to prepare a slurry. This slurry was granulated using a spray granulator so that the average secondary particle size D50% was 38 μm, and sintered in an air firing furnace at an arbitrary temperature for 2 hours. After crushing the sintered powder, the powder is classified using a vibrating sieve and an air flow classifier so as to have a particle size distribution of 20 to 75 μm, and the desired granulated sintered powder (secondary particles) is obtained. Prepared.
The tap density is determined by A. Tsutsui Rikagaku Kikai Co., Ltd. B. D. It was measured by a constant mass measurement method using a powder property measuring device. The measurement conditions for tap density are as follows.
Container: SUS304 cylinder Container dimensions: radius 14 mm, height 40 mm
Tapping height: 15 mm
Tapping speed: 60 times / min
Impact surface material: SUS304
Number of tapping: 180 times

Figure 0006901327
Figure 0006901327

上記のように作製した実施例1〜3及び比較例1、2のシートを切断し、走査型電子顕微鏡(SEM)を用いて断面の写真を撮影した。断面の写真を図1に示す。図1の(a)は比較例1のシートの断面の写真であり、図1の(b)は比較例2のシートの断面の写真であり、図1の(c)は実施例2のシートの断面の写真である。
また、([理論密度]−[実測密度])/[理論密度]なる式により、各シートの空隙率(フィラーの内部の空隙率も加味した成形物全体での空隙率)を算出した。結果は、図1に示す通り、実施例2のシートの空隙率が、比較例1、2のシートの空隙率よりも大きかった。
The sheets of Examples 1 to 3 and Comparative Examples 1 and 2 prepared as described above were cut, and a photograph of a cross section was taken using a scanning electron microscope (SEM). A photograph of the cross section is shown in FIG. FIG. 1A is a photograph of a cross section of a sheet of Comparative Example 1, FIG. 1B is a photograph of a cross section of a sheet of Comparative Example 2, and FIG. 1C is a photograph of a sheet of Example 2. It is a photograph of the cross section of.
In addition, the porosity of each sheet (porosity of the entire molded product including the porosity inside the filler) was calculated by the formula ([theoretical density]-[measured density]) / [theoretical density]. As a result, as shown in FIG. 1, the porosity of the sheets of Example 2 was larger than the porosity of the sheets of Comparative Examples 1 and 2.

次に、各シートに含有されるフィラーの単位質量当たりの粒子数を測定した。結果は、表1に示す通り、実施例2のシートに含有されるフィラーの粒子数が、比較例2のシートに含有されるフィラーの粒子数よりも多かった。
次に、各シートの熱伝導率を測定した。熱伝導率の測定方法は、熱線プローブ法である。結果を表1及び図2のグラフに示す。図2のグラフから分かるように、実施例2のシートの熱伝導率が、比較例2のシートの熱伝導率よりも約40%高く、理論値に近い数値であった。
Next, the number of particles per unit mass of the filler contained in each sheet was measured. As a result, as shown in Table 1, the number of particles of the filler contained in the sheet of Example 2 was larger than the number of particles of the filler contained in the sheet of Comparative Example 2.
Next, the thermal conductivity of each sheet was measured. The method for measuring thermal conductivity is the heat ray probe method. The results are shown in the graphs of Table 1 and FIG. As can be seen from the graph of FIG. 2, the thermal conductivity of the sheet of Example 2 was about 40% higher than that of the sheet of Comparative Example 2, which was close to the theoretical value.

これらの測定結果から、空隙部を有するフィラーを用いることにより、シート中に含有されるフィラーの単位質量又は単位体積当りの個数が多くなり、フィラー同士の接触点が多くなるため、シートの熱伝導率が高くなることが示されたと言える。
また、表1から分かるように、実施例1〜3のシートを比較すると、フィラーの空隙率が高いほどシートの熱伝導率が高かった。
From these measurement results, by using a filler having voids, the number of fillers contained in the sheet per unit mass or unit volume increases, and the number of contact points between the fillers increases, so that the heat conduction of the sheet increases. It can be said that the rate was shown to be high.
Further, as can be seen from Table 1, when the sheets of Examples 1 to 3 were compared, the higher the porosity of the filler, the higher the thermal conductivity of the sheet.

Claims (3)

内部に空隙部を有し且つ空隙率が3体積%以上25体積%以下であり、
前記空隙部が内部に形成されるように複数の一次粒子が結合してなる二次粒子であり、
材質が、アルミナ、シリカ、ジルコニア、マグネシア、チタニア、炭化ケイ素、窒化ケイ素、窒化アルミニウム、カーボン、及び金属のうちの少なくとも一種であるフィラー。
Inside Ri 25 vol% der less and a porosity of 3% or more has a void portion,
It is a secondary particle formed by combining a plurality of primary particles so that the void portion is formed inside.
A filler whose material is at least one of alumina, silica, zirconia, magnesia, titania, silicon carbide, silicon nitride, aluminum nitride, carbon, and metal.
請求項1に記載のフィラーと樹脂とを含有する樹脂組成物の成形体。 A molded product of a resin composition containing the filler and resin according to claim 1. 請求項2に記載の成形体を備える放熱材料。 A heat radiating material comprising the molded product according to claim 2.
JP2017115360A 2017-06-12 2017-06-12 Fillers, moldings, and heat dissipation materials Active JP6901327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017115360A JP6901327B2 (en) 2017-06-12 2017-06-12 Fillers, moldings, and heat dissipation materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017115360A JP6901327B2 (en) 2017-06-12 2017-06-12 Fillers, moldings, and heat dissipation materials

Publications (2)

Publication Number Publication Date
JP2019001849A JP2019001849A (en) 2019-01-10
JP6901327B2 true JP6901327B2 (en) 2021-07-14

Family

ID=65005747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017115360A Active JP6901327B2 (en) 2017-06-12 2017-06-12 Fillers, moldings, and heat dissipation materials

Country Status (1)

Country Link
JP (1) JP6901327B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202103188A (en) * 2019-03-18 2021-01-16 日商味之素股份有限公司 Circuit board manufacturing method
US20220186102A1 (en) * 2019-03-22 2022-06-16 Fujimi Incorporated Filler, molded body, and heat dissipating material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270833B2 (en) * 2006-12-20 2013-08-21 パナソニック株式会社 Liquid resin composition, semiconductor device and manufacturing method thereof
TWI505985B (en) * 2013-03-07 2015-11-01 Denki Kagaku Kogyo Kk Boron nitride powder and a resin composition containing the same
JP6634717B2 (en) * 2014-07-02 2020-01-22 住友ベークライト株式会社 Thermal conductive sheet, cured product of thermal conductive sheet, and semiconductor device
JP6720014B2 (en) * 2016-08-03 2020-07-08 デンカ株式会社 Hexagonal boron nitride primary particle aggregate, resin composition and use thereof
JP7063705B2 (en) * 2017-04-28 2022-05-09 積水化学工業株式会社 Boron Nitride Particle Aggregates and Thermosetting Materials

Also Published As

Publication number Publication date
JP2019001849A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP7455047B2 (en) Boron nitride aggregated particles, method for producing boron nitride aggregated particles, resin composition containing boron nitride aggregated particles, and molded article
JP7069485B2 (en) Hexagonal boron nitride powder and its manufacturing method, as well as compositions and radiating materials using it.
JP6826544B2 (en) Thermally conductive filler composition, its use and manufacturing method
JP6901327B2 (en) Fillers, moldings, and heat dissipation materials
JP2017036190A (en) Boron nitride aggregated particle composition, bn aggregated particle-containing resin composition and their compact, as well as production method of boron nitride aggregated particle
JP6623173B2 (en) Method for producing silicon carbide composite
CN113412235A (en) Boron nitride agglomerated powder, heat sink, and semiconductor device
CN1582264A (en) Boron carbide based sintered compact and method for preparation thereof
WO2020194974A1 (en) Filler, molded body, heat dissipating material
JP2019019045A (en) Aluminum nitride-based powder and method for producing the same
JP6456857B2 (en) Particles for irregular refractories
JP7292941B2 (en) Aluminum nitride composite filler
JP2019011216A (en) Ceramic composition and its sintered body
JP6877586B2 (en) Precursor of alumina sintered body, manufacturing method of alumina sintered body, manufacturing method of abrasive grains and alumina sintered body
JP2019108412A (en) Filler and manufacturing method of filler, and manufacturing method of molded body
JP7322323B1 (en) Boron nitride sintered body and composite
JP2019181613A (en) Vitrified grindstone of coarse-composition homogeneous structure
JP2007022914A (en) Method for manufacturing silicon/silicon carbide composite material
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
TW202033643A (en) Inorganic powder for heat-dissipating resin composition, heat-dissipating resin composition using same, and methods for producing same
JPH1072269A (en) High alumina heat insulating refractory for use at high temperature
TW201319004A (en) Ceramic granule, manufacturing method of ceramic granule, and ceramic molded body
PL239832B1 (en) Polymer matrix for superhard abrasive tools for stone and concrete surfaces processing, and method of its production
JP2007055897A (en) Silicon/silicon carbide composite material
JPH1088255A (en) Production of metal-ceramics composite material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210617

R150 Certificate of patent or registration of utility model

Ref document number: 6901327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150