JP6900781B2 - 試料の観察方法 - Google Patents

試料の観察方法 Download PDF

Info

Publication number
JP6900781B2
JP6900781B2 JP2017099208A JP2017099208A JP6900781B2 JP 6900781 B2 JP6900781 B2 JP 6900781B2 JP 2017099208 A JP2017099208 A JP 2017099208A JP 2017099208 A JP2017099208 A JP 2017099208A JP 6900781 B2 JP6900781 B2 JP 6900781B2
Authority
JP
Japan
Prior art keywords
sample
observation surface
observation
dyed
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017099208A
Other languages
English (en)
Other versions
JP2018194469A (ja
Inventor
和加奈 伊藤
和加奈 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017099208A priority Critical patent/JP6900781B2/ja
Publication of JP2018194469A publication Critical patent/JP2018194469A/ja
Application granted granted Critical
Publication of JP6900781B2 publication Critical patent/JP6900781B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、走査型電子顕微鏡を用いて、試料を観察するための方法に関する。
下記特許文献1では、走査型電子顕微鏡(SEM)を用いた試料の観察方法を提案している。この種の観察方法では、先ず、試料の断面を研磨した観察面を作成する。図9(a)は、従来の観察面10を有する試料6の斜視図である。図9(b)は、(a)の試料6の断面図である。図9(b)に示されるように、下記特許文献1では、電子線13を観察面10に照射し、試料6から発生した二次電子及び反射電子を検出することで、試料6の観察面10の画像を取得している。
電子密度が小さい試料6は、二次電子及び反射電子の量が少ない傾向がある。このような観察面10の画像は、観察可能なコントラストを得ることが難しい。このため、観察面10を作成するのに先立ち、重金属等を含む染色剤を用いて試料6を染色することで、コントラストの高い画像が取得されている。図10は、図9の観察面の画像の一例を示す図である。
特開2006−58270号公報
図9(a)、(b)に示されるように、試料6には、染色剤が浸透しない非染色部分22が含まれる。このような非染色部分22が観察面10に含まれる場合、図10に示されるように、画像のコントラストが部分的に低くなり、観察面10の全体を観察することが困難になるという問題があった。
本発明は、以上のような実状に鑑み案出されたもので、観察面の全体を容易に観察しうる試料の観察方法を提供することを主たる目的としている。
本発明は、走査型電子顕微鏡を用いて、試料を観察するための方法であって、染色剤を用いて、前記試料の一部に染色部分を形成する工程と、非染色部分が露出しないように、前記試料の前記染色部分を研磨して観察面を作成する研磨工程と、前記観察面に、前記走査型電子顕微鏡の電子線を照射して、前記観察面の画像を取得する工程とを含むことを特徴とする。
本発明に係る前記試料の観察方法において、前記試料は、充填剤が配合されたゴム材料であるのが望ましい。
本発明に係る前記試料の観察方法において、前記研磨工程は、前記染色部分に、集束イオンビームを照射する工程を含むのが望ましい。
本発明に係る前記試料の観察方法において、前記試料は、第1表面と、その反対側の第2表面と、前記第1表面と前記第2表面とを接続する周囲面とを有し、前記染色部分は、前記第1表面から厚さを有した染色層として形成されており、前記研磨工程は、前記染色部分の前記周囲面から入射し、かつ、前記染色部分内で終端するように、前記集束イオンビームを照射する工程を含むのが望ましい。
本発明の試料の観察方法は、試料の非染色部分が露出しないように、試料の染色部分を研磨して観察面を作成する研磨工程と、観察面に、走査型電子顕微鏡の電子線を照射して、観察面の画像を取得する工程とを含んでいる。従って、本発明の試料の観察方法は、画像全体のコントラストを高めることができるため、観察面の全体を容易に観察することができる。
FIB−SEM装置の一例を示す概略図である。 (a)は、試料の一例を示す斜視図、(b)は、(a)の部分断面図である。 試料の観察方法の処理手順の一例を示すフローチャートである。 染色部分が形成された試料の一例を示す斜視図である。 研磨工程の一例を説明する試料の側面図である。 観察面が作成された試料の斜視図である。 観察面に電子線が照射された試料の断面図である。 試料の観察面の画像の一例を示す図である。 (a)は、従来の観察面を有する試料の斜視図、(b)は、(a)の試料の断面図である。 図9の観察面の画像の一例を示す図である。
以下、本発明の実施の一形態が図面に基づき説明される。
本実施形態の試料の観察方法(以下、単に「観察方法」ということがある)は、走査型電子顕微鏡(SEM)を用いて、試料を観察するための方法である。本実施形態では、走査型電子顕微鏡と、集束イオンビーム(FIB:Focused Ion Beam)を照射可能なビーム発生装置とが組み合わされたFIB−SEM装置が用いられる。図1は、FIB−SEM装置1の一例を示す概略図である。
FIB−SEM装置1は、従来のFIB−SEM装置と同様の構成を有している。本実施形態のFIB−SEM装置1は、走査型電子顕微鏡2、ビーム発生装置3、及び、試料ホルダー4を含んで構成されている。これらの走査型電子顕微鏡2、ビーム発生装置3、及び、試料ホルダー4は、外気と遮断可能なチャンバー5の内部に配置されている。また、走査型電子顕微鏡2、ビーム発生装置3、及び、試料ホルダー4は、コンピュータ等の制御手段9に接続されている。
走査型電子顕微鏡(以下、単に「電子顕微鏡」ということがある。)2は、電子線発生装置11、電子検出装置12、集束レンズ(図示省略)、及び、走査コイル(図示省略)等を含んで構成されている。
電子線発生装置11は、試料ホルダー4に装着された試料6に、電子線13を放出(照射)するためのものである。電子線13は、集束レンズ(図示省略)等により、試料6の所定位置に焦点が合わせされて照射される。また、電子線13は、走査コイル(図示省略)によって、試料6の表面で走査される。
電子線13が走査された試料6の表面からは、二次電子14及び反射電子15が発生する。これらの二次電子14及び反射電子15は、電子検出装置12によって検出される。検出された二次電子14及び反射電子15は、制御手段9によって画像化処理されることにより、試料6の画像を得ることができる。
ビーム発生装置3は、試料ホルダー4に装着された試料6に、集束イオンビーム18を照射して研磨(切削)するためのものである。本実施形態では、ガリウム(Ga)の集束イオンビーム18が照射される。このようなビーム発生装置3は、集束イオンビーム18を試料6に照射することにより、試料6をスパッタリングし(原子や分子を弾き飛ばし)、試料6を研磨することができる。
試料ホルダー4は、試料6を保持するためのものである。試料ホルダー4は、図示しない保持手段により、電子線発生装置11及びビーム発生装置3に対して、試料6を向き変え可能に支持している。また、本実施形態の試料ホルダー4には、装着された試料6を、予め設定された温度に維持するための温度調節機構(図示省略)を有している。
図2(a)は、試料6の一例を示す斜視図である。図2(b)は、(a)の部分断面図である。本実施形態の試料6は、立方体状に形成されている。試料6は、第1表面6a、その反対側の第2表面6b、及び、第1表面6aと第2表面6bとを接続する周囲面6cを有している。
試料6の長さL1a及び幅L1bについては、適宜設定されうる。なお、長さL1a及び幅L1bが小さいと、観察面10(図6に示す)を形成するのが難しくなるおそれがある。逆に、長さL1a及び幅L1bが大きいと、試料ホルダー4に装着できないおそれがある。このような観点より、長さL1a及び幅L1bは、0.5〜2.0mmに設定されるのが望ましい。試料6の厚さW1についても、同一範囲に設定されるのが望ましい。
図2(b)に示されるように、本実施形態の試料6は、充填剤7が配合されたゴム材料8である。ゴム材料8としては、例えば、天然ゴム、ブタジエンゴム、又は、スチレンブタジエンゴム、ブチルゴム、クロロプレンゴム、NBR(ニトリルゴム)、EPMA等の少なくとも一つが含まれる。本実施形態のゴム材料は、天然ゴム及びブタジエンゴムを含んでいる。また、充填剤7としては、例えば、カーボンブラック又はシリカ等の少なくとも一つが含まれる。本実施形態の充填剤は、カーボンブラック及びシリカを含んでいる。
次に、本実施形態の観察方法について説明する。本実施形態のように、ゴム材料8からなる試料6は、電子密度が小さい。このため、図1に示されるように、走査型電子顕微鏡2の電子線13が試料6に照射された場合、試料6から発生した二次電子14及び反射電子15の量が少なくなる傾向がある。このような試料6の画像は、観察可能なコントラストを得ることが難しい。とりわけ、2種類以上のゴム材料8が配合された試料6の場合、ゴム材料8間の電子密度差が小さいため、二次電子14及び反射電子15を検出することが難しく、観察可能なコントラストを得ることが難しい。
このような観点より、本実施形態の観察方法では、電子線13を試料6に照射させるのに先立ち、画像のコントラスト高める染色剤(図示省略)を用いて、試料6を染色している。図3は、観察方法の処理手順の一例を示すフローチャートである。
本実施形態の観察方法では、先ず、染色剤を用いて、試料6の少なくとも一部に染色部分を形成する(工程S1)。染色剤としては、画像のコントラストを高めうるものであれば、適宜採用することができる。本実施形態の染色剤としては、四酸化オスミウムの結晶が用いられている。四酸化オスミウムの結晶を用いた染色方法としては、先ず、密閉可能な容器(図示省略)に試料6が配置される。次に、容器(図示省略)を真空にした後、四酸化オスミウムの蒸気が容器内に導入される。そして、容器内の圧力を100〜1000Pa程度に調節し、30分〜2時間程度放置することで、試料6が染色される。また、他の染色剤としては、四酸化ルテニウム、リンタングステン酸、及び、ヨウ素を採用することができる。
本実施形態の工程S1では、図2(a)に示した試料6の少なくとも第1表面6aに、例えば、染色剤(図示省略)を浸漬させている。図4は、染色部分21が形成された試料6の一例を示す斜視図である。このような染色剤の浸漬により、第1表面6aから染色剤が浸透し、第1表面6aから厚さを有した染色層として、染色部分21が形成される。また、試料6において、染色部分21の内方には、非染色部分22が形成される。染色部分21の第1表面6aからの深さ(厚さ)D2は、3〜7μm程度に設定されるのが望ましい。
次に、本実施形態の観察方法は、試料6の染色部分21を研磨して観察面10を作成する(研磨工程S2)。図5は、研磨工程S2の一例を説明する試料の側面図である。図6は、観察面10が作成された試料6の斜視図である。
本実施形態の研磨工程S2では、先ず、図1に示されるように、FIB−SEM装置1の試料ホルダー4に、試料6が装着される。このとき、試料6の第2表面6b側を試料ホルダー4上に載置させている。そして、研磨工程S2では、図5に示されるように、試料6の染色部分21に、集束イオンビーム18を照射して、観察面10(図6に示す)が作成される。
集束イオンビーム18は、試料6を構成するゴム材料8(図2(b)に示す)だけでなく、充填剤7(図2(b)に示す)も研磨(切削)することができる。これにより、研磨工程S2では、硬質の充填剤7が配合されていても、凹凸のない平滑な観察面10(図6に示す)を作成することができる。
図5及び図6に示されるように、研磨工程S2では、非染色部分22が露出しないように、試料6の染色部分21を研磨している。これにより、試料6の観察面10は、染色部分21のみに形成される。このような観察面10は、非染色部分を含む観察面10に比べて、画像全体のコントラストを高めるのに役立つ。
図6に示されるように、本実施形態の観察面10は、試料6の染色部分21において、第1表面6aから周囲面6cに向かって傾斜する観察面10が形成される。このような観察面10は、図9(a)、(b)に示した試料6の厚さ方向にのびる従来の観察面10を有する試料6と比べて、走査型電子顕微鏡2の電子線13を観察面10に照射させるための傾斜面26を形成する必要がない。このため、本実施形態の研磨工程S2は、観察面10を形成する時間を短縮することができる。
集束イオンビーム18を入射及び出射させる部分については、観察面10に、非染色部分22が露出しなければ、適宜設定することができる。本実施形態の研磨工程S2では、図5に示されるように、染色部分21の周囲面6cから入射し、かつ、染色部分21内で終端するように、集束イオンビーム18を照射している。これにより、研磨工程S2は、集束イオンビーム18を、染色部分21のみに観察面10を形成できるため、観察面10に、非染色部分22が露出するのを防ぐことができる。しかも、集束イオンビーム18を染色部分21内で終端させているため、観察面10の深さD3を略一定にすることができる。これにより、第1表面6a側の濃く染色された部分と、非染色部分22側の薄く染色された部分とが、観察面10に含まれるのを防ぐことができるため、画面全体のコントラストに、ムラが生じるのを抑制できる。
集束イオンビーム18と、第1表面6aとがなす角度(即ち、観察面10と第1表面6aとがなす角度)α3については、適宜設定することができる。角度α3が大きいと、観察面10の傾斜が大きくなり、非染色部分22が露出するおそれがある。さらに、非染色部分22が露出しなくても、第1表面6a側の濃く染色された部分と、非染色部分22側の薄く染色された部分とが、観察面10に含まれてしまい、画面全体のコントラストにムラが生じるおそれがある。このような観点より、角度α3は、−10〜10度が望ましい。
本実施形態の観察面10は、第1表面6aにおいて、試料6の長さ方向及び幅方向の一部に形成されている。これにより、観察面10の形成に要する時間を短縮することができる。観察面10の長さL3aは、試料6の長さL1aの2〜20%が望ましい。また、観察面10の幅L3bは、試料6の幅L1bの20〜80%が望ましい。さらに、観察面10の深さD3は、染色部分21の第1表面6aからの深さD2の2〜80%が望ましい。
集束イオンビーム18の加速電圧については、適宜設定することができる。集束イオンビーム18の加速電圧が小さいと、試料6を十分に研磨することができず、平滑な観察面10を作成できないおそれがある。逆に、集束イオンビーム18の加速電圧が大きいと、染色部分21内で終端できないおそれがある。さらに、試料6に大きなダメージを与え、平滑な観察面10を作成できないおそれもある。このような観点より、集束イオンビーム18の加速電圧は、20〜40kVに設定されるのが望ましい。
次に、本実施形態の観察方法は、観察面10に、走査型電子顕微鏡2の電子線13を照射して、観察面10の画像を取得する(工程S3)。図7は、観察面10に電子線13が照射された試料6の断面図である。
工程S3では、先ず、走査型電子顕微鏡2の電子線13の焦点が、観察面10に合わせられる。電子線13と観察面10とがなす角度α4は、50〜60度程度に設定される。次に、工程S3では、走査コイル(図示省略)によって、電子線13が、試料6の観察面10上で走査される。これにより、試料6の観察面10から発生した二次電子14及び反射電子15(図1に示す)が、電子検出装置12(図1に示す)によって検出される。
図1に示されるように、検出された二次電子14及び反射電子15は、制御手段9によって画像化処理される。これにより、試料6の観察面10の画像を取得することができる。図8は、試料6の観察面10の画像の一例を示す図である。
図7に示されるように、本実施形態の試料6の観察面10は、染色部分21のみに形成されている。このため、図8に示されるように、本実施形態の観察方法で取得された画像は、非染色部分22を含む観察面10(図9(a)、(b)に示す)の画像(図10に示す)に比べて、画像全体のコントラストを高めることができる。従って、本実施形態の観察方法は、観察面10の全体を容易に観察することができる。
電子線13の加速電圧については、適宜設定することができる。なお、電子線13の加速電圧を、従来の加速電圧(例えば、1〜30kV)と同程度にすると、試料6の奥行方向の情報が大きくなるため、観察面10の画像に、充填剤7が必要以上に多く表示されるおそれがある。このような不具合を防ぐために、電子線13の加速電圧は、従来の加速電圧よりも小さく設定されるのが望ましい。なお、電子線13の加速電圧は、1〜5kVに設定されるのが望ましい。
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
下記に示す配合に従い、硫黄及び加硫促進剤以外の材料が、バンバリーミキサーによって排出温度160℃の条件下で4分間混練りされ、混練り物が得られた。次に、この混練り物に、硫黄及び加硫促進剤が添加された後に、オープンロールによって100℃の条件下で2分間練り込まれ、未加硫ゴム組成物が得られた。さらに、この未加硫ゴム組成物が、175℃で30分間加硫されることにより、ゴム材料が得られた。そして、上記ゴム材料を下記のサイズに切り出して、試料が作成された。
[ゴム配合](単位は質量部)
ブタジエンゴム 60.0
天然ゴム 40.0
シリカ 63.5
カーボンブラック 5.0
硫黄 0.5
加硫促進剤A 1.0
加硫促進剤B 1.0
[薬品]
ブタジエンゴム:宇部興産(株)製のBR150B
天然ゴム:RSS#3
シリカ:ローディアジャパン(株)製の115Gr
カーボンブラック:三菱化学(株)製のダイヤブラックG
シランカップリング剤:デグッサ社製のSi69
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤A:大内新興化学工業(株)製のノクセラーNS
加硫促進剤B:大内新興化学工業(株)製のノクセラーD
[試料のサイズ]
長さL1a及び幅L1b:1mm
厚さW1:1mm
図3に示した処理手順に従って、上記試料が観察された(実施例)。実施例では、先ず、試料の第1表面に染色剤を浸漬し、図4に示されるように、第1表面から厚さを有した染色部分が形成された。次に、実施例では、図5及び図6に示されるように、非染色部分が露出しないように、試料の染色部分を研磨して観察面が作成された。そして、観察面に、走査型電子顕微鏡の電子線を照射して、観察面の画像が取得された。
比較のために、図9(a)、(b)に示されるように、第1表面から厚さを有した染色部分が形成された試料に、厚さ方向にのびる観察面が作成された。そして、観察面に、走査型電子顕微鏡の電子線を照射して、観察面の画像が取得された。共通仕様は、次のとおりである。
FIB−SEM装置(FEI社製のScios):
集束イオンビームの加速電圧:30kV
電子線の加速電圧:2kV
染色剤(四酸化オスミウム):
圧力:100kPa
染色時間:1.5時間
深さD2:5μm
観察面:
集束イオンビームと、第1表面とがなす角度α3:1.0度
長さL3:50μm
深さD3:3μm
図8は、実施例の観察面の画像を示す図である。図10は、比較例の観察面の画像を示す図である。図8に示されるように、実施例では、観察面の画像全体のコントラストを高めることができた。他方、比較例では、画像のコントラストが、非染色部分で低くなった。従って、実施例は、比較例に比べて、観察面の全体を容易に観察することができた。
2 走査型電子顕微鏡
6 試料
10 観察面
13 電子線
21 染色部分
22 非染色部分

Claims (4)

  1. 走査型電子顕微鏡を用いて、試料を観察するための方法であって、
    染色剤を用いて、前記試料の一部に染色部分を形成する工程と、
    非染色部分が露出しないように、前記試料の前記染色部分を研磨して観察面を作成する研磨工程と、
    前記観察面に、前記走査型電子顕微鏡の電子線を照射して、前記観察面の画像を取得する工程とを含み、
    前記試料は、第1表面と、その反対側の第2表面とを有し、
    前記染色部分は、前記第1表面から厚さを有した染色層として形成されており、
    前記非染色部分は、前記染色部分の内方から前記第2表面に形成されており、
    前記観察面は、前記染色部分の前記第1表面側を研磨することで形成されており、
    前記観察面の深さは、前記染色部分の前記第1表面からの深さの2〜80%であることを特徴とする試料の観察方法。
  2. 前記試料は、充填剤が配合されたゴム材料である請求項1記載の試料の観察方法。
  3. 前記研磨工程は、前記染色部分に、集束イオンビームを照射する工程を含む請求項1又は2記載の試料の観察方法。
  4. 前記試料は前記第1表面と前記第2表面とを接続する周囲面有し、
    前記研磨工程は、前記染色部分の前記周囲面から入射し、かつ、前記染色部分内で終端するように、前記集束イオンビームを照射する工程を含む請求項3記載の試料の観察方法。
JP2017099208A 2017-05-18 2017-05-18 試料の観察方法 Active JP6900781B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099208A JP6900781B2 (ja) 2017-05-18 2017-05-18 試料の観察方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099208A JP6900781B2 (ja) 2017-05-18 2017-05-18 試料の観察方法

Publications (2)

Publication Number Publication Date
JP2018194469A JP2018194469A (ja) 2018-12-06
JP6900781B2 true JP6900781B2 (ja) 2021-07-07

Family

ID=64570261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099208A Active JP6900781B2 (ja) 2017-05-18 2017-05-18 試料の観察方法

Country Status (1)

Country Link
JP (1) JP6900781B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080303A1 (ja) 2018-10-15 2020-04-23 日産自動車株式会社 発熱材料、並びにこれを用いた発熱システムおよび熱供給方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821595A (en) * 1996-05-15 1998-10-13 Dresser Industries, Inc. Carrier structure for transducers
JP2003139728A (ja) * 2001-11-05 2003-05-14 Toray Res Center:Kk 多孔性材料の構造解析方法および構造解析写真
JP3922064B2 (ja) * 2002-03-25 2007-05-30 松下電器産業株式会社 電池極板中の結着剤の分散状態を評価する方法
JP2005127938A (ja) * 2003-10-27 2005-05-19 National Printing Bureau 試料の切削面情報取得方法
JP4922632B2 (ja) * 2006-03-17 2012-04-25 日本電子株式会社 イオンビームを用いる断面試料作製方法
EP1890136A1 (en) * 2006-08-16 2008-02-20 FEI Company Method for obtaining images from slices of a specimen
JP5495516B2 (ja) * 2008-06-20 2014-05-21 株式会社ブリヂストン ゴム材料の変形挙動予測装置及びゴム材料の変形挙動予測方法
JP2011038887A (ja) * 2009-08-10 2011-02-24 Renesas Electronics Corp 試料、試料作製方法及び試料作製装置
JP2015056237A (ja) * 2013-09-10 2015-03-23 株式会社東芝 照明装置および照明装置の制御方法
EP3101406B1 (de) * 2015-06-05 2022-12-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur präparation einer probe für die mikrostrukturdiagnostik sowie probe für die mikrostrukturdiagnostik
JP6753041B2 (ja) * 2015-08-27 2020-09-09 住友ゴム工業株式会社 表面改質金属及び金属表面の改質方法
JP6454246B2 (ja) * 2015-09-09 2019-01-16 日本電子株式会社 加工方法
EP3153838B1 (de) * 2015-10-06 2022-07-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur präparation einer probe für die mikrostrukturdiagnostik sowie probe für die mikrostrukturdiagnostik

Also Published As

Publication number Publication date
JP2018194469A (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
US7745785B2 (en) Sample inspection method, sample inspection apparatus, and sample holder
JP5843909B2 (ja) 電子銃装置、ウェーハ画像化システム、及び電子銃装置のエクストラクタ電極の少なくとも1つの表面をクリーニングする方法
JP6900781B2 (ja) 試料の観察方法
WO2018099156A1 (en) Vacuum condition processing apparatus, system and method for specimen observation
JP4654216B2 (ja) 荷電粒子線装置用試料ホールダ
JP5615489B2 (ja) 基板表面の検査方法及び検査装置
JP2009025133A (ja) 試料作製方法及び試料作製装置
US8642980B2 (en) Composite charged particle beam apparatus
Ramachandra et al. Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy
US7335879B2 (en) System and method for sample charge control
Vladár et al. Contamination specification for dimensional metrology SEMs
US7557346B2 (en) Scanning electron microscope
JP5767477B2 (ja) ゴム材料の観察方法
JP7183690B2 (ja) 試料の作製方法、清浄化方法、分析方法および電子顕微鏡用試料
JP5490333B1 (ja) 荷電粒子線装置、荷電粒子線装置の試料観察方法および荷電粒子線装置の表示制御プログラム
JP2021081336A (ja) ゴム組成物の分析方法
US20210333177A1 (en) Charge-resistant epoxy resins for electron microscopy applications
WO2023007607A1 (ja) 検査装置、検査方法
JP2021081335A (ja) ゴム組成物の分析方法
US20230364688A1 (en) Method and system for preparing wedged lamella
US20240290574A1 (en) Method for imaging with a scanning electron microscope and scanning electron microscope for carrying out the method
JP2005044570A (ja) 半導体の加工観察装置
JP6159273B2 (ja) 荷電粒子線装置、荷電粒子線装置の試料観察方法および荷電粒子線装置の表示制御プログラム
JP7161053B2 (ja) 荷電粒子線装置
US20200312617A1 (en) Charged particle beam apparatus and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6900781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250