JP6899436B2 - 算出システム、プログラム及びターゲット - Google Patents

算出システム、プログラム及びターゲット Download PDF

Info

Publication number
JP6899436B2
JP6899436B2 JP2019524643A JP2019524643A JP6899436B2 JP 6899436 B2 JP6899436 B2 JP 6899436B2 JP 2019524643 A JP2019524643 A JP 2019524643A JP 2019524643 A JP2019524643 A JP 2019524643A JP 6899436 B2 JP6899436 B2 JP 6899436B2
Authority
JP
Japan
Prior art keywords
data
surveying instrument
target
defect
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019524643A
Other languages
English (en)
Other versions
JPWO2018229917A1 (ja
Inventor
裕一 大島
裕一 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Trimble Co Ltd
Original Assignee
Nikon Trimble Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Trimble Co Ltd filed Critical Nikon Trimble Co Ltd
Publication of JPWO2018229917A1 publication Critical patent/JPWO2018229917A1/ja
Application granted granted Critical
Publication of JP6899436B2 publication Critical patent/JP6899436B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30132Masonry; Concrete
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Geometry (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、測量機が撮像した外観画像データから欠陥を検出し、検出した欠陥の欠陥データを補正する算出システム、算出方法、プログラム及びターゲットに関する。
特許文献1には、コンクリート構造物の外観に現れたひびを、測量機が備えた超望遠のカメラで撮像し、撮像画像を画像解析することにより、微細なひびを検出する装置が記載されている。
特開2009−53126号公報
本発明の一態様によれば、既知のサイズの基準オブジェクトを備えるターゲットを測量機で撮像して生成されたターゲット画像データから画像処理により前記基準オブジェクトを検出し、前記基準オブジェクトの大きさに関する第1サイズデータを算出する第1算出部と、構造物の外観を前記測量機で撮像して生成された外観画像データから画像処理により欠陥を検出し、前記欠陥の大きさに関する欠陥データを算出する第2算出部と、前記第1サイズデータと前記基準オブジェクトの実際の大きさに関する第2サイズデータとを比較し、前記欠陥データを補正するための補正データを算出する補正データ算出部とを備える算出システムが提供される。
本発明の他の態様によれば、既知のサイズの基準オブジェクトを備えるターゲットを用意し、前記ターゲットを測量機で撮像して生成されたターゲット画像データから画像処理により前記基準オブジェクトを検出し、前記基準オブジェクトの大きさに関する第1サイズデータを算出し、構造物の外観を前記測量機で撮像して生成された外観画像データから画像処理により欠陥を検出し、前記欠陥の大きさに関する欠陥データを算出し、前記第1サイズデータと前記基準オブジェクトの実際の大きさに関する第2サイズデータとを比較し、前記欠陥データを補正するための補正データを算出する算出方法が提供される。
本発明の他の態様によれば、既知のサイズの基準オブジェクトを備えるターゲットを測量機で撮像して生成されたターゲット画像データから画像処理により前記基準オブジェクトを検出し、前記基準オブジェクトの大きさに関する第1サイズデータを算出するステップと、構造物の外観を前記測量機で撮像して生成された外観画像データから画像処理により欠陥を検出し、前記欠陥の大きさに関する欠陥データを算出するステップと、前記第1サイズデータと前記基準オブジェクトの実際の大きさに関する第2サイズデータとを比較し、前記欠陥データを補正するための補正データを算出するステップとを実行するプログラムが提供される。
本発明の他の態様によれば、測量機に撮像されるターゲットであって、前記ターゲットは、前記測量機から前記ターゲットまでが第1距離に設置されたときに前記測量機に検出される近距離用の前記基準オブジェクトが配置される領域と、前記測量機から前記ターゲットまでが前記第1距離より長い第2距離のときに前記測量機に検出される遠距離用の前記基準オブジェクトが配置される領域とを備えるターゲットが提供される。
(a)及び(b)は、算出システムの構成を示す図。 (a)は、線分オブジェクトが放射状に設けられた基準オブジェクトを示す図、(b)は、線分オブジェクトが八角形形状に設けられた基準オブジェクトを示す図。 測量機から第1距離にある補正用ターゲットと測量機から第2距離にある補正用ターゲットを説明する図。 (a)は、線幅の異なる線分オブジェクトが放射状に設けられた基準オブジェクトを示す図、(b)は、線幅の異なる線分オブジェクトが八角形形状に設けられた基準オブジェクトを示す図。 (a)〜(d)は、複数の領域に区画した補正用ターゲットを示す図。 (a)は、外周部に沿うように傾き検出オブジェクトが設けられた補正用ターゲットを示す図、(b)は、測量機に対して補正用ターゲットが傾いた状態を示す図、(c)は、傾き検出オブジェクトが仮想直線で構成される状態を示す図、(d)は、(c)の補正用ターゲットが90°回転した状態を示す図。 中心指標オブジェクトが設けられた補正用ターゲットを示す図。 (a)は、図2から図7に示した要素を1つにまとめた補正用ターゲットを示す図、(b)は、(a)に示した補正用ターゲットの基準オブジェクトを示す図、(c)は、補正用ターゲットの要部断面図。 測量機の正面図。 測量機の背面図。 測量機の底面図。 測量機のシステム構成を示すブロック図。 制御装置のブロック図。 サーバのブロック図。 (a)は、測定面と測定範囲の関係を示す図、(b)は、測定面と測定範囲と撮像範囲の関係を示す図。 構造物の欠陥検出の手順を示すフローチャート。 器械設置を説明する図。 デジタル画像上の任意の画素の座標データを説明する図。 測定面が鉛直面であるときの定義方法を示す図。 測定面が水平面であるときの定義方法を示す図。 測定面が斜面であるときの定義方法を示す図。 (a)及び(b)は、測量機と正対していない測定範囲を指定する方法を示す図。 測定範囲を定義する方法を説明する図であり、(a)は、2点を指定して測定範囲を設定した状態を示す図、(b)は、設定した測定範囲の一部を除外する場合を示す図、(c)は、測定範囲を複数個所に設定した状態を示す図、(d)は、6点を指定して測定範囲を設定した状態を示す図、(e)は、設定した測定範囲の一部を除外し測定範囲から削除する場合を示す図。 測量機の水平軸周りの回転駆動の範囲を説明する図。 自動測定の手順を説明するフローチャート。 鉛直面の測定範囲をタイル状に自動測定する状態を説明する図。 欠陥の一例であるひびの検出及び測定をする手順を示すフローチャート。 (a)は、ひびを有する外観画像を示す図、(b)は、ひびに対して強調表示処理を施した外観画像を示す図、(c)は、ひびをセグメントに分けセグメント毎に強調表示処理を施した外観画像を示す図。 欠陥検出装置の表示部に表示された画面の一例を示す図。 図29に示した検査画面に次ぐ表示状態を示す図。 (a)は、オルソ補正前を示し図、(b)は、オルソ補正処理後を示す図。 スティッチング処理された全体外観画像を示す図。 (a)及び(b)は、補正データ生成・適用処理を示すフローチャート。 (a)は、距離に対する補正データが固定値の場合を示す図、(b)は、近似曲線又は近似直線により距離に対する補正データを算出する場合を示す図。 第1距離と第2距離とに補正用ターゲットを設置した状態を示す図。 欠陥データの編集処理を示すフローチャート。 補正データ生成・適用処理を示すフローチャート。 (a)は、補正用ターゲットを測定範囲の内側に設置した場合を示す図、(b)は、補正用ターゲットを複数の撮像領域に跨る場合を示す図。 1つの測定範囲の中に、複数の補正用ターゲットを配置した場合を示す図。
以下、構造物の外観に現れた欠陥を検出し、検出した欠陥のデータを補正することを可能とした欠陥算出システムを説明する。
図1(a)に示すように、欠陥算出システムは、測量機1と、制御装置50と、サーバ装置60と、情報処理端末装置70とを備えている。一例として、測量機1は、測量対象物を測量する機器であり、測量対象物との角度と、測量対象物との距離とを計測する。一例として、測量機1は、距離を測る光波測距儀と、角度を測るセオドライトとを組み合わせた機器である。一例として、測量機1は、測量対象物との角度と、測量対象物との距離とを同時に計測する機器である。一例として、測量機1は、トータルステーションである。
一例として、測量対象物は、プリズム方式を採用している場合、プリズム、ミラー、レフシート等の反射プリズムで構成された第1ターゲットである。なお、測量対象物は、測標、目標物と呼ぶ場合がある。
一例として、測量機1は、プリズム、ミラー、レフシート等の反射プリズムを使用しないノンプリズム方式を採用している。ノンプリズム方式では、測量対象物に直接レーザー等の測距光を照射し、測定面で反射した戻りの反射光を検出して測量対象物の測定面との距離を計測する。ノンプリズム方式の測量対象物として、例えば橋梁、ダム、ビル、トンネル、鉄骨、道路、電車、飛行機、送電線及び古墳等の構造物の壁面201が挙げられる。モータ駆動により鉛直角及び水平角の駆動が行われ、視準先をオートフォーカスにて視準可能とすることで、測量機1を現場に設置した後はユーザが現場に足を踏み入れることなく離れた場所から測量することが可能となる。一例として、測量機1は、カメラ等の撮像装置を有し、測量対象物である構造物の測定面が設定される壁面201を撮像する。一例として、壁面201の画像は、構造物の外観画像である。測量機1は、撮像した測定面としての壁面201の位置データと、撮像した外観画像データとを出力する。
測量機1は、電源から電力が供給される。一例として、電源は、測量機1に内蔵された電源、測量機1に着脱可能に構成された電源、測量機1に対して外部から電力を供給する外部電源である。一例として、電源としては、ニッケル水素電池やリチウムイオン電池等の二次電池、商用電源、発電機等である。
一例として、制御装置50は、コンピュータ、タブレット等の汎用の情報処理装置である。制御装置50は、一例として、有線(例えば接続ケーブル)又は無線で測量機1と接続される。制御装置50は、ソフトウェアがインストールされる。一例として、制御装置50は、測量機1の制御装置であり、測量機1に対して、構造物の外観を撮像するための指示を出力し、測量機1の動作を制御する。一例として、制御装置50は、測量機1を鉛直軸及び水平軸回りに回転させ、測量機1に構造物の外観を撮像させる。
一例として、制御装置50は、欠陥検出装置である。一例として、制御装置50は、画像から構造物の欠陥を検出する欠陥検出プログラムがインストールされている。制御装置50は、欠陥検出プログラムを実行して、測量機1を制御すると共に、外観画像データから構造物の欠陥を検出する。制御装置50は、外観画像データと外観画像データに含まれる観測点の位置データが測量機1から入力されると、外観画像データから構造物の外観に現れた欠陥を検出する。一例として、欠陥は、構造物の外観に劣化として現れたひびや窪みである。また、欠陥は、一例として、鉄材の表面に対して現れた錆や亀裂や窪みである。制御装置50は、外観画像データから構造物の欠陥を検出し、位置データを参照して欠陥に関連する欠陥データを算出する算出部である。欠陥データは、欠陥の位置を示す位置データ並びに欠陥の大きさに関する欠陥長さデータ及び欠陥幅データを含む。一例として、欠陥データは、好ましくは、グローバル座標系(ローカル座標系ではない座標系、世界測地系、日本測地系)に従った座標データである。一例として、制御装置50は、外観画像データ、欠陥データをネットワークに接続されたサーバ装置60にアップロードし保存する。
一例として、制御装置50は、欠陥幅データを補正する補正部である。測量機1は、望遠鏡倍率等の撮像部の微小な個体差による影響、測定距離や照明条件や天候等の測定環境による影響等により、検出する欠陥の検出精度に影響を及ぼすおそれがある。欠陥は、構造物の外観に劣化として現れた錆や亀裂や窪みであるため、日向に位置しているときは、影となり、コントラストが大きくなる傾向にある。これに対して、日陰に位置しているときは、欠陥に生じる影部分と欠陥の周囲部分とのコントラストが小さくなる傾向がある。また、欠陥を含む領域が濡れているときは、濡れていないときと比較してコントラストが小さくなる傾向にある。このように、測定環境は、欠陥をコントラストにより検出する場合、コントラストの値により欠陥の長さや幅の算出精度に影響を与える。
そこで、制御装置50は、測量機1が撮像した画像データから補正用ターゲット300を検出し、補正用ターゲット300に含まれる基準オブジェクト301の第1サイズデータとしての第1線幅データを算出する。補正用ターゲット300の実際の基準オブジェクトの線幅の寸法である第2サイズデータとしての第2線幅データは既知である。制御装置50は、第1線幅データと第2線幅データとを比較し、欠陥データを補正する補正データを算出する算出部として機能する。さらに、制御装置50は、補正データを、欠陥データに適用し、欠陥データの中の欠陥幅データを補正する補正部として機能する。これにより、測定環境による影響を考慮して、実際に算出した欠陥データを補正することができる。
サーバ装置60は、ネットワークを介して、制御装置50及び制御装置50以外の情報処理端末装置70もアクセス可能である。サーバ装置60は、一例として、大容量ハードディスク等で構成された記憶部を備えている。記憶部には、制御装置50から送信された外観画像データや欠陥データが測量機1に対して一意に割り振られた測量機識別データに関連付けて保存される。サーバ装置60は、制御装置50と同様、欠陥幅データを補正する補正部としても機能することもできる。また、サーバ装置60は、第1線幅データと第2線幅データとを比較し、欠陥幅データを補正する補正データを算出し、記憶部に保存する算出部としても機能することができる。さらに、制御装置50は、補正データを、欠陥幅データに適用し、補正後の欠陥幅データを記憶部に保存する補正部としても機能する。なお、補正データを算出する処理や欠陥幅データを補正データで補正する処理は、制御装置50やサーバ装置60が行う他、情報処理端末装置70が行ってもよい。一例として、制御装置50及び情報処理端末装置70は、サーバ装置60に対して、第1線幅データを算出する算出処理を実行する操作や欠陥幅データを補正データで補正する補正処理を実行する操作を行う。
また、制御装置50やサーバ装置60が行う機能は、測量機1が行ってもよい。すなわち、測量機1は、外観画像データや欠陥データを自身の測量機識別データに関連付けて内蔵の記憶部又は測量機1に接続されたリムーバル記録媒体に保存する。また、測量機1は、第1線幅データと第2線幅データとを比較し、欠陥幅データを補正する補正データを算出し、内蔵の記憶部又は測量機1に接続されたリムーバル記録媒体に保存する。さらに、測量機1は、欠陥幅データに適用し、補正後の欠陥幅データを内蔵の記憶部又は測量機1に接続されたリムーバル記録媒体に保存する。
情報処理端末装置70は、コンピュータ、タブレット等の汎用の情報処理装置であり、ネットワークを介してサーバ装置60にアクセス可能である。情報処理端末装置70は、一例として、欠陥検出が行われる構造物の近くではなく、管理施設等構造物から離れた位置に設置されており、情報処理端末装置70は、管理者等によって操作される。情報処理端末装置70では、サーバ装置60にアクセスすることによって、制御装置50から送信された外観画像データ、欠陥幅データを含む欠陥データを確認することができ、さらに、補正データを欠陥幅データに適用する補正処理を行うことができる。一例として、情報処理端末装置70は、補正データの算出部として機能し、また、欠陥幅データを補正する補正部としても機能する。
補正用ターゲット300は、壁面201に設置される。補正用ターゲット300は、一例として、欠陥の検出を行う実際の測定面となる壁面201に設置することが不能なとき、欠陥の検出を行う実際の測定範囲と類似した類似壁面201aに設置される。類似壁面201aは、一例として、実際の測定範囲と離れた異なる場所にある壁面である。類似壁面201aは、一例として、実験施設、研究施設の中に設けられた壁面である。類似壁面201aは、一例として、欠陥を測定する構造物の壁面であっても、測定範囲とは離れた位置の壁面である。
図1(b)に示すように、補正用ターゲット300は、一例として、欠陥401の検出を行う実際の壁面201bに設置される。一例として、測定範囲の中に補正用ターゲット300が設置される。一例として、補正用ターゲット300は、欠陥401と同じ画角に入る位置に設置される。一例として、補正用ターゲット300は、互いに隣接する複数の外観画像に跨るように設置される。一例として、補正用ターゲット300は、欠陥401を含む1つの外観画像又は複数の外観画像に含まれるように設置される。
〔補正用ターゲットの考え方及び構成〕
図2(a)および図2(b)に示すように、補正用ターゲット300は、基準オブジェクト301を備えている。基準オブジェクト301は、複数の線分オブジェクト302を含んでいる。複数の線分オブジェクト302は、一例として、実際に検出する欠陥の大きさや延びる方向等の要因を考慮して、縦、横、斜めの方向に配置される。
図2(a)の線分オブジェクト302は、様々な向きの複数の線分で構成されている。一例として、の線分オブジェクト302は、等角であって放射状に設けられている。一例として、線分オブジェクト302は、0°、45°、90°、135°、180°、225°、270°、315°の合計で8本の線分で構成されている。線分の数は、8本に限定されるものではなく、放射状に設けられていなくてもよく、さらに、等角に設けられていなくてもよい。
図2(b)に示すように、線分オブジェクト302は、8本の線分が正八角形形状に配置されている。なお、線分オブジェクト302は、三角形、四角形、五角形、正六角形等の多角形を構成していてもよい。
なお、図2(a)及び図2(b)で示す線分オブジェクト302は、各線分の線幅を異ならせることもできる。これにより、複数の向きについて、異なる線幅の線分の線幅を算出することができる。線分オブジェクト302において、線分の線幅を異ならせる点の詳細は、後述の図4(a)及び図4(b)を用いて説明する。
図3に示すように、一例として、測量機1に対して比較的近距離(第1距離:一例として数メートル)に位置する壁面201を測定する場合、撮像部の撮像範囲203は、狭くなり、これに応じた大きさの補正用ターゲットが必要となる。したがって、近距離用補正用ターゲット300aは、近距離を撮像しているときに1つの画角に入る大きさの近距離用基準オブジェクト301aを備えている。
これに対して、測量機1に対して比較的遠距離(第2距離:一例として数十メートル)の場合、撮像部の撮像範囲203は広くなり、これに応じた大きさの補正用ターゲットが必要となる。そこで、遠距離用補正用ターゲット300bには、一例として、近距離用基準オブジェクト301aに対して大きい遠距離用基準オブジェクト301bを備えたターゲットが使用される。これにより、測量機1に対して近距離や遠距離の補正データを算出することができる。
なお、補正用ターゲット300は、さらに、中距離用ターゲットを用意してもよい。また、近距離用基準オブジェクト301aと遠距離用基準オブジェクト301bを1つにまとめたターゲットとしてもよい。この場合、補正用ターゲット300が一種類となり、作業者にとって取り扱いが容易となると共に製造コストを削減することができる。
一例として、近距離用基準オブジェクト301aは、遠距離用基準オブジェクト301bより小さいものとなるが、これとは逆で、近距離用基準オブジェクト301aの方が遠距離用基準オブジェクト301bより大きくてもよい。
図4(a)に示すように、一例として、基準オブジェクト301が備える線分オブジェクト302は、線幅の異なる複数の線分で構成されている。線幅の異なる複数の線分は、近距離用基準オブジェクト301aにも、遠距離用基準オブジェクト301bにも設けられる。図4(a)は、線分オブジェクト302が放射状に設けられている。線分0°、45°、90°、135°の線分オブジェクト302のそれぞれは、第1線幅部302aと第2線幅部302bとを備え、第1線幅部302aは、第2線幅部302bより線幅が大きく形成されている。また、180°、225°、270°、315°の線分オブジェクト302のそれぞれは、第3線幅部302cと第4線幅部302dとを備え、第3線幅部302cは、第4線幅部302dより線幅が大きく形成されている。一例として、線幅は、第1線幅部302a、第2線幅部302b、第3線幅部302c、第4線幅部302dの順に小さくなっている。なお、線幅は、第1線幅部302a、第2線幅部302b、第3線幅部302c、第4線幅部302dの順に大きくなっていてもよい。すなわち、第1線幅部302aから第4線幅部302dは、線幅の値が重なっていなければよい。
図4(b)は、線分が正八角形形状に設けられた線分オブジェクト302であり、大きさの異なる同心の複数の正八角形オブジェクト(ここでは一例として3つ)である。そして、最外の正八角形オブジェクトにおいて、第1辺から第4辺は、同じ線幅で角度の異なる第1線幅部302eを備えている。中程の正八角形オブジェクトにおいて、第1辺から第4辺は、第1線幅部302eより小さい線幅の第2線幅部302fを備えている。最内の正八角形オブジェクトにおいて、第1辺から第4辺は、第1線幅部302e及び第2線幅部302fより小さい線幅の第3線幅部302gを備えている。さらに、最外の正八角形オブジェクトにおいて、第5辺から第8辺は、第1線幅部302e乃至第3線幅部302gより小さい線幅の第4線幅部302hを備えている。中程の正八角形オブジェクトにおいて、第5辺から第8辺は、第1線幅部302a乃至第4線幅部302hより小さい線幅の第5線幅部302iを備えている。最内の正八角形オブジェクトにおいて、第5辺から第8辺は、第1線幅部302a乃至第5線幅部302iより小さい線幅の第6線幅部302jを備えている。一例として、線幅は、第1線幅部302e、第2線幅部302f、第3線幅部302g、第4線幅部302h、第5線幅部302i、第6線幅部302jの順に小さくなっている。これにより、6種類の線幅のそれぞれについて、8方向の欠陥幅データを補正することができる。なお、線幅は、第1線幅部302e、第2線幅部302f、第3線幅部302g、第4線幅部302h、第5線幅部302i、第6線幅部302jの順に大きくなってもよい。すなわち、第1線幅部302eから第6線幅部302jは、線幅の値が重なっていなければよい。
補正用ターゲット300は、複数の領域に分割することができる。図5(a)は、補正用ターゲット300の全体形状が正方形である場合において、縦横の各辺の中線によって、第1領域304aから第4領域304dを設けるようにしている。第1領域304aから第4領域304dには、図4(a)や図4(b)に示す基準オブジェクト301を配置し、各領域の補正用ターゲット300は、線分オブジェクト302の線幅が重ならないようにする。これにより、図4(a)の基準オブジェクト301では、16種類の線幅の線分オブジェクト302を設けることができ、図4(b)の線分オブジェクトでは、24種類の線幅の線分オブジェクト302を設けることができる。
図5(b)は、補正用ターゲットの全体形状が正方形である場合において、2つの対角線によって、第1領域304aから第4領域304dを設けるようにしている。この例においても、第1領域304aから第4領域304dには、図4(a)や図4(b)に示す基準オブジェクト301を配置し、各領域の基準オブジェクト301は、線分オブジェクト302の線幅が重ならないようにする。これにより、図5(a)の場合と同様の効果を得ることができる。
図5(c)は、図5(a)に、外形と中心を一致させた正方形の枠を設け、更に、第5領域304eから第8領域304hを設けている。第5領域304eから第8領域304hは、第1領域304aから第4領域304dに比べて狭い領域であり、第5領域304eから第8領域304hに収まる基準オブジェクト301も小さくなる。そこで、一例として、第5領域304eから第8領域304hには、小型となる近距離用基準オブジェクト301aを配置することができる。そして、一例として、第1領域304aから第4領域304dには、近距離用基準オブジェクト301aより大型となる遠距離用基準オブジェクト301bを配置することができる。
図5(d)は、図5(b)に、中心を一致させた正方形の枠を設け、更に、第5領域304eから第8領域304hを設けている。図5(d)の場合においても、第5領域304eから第8領域304hは、第1領域から第8領域に比べて狭くなるため、近距離用基準オブジェクト301aを配置し、第1領域304aから第4領域304dには、遠距離用基準オブジェクト301bを配置することができる。
なお、1つの補正用ターゲット300に近距離用基準オブジェクト301aと遠距離用基準オブジェクト301bと設ける場合において、1つの補正用ターゲット300を複数の領域に区画するとき、その領域の区画の仕方は、図5(a)〜図5(d)の例に限定されるものではない。一例として、上下に区画して、上領域又は下領域の何れか一方の領域に近距離用基準オブジェクト301aを配置し、他方の領域に、遠距離用基準オブジェクト301bを配置するようにしてもよい。また、一例として、左右に区画して、左領域又は右領域の何れか一方の領域に近距離用基準オブジェクト301aを配置し、他方の領域に、遠距離用基準オブジェクト301bを配置するようにしてもよい。
補正用ターゲット300は、壁面201に設置された状態において、測量機1と正対しない状態になることもある。換言すると、補正用ターゲット300は、測量機1の視準軸O3に直交する面に対して傾いた状態になることもある。一例として、測量機1に対して壁面201が水平方向又は鉛直方向に傾いているとき、補正用ターゲット300は、測量機1に対して傾いた状態になる。また、仮に補正用ターゲット300が壁面201に正確に固定されていたとしても、測量機1が設置される設置面の凹凸や傾き等の設置環境によっては、壁面201に対して測量機1が水平方向又は鉛直方向に傾いてしまうこともある。このように、補正用ターゲット300が測量機1と正対しない状態となったとき、画像データにおいて、奥側のオブジェクト(一例として図6(b)中右側の縦実直線オブジェクト306a)の長さは、手前側のオブジェクト(一例として図6(b)中左側の縦実直線オブジェクト306a)の長さより短くなる。また、奥側のオブジェクトの線幅は、手前側のオブジェクトの線幅よりも小さくなる。このため、一例として、補正用ターゲット300は、測量機1に対する補正用ターゲット300の傾きを検出するため、少なくとも1つの実直線又は仮想直線により構成された傾き検出オブジェクトを備えている。一例として、制御装置50は、測量機1が撮像した画像データから画像処理により傾き検出オブジェクトを検出し、その傾きを検出することによって、補正用ターゲットの測量機1に対する傾きを検出し、傾きに応じて、線分オブジェクト302の長さや線幅を算出できるようにする。
図6(a)に示すように、一例として、補正用ターゲット300は、補正用ターゲット300の鉛直方向及び水平方向に対する傾きを参照して、線分オブジェクト302の線幅を測定できるようにする傾き検出オブジェクト306を備えている。傾き検出オブジェクト306は、外周部に沿うようにして、実線により構成されている。図6(a)では、補正用ターゲット300が矩形形状を有しており、傾き検出オブジェクト306は、補正用ターゲット300の外周部に沿うように設けられている。傾き検出オブジェクト306は、縦方向に互いに平行な2つの縦実直線オブジェクト306aと、横方向に互いに平行な2つの横実直線オブジェクト306bとを備えている。一例として、制御装置50は、測量機1が撮像した画像データが入力されると、画像処理により2つの縦実直線オブジェクト306a及び横実直線オブジェクト306bの傾きを検出する。
図6(b)は、測量機1に対して水平方向に補正用ターゲット300が傾いた状態を示している。一例として、この状態は、測量機1の視準軸O3に直交する面に対して補正用ターゲット300が傾いた状態である。壁面201に設置された補正用ターゲット300が測量機1に対して正対しておらず、測量機1に対して傾いている場合、図中上側の横実直線オブジェクト306bは、画像データの水平方向に対して下側に傾き、図中下側の横実直線オブジェクト306bは、画像データの水平方向に対して上側に傾く。また、図中右側の縦実直線オブジェクト306aの長さは、図中左側の縦実直線オブジェクト306aより短くなる。制御装置50は、測量機1が撮像した画像データが入力されると、画像処理により2つの縦仮想直線オブジェクト307a及び2つの横仮想直線オブジェクト307bの傾きを検出することで、補正用ターゲット300の測量機1に対する傾きを検出することができる。制御装置50は、この傾きに応じて、手前側の基準オブジェクト301や奥側の基準オブジェクト301の線幅等を算出することができる。また、一例として、補正用ターゲット300の測量機1に対する傾きを考慮して、手前側の基準オブジェクト301や奥側の基準オブジェクト301の長さを算出することができる。
なお、測量機1に対して鉛直方向に補正用ターゲット300が傾いている場合、2つの縦実直線オブジェクト306aは、上側または下側の何れか一方の端部が近づき、他端部が離れるように傾く。また、2つの縦実直線オブジェクト306aの端部が近い側の横実直線オブジェクト306bの長さは、2つの縦実直線オブジェクト306aの端部が離れた側の横実直線オブジェクト306bの長さより短くなる。制御装置50は、測量機1が撮像した画像データが入力されると、画像処理により2つの縦仮想直線オブジェクト307a及び2つの横仮想直線オブジェクト307bの傾きを検出することで、補正用ターゲット300の測量機1に対する傾きを検出することができる。制御装置50は、この傾きに応じて、手前側の基準オブジェクト301や奥側の基準オブジェクト301の線幅等を算出することができる。また、補正用ターゲット300の測量機1に対する傾きを考慮して、基準オブジェクト301や奥側の基準オブジェクト301の長さを算出することができる。
図6(c)に示すように、各コーナ部に相当する位置に図形オブジェクト308を配置するようにし、互いに隣接する図形オブジェクト308を結ぶ仮想傾き検出オブジェクト307を算出するようにしてもよい。仮想傾き検出オブジェクト307は、縦方向に互いに平行な2つの縦仮想直線オブジェクト307aと、横方向に互いに平行な2つの横仮想直線オブジェクト307bとを備えている。この場合にも、制御装置50は、測量機1が撮像した画像データが入力されると、画像処理により2つの縦仮想直線オブジェクト307a及び2つの横仮想直線オブジェクト307bの傾きを検出することができる。
なお、傾き検出オブジェクト306及び仮想傾き検出オブジェクト307の傾き検出は、制御装置50の他、測量機1が撮像した画像データから測量機1やサーバ装置60が行うようにしてもよい。
また、補正用ターゲット300は、図形オブジェクト308(一例として四角形)の他に、図形オブジェクト308に対して異形の異形オブジェクト308a(一例として三角形)を備えている。図6(c)及び図6(d)に示すように、一例として、補正用ターゲット300が壁面201に対して回転しているときには、異形オブジェクト308aの位置が異なることになる。換言すると、補正用ターゲット300が測量機1の視準軸O3に直交する面内を測量機1の視準軸O3まわりに回転しているときには、異形オブジェクト308aの位置が異なることになる。これにより、制御装置50は、測量機1が撮像した画像データが入力されると、画像処理により補正用ターゲット300の壁面201に対する回転を検出することができる。
具体的には、補正用ターゲット300が平板形状であるとき、補正用ターゲット300の測量機1と向き合う第1面を含む平面内(測量機1の視準軸O3に直交する面内)を、補正用ターゲット300が測量機1の視準軸O3まわり回転したときには、異形オブジェクト308aの位置が回転していない状態のときに対して異なることになる。一例として、図6(c)に示す状態を補正用ターゲット300の回転しない(回転量0°)正規状態とする。正規状態では、左上、左下及び右下に四角形状の図形オブジェクト308が位置し、右上に三角形状の異形オブジェクト308aが位置している。図6(d)に示すように、右側に補正用ターゲット300が測量機1の視準軸O3まわり90°回転した回転状態のときには、左上、左下及び右上に四角形状の図形オブジェクト308が位置し、右下に三角形状の異形オブジェクト308aが位置することになる。制御装置50は、図6(c)に示す正規状態における異形オブジェクト308aの位置をメモリに記憶しており、異形オブジェクト308aの位置の変化を検出することで、正規状態からの補正用ターゲット300の回転量を算出することができる。すなわち、制御装置50は、正規状態のとき右上を異形オブジェクト308aの位置をメモリに記憶しており、異形オブジェクト308aが右下に位置することで、補正用ターゲット300が右側に90°回転した回転状態を検出することができる。一例として、制御装置50は、90°刻みで、0°、90°、180°、270°の回転状態を検出することができる。一例として、制御装置50は、これより細かく、45°刻みで、0°、45°、90°、135°、180°、225°、270°、315°の回転状態を検出することができる。更に、制御装置50は、これより細かく回転状態を定義することによって、補正用ターゲット300の回転状態を検出するようにしてもよい。
また、制御装置50は、図6(c)に示す正規状態における図形オブジェクト308及び異形オブジェクト308aの配置パターンをメモリに記憶しており、配置パターンが変化を検出することで、正規状態からの補正用ターゲット300の回転量を算出することができる。すなわち、制御装置50は、図6(c)に示す正規状態において、右上から右回りに三角形状、四角形状、四角形状、四角形状の配置パターンをメモリに記憶している。図6(d)に示すように、補正用ターゲット300が右に90°回転したときには、右上から右回りに四角形状、三角形状、四角形状、四角形状の配置パターンに変化する。制御装置50は、この配置パターンを検出することによって、補正用ターゲット300の回転状態を検出することもできる。
また、補正用ターゲット300の回転状態は、45°刻みや90°刻みで検出するだけでなく、正規状態からの異形オブジェクト308aの回転量(角度)を算出するようにして、正確な回転量を検出できる構成としてもよい。
なお、補正用ターゲット300の回転状態の検出は、制御装置50の他、測量機1が撮像した画像データから測量機1やサーバ装置60が行うようにしてもよい。
さらに、図6(c)及び図6(d)では、4つの図形オブジェクト308のうちで3つが四角形状で1つが三角形状となっている。複数の図形オブジェクト308に少なくとも1つ異形オブジェクト308aを含ませることによって、制御装置50は、測量機1が撮像した画像データから画像処理により図形の形状のパターンで補正用ターゲット300の種類を特定することができる。すなわち、複数の図形オブジェクト308及び異形オブジェクト308aは、補正用ターゲットの種類を示す識別オブジェクトとしても機能する。一例として、図6(c)のように、3つの四角形状の図形オブジェクト308と1つの三角形状の異形オブジェクト308aの組み合わせパターンは、近距離用補正用ターゲット300aと設定することができる。また、一例として、遠距離用補正用ターゲット300bと設定することができる。さらに、一例として、1つの補正用ターゲット300が太い線幅の線分オブジェクトと細い線幅の線分オブジェクトとを備えたターゲットとを識別することができる。図形オブジェクト308や異形オブジェクト308aの形状は、四角形状に限定されるものではなく、さらに、丸形状や×形状等を含んでいてもよい。より多くの図形を用いることによって、表現可能なパターンが増えることになり、より多くの補正用ターゲットの種類を設定することができる。また、全部の図形オブジェクト308の中で異形オブジェクト308aは、少なくとも1つ含まれていればよく、2個以上であってもよい。
なお、補正用ターゲット300の壁面201に対する回転や補正用ターゲット300の種類を識別するための図形オブジェクト308は、図6(a)及び図6(b)に示すように1つであってもよい。また、補正用ターゲット300の種類を識別す識別オブジェクトは、バーコードのような一次元シンボルやQRコード(登録商標)のような二次元シンボルであってもよい。このようなシンボルを使用したときには、図形オブジェクト308を用いたときよりも、より多くの情報をシンボルに含ませることができる。
図7に示すように、補正用ターゲット300には、中心を示す中心指標オブジェクト309を設けることもできる。中心指標オブジェクト309は、十字形状のオブジェクトであり、2つの直線オブジェクトの交点が補正用ターゲット300の中心に位置するように設けられている。一例として、中心指標オブジェクト309は、交点位置に測量機1のレチクルの十字線中心を合わせることで、測量機1を手動で視準させることができる。中心指標オブジェクト309は、実線によって十字状形状に構成されていてよいし、点線によって十字形状に構成されていてもよい。さらに、一部、一例として中央部の交点部分や外側の端部分が省略されていてもよい。すなわち、測量機1が撮像した画像データから画像処理により中心指標オブジェクト309の中心が算出できるパターン形状であれば、そのパターン形状は特に限定されるものではない。
また、図形オブジェクト308は、各コーナ部に相当する位置に配置されている。一例として、各コーナ部に位置する図形オブジェクト308は、上下左右の対象位置に配置されている。これにより、測量機1が撮像した外観画像データの中から図形オブジェクト308を制御装置50が検出することで補正用ターゲットを特定することができ、さらに、測量機1が中心指標オブジェクト309の交点に自動視準することができる。
図8は、図2から図7に示した要素を1つにまとめた補正用ターゲット300の一例である。補正用ターゲット300は、全体が正方形形状を有しており、中心指標オブジェクト309によって、4つの第1領域304a〜第4領域304dに区画されている。各第1領域304a〜第4領域304dには、遠距離用基準オブジェクト301bが設けられている。また、第1領域304a〜第4領域304dで囲まれる中央領域304iには、近距離用基準オブジェクト301aが設けられている。近距離用基準オブジェクト301aは、遠距離用基準オブジェクト301bに対して小さく設けられている。なお、中央領域304iの位置では、中心指標オブジェクト309は設けられていない。すなわち、中心指標オブジェクト309は、中央領域304i及び近距離用基準オブジェクト301aが配置されることで、中心の交点部分が表示されない。しかし、中心指標オブジェクト309における縦線と横線を中央領域304i上に延長することで中心の交点を算出することができ、これにより、測量機1は視準を行うことができる。
各第1領域304a〜第4領域304dには、1つずつ遠距離用基準オブジェクト301bが配置されている。それぞれの遠距離用基準オブジェクト301bは、第1領域304a〜第4領域304d毎に、異なる線幅の線分オブジェクト302が設けられている。
また、近距離用基準オブジェクト301aについても、中央領域304iにおいて、4つの遠距離用基準オブジェクト301bと同じように4つ配置されている。すなわち、中央領域304iも、4つの第5領域304e〜第8領域304hを備え、各第5領域304e〜第8領域304hには、1つずつ近距離用基準オブジェクト301aが配置されている。それぞれの近距離用基準オブジェクト301aは、第5領域304e〜第8領域304h毎に、異なる線幅の線分オブジェクト302を備えている。
図8(b)に示すように、各近距離用基準オブジェクト301a及び各遠距離用基準オブジェクト301bが備える線分オブジェクト302は、一例として、放射状に設けられている。そして、線分0°、45°、90°、135°の線分オブジェクト302のそれぞれは、同じ第1線幅部311となっており、180°、225°、270°、315°の線分オブジェクト302のそれぞれは、第1線幅部311より線幅の大きい第2線幅部312となっている。すなわち、4つの領域において定義される第1線幅部311と第2線幅部312は、全て線幅が異なる、換言すると重複しないように設定されている。
一例として、第1領域304aの遠距離用基準オブジェクト301b及び第5領域304eの近距離用基準オブジェクト301aにおいて、第1線幅部311は、0.1mmの線幅を有し、第2線幅部312は、0.2mmの線幅を有している。
第4領域304dの遠距離用基準オブジェクト301b及び第8領域304hの近距離用基準オブジェクト301aにおいて、第1線幅部311は、0.3mmの線幅を有し、第2線幅部312は、0.4mmの線幅を有している。
第3領域304cの遠距離用基準オブジェクト301b及び第7領域304gの近距離用基準オブジェクト301aにおいて、第1線幅部311は、0.5mmの線幅を有し、第2線幅部312は、0.6mmの線幅を有している。
第2領域304bの遠距離用基準オブジェクト301b及び第6領域304fの近距離用基準オブジェクト301aにおいて、第1線幅部311は、0.7mmの線幅を有し、第2線幅部312は、0.8mmの線幅を有している。
また、他の例として、第1領域304aの遠距離用基準オブジェクト301b及び第5領域304eの近距離用基準オブジェクト301aにおいて、第1線幅部311は、0.3mmの線幅を有し、第2線幅部312は、0.5mmの線幅を有している。
第4領域304dの遠距離用基準オブジェクト301b及び第8領域304hの近距離用基準オブジェクト301aにおいて、第1線幅部311は、0.7mmの線幅を有し、第2線幅部312は、0.9mmの線幅を有している。
第3領域304cの遠距離用基準オブジェクト301b及び第7領域304gの近距離用基準オブジェクト301aにおいて、第1線幅部311は、1.2mmの線幅を有し、第2線幅部312は、1.6mmの線幅を有している。
第2領域304bの遠距離用基準オブジェクト301b及び第6領域304fの近距離用基準オブジェクト301aにおいて、第1線幅部311は、1.2mmの線幅を有し、第2線幅部312は、2.4mmの線幅を有している。
以上の例において、第1線幅部311及び第2線幅部312に設定される線幅の寸法は、縮尺されることなく、実際に定義された寸法を有するように設けられる。また、遠距離用基準オブジェクト301b及び近距離用基準オブジェクト301aにおいて、同じ寸法を定義している線幅部は、同じ線幅に設けられている。なお、線幅の設定は、以上の2つの例に限定されるものではない。
以上のような例によれば、1つの補正用ターゲット300の遠距離用基準オブジェクト301b及び近距離用基準オブジェクト301aの各々について、1つの領域に2つの線幅の線分オブジェクト302を備えている。そして、このような領域をそれぞれ4つ備えている。したがって、1つの補正用ターゲット300の遠距離用基準オブジェクト301b及び近距離用基準オブジェクト301aの各々について、合計8つの異なる線幅の線分オブジェクト302を設けることができる。すなわち、1つの補正用ターゲット300の遠距離用基準オブジェクト301b及び近距離用基準オブジェクト301aの各々について、領域の数を増やせば、それに応じて、線幅の異なる線分オブジェクト302の数も増やすことができる。また、図8(b)における一本の線分を、太い線分と細い線分に分けてもよい(図4(a)参照)。これにより、線幅の異なる線分オブジェクト302の数を更に多くすることができる。
補正用ターゲット300は、外周部に沿うように、傾き検出オブジェクト306を備えている。具体的には、傾き検出オブジェクト306は、縦方向に互いに平行な2つの縦実直線オブジェクト306aと、横方向に互いに平行な2つの横実直線オブジェクト306bとを備えている。制御装置50は、測量機1が撮像した画像データから画像処理により縦実直線オブジェクト306a若しくは横実直線オブジェクト306bを検出し、その傾きを検出することによって、補正用ターゲットの測量機1に対する傾きを検出する。これにより、制御装置50は、傾きに応じて、線分オブジェクト302の線幅を算出できる。
また、補正用ターゲット300は、外周部のコーナ部に、図形オブジェクト308(図8では左上、左下及び右下の三角形)と、異形オブジェクト308a(図8では右上の四角形)とを備えている。補正用ターゲット300における外周部の各コーナ部に備えられた図形オブジェクト308及び異形オブジェクト308aは、遠距離用基準オブジェクト301bのために設けられたものである。補正用ターゲット300の測量機1と向き合う第1面を含む平面内(測量機1の視準軸O3に直交する面内)を補正用ターゲット300が回転しているときには、異形オブジェクト308aの位置が回転していない状態のときに対して異なることになる。制御装置50は、正規状態における図形オブジェクト308及び異形オブジェクト308aの位置(図8の状態)をメモリに記憶しており、異形オブジェクト308aの位置の変化を検出することで、正規状態からの補正用ターゲット300の回転状態を算出することができる。
また、3つの三角形の図形オブジェクト308と1つ四角印の異形オブジェクト308aの配置パターンは、補正用ターゲット300の種類を示しており、制御装置50は、測量機1が撮像した画像データから画像処理により配置パターンを特定することで、補正用ターゲット300の種類を特定することができる。
3つの三角形の図形オブジェクト308及び1つ四角印の異形オブジェクト308aは、中央領域304iの外周部にも設けられている。中央領域304iにおける図形オブジェクト308及び異形オブジェクト308aは、近距離用基準オブジェクト301aのために設けられたものである。近距離用基準オブジェクト301aを使用する場合、制御装置50は、中央領域304iにおける図形オブジェクト308及び異形オブジェクト308aから補正用ターゲット300の回転を検出し、また、補正用ターゲット300の種類を特定する。
なお、補正用ターゲット300の外周部に配置された遠距離用基準オブジェクト301bのための図形オブジェクト308及び異形オブジェクト308aの配置パターンと中央領域304iの中央領域304iに配置された近距離用基準オブジェクト301aのための図形オブジェクト308及び異形オブジェクト308aの配置パターンとは、異なっていてもよい。
補正用ターゲット300には、中心を示す中心指標オブジェクト309を備えている。中心指標オブジェクト309は、十字形状のオブジェクトであり、2つの直線オブジェクトの交点が補正用ターゲット300の中心に位置するように設けられている。一例として、中心指標オブジェクト309は、交点位置に測量機1のレチクルの十字線中心を合わせることで、測量機1を手動で視準させることができる。中心指標オブジェクト309は、中央領域304iにおいて、中央部の交点部分が省略されているが、交点部分は、測量機1によって直交する2つの直線オブジェクトを延長することによって算出することができる。
以上のように構成された補正用ターゲット300は、一例として、構造物の壁面201に貼付されるので、平板形状を有している。また、一例として、壁面201の凹凸に追従できるように、可撓性を備えている。補正用ターゲット300は、一例として、両面テープ、接着剤等の接着部材によって、壁面201に貼付される。一例として、補正用ターゲット300は、H鋼等の鉄部材等の金属部材に対して貼付できるように、磁石の性質を有する板材で形成される。一例として、補正用ターゲット300は、一度の欠陥検出作業のためだけに使用される場合は短期間、壁面201に貼付されるだけであるが、欠陥の経年変化を検査する場合には、長期間(一例として1年以上)壁面201に貼付されることもある。このため、補正用ターゲット300の材質としては、壁面201からの剥離を抑制するため、線膨張係数が低いものが選ばれる。また、退色を抑制するため、耐光性に優れた材料が選択される。このような性質を両立する材料としては、ポリカーボネイト樹脂、グラスファイバを充填したポリカーボネイト樹脂、ポリエステル、グラスファイバを充填したポリエステル、アクリル樹脂、アルミ板、ステンレス板等を挙げることができる。又は、これらの材料の板材にマグネットシートを貼り合わせたものが挙げられる。また、一例として、補正用ターゲット300は、支持部材等に吊り下げられる部材であってもよい。
ところで、構造物の中には、コンクリートが露出した構造物やタイル等の外装材が貼付された構造物、塗料が塗布された構造物等様々な色の構造物が存在する。補正用ターゲット300の表面も、実際に欠陥の検出を行う構造物の表面の色彩に類似した色にすることが好ましい。コンクリートが露出した構造物等では、一例として、モノクロが好ましい。また、タイルが貼付されたり塗料が塗布された構造物においては、様々な色のものが存在する。このため、補正用ターゲット300もカラーであることが好ましいこともある。このような場合、補正用ターゲット300は、背景色には構造物と同じ若しくは近い色相を選択し、基準オブジェクト301には明度が異なる(一例として暗くなる方向に異なる)色が選択される。欠陥は、影によって、周辺より明度が暗くなるように現れる。これに合わせて、補正用ターゲット300においても、背景よりも基準オブジェクト301が暗くなるように明度が設定される。
そして、図8(c)に示すように、補正用ターゲット300は、基板321に対して、上述したような基準オブジェクト301、傾き検出オブジェクト306、図形オブジェクト308、異形オブジェクト308a等のオブジェクトを構成するオブジェクト層322が測量機1と向き合う第1面に印刷される。また、このようなオブジェクト層322のパターンが形成された原版をマスクにして基板321に対して蒸着によりパターンが形成される。基板321のオブジェクト層322とは反対側であって壁面201と向き合う第2面には、マグネットシート323を貼り合わせることができる。
また、補正用ターゲット300は、オブジェクト層322を片面のみ(第1面のみ)に設ける片面仕様ではなく、オブジェクト層322を第1面と第2面に設ける両面仕様としてもよい。一例として、第2面のオブジェクト層322は、マグネットシート323を省略して基板321に設けてもよいし、マグネットシート323上に設けてもよい。両面使用の場合には、一例として、異なる種類のパターンを設けるようにするとよい。一例として、一方の面に近距離用基準オブジェクト301aを設け、他方の面に遠距離用基準オブジェクト301bを設けるようにする。また、図8のような近距離用基準オブジェクト301aと遠距離用基準オブジェクト301bを1つにまとめたものであっても、線分オブジェクト302の線幅の違う基準オブジェクト301をそれぞれの面に設けるようにしてもよい。一例として、線幅の大きい線分オブジェクト302は、相対的に太い欠陥の計測に用いられ、線幅の小さい線分オブジェクト302は、相対的に細い欠陥の計測に用いられる。
片面仕様の補正用ターゲット300及び両面仕様の補正用ターゲット300の何れの場合であっても、第2面に、接着剤や両面テープによって壁面201に接着固定することができる。また、補正用ターゲット300の四隅等をアンカ等で壁面201に打ち込むことによって固定することもできる。壁面201が鉄骨等の磁気吸引可能な材料であるとき、第2面がマグネットシート323により壁面201に磁気吸着される。さらに、補正用ターゲット300は、壁面201にフックを設け、フックに引っかけて吊り下げるようにしてもよい。さらに、地面等に近い場所に補正用ターゲット300を設置する場合等は、直接壁面201に固定するのではなく、壁面201の近くにおいて、補正用ターゲット300を三脚など支持部材に支持させるようにしてもよい。補正用ターゲット300を支持部材に支持させる方法は、近距離と遠距離の複数点に補正用ターゲット300を設置し補正データを取得する場合や、補正用ターゲット300までの測定距離を指定して設置する場合等に有効である。
〔測量機の構成〕
図9に示すように、測量機1は、整準部2と、本体部6と、撮像部7とを備えている。整準部2は、例えば整準台である。整準部2は、底板3と、上板4と、整準ねじ5とを含んでいる。底板3は、三脚に固定される部材である。底板3は、例えば、ねじ等で三脚の脚頭に固定される。上板4は、整準ねじ5を用いることで、底板3に対する傾きが変更可能に構成されている。上板4には、本体部6が取り付けられている。測量機1の第1軸である鉛直軸O1の傾きは、整準ねじ5を用いることで変更可能である。
整準とは、測量機1の鉛直軸を鉛直にすることである。整準した測量機1は、鉛直軸O1が鉛直方向に沿った状態である。整準した測量機1は、鉛直軸O1が鉛直方向に沿った状態であり、且つ、測量機1の第2軸である水平軸O2が鉛直軸O1に対して直角の状態である。整準は、レベリング(leveling)と表現することがある。
求心とは、測量機1の鉛直中心を第2ターゲット(測標)の中心に一致させることである。求心とは、地上の測量基準位置(基準点)等の測点の鉛直線上に測量機1の機械中心を一致させることである。求心は、致心やセンタリング(centering)と表現することがある。求心した測量機1は、鉛直軸O1が第2ターゲットの中心を通過する状態である。第2ターゲットは、例えば器械高計測用ターゲットや測量鋲である。
図9及び図10に示すように、本体部6は、整準部2により鉛直軸周りに回転可能に支持されている。本体部6は、整準部2に対して鉛直軸周りに回転可能に構成されている。本体部6は、整準部2の上方に位置している。本体部6は、撮像部7を水平軸周りに回転可能に支持している。本体部6は、支柱部である。本体部6は、托架部である。本体部6は、第1表示部18と、第2表示部19と、水平角操作部23と、鉛直角操作部24と、把持部25と、第3撮像部14(図11参照)とを含んでいる。
第1表示部18及び第2表示部19は、画像やオブジェクトを表示する表示機能を有している。一例として、第1表示部18及び第2表示部19は、各表示部の表示面に、撮像部7が生成した画像データに基づく画像や観測データに基づく情報を表示する。一例として、第1表示部18及び第2表示部19は、液晶ディスプレイ、有機ELディスプレイである。一例として、第1表示部18は、反側に配置されている。一例として、第1表示部18は、例えば反観測を行う場合に利用される。第2表示部19は、正側に配置されている。一例として、第2表示部19は、正観測を行う場合に利用される。一例として、第1表示部18及び第2表示部19は、ユーザによる操作を受け付ける操作部としての機能を有している。この場合、第1表示部18及び第2表示部19は、静電容量式のタッチパネルや感圧式のタッチパネル等により構成されている。一例として、第1表示部18は、鉛直軸周りに回転可能である。一例として、第2表示部19は、鉛直軸周りに回転可能である。一例として、第2表示部19は、鉛直方向の傾斜変更が可能である。
水平角操作部23は、本体部6を水平方向に回転するためにユーザにより操作される部材である。ユーザにより水平角操作部23が操作されると、本体部6及び撮像部7はともに水平方向に回転する。鉛直角操作部24は、撮像部7を鉛直方向に回転するためにユーザにより操作される部材である。水平角操作部23及び鉛直角操作部24は、例えばノブである。把持部25は、例えば測量機1を持ち運ぶ際にユーザが把持するための部材である。把持部25は、例えばキャリングハンドルである。把持部25は、例えば本体部6の上面に固定されている。
図11に示すように、第3撮像部14は、第3対物レンズ10を含む第3光学系と、第3撮像素子とを含んでいる。第3光学系は、第2ターゲットからの光を第3撮像素子に導く。第3撮像素子は、第2ターゲットを撮像して、画像データを生成する。第3撮像部14は、測量機1の下方を撮像して、画像データを生成する。第3撮像部14は、鉛直軸O1を含む下方を撮像して、画像データを生成する。一例として、第3撮像素子は、CCDやCMOSで構成されている。第3撮像部14で生成された画像データは、画像処理部33に出力される。一例として、第3撮像部14は、ユーザが測量機1を整準したり求心したりする場合に、測量機1の下方の画像を第1表示部18や第2表示部19に表示させるための画像データを生成する。第3撮像部14は、本体部6に固定されている。一例として、第3撮像部14は、求心カメラである。一例として、第3撮像部14は、求心望遠鏡である。
撮像部7は、本体部6によって水平軸周りに回転可能に支持されている。撮像部7は、水平軸O2周りに回転可能に構成されている。撮像部7は、整準部2に対して鉛直軸O1周りに回転可能に構成されている。撮像部7は、鉛直軸O1周りに回転可能であり、且つ、水平軸O2周りに回転可能である。撮像部7は、ユーザにより水平角操作部23が操作された操作量に応じて、水平方向に回転する。撮像部7は、ユーザにより鉛直角操作部24が操作された操作量に応じて、鉛直方向に回転する。
撮像部7は、第1撮像部11と、第2撮像部12とを備えている。第1撮像部11及び第2撮像部12も、CCDやCMOSで構成されている。第1撮像部11及び第2撮像部12で生成された画像データは、画像処理部33に出力される。一例として、第1撮像部11及び第2撮像部12は、視準する場合に、第1ターゲットを含む視野の画像を第1表示部18や第2表示部19に表示させるための画像データを生成する。一例として、プリズム方式の場合、第1撮像部11及び第2撮像部12は、測量対象物である第1ターゲットを撮像する。一例として、ノンプリズム方式の場合、第1撮像部11及び第2撮像部12は、構造物の外観を構成する測定面を測定する。第1撮像部11及び第2撮像部12が撮像する視野は、第3撮像部14が撮像する視野とは異なり、第3撮像部14が撮像する視野とは重複しない。
第1撮像部11は、第1対物レンズ8を含む第1光学系と、第1撮像素子とを含んでいる。第1光学系は、撮像視野内の光(例えば第1ターゲットからの光を含む)を第1撮像素子に導く。一例として、第1撮像部11は、望遠カメラである。一例として、第1撮像部11は、視準カメラである。一例として、第1撮像部11は、視準望遠鏡である。一例として、第1撮像部11は、第1画角を有する。一例として、第1撮像部11は、第1視野を有する。
第2撮像部12は、第2対物レンズ9を含む第2光学系と、第2撮像素子とを含んでいる。第2光学系は、撮像視野内の光(例えば第1ターゲットからの光を含む)を第2撮像素子に導く。第2対物レンズ9は、第1対物レンズ8とは別個に備えている。一例として、第2対物レンズ9は、撮像部7において第1対物レンズ8が配置されている面と同じ面に配置されている。一例として、第2対物レンズ9は、第1対物レンズ8と鉛直方向に並んで配置されている。一例として、第2対物レンズ9の光軸は、第1対物レンズ8の光軸と平行である。第2撮像部12の画角は、第1撮像部11の第1画角より広い第2画角を有する。第1撮像部11の第1画角は、第2撮像部12の第2画角より狭い。第2撮像部12の第2視野角は、第1撮像部11の第1視野角より広い。第1撮像部11の第1視野角は、第2撮像部12の第2視野角より狭い。一例として、第2撮像部12は、視準する場合に第1ターゲットを含み第1視野よりも広い第2視野の画像を第1表示部18や第2表示部19に表示させるための画像データを生成する。一例として、第2撮像部12は、広角カメラである。一例として、第2撮像部12は、広角望遠鏡である。
視準とは、対物レンズをターゲットに向けて、視準軸をターゲットの中心に一致させることである。視準軸は、対物レンズの光学的な中心点を通り、水平軸に垂直に交差する軸である。視準軸は、第1撮像部11の第1対物レンズ8の光学的な中心点を通り、水平軸O2に垂直に交差する軸である。視準軸は、セオドライトの対物レンズの中心を通り水平軸と直交する軸である。視準軸は、第1対物レンズ8の光軸と一致している。視準した測量機1は、第1対物レンズ8を第1ターゲットに向けて、測量機1の第3軸である視準軸O3が第1ターゲットの中心に一致した状態である。視準軸において測量機1内部から測量機1外部に向かう方向を視準方向と呼ぶ場合がある。
〔測量機のシステム構成〕
図12は、測量機1のシステム構成を示すブロック図である。
測量機1は、第1撮像部11及び第2撮像部12を含む撮像部7と第3撮像部14とを備えている。測量機1は、測距部13と、水平角駆動部15と、レーザポインタ16と、鉛直角駆動部17と、第1表示部18と、第2表示部19と、通信部20と、水平角操作部用エンコーダ21と、鉛直角操作部用エンコーダ22と、水平角操作部23と、鉛直角操作部24と、水平角測角部31と、鉛直角測角部32と、画像処理部33と、一時記憶部34と、記憶部35と、操作部36と、制御部40と、傾き検出部37とを備えている。
第1撮像部11及び第2撮像部12は、制御部40により設定された撮像条件(ゲイン、蓄積時間(シャッタ速度)等)に基づいて撮像して生成した画像データを画像処理部33に出力する。第1撮像部11及び第2撮像部12は、撮像して生成した画像データに基づく画像の明るさが適正となるよう制御部40により適正露出が自動的に設定される。第1撮像部11及び第2撮像部12は、制御部40により自動露出機能が実行される。第1撮像部11における第1光学系は、制御部40によるフォーカス調節指示に応じてフォーカスレンズ駆動部がフォーカスレンズの位置を光軸方向に沿って変更可能に構成されている。第3撮像部14は、制御部40により設定された撮像条件(ゲイン、蓄積時間(シャッタ速度)等)に基づいて撮像して生成した第3画像データを画像処理部33に出力する。第1撮像部11は、オートフォーカス部11aを備えている。
画像処理部33は、第1撮像部11、第2撮像部12及び第3撮像部14から出力された画像データに対して画像処理を施す。画像処理部33で画像処理が施された画像データは、一時記憶部34に記憶される。例えばライブビュー動作時において、第1撮像部11や第2撮像部12、第3撮像部14が連続して撮像した場合、順次出力される画像データは、一時記憶部34に順次記憶される。
一時記憶部34は、画像データを一時的に記憶する。一例として、一時記憶部34は、揮発性メモリである。一例として、一時記憶部34は、RAM(Random Access Memory)である。
画像処理部33で施される画像処理は、表示用画像データを生成する処理、圧縮した画像データを生成する処理、記録用画像データを生成する処理、画像データに基づく画像から一部切り出すことで電子的に画像を拡大する(デジタルズーム)処理等が挙げられる。画像処理部33により生成された表示用画像データは、制御部40の制御により第1表示部18や第2表示部19に表示される。
なお、測量機1は、視準用接眼光学系や求心用接眼光学系を備えていてもよいし、備えていなくてもよい。
画像処理部33により生成された記録用画像データは、通信部20を介して外部メモリに記録される。一例として、外部メモリは、不揮発性メモリである。一例として、外部メモリは、フラッシュメモリやハードディスクや光ディスクである。
測距部13は、測量部であり、一例として、発光素子とダイクロイックミラーと受光素子とを備える光波距離計として構成されている。一例として、発光素子は、パルスレーザダイオード(PLD)等のレーザダイオード、赤外発光ダイオード等の発光ダイオードである。一例として、測距部13は、発光素子が出射する測距光を、ダイクロイックミラーによって第1対物レンズ8と同軸の光線として測量対象物である第1ターゲット(例えば反射プリズムや構造物の外観を構成する測定面)に向けて送光する。測量対象物で反射された光は、再び第1対物レンズ8に戻り、ダイクロイックプリズムで測距光と分離され、受光素子へ入射する。測量対象物までの距離は、発光素子から測距部13内部で受光素子に入射する参照光と、測量対象物からの測距光との時間差から算出される。なお、測距部13は、位相差に基づいて測量対象物までの距離を算出する位相差測距方式であってもよい。
レーザポインタ16は、第1ターゲットに対して送光し第1ターゲットを照射する。一例として、レーザポインタ16は、測距部13の発光ダイオードである。一例として、レーザポインタ16と測距部13は、同一の発光ダイオードを兼用する。レーザポインタ16は、第1対物レンズ8と同軸の光線を第1ターゲットに向けて送光する。一例として、レーザポインタ16は、測距部13とは別に設けられた発光ダイオードである。
水平角測角部31は、視準軸O3の水平方向の回転角度(鉛直軸O1周りの角度)を検出する。水平角測角部31は、検出した回転角度に対応する信号を制御部40に出力する。水平角測角部31は、一例として、エンコーダにより構成されている。水平角測角部31は、一例として、光学式アブソリュート形ロータリエンコーダにより構成されている。水平角測角部31は、水平角を検出する角度検出部である。
鉛直角測角部32は、視準軸O3の鉛直(高低)方向の回転角度(水平軸O2周りの角度)を検出する。鉛直角測角部32は、検出した角度に対応する検出信号を制御部40に出力する。鉛直角測角部32は、一例として、エンコーダにより構成されている。鉛直角測角部32は、一例として、光学式アブソリュート形ロータリエンコーダにより構成されている。鉛直角測角部32は、鉛直角を検出する角度検出部である。
水平角操作部用エンコーダ21は、水平角操作部23の回転角度を検出する。水平角操作部用エンコーダ21は、検出した回転角度に対応する信号を制御部40に出力する。
水平角駆動部15は、整準部2に対して本体部6を鉛直軸O1周りに回転駆動する。水平角駆動部15が整準部2に対して本体部6を鉛直軸O1周りに回転駆動することで、撮像部7は、整準部2に対して鉛直軸O1周りに回転する。一例として、水平角駆動部15は、モータで構成されている。
一例として、水平角駆動部15は、ユーザにより第1表示部18や第2表示部19のタッチパネルがタッチされた位置に基づき制御部40が算出した駆動量に応じて、整準部2に対して本体部6を鉛直軸O1周りに回転駆動する。
一例として、水平角駆動部15は、制御装置50や遠隔操作装置等の外部機器から回転駆動指示を受け付けた場合、外部機器から受け付けた回転駆動指示に基づき制御部40が算出した駆動量に応じて、整準部2に対して本体部6を鉛直軸O1周りに回転駆動する。
一例として、水平角駆動部15は、水平角操作部23が操作された場合、整準部2に対して本体部6を測量機1の鉛直軸O1周りに回転駆動する。
鉛直角操作部用エンコーダ22は、鉛直角操作部24の回転角度を検出する。鉛直角操作部用エンコーダ22は、検出した回転角度に対応する信号を制御部40に出力する。
鉛直角駆動部17は、本体部6に対して撮像部7を水平軸O2周りに本体部6に対して撮像部7を水平軸O2周りに回転駆動する。鉛直角駆動部17は、例えばモータで構成されている。
一例として、鉛直角駆動部17は、ユーザにより第1表示部18や第2表示部19のタッチパネルがタッチされた位置に基づき制御部40が算出した駆動量に応じて、本体部6に対して撮像部7を水平軸O2周りに回転駆動する。
一例として、鉛直角駆動部17は、外部機器から回転駆動指示を受け付けた場合、外部機器から受け付けた回転駆動指示に基づき制御部40が算出した駆動量に応じて、本体部6に対して撮像部7を水平軸O2周りに回転駆動する。
一例として、鉛直角駆動部17は、鉛直角操作部24が操作された場合、本体部6に対して撮像部7を水平軸O2周りに回転駆動する。
通信部20は、外部機器である制御装置50との通信を行う。通信部20は、外部機器とのデータ入出力を行うインタフェースである。通信部20として、例えば、ActiveSync規格の通信用インタフェースや、USB(Universal Serial Bus)規格の通信用インタフェースや、Bluetooth(登録商標)規格の無線通信用インタフェースや、RS−232Cシリアル通信規格の通信用インタフェースが挙げられる。通信部20は、測量機1で撮像された画像データや位置データを制御装置50に対して送信し、また、制御装置50から送信された測量機1を制御する指示信号を受信する。一例として、通信部20は、制御装置50を介することなく、直接サーバ装置60と通信する。一例として、測量機1で撮像された画像データや位置データをサーバ装置60に対して送信する。
記憶部35は、測量機1の動作に必要なプログラムやパラメータ、工事の基礎となる設計データ等を記憶する。記憶部35は、プログラム、パラメータ及び設計データを測量機1の非動作時にも失われないように格納する。記憶部35は、一例として、不揮発性メモリやハードディスクである。一例として、記憶部35は、ROM (Read Only Memory)である。一例として、記憶部35は、測量機1が撮像した測定面の画像データを保存する。一例として、記憶部35は、欠陥検出プログラムを保存する。欠陥検出プログラムは、測量機1で実行することもできる。記憶部35は、傾き検出部37により検出された測量機1の鉛直軸の傾き状態(傾斜データ)を記憶する。記憶部35に記憶されている傾斜データは、例えば制御装置50に送信され、測量機1で撮像して生成された画像データに対して制御装置50がオルソ補正処理を施す際に使用される。制御装置50は、測量機1で撮像して生成された画像データに対して、測量機1の鉛直軸の傾き状態に基づいてオルソ補正処理を施す。一例として、記憶部35は、補正用ターゲット300のターゲット画像データから線分オブジェクト302の第1線幅データを算出し、欠陥検出プログラムが検出した欠陥の欠陥データを補正する補正プログラムを保存する。
操作部36は、一例として、筐体に配置された押ボタン、ボリュームスイッチ、スライドスイッチ等の機械的な操作部材である。操作部36は、一例として、第1表示部18や第2表示部19の表示部の表示面に配置されたタッチパネルである。機械的な操作部材は、ユーザにより操作されると、各操作部材に関連付けられた機能を実行する指示信号を制御部40に出力する。また、タッチパネルは、表示されたオブジェクトがタッチされたとき、オブジェクトに定義づけられた機能を実行する指示信号を制御部40に出力する。
制御部40は、測量機1の全体の動作を制御する。
一例として、制御部40は、操作部36や外部機器からの指示信号に従って、整準部2に対して本体部6を鉛直軸O1周りに回転駆動する。一例として、制御部40は、操作部36や外部機器からの指示に従って、本体部6に対して撮像部7を水平軸O2周りに回転駆動する。一例として、制御部40は、ユーザにより水平角操作部23が操作されたことに応じて、本体部6に対して撮像部7を鉛直軸O1周りに回転駆動する。
一例として、制御部40は、第1撮像部11及び第2撮像部12を動作して、設定された撮像条件に基づいて、第1ターゲットである反射プリズムや構造物の外観を構成する測定面を撮像し、撮像して生成した画像データを画像処理部33に出力する。また、補正用ターゲット300のターゲット画像データを画像処理部33に出力する。
一例として、制御部40は、制御装置50から駆動指示信号が入力されると、指示信号に従って、第1撮像部11(オートフォーカス部11aを含む)、第2撮像部12、第3撮像部14、撮像部7、水平角駆動部15、鉛直角駆動部17等を駆動する。
一例として、制御部40は、制御装置50に対して撮像部7が生成した画像データや観測データを通信部20から出力する。
〔制御装置のシステム構成〕
図13は、制御装置50のシステム構成を示すブロック図である。
制御装置50は、制御部51と、表示部52と、操作部53と、記憶部54と、通信部55とを備えている。
制御部51は、コンピュータと同様な構成を有しており、CPU51a、ROM51b及びRAM51cがバスを介して相互に接続されている。一例として、制御部51は、記憶部54を構成するハードディスク等にインストールされた欠陥検出プログラム51dを実行する。一例として、制御部51は、表示部52に画像等を表示させる表示制御部として機能する。制御部51は、撮像部7が生成した画像データに基づく画像や観測データに基づく情報を表示部52に表示させる。一例として、制御部51は、構造物の外観を構成する測定面の画像を表示部52に表示させる。一例として、制御部51は、外観画像データに含まれる構造物の欠陥を検出する欠陥検出部として機能する。制御部51は、外観画像データに対応づけられた座標データを用いて、欠陥検出部により検出された欠陥に関する欠陥データを算出する算出部として機能する。一例として、制御部51は、測量機1に対して、第1撮像部11、第2撮像部12、第3撮像部14、撮像部7、水平角駆動部15、鉛直角駆動部17等を駆動する指示信号を通信部55を介して出力する。一例として、補正プログラム51eを実行する。補正プログラム51eは、補正用ターゲット300毎の既知の基準オブジェクト301の第2線幅データを保持している。制御部51は、補正用ターゲット300のターゲット画像データから基準オブジェクト301を検出する。そして、基準オブジェクト301の第1線幅データを算出し、第2線幅データと比較し、欠陥幅データを補正する補正データを算出する算出部として機能する。さらに、制御部51は、補正データを欠陥幅データに適用する補正部として機能する。
表示部52は、画像やオブジェクトを表示する表示機能を有している。一例として、表示部52は、液晶ディスプレイ、有機ELディスプレイ、CRTである。一例として、表示部52は、表示部の表示面に、第1撮像部11や第2撮像部12が生成した画像データに基づく画像や観測データに基づく情報を表示する。
操作部53は、一例として、キーボードであり、マウスであり、表示部52の表示面に配置されたタッチパネルである。操作部53は、表示部52に表示されたオブジェクトを選択することによって、オブジェクトに定義づけられた機能を実行する指示を制御部51に出力する。
記憶部54は、プログラムやパラメータ等を測量機1の非動作時にも失われないように格納する。一例として、記憶部54は、不揮発性メモリやハードディスクである。一例として、記憶部54は、欠陥検出プログラム51d、補正プログラム51e、工事の基礎となる設計データ等を記憶する。一例として、記憶部54は、構造物の外観を構成する測定面の外観画像データや補正用ターゲット300を撮像したターゲット画像データを記憶する。一例として、記憶部54は、グローバル座標系で作成された地図データを記憶する。
通信部55は、測量機1の通信部20と通信をする。一例として、通信部55は、測量機1で撮像され画像データや位置データを受信し、また、測量機1を制御する指示信号を出力する。一例として、通信部55は、ワイドエリアネットワークやローカルエリアネットワーク等のネットワークを介して外部機器と通信する。一例として、通信部55は、外部のサーバ装置と通信する。一例として、通信部55は、サーバ装置60に対して欠陥データを送信し、サーバ装置60に保存する。一例として、通信部55は、サーバ装置60に対して、構造物の外観を構成する測定面の画像データを送信する。
〔サーバ装置のシステム構成〕
図14は、サーバ装置60のシステム構成を示すブロック図である。
サーバ装置60は、制御部61と、記憶部62と、通信部63とを備えている。制御部61は、コンピュータと同様な構成を有しており、CPU、ROM及びRAMがバスを介して相互に接続されている。記憶部62は、一例として大容量のハードディスクである。制御部61は、記憶部62に対して各種のデータを保存すると共に、各種のデータを読み出す。一例として、制御部61は、測量機1が撮像した補正用ターゲット300のターゲット画像データと、ターゲット画像データを撮像した測量機1の第1測量機識別データとしての測量機識別データと、撮像日時等のデータとを関連付けて保存する。一例として、制御部61は、測量機1が撮像した構造物の外観画像データと、外観画像データを撮像した測量機1の第2測量機識別データとしての測量機識別データと、撮像日時等のデータとを関連付けて保存する。一例として、制御部61は、補正用ターゲット300のターゲット画像データから基準オブジェクト301を検出する。そして、基準オブジェクト301の第1線幅データを算出し、既知の基準オブジェクト301の第2線幅データとを比較し、欠陥幅データを補正する補正データを算出し記憶部62に保存する。一例として、制御部61は、補正データを欠陥データに適用し、補正後の欠陥データを保存する。
通信部63は、測量機1の通信部20や制御装置の通信部55と通信をする。一例として、通信部63は、ワイドエリアネットワークやローカルエリアネットワーク等のネットワークを介して外部機器と通信する。
〔構造物の欠陥検出の概要〕
図15は、構造物の欠陥検出の概要を示す図であり、図15(a)は、測定面と測定範囲の関係を示す図である。
欠陥検出では、構造物における壁面201において、少なくとも任意の2点を観測(視準及び測距)して得られた観測データ(測距部13で測距して得られた測距データ、水平角測角部31で測角して得られた水平角データ及び鉛直角測角部32で測角して得られた鉛直角データ)から測定面200を定義する。測定面200を定義するとき、第2撮像部12で撮像して生成された画像データに基づく画像を第1表示部18及び第2表示部19に表示したり、レーザポインタ16から送光したりすることで、ユーザは測量機1が構造物のどこを観測しようとしているのかを把握することが可能となる。
測定範囲202は、構造物における少なくとも任意の2点について測角(水平角及び鉛直角を測定)することで設定される。測定面200の定義を行った後に測定範囲202の設定を行う場合、測定範囲202の設定は、測定面200を定義しているため、構造物の少なくとも任意の2点を測距することなく測角するだけでも可能となる。測定面200の定義を行った後に測定範囲202の設定を行う場合、測定範囲202の設定は、構造物の少なくとも任意の2点について、測距部13で測距して得られた測距データ、水平角測角部31で測角して得られた水平角データ及び鉛直角測角部32で測角して得られた鉛直角データのうち、測距部13で測距して得られた測距データを用いることなく、水平角測角部31で測角して得られた水平角データ及び鉛直角測角部32で測角して得られた鉛直角データを用いるだけで可能となる。
測定面200を定義するときに観測する2点と、測定範囲202を設定するときに測角する2点は、異なる観測点でもよいし、同じ観測点でもよい。
図15(b)は、測定面と測定範囲と撮像範囲の関係を示す図である。測量機1は、設定した測定範囲202すべての外観画像データを得るために、第1撮像部11による撮像を順次行い、第1画角の撮像範囲203の外観画像データを順次生成する。測定面200が既に定義されていることで、デジタル画像である外観画像データに基づく外観画像の任意の画素の位置は、撮像時に視準した観測点からの角度を変換することによって座標データで特定することができる。各外観画像データに対しては、欠陥の検出が行われる。検出された欠陥の位置は、欠陥データである座標データで特定される。一例として、外観画像データの位置データや欠陥の位置等を示す欠陥データは、グローバル座標データである。撮像された測定範囲202における各外観画像データは、オルソ補正処理が行われ、次いで、スティッチング処理が行われ、記憶部54等に保存される。
図16は、構造物の欠陥検出の手順を示すフローチャートである。
ステップS1において、制御装置50の制御部51は、測量機1のリモート制御を開始し、測量機1は、構造物の測定面200等を視準する。一例として、制御部51は、測量機1の制御部40を介して、第1撮像部11及び第2撮像部12の画角の切り替え、撮像、測距、オートフォーカス、マニュアル露出、ホワイトバランス、レーザポインタ16のオンオフ切り替え等を行うことができるようになる。一例として、制御部51は、測角値や整準状態を表示部52に表示させる。
ステップS2において、制御部51は、記憶部54に外観画像データを保存する記録フォルダを作成する。
ステップS3において、測量機1は、制御部51の制御に従って、トライアルメジャーを行う。一例として、トライアルメジャーでは、ユーザがこれから欠陥検出したいと考える構造物の外観に現れた欠陥を含むように測量機1の第1撮像部11又は第2撮像部12で撮像する。一例として、欠陥は、第1撮像部11又は第2撮像部12で撮像して生成された外観画像データを制御装置50で画像解析しコントラストを測定することによって検出される。制御部51は、第1撮像部11又は第2撮像部12で撮像して生成された外観画像データに基づく外観画像を表示部52に表示させる。ユーザは、表示部52に表示された外観画像を見て、操作部53を操作し、制御部51は、制御部40を介して、第1撮像部11の感度、露出等を調整し、第1撮像部11の設定を、外観画像の中から欠陥を検出できる設定とする。一例として、トライアルメジャーは、複数の場所で行う。一例として、測量機1は、トライアルメジャーの結果、発見された測定環境の良い場所で器械設置される。
ステップS4において、測量機1の器械設置が行われる。図17は、器械設置を説明する図である。一例として、器械設置では、第3撮像部14で第2ターゲットを撮像して測量機1の整準及び求心をする。一例として、測量機1は、制御部51の制御に従って、既知点2点A1(X1,Y1,Z1),A2(X2,Y2,Z2)それぞれを測角及び測距する。図17に示すように、器械設置により、測量機1は、グローバル座標204上の測量機1の位置を示す座標値((X,Y,Z)=(Xi,Yi,Zi))を算出することで、グローバル座標204上に設置される。
一例として、トライアルメジャーは、器械設置の前に行われる。一例として、トライアルメジャーは、器械設置の後に行われる。一例として、トライアルメジャーと器械設置の順番は、制御装置50を用いてユーザが設定する。ユーザがトライアルメジャーと器械設置の順番を設定する場合は、一例として、表示部52にトライアルメジャーと機器設置を選択するためのオブジェクトを表示させ、操作部53で選択させる。器械設置は、手間のかかる作業であるので、トライアルメジャーの後に行うことが好ましい。
ステップS5において、測量機1は、制御部51の制御に基づいて、測定面200を定義する。一例として、測量機1は、構造物の外観(例えば壁面201)の少なくとも任意の2点について測角及び測距を行い、任意の2点を含む面を測定面200として定義する。測量機1は、器械設置によりグローバル座標204における測量機1の位置を特定し、測定面200を定義することで、測定面200のいずれの観測点もグローバル座標204で特定することができる。
図18は、測定面200の定義により特定可能なデジタル画像上の任意の画素の位置データを説明する図である。
上述したように、測定面200の定義がされることで、測量機1が撮像した撮像範囲203における任意の画素(P)は、測量機1が十字形状を有したレチクルの十字線中心が示す観測点Oの角度(HA,VA)を算出し、画素(P)の観測点Oからの角度をグローバル座標データに変換することができる。これにより、外観画像データにおける各画素の位置は、各画素に対して角度観測を行った場合と同じように、位置データであるグローバル座標データで特定することができる。一例として、第1撮像部11の第1撮像素子が1920画素×1080画素を有する場合、デジタル画像は、第1撮像素子が有する画素数に応じた精度で位置を特定することができる。
なお、測定面200の定義方法についての詳細は後述する。
ステップS6において、測量機1は、制御部51の制御に基づいて、定義された測定面200内において、構造物の欠陥検出を行う測定範囲202を指定する。
なお、測定範囲202の定義についての詳細は後述する。
ステップS7において、測量機1は、制御部51の制御に従って、水平角駆動部15を駆動して撮像部7を鉛直軸O1周りに回転駆動し、鉛直角駆動部17を駆動して撮像部7を水平軸O2周りに回転駆動する。測量機1は、制御部51の制御に従って、測定範囲202の自動測定を行う。測量機1は、撮像毎に視準方向を変えながら、測定範囲202を第1撮像部11で順次撮像する。制御装置50には、順次撮像された外観画像データが位置データと共に入力される。制御部51は、測量機1から入力された外観画像データについて、欠陥を検出する。
なお、第1撮像部11の自動測定についての詳細は後述する。
〔測定面の定義(ステップS5)〕
測定対象となる構造物の外観には、一例として、平面がある。平面の種類には、一例として、鉛直面及び水平面と、斜面とがある。
図19は、鉛直面の測定面200の定義方法を示す図である。鉛直面の測定面200の定義方法は、鉛直の測定面200上の任意の2つの観測点P1,P2を、第2撮像部12で撮像しながら、例えばレーザポインタ16を用いて指定し、観測点P1,P2の測角及び測距による観測を行う。測量機1は、制御部51の制御に従って、視準、測距を行った任意の観測点P1,P2を含む鉛直面を測定面200として定義する。
図20は、水平面の測定面200の定義方法を示す図である。水平面の測定面200の定義方法は、水平の測定面200上の任意の2つの観測点P1,P2を、第2撮像部12で撮像しながら、例えばレーザポインタ16を用いて指定し、観測点P1,P2の測角及び測距による観測を行う。測量機1は、制御部51の制御に従って、視準、測距を行った任意の観測点P1,P2を含む水平面を測定面200として定義する。
鉛直面及び水平面の任意の観測点の数は、2点以上であれば、特に限定されるものではない。
図21は、斜面の測定面200の定義方法を示す図である。斜面の測定面200の定義方法は、斜面の測定面200上の任意の3つの観測点P1,P2,P3を、第2撮像部12で撮像しながら、例えばレーザポインタ16を用いて指定し、測角及び測距による観測を行う。測量機1は、制御部51の制御に従って、測角及び測距を行った任意の観測点P1,P2,P3を含む斜面を測定面200として定義する。
斜面の任意の測点の数は、3点以上であれば、特に限定されるものではない。
一例として、測量機1は、制御部51の制御に従って、測定面200を定義するときに、常に3点以上を測角及び測距を行い、3点の観測データに基づいて、測定面200が鉛直もしくは水平であるか、斜面であるかを判定する。
〔測定範囲の定義(ステップS6)〕
図22(a)に示すように、測定範囲202を含む測定面200が鉛直面の場合、測量機1は、制御部51の制御に従って、第2撮像部12で撮像しながら、レーザポインタ16を用いて、測定面200内の任意の2つの観測点P3,P4を指定し、各観測点P3,P4について、測角を行う。この測角位置は、測定面200が定義されていることで、グローバル座標データとして算出される(P3(X3,Y3,Z3)、P4(X4,Y4,Z4))。測定範囲202は、単に指定された観測点P3,P4によって指定された範囲ではなく、定義された測定面200に投影された範囲となる。測定範囲202が測量機1と正対している場合、測定範囲202は、観測点P3、P4を対角とした長方形となる。
図22(b)に示すように、測定範囲202が測量機1と正対していない場合には、測定した角度のみから単純にP3、P4の範囲の長方形205とすると、一部観測できない領域206aが発生する。長方形205には、測定範囲202に含まれない不要な領域206bも発生する。測量機1は、制御部51の制御に従って、定義した測定面200に投影した測定範囲202aを計算により求め設定する。この測定範囲202aは、測量機1に対して遠い側の辺が測量機1に対して近い側の辺に対して短い四角形となる。
一例では、測定面200を定義する際に指定した任意の観測点P1,P2をそのまま測定範囲を指定するための観測点P3,P4として用いることもできる。
測定範囲202は、長方形形状が1つだけの場合に限定されない。測定範囲202は、複数であってもよく、2つ以上に追加することも可能であり、また、指定した測定範囲の一部の範囲を除外することも可能である。
図23(a)は、2点を指定して測定範囲を設定した状態を示す図である。2点A,Bを指定した場合、測定範囲202は、指定点である2点A,Bを対角とした長方形207となる。一例として、この測定範囲202の中に欠陥401が含まれる。また、一例として、この測定範囲202の中に補正用ターゲット300が含まれる。さらに、一例として、この測定範囲202の中に、欠陥401及び補正用ターゲット300が含まれる。
図23(b)は、設定した測定範囲の一部を除外し測定範囲から除外する場合を示す図である。長方形207の内側にさらに指定点である2点C,Dを指定した場合には、長方形207の内側に、2点C,Dを対角としたさらに長方形208が指定される。一例として、この長方形208は、測定範囲202の長方形207から除外する領域として設定される。一例として、測定範囲202から長方形207を除外した領域に、欠陥401が含まれる。また、一例として、補正用ターゲット300が含まれる。さらに、一例として、欠陥401及び補正用ターゲット300が含まれる。
図23(c)は、測定範囲を複数個所に設定した状態を示す図である。指定点A,Bを指定した長方形207の外側にさらに2点E,Fを指定した場合には、追加の測定範囲202となる2点E,Fを対角とした長方形207aが設定される。一例として、長方形207は、欠陥を検出するための測定範囲であり、長方形207aは、補正用ターゲット300を貼付する測定範囲である。
図23(d)は、6点を指定して測定範囲を設定した状態を示す図である。一例として、測定範囲202は、指定点として6点O,P,Q,R,S,Tを指定することで、長方形以外の形状209を有した測定範囲202を設定することができる。指定する点の数は、限定されるものではなく、3つ以上の指定点の数に応じて、様々な形状を有した測定範囲202を指定することが可能になる。一例として、この測定範囲202の中に欠陥401が含まれる。また、一例として、この測定範囲202の中に補正用ターゲット300が含まれる。さらに、一例として、この測定範囲202の中に、欠陥401及び補正用ターゲット300が含まれる。
図23(e)6点を指定して設定された測定範囲の一部を除外する場合を示す図である。測定範囲202は、長方形以外の形状209の内側に、指定点である3点X,Y,Zを指定することで、除外する領域となる三角形208aを指定することができる。除外する領域は、指定点を3点以上とすることで、三角形以外の形状とすることができる。一例として、三角形208aを除外した測定範囲202に、欠陥401が含まれる。また、一例として、補正用ターゲット300が含まれる。さらに、一例として、欠陥401及び補正用ターゲット300が含まれる。
一例として、3点以上指定する場合において、隣接する指定点の間は、直線で結ぶのではなく、曲線で結ぶこともできる。一例として、直線と曲線は、ユーザの操作部53の操作に応じて選択できる。
〔自動測定(ステップS7)〕
設定した測定範囲202の大きさによっては、第1撮像部11による1回の撮像では設定した測定範囲202をすべてカバーすることができないことがある。一例として、測量機1は、制御部51の制御に従って、撮像範囲が重複するように、且つ、重複する領域が不必要に大きくならないように、水平角駆動部15及び鉛直角駆動部17を駆動制御する。測量機1は、制御部51の制御に従って、測定範囲202の全体を撮像する。
図24は、測量機1の水平軸周りの回転駆動の範囲を説明する図である。測量機1の鉛直角駆動部17による水平軸O2周りの回転駆動は、次のように制御される。
一例として、測定面200の種類が鉛直面、斜面である場合は、概ね、鉛直角が45°以上、135°以下の範囲で撮像部7が水平軸O2周りに回転駆動される。また、測定面200の種類が鉛直面、斜面である場合は、概ね、鉛直角が225°以上、315°以下の範囲で撮像部7が水平軸O2周りに回転駆動される。
一例として、天井面の場合は、概ね、鉛直角が0°以上、45°以下の範囲で撮像部7が水平軸O2周りに回転駆動される。また、天井面の場合は、概ね、鉛直角が315°以上、360°以下の範囲で撮像部7が水平軸O2周りに回転駆動される。
鉛直角とは、水平軸O2周りにおける撮像部7の回転角で、測量機1の視準方向が天頂を向いているときを0°、水平を向いているときを90°として示す角度である。
図25は、ステップS7で示した自動測定の詳細な手順を説明するフローチャートである。
ステップS11において、測量機1は、制御部51の制御に従って、測定範囲202内の撮像領域を順次撮像できるように、水平角駆動部15及び鉛直角駆動部17を制御し、撮像部7を回転する。そして、測量機1は、制御部51の制御に従って、測定範囲202内において、現在の撮像領域を撮像した後、隣接する撮像領域に順次移動し、第1撮像部11で測定範囲202の全ての領域を自動測定する。
なお、測量機1の自動測定についての詳細は後述する。
ステップS12において、測量機1は、制御部51の制御に従って、各撮像領域との距離を算出する。ステップS13において、測量機1は、制御部51の制御に従って、第1撮像部11のオートフォーカス制御を行う。オートフォーカス制御では、第1撮像部11における第1光学系を構成するフォーカスレンズを、制御部40によるフォーカス調節指示に応じて光軸方向に沿って変位し、光を第1撮像素子上に合焦させる。
一例として、オートフォーカス制御は、測定点のグローバル座標データと測量機1の位置を示すグローバル座標データから観測点と測量機1との距離を算出し、算出した距離に基づいてフォーカスレンズを光軸方向に沿って変位する。
一例として、オートフォーカス制御は、測距部13で、測量機1と観測点との距離を測距して、測距した距離に基づいてフォーカスレンズを光軸方向に沿って変位する。
一例として、オートフォーカス制御は、フォーカスレンズをコントラストが最大となる位置に変位させるコントラスト方式で行う。
測定面200は、コンクリート壁面であることが多く、コントラストを検出しにくい。オートフォーカス制御は、ステップS12で測距した距離に基づいて行う方式が好ましい。
ステップS14において、測量機1は、制御部51の制御に従って、測定範囲202における第1画角の各撮像範囲203を撮像する。測量機1は、制御部51の制御に従って、各撮像範囲203のレチクルの十字線中心が示す観測点Oの角度(HA,VA)を算出する。測量機1は、制御部51の制御に従って、撮像した外観画像データの各画素のグローバル座標データを、観測中心の観測点Oからの角度を変換することによって算出する。これにより、撮像範囲203の全ての画素がグローバル座標データに変換される。
一例として、測量機1は、外観画像データの中に欠陥が検出されると、欠陥の始点と終点の画素を、位置データとしての観測中心の観測点Oからの角度を変換することによって算出する。
測量機1は、グローバル座標データにより画素の位置が特定された外観画像データを、制御装置50に送信する。制御部51は、表示部52に、順次、外観画像データに基づく外観画像を表示させる。
一例として、測量機1は、撮像した各外観画像データの位置データとして、全ての画素のグローバル座標データを算出し、制御装置50に出力する。
ステップS15において、測量機1は、制御部51の制御に従って、オルソ補正処理を行うため、撮像した外観画像の4隅の座標データを算出する。4隅の座標データは、各外観画像データにおける4隅の画素の座標データである。
ステップS16において、制御部51は、撮像した外観画像データのそれぞれについて、ひびや窪み等の欠陥の検出を行い欠陥の位置や長さや幅を測定する。
なお、欠陥の検出についての詳細は後述する。
ステップS17において、制御部51は、各外観画像データのオルソ化処理を行う。一例として、制御部51は、外観画像データにオルソ補正処理を施すオルソ補正処理部として機能する。
ステップS18において、制御部51は、各外観画像データを繋ぎ合わせるスティッチング処理を行う。一例として、制御部51は、オルソ補正処理が施された第1外観画像データとオルソ補正処理が施された第2外観画像データとをつなぎ合わせるスティッチング処理を施すスティッチング処理部として機能する。
なお、オルソ処理とスティッチング処理についての詳細は後述する。
〔測量機1の自動測定(ステップS7)〕
測定面200である壁面が鉛直面、斜面である場合は、概ね、鉛直角が45°以上、135°以下の範囲で撮像部7が水平軸O2周りに回転駆動される。また、測定面200である壁面が鉛直面、斜面である場合は、概ね、鉛直角が225°以上、315°以下の範囲で撮像部7が水平軸O2周りに回転駆動される。
図26は、鉛直面の測定範囲202をタイル状に自動測定する状態を説明する図である。
一例として、測定範囲202は、長方形である。一例として、測定範囲202の内側には、測定の除外領域を有していない。測量機1は、制御部51の制御に従って、測定範囲202より広い長方形の全撮像範囲211を、第1撮像部11を用いて撮像する。自動測定では、第1画角の第1撮像部11を用いる。第1撮像部11は、全撮像範囲211内を、第1画角の撮像範囲203の大部分が重ならないように撮像する。一例として、各撮像範囲203は、上下左右に隣接する撮像範囲203と外縁部が重複する重複部分210を有する。各撮像範囲203は、一例として、同じ大きさの長方形である。各撮像範囲203は、一例として、同じ大きさの正方形でもよい。測量機1は、撮像範囲203がタイル状に並ぶように、全撮像範囲211を撮像する。一例として、測量機1は、全撮像範囲211内において、第1撮像部11をS字状に移動させて、全撮像範囲211を撮像する。撮像開始は、S字形状のルートの何れの端部であってもよい。一例として、測量機1は、全撮像範囲211を、連続して撮像できるルートで順次撮像する。一例として、測量機1は、全撮像範囲211を、水平角駆動部15及び鉛直角駆動部17による撮像部7の移動量が最少となるルートで順次撮像する。一例として、測量機1は、現在の撮像範囲203に対して次に撮像する撮像範囲203を、優先して現在の撮像範囲203に対して隣接する撮像範囲203とする。
〔欠陥検出・測定(ステップS16)〕
図27は、欠陥の一例である欠陥検出及び測定をする手順を示すフローチャートである。
ステップS21において、測量機1は、制御部51の制御に従って、測定範囲202における各撮像範囲203を撮像する。一例として、測量機1は、制御部51の制御に従って、各撮像範囲203を撮像する際、測量機1が十字形状を有したレチクルの十字線中心が示す観測点の角度(HA,VA)を算出し、中心の観測点からの角度(HA,VA)を変換することによって、各画素のグローバル座標データを算出する。測量機1は、位置データとして、撮像した外観画像データ及び画素に対応づけられたグローバル座標データを制御装置50に送信する。
ステップS22において、制御装置50の制御部51は、表示部52に、外観画像データに基づく外観画像を順次表示させる。図28(a)は、欠陥401を有する外観画像の一例を示している。
ステップS23において、制御部51は、欠陥検出部として機能する。制御部51は、各外観画像データについて、欠陥の検出を行う。欠陥の検出は、外観画像のコントラストを検出して行われる。制御部51は、欠陥を検出すると、欠陥の位置を示す欠陥データを算出する。一例として、欠陥データは、グローバル座標系で特定される座標データである。欠陥データは、位置データとしてのレチクルの十字線中心が示す観測点Oからの角度を変換することによって欠陥の位置を特定する座標データである。具体的に、制御部51は、欠陥401の始点の画素に対応したグローバル座標データを特定する。また、制御部51は、欠陥401の終点の画素に対応したグローバル座標データを特定する。制御部51は、欠陥の始点と終点との間の距離を、欠陥の欠陥長さデータとして算出する。制御部51は、欠陥データに基づく情報を、外観画像データに基づく外観画像と共に表示部52に表示させる。
一例として、検出するひびや窪みの幅は、特に限定されないが、一例として、0.2mm以上であり、また、0.1mm以上である。
一例として、欠陥401の検出は、測量機1が行ってもよい。
ステップS24において、制御部51は、検出した欠陥に対して強調表示処理を行う。図28(b)に示すように、一例として、強調表示処理は、検出された欠陥に対して、周辺の色とは異なる色や線種の異なるラインオブジェクト401aを重畳する。一例として、ステップS24は、省略してもよい。
ステップS25において、制御部51は、検出した欠陥の欠陥幅データを算出する。一例として、欠陥幅データは、欠陥401における欠陥401が延びる方向の一方の側縁の特定点と、一方の側縁の接線に対する法線方向に位置する他方の側縁上の特定点との距離である。この2点間の距離は、一例として、2点のグローバル座標データに基づいて算出される。また、一例として2点間の画素数に基づき算出される。なお、欠陥401の検出のみを目的とする場合、ステップS24や以降の処理を省略してもよい。
ステップS26において、制御部51は、欠陥のひびが折れ曲がる場所や幅が変化する場所を変化点402として検出する。制御部51は、隣接する変化点402の間のセグメント403を一単位として取り扱う。制御部51は、欠陥関連データとしての各セグメント403の始点と終点の画素に対応したグローバル座標データを特定する。制御部51は、各セグメント403の始点と終点との間の距離を、セグメント403の欠陥長さデータとして算出する。また、制御部51は、各セグメント403の欠陥幅データを算出する。図28(c)に示すように、一例として、制御部51は、セグメント403毎に、異なる強調表示処理を行う。一例として、制御部51は、同じ幅を有したセグメント403毎に異なる強調表示処理を行う。一例として、強調表示処理は、セグメント403に対して、周辺の色とは異なる色や線種の異なるラインオブジェクト403aを重畳する。
ステップS27において、制御部51は、欠陥に関する欠陥データを格納するデータファイルを作成し、記憶部54のフォルダに保存する。
図29及び図30は、制御装置50の表示部52に表示された検査画面の一例を示す。図29に示すように、表示部52には、検査画面として、外観画像表示オブジェクト406と、スティッチ画像表示オブジェクト407と、一覧表示オブジェクト408とが表示される。
外観画像表示オブジェクト406は、測量機1が直近に撮像した外観画像データに基づく外観画像を表示する。外観画像表示オブジェクト406は、撮像された順番に、外観画像データに基づく外観画像が表示される。
図30に示すように、スティッチ画像表示オブジェクト407は、外観画像表示オブジェクト406に表示される次の外観画像データが制御装置50に入力されると、これまで外観画像表示オブジェクト406に表示されていた外観画像が移動される。一例として、スティッチ画像表示オブジェクト407は、撮像の順番に従って、隣接する外観画像が順次表示される。一例として、スティッチ画像表示オブジェクト407は、縦と横のスクロールバー405を表示する。多数の外観画像データに基づく外観画像が表示された場合、制御部51は、操作部36でスクロールバー405の操作することによって、スティッチ画像表示オブジェクト407を縦横にスクロールする。ユーザは、所望の外観画像を見ることができる。一例として、制御部51は、スティッチ画像表示オブジェクト407に新たに組み込まれた外観画像が表示されるように自動的にスクロールする。一例として、制御部51は、スティッチ画像表示オブジェクト407に、全撮像枚数中何枚目までが表示されたかを示す進捗状況を表示する。
一例として、測量機で順次撮像して生成された第1外観画像データと第2外観画像データは、スティッチング処理が施されていない場合、オルソ補正処理が施された第1外観画像データに基づく第1外観画像が外観画像表示オブジェクト406に表示される。制御部51は、第1外観画像データと第2外観画像データとのスティッチング処理が施された場合、スティッチング処理済み外観画像データに基づくスティッチング処理済み外観画像をスティッチ画像表示オブジェクト407に表示する。
一例として、測量機で順次撮像して生成された第1外観画像データと第2外観画像データは、スティッチング処理が施されていない場合、オルソ補正処理が施された第1外観画像データに基づく第1外観画像が外観画像表示オブジェクト406に表示される。これと共に、第1外観画像データに関する第1欠陥データに基づく第1欠陥情報が一覧表示オブジェクト408に表示される。制御部51は、第1外観画像データと第2外観画像データとのスティッチング処理が施された場合、スティッチング処理済み外観画像データに基づくスティッチング処理済み外観画像をスティッチ画像表示オブジェクト407に表示する。加えて、制御部51は、第1外観画像データに関する第1欠陥データに基づく前記第1欠陥情報と、第2外観画像データに関する第2欠陥データに基づく第2欠陥情報とを一覧表示オブジェクト408に表示する。
一例として、スティッチ画像表示オブジェクト407に外観画像データが移動されるときには、既に、欠陥の検出処理が終了し、オルソ化処理が完了している。欠陥401やセグメント403に対する強調表示処理は、外観画像表示オブジェクト406に表示されているとき行ってもよいし、スティッチ画像表示オブジェクト407に表示されてから行ってもよい。
一覧表示オブジェクト408は、検出した欠陥401のセグメント403毎に、識別データとなる番号を振り、欠陥データとなる始点座標データのX座標データと、始点座標データのY座標データと、始点座標データのZ座標データと、終点座標データのX座標データと、終点座標データのY座標データと、終点座標データのZ座標データとを表示する。また、一覧表示オブジェクト408は、検出した欠陥401のセグメント403毎に、セグメント403の欠陥幅データと欠陥長さデータを表示する。
外観画像表示オブジェクト406及びスティッチ画像表示オブジェクト407において、1つのセグメント403が操作部53によって選択されたとき、制御部51は、強調表示処理として、選択されたセグメント403を四角形状等の選択枠409で包囲する。また、制御部51は、一覧表示オブジェクト408において、選択されたセグメント403のデータに対して網掛け表示等の強調表示を行う。一覧表示オブジェクト408において、1つ又は複数のセグメント403が操作部53によって選択されたとき、制御部51は、選択されたセグメント403を四角形状の選択枠409で包囲する。一例として、選択枠409は、円形や三角形等である。一例として、選択枠409の形状は、セグメント403の長さや形状に応じて適宜変更される。一例として、制御部51は、連続する同じ幅のセグメント403を選択枠409で包囲する。一例として、制御部51は、連続する複数のセグメント403が選択されたとき、選択されたセグメント403のデータに対して網掛け表示等の強調表示を行う。一例として、制御部51は、欠陥データとして、欠陥401の連続性を各セグメント403の始点座標データと終点座標データに基づいて自動検出する。一例として、始点となるセグメント403と終点となるセグメント403が選択されると、最初のセグメント403の始点と最後のセグメント403の終点のセグメントの間における連続するセグメント403を検出し選択する。
〔オルソ補正処理(ステップS17)〕
図31はオルソ補正処理を示す図であり、(a)は、オルソ補正前を示し、(b)は、オルソ補正処理(正射投影補正処理)後を示す。
図31(a)に示すように、測定面200と測量機1とは正対していない場合には、各外観画像データに基づく外観画像411aには歪みが発生する。撮像された各外観画像データは、各画素をグローバル座標で特定することができる。制御部51は、各画素をグローバル座標データを用いて外観画像データを測定面200に投影したオルソ化処理を行う。一例として、制御部51は、各外観画像データの四隅のグローバル座標データを算出する。制御部51は、4隅の画素のグローバル座標データに基づいて測定面200に投影したオルソ補正を行う。オルソ補正処理の際には、記憶部54に格納されている第1撮像部11の第1撮像素子や第1光学系の傾斜に関する傾斜データも考慮に入れる。これにより、オルソ化処理がされた外観画像411bは、全体が測量機1と正対した状態で撮像された画像と同じとなる。制御部51は、検出した欠陥401に対してもオルソ補正処理を行う。
一例として、オルソ補正処理を行うと外観画像が若干劣化するため、オルソ補正処理は、ひび検出・測定後に行う。制御部51は、オルソ補正処理が施されていない外観画像データから欠陥を検出する。一例として、幅検出・測定の前にオルソ補正処理を行ってもよい。
〔スティッチング処理(ステップS18)〕
オルソ化処理が施された各外観画像データにあっても、各画素について、グローバル座標データを有する。
一例として、互いに隣接する外観画像データを繋ぎ合わせる場合、制御部51は、互いに隣接する外観画像データの同じ座標値の画素が重なるように繋ぎ合わせる。
一例として、制御部51は、互いに隣接する外観画像データを繋ぎあわせなくても、座標上に、各外観画像データのグローバル座標データに基づいて、その外観画像データを当てはめる。この場合、制御部51は、各外観画像データの中心のグローバル座標データは任意の画素のグローバル座標データ等、複数の画素のグローバル座標データを用いて、座標上に、外観画像データを当てはめる。
一例として、隣接する外観画像データは、重複部分を有する。重複部分は、同じグローバル座標データが与えられている。スティッチング処理をする際、制御部51は、グローバル座標データで特定される何れか一方の外観画像データの重複部分を削除する。
図32は、4枚の外観画像データに基づく外観画像412a〜412dのスティッチング処理を施した全体外観画像412を示す図である。制御部51は、測定範囲202を撮像した個々の外観画像データを繋ぎ合わせ、測定範囲202の全体外観画像データに基づく全体外観画像412を構成する。
一例として、制御部51は、第1外観画像データに対応づけられた第1座標データと第2外観画像データに対応づけられた第2座標データとを用いて、オルソ補正処理が施された第1外観画像データとオルソ補正処理が施された第2外観画像データとをつなぎ合わせるスティッチング処理を施す。
〔保存(ステップS47)〕
記憶部54のフォルダには、撮像した複数の外観画像データが保存される。フォルダには、各外観画像データを関連付けて、位置データとしての各外観画像データを構成する画素のグローバル座標データも保存される。外観画像データは、例えば、JPEG形式やビットマップ形式で保存され、座標データは、テキストファイルで保存される。また、外観画像データと座標データとは、EXIF形式で保存される。外観画像データの保存形式は、JPEG形式以外のデータであってもよい。
制御部51は、記憶部54のフォルダに、実際に撮像された外観画像データ等を保存する。制御部51は、記憶部54のフォルダに、オルソ化処理された外観画像データ、オルソ化処理された外観画像データをスティッチング処理した全体外観画像データ等を保存する。制御部51は、記憶部54のフォルダに、オルソ化処理前の外観画像データをスティッチング処理した全体外観画像データ、欠陥に対して強調表示処理が施された外観画像データ、欠陥データ等を保存する。また、制御部51は、記憶部54に保存したデータと同じデータをサーバ装置60の記憶部62にも保存する。
〔補正データ生成・適用処理1(プリセット方式)〕
構造物の欠陥を検出する測定範囲は、作業者が作業しやすい場所ばかりではなく、高所等作業者が近づくことが困難な場所も多い。欠陥の検出を行う実際の測定面となる壁面201に設置することが不能なとき、図1(a)に示すように、補正用ターゲット300は、欠陥の検出を行う実際の測定範囲と類似した類似壁面201aに設置される。類似壁面201aは、一例として、実際の測定範囲と離れた異なる場所にある壁面である。類似壁面201aは、一例として、実験施設、研究施設の中に設けられた壁面である。類似壁面201aは、一例として、欠陥を測定する構造物の壁面であっても、測定範囲とは離れた位置の壁面である。
制御装置50の制御部51は、類似壁面201aに設置された補正用ターゲット300で線分オブジェクト302の線幅を算出し、算出した線幅データから欠陥401における欠陥データの欠陥幅データを補正する補正データを算出する。具体的に、制御装置50は、測量機1が撮像した補正用ターゲット300のターゲット画像データから基準オブジェクト301の線分オブジェクト302を検出する。そして、基準オブジェクト301の第1線幅データを算出し、既知の第2線幅データと比較し、欠陥幅データを補正する補正データを算出する。さらに、制御部51は、補正データを欠陥幅データに適用する。なお、補正データの算出処理や補正データを欠陥幅データに適用する処理は、制御装置50の制御部51ではなく、サーバ装置60の制御部61や情報処理端末装置70の制御部が行ってもよい。さらに、補正データの算出処理や補正データを欠陥幅データに適用する処理は、測量機1が行ってもよい。
図33(a)及び図33(b)に示すように、制御部51は、ステップS31において、補正用ターゲット300の計測を開始する。具体的に、測量機1は、ステップS31−1において、手動又は自動で、補正用ターゲット300を視準する。手動の場合、一例として、中心指標オブジェクト309の交点位置に対して測量機1のレチクルの十字線中心を合わせて視準する。また、測量機1が補正用ターゲット300を第1撮像部11又は第2撮像部12の画角内に入っている状態において、ターゲット画像データから上下左右の対象位置に配置されている図形オブジェクト308を検出して自動視準する。さらに、一例として、ターゲット画像データから中心指標オブジェクト309を検出して自動視準する。そして、制御部51は、補正用ターゲット300を撮像し、記憶部54に対して、ターゲット画像データを、補正用ターゲット300を撮像した測量機1の測量機識別データと関連付けて保存する。
制御部51は、ステップS31−2において、図8に示すように、測量機1が撮像した画像データが入力されると、補正用ターゲット300における図形オブジェクト308及び異形オブジェクト308aを画像処理によって、検出する。制御部51は、図形オブジェクト308及び異形オブジェクト308aの配置パターンを検出し、配置パターンと測量機1の種類とを関連付けるテーブルにアクセスして補正用ターゲット300の種類を特定する。また、制御部51は、補正用ターゲット300の測量機1と向き合う第1面を含む類似壁面201aの内(測量機1の視準軸O3に直交する面内)における補正用ターゲット300の回転を検出する。制御部51は、第1面を含む類似壁面201aの内における補正用ターゲット300の回転を検出することで、第1領域304a〜第4領域304dに配置された遠距離用基準オブジェクト301b及び第5領域304e〜第8領域304hに配置された近距離用基準オブジェクト301aを特定することができる。すなわち、各領域の遠距離用基準オブジェクト301b及び近距離用基準オブジェクト301aで定義された線幅の寸法を特定することができる。ステップS31−3において、制御部51は、傾き検出オブジェクト306を検出し、縦仮想直線オブジェクト307a及び横仮想直線オブジェクト307bの傾きを検出する。これにより、補正用ターゲットの測量機1に対する傾きを検出できるようになる。ステップS31−4において、制御部51は測量機1と補正用ターゲット300との距離を計測する。測量機1と補正用ターゲット300との距離は、第1に測量機1の測距部13で測距する。第2に、互いに隣り合う図形オブジェクト308及び異形オブジェクト308aとの距離(一例として画素数)に基づいて算出する。
次いで、制御部51は、ステップS31−5において、線分オブジェクト302を検出し、検出した線分オブジェクト302の線幅を算出し線幅データを生成する。線幅データは、線分オブジェクト302の延びる方向に対する一方の側縁と他方の側縁との間の画素数に基づき算出される。一例として、線幅データは、線分オブジェクト302の一方の側縁の特定点と、一方の側縁に対する垂線と交差する他方の側縁の特定点との距離である。2点間の距離は、一例として、画素数に基づき算出され、また、一例として、2点のグローバル座標データに基づいて算出される。一例として、基準オブジェクト301を構成する線分オブジェクト302は、複数の線幅のオブジェクトで構成されている。制御部51は、それぞれの線幅の線分オブジェクト302について、線幅データを算出する。
ステップS31−6において、制御部51は、線幅データを補正する。具体的には、制御部51は、補正用ターゲットの測量機1に対する傾きを考慮して線分オブジェクト302の線幅データを補正し、第1線幅データを生成する。一例として、制御部51は、それぞれの線幅の線分オブジェクト302について線幅データを補正し、第1線幅データを生成する。
ステップS31−7において、制御部51は、補正プログラム51eに保持されている補正用ターゲット300の線分オブジェクト302の第2線幅データを読み出す。第2線幅データは、既知のデータであり、補正プログラム51eには、補正用ターゲット300毎に、線分オブジェクト302の第2線幅データが保持されている。制御部51は、特定した補正用ターゲット300の種類に応じた第2線幅データを読み出す。制御部51は、算出した第1線幅データと既知の第2線幅データとを比較する。そして、制御部51は、第1線幅データと第2線幅データの差分を算出し、補正データを生成する。また、第2線幅データに対する第1線幅データの比率を補正データとして生成する。
ところで、図34(a)に示すように、補正用ターゲット300を類似壁面201aに対して設置し、1つの補正用ターゲット300を一箇所で、一回だけ計測を行う場合がある(図1(a)参照)。このような場合、補正用ターゲット300における線分オブジェクト302の線幅の補正データだけが生成されることになる。この補正データは、測量機1から補正用ターゲット300の1つの距離の場合のものとなる。この場合、補正データは、固定値となる。一例として、1つの補正用ターゲット300が2つの線幅の線分オブジェクト302を備えている場合、線幅1と線幅2のそれぞれについて、固定値の補正データが生成される。そして、測量機1と測定範囲202との距離に拘わらず、補正データには固定値が用いられることになる。
なお、例えば、構造物の膨張収縮は、温度に大きく依存し、夏季と冬季では、構造物の膨張収縮の程度が大きくことなる。また、朝と昼と夜とで気温が大きく異なることもある。補正データは、固定値を用いる場合であっても、時期(季節や朝と昼と夜)毎にテーブルを用意しておき、補正データを適用する欠陥データを測定した時期に合わせて、テーブルを選択しテーブルから補正データを選択することもできる。
これに対して、図35に示すように、補正用ターゲット300を測量機1からの距離が複数となるように複数箇所に設置し、それぞれの位置の補正用ターゲット300について計測を行う場合がある。このように測量機1から近距離の位置と遠距離の位置のそれぞれで補正用ターゲット300を設置し、補正データを算出するのは、それぞれの測定面における測定環境が異なることもあるからである。そして、測定環境の違いにより、補正データが異なることがあるためである。
図35では、第1距離に近距離用補正用ターゲット300aを設置し、第1距離より長い第2距離に遠距離用補正用ターゲット300bを設置している。この場合、図34(b)に示すように、近距離用補正用ターゲット300aからは、近距離用基準オブジェクト301aの線分オブジェクト302の線幅の補正データが生成され、遠距離用補正用ターゲット300bからは、遠距離用基準オブジェクト301bの線分オブジェクト302の線幅の補正データが生成されることになる。すなわち、それぞれの線幅について、補正用ターゲット300a,300bと測量機1の距離に対する補正データを算出することができる。距離に対する補正データの数は、より多くの距離について、補正用ターゲット300を設置し計測することにより増やすことができる。一例として、5mから10m間隔で計測する。このような場合、各線幅について、測量機1から補正用ターゲット300a,300bまでの距離に対する補正データの補正関数を算出することができる。一例として、距離に対する補正データの近似直線、近似曲線等の近似線を設定する。これにより、補正データを適用する欠陥データの欠陥の測量機1に対する距離にばらつきがあっても、近似線によって、欠陥の測量機1からの距離に応じた補正データを算出し、算出した補正データを欠陥幅データに適用することができる。また、実際に補正用ターゲット300を設置していない距離に位置する欠陥についても、距離に応じた補正データを補正関数により算出することができる。
なお、図34(b)の例にあっても、時期(季節や朝と昼と夜)毎に複数用意しておき、補正データを適用する欠陥データを測定した時期に合わせて、補正データを選択することもできる。
類似壁面201aに補正用ターゲット300を設置する場合、実際に測定を行う測定面の距離に応じて類似壁面201aに補正用ターゲット300を設置し、測量機1と補正用ターゲット300との距離に応じた補正データを生成する。ここで用いる補正用ターゲット300としては、一例として、近距離用基準オブジェクト301a及び遠距離用基準オブジェクト301bを備えた補正用ターゲットであってもよい(図8(a)参照)。また、一例として、近距離用基準オブジェクト301aのみが設けられた近距離用補正用ターゲット300aと遠距離用基準オブジェクト301bのみが設けられた遠距離用補正用ターゲット300bとを用いてもよい。補正用ターゲット300を1箇所にだけ設置した場合、補正データは固定値となり、補正用ターゲット300を測量機1からの距離の異なる複数の位置に補正用ターゲット300を設定した場合、補正関数により算出される補正データが用いられる。
以上のようなことに鑑みて、ステップS32において、制御部51は、補正用ターゲット300の計測を継続するか判断する。そして、制御部51は、継続する場合、ステップS33に進み、ステップS31と同じ補正用ターゲット300の計測処理を繰り返す。すなわち、異なる位置の補正用ターゲット300を、ステップS31−1〜ステップS31−7の処理に従って計測する。計測を1回で終了する場合、制御部51は、ステップS34に進み、補正データを固定値に設定する。
ステップS35において、制御部51は、補正用ターゲット300の計測を終了するかどうかを判断し、終了する場合、ステップS36に進み、終了しない場合、ステップS33を繰り返す。ステップS36において、制御部51は、図34(b)に示す近似線に従って測量機1から補正用ターゲット300までの距離に応じた補正データを設定する。そして、制御部51は、ステップS37において、作業者によって補正データの更新操作が行われると、ステップS38において、補正データを更新し、ステップS40に進む。また、更新操作が行われなかったとき、ステップS39において、補正データを破棄し、ステップS40に進む。
この後、ステップS40において、図27の欠陥検出・測定の処理が行われ、さらに、図31に示すオルソ補正処理及び図32に示すスティッチング処理が行われる。制御部51は、ステップS41において、補正データの適用操作を検出すると、ステップS42において、欠陥データの中の欠陥幅データに対して補正データを適用する処理を行う。具体的に、制御部51は、一例として、補正前の欠陥幅データに対して補正データを加算することによって補正後の欠陥幅データを算出する。また、一例として、制御部51は、補正前の欠陥幅データに対して補正データ(第2線幅データに対する第1線幅データの比率)を乗算することによって補正後の欠陥幅データを算出する。制御部51は、欠陥幅データに対して補正データを適用するにあたっては、欠陥データに関連付いている測量機1の測量機識別データと適用する補正データに関連付いている測量機1の測量機識別データとが一致しているかを判断して、一致しているときに、補正データを欠陥幅データに適用する。測量機1には、撮像部の微小な個体差が存在し、この個体差は、補正データや欠陥データの値に影響する。そこで、制御部51は、外観画像データの撮像とターゲット画像データの撮像が同じ測量機1で撮像されたときに、欠陥幅データに対して補正データを適用する処理を行う。これにより、作業者は、欠陥幅データに関し、補正前の欠陥幅データと補正後の欠陥幅データを正確に把握することができる。
そして、図29及び図30に示すように、制御部51は、一覧表示オブジェクト408には、各欠陥についての欠陥幅データに加え、補正データと、補正後の欠陥幅データとを欠陥情報として表示する。これにより、作業者は、補正データ及び補正後の欠陥幅データを確認することができる。そして、制御部51は、保存操作がされると、ステップS43において、記憶部54やサーバ装置60の記憶部62に対して補正データ及び補正後の欠陥幅データを保存する処理を行う。一例として、制御部51は、欠陥幅データの補正前のデータと補正後のデータを区別して保存する。
なお、一覧表示オブジェクト408には、補正前の欠陥幅データを表示せず、補正後の欠陥幅データを表示し、表示された欠陥幅データが補正済みのデータか補正前のデータかを区別して表示するようにしてもよい。
なお、補正データ生成・適用処理は、制御装置50で行うのではなく、サーバ装置60が行うようにしてもよい。また、補正データ生成・適用処理は、情報処理端末装置70や測量機1が行ってもよい。
以上のような補正データの欠陥幅データに対しての適用処理は、欠陥検出・測定の処理の後に、行うようにすることもできる。この場合、測量機1や制御装置50や情報処理端末装置70の制御部51は、サーバ装置60にアクセスし、補正データを欠陥幅データに適用する編集処理を行うことができる。補正データを欠陥幅データに対して適用する編集処理は、一例として、サーバ装置60の制御部61が行い、その結果を、測量機1や制御装置50や情報処理端末装置70をダウンロードするようにしてもよい。また、補正データの欠陥幅データに対しての適用処理は、一例として、測量機1や制御装置50や情報処理端末装置70が欠陥幅データを含む欠陥データをサーバ装置60からダウンロードし、測量機1や制御装置50や情報処理端末装置70が行うようにしてもよい。
ここでは、補正データを欠陥幅データに対して適用する編集処理を行う場合を説明する。図36に示すように、測量機1や制御装置50や情報処理端末装置70から補正データの欠陥幅データに対しての適用処理の操作信号を受信すると、サーバ装置60の制御部61は、ステップS51において、記憶部62にアクセスし、操作信号に含まれる欠陥データ及び補正データをメモリに読み込む。制御部61は、欠陥データの元となる外観画像データを撮像した測量機1の測量機識別データと補正データの元となるターゲット画像データを撮像した測量機1の測量機識別データとが一致しているとき、補正データを欠陥幅データに適用する。ステップS52において、制御部61は、一例として、補正前の欠陥幅データに対して補正データを加算することによって補正後の欠陥幅データを算出し更新する。また、一例として、制御部61は、補正前の欠陥幅データに対して補正データ(第2線幅データに対する第1線幅データの比率)を乗算することによって補正後の欠陥幅データを算出し更新する。
そして、制御部61は、測量機1や制御装置50や情報処理端末装置70の表示部52に、一覧表示オブジェクト408を表示し、各欠陥についての欠陥幅データに加え、補正データと、補正後の欠陥幅データとを欠陥情報として表示する。これにより、測量機1や制御装置50や情報処理端末装置70では、何時でもどの場所においても、補正データを適用した欠陥幅データを含む欠陥データを確認することができる。制御部61は、測量機1や制御装置50や情報処理端末装置70から算出した補正後の欠陥幅データを含む欠陥データの保存する操作信号を受信すると、ステップS53において、補正データを適用した欠陥データの更新処理を行う。
なお、一覧表示オブジェクト408には、補正前の欠陥幅データを表示せず、補正後の欠陥幅データを表示し、表示された欠陥幅データが補正済みのデータか補正前のデータかを区別して表示するようにしてもよい。
〔補正データ生成・適用処理2(パラレル方式)〕
図1(b)に示すように、補正用ターゲット300は、一例として、欠陥401の検出を行う実際の壁面201bに設置されることもある。この場合、補正データ生成・適用処理は、図27の欠陥検出・測定の処理が行われ、さらに、図31に示すオルソ補正処理及び図32に示すスティッチング処理に引き続き一連に行われる。
具体的には、図37に示すように、ステップS61において、制御部51は、図27の欠陥検出・測定の処理を行い、さらに、図31に示すオルソ補正処理及び図32に示すスティッチング処理を行う。ここで、壁面201における補正用ターゲット300の位置が測定範囲202に含まれるように設定する(測定範囲202については図23参照)。欠陥が含まれる測定範囲202と補正用ターゲット300が含まれる測定範囲202は、同じ範囲でもよいし、別々の範囲であってもよい。
スティッチング処理までが終了すると、制御部51は、ステップS62において、スティッチング処理済み外観画像の中から補正用ターゲット300を検出できたかどうかを判断する。具体的に、制御部51は、スティッチング処理済み外観画像の中から上下左右の対象位置に配置されている図形オブジェクト308を検出して補正用ターゲット300を検出する。検出した画像がテーゲット画像である。図38(a)に示すように、一例として、補正用ターゲット300は、測定範囲202の内側に含まれていることもあるし、1つの外観画像の撮像範囲203に含まれていることもある。また、図38(b)に示すように、一例として、補正用ターゲット300は、1つの測定範囲202の中で互いに隣接する複数の外観画像の撮像範囲203に跨ることもある。そこで、制御部51は、スティッチング処理済み外観画像から補正用ターゲット300を検出するようにしている。
制御部51は、補正用ターゲット300を検出したとき、ステップS63に進み、補正用ターゲット300を検出できなかったとき、ステップS64に進む。補正用ターゲット300を検出できなかったとき、測量機1は、目視で手動により、補正用ターゲット300を第1撮像部11又は第2撮像部12の画角内に入っている状態にして、図形オブジェクト308や中心指標オブジェクト309を検出し、補正用ターゲット300を選択する。補正用ターゲットを選択することができなかったとき、制御部51は、ステップS67に進む。
ステップS63において、制御部51は、線分オブジェクト302を検出し、検出した線分オブジェクト302の線幅を算出し第1線幅データを生成する。制御部51は、欠陥401と同じように線分オブジェクト302を検出する。そして、制御部51は、補正プログラム51eに保持されている補正用ターゲット300の線分オブジェクト302の第2線幅データを読み出す。第2線幅データは、既知のデータであり、補正プログラム51eには、補正用ターゲット300毎に、線分オブジェクト302の第2線幅データが保持されている。制御部51は、算出した第1線幅データと既知の第2線幅データとを比較し、第1線幅データと第2線幅データの差分を算出し、補正データを生成する。また、第2線幅データに対する第1線幅データの比率を補正データとして生成する。そして、制御部51は、ステップS65において、生成した補正データを設定する。
補正用ターゲット300をステップS64で選択することができなかったとき、ステップS67において、制御部51は、プリセット補正データを設定する。一例として、プリセット補正データは、予め測量機1と補正用ターゲット300との距離(一例として、10m、20m、30m)に応じて予め設定された補正データである。予め測量機1と補正用ターゲット300との距離は、測量機1が測定面との距離を測距した値を用いることができる。一例として、図34(b)に示すように、プリセット補正データは、距離に対する補正データの補正関数に基づいて算出された距離毎の補正データである。
ステップS68において、制御部51は、欠陥データの中の欠陥幅データに対して補正データを適用する処理を行う。具体的に、制御部51は、一例として、補正前の欠陥幅データに対して補正データを加算することによって補正後の欠陥幅データを算出し更新する。また、一例として、制御部51は、補正前の欠陥幅データに対して補正データ(第2線幅データに対する第1線幅データの比率)を乗算することによって補正後の欠陥幅データを算出し更新する。
そして、図29及び図30に示すように、制御部51は、一覧表示オブジェクト408には、各欠陥についての欠陥幅データに加え、補正データと、補正後の欠陥幅データとが欠陥情報として表示される。これにより、作業者は、補正データ及び補正後の欠陥幅データを確認することができる。そして、制御部51は、保存操作がされると、ステップS69において、記憶部54やサーバ装置60の記憶部62に対して補正データ、補正後の欠陥幅データを保存する処理を行う。一例として、制御部51は、欠陥幅データの補正前のデータと補正後のデータを区別して保存する。
なお、一覧表示オブジェクト408には、補正前の欠陥幅データを表示せず、補正後の欠陥幅データを表示し、表示された欠陥幅データが補正済みのデータか補正前のデータかを区別して表示するようにしてもよい。
複数の測定範囲202が設定され測定を継続するとき、制御部51は、引き続き次の測定範囲202について欠陥検出・測定の処理を行うため、ステップS61に戻る。制御部51は、欠陥検出・測定の処理の測定を継続しないとき、ステップS71において、補正データを再計算する処理を行う。すなわち、一例として、図34(b)に示すように、距離に対する補正データの近似直線、近似曲線等近似線を再設定する処理を行う。そして、制御部51は、ステップS72において、再設定された近似線に従ってプリセット補正データを更新し、ステップS73において、更新したプリセット補正データを記憶部54やサーバ装置60の記憶部62に対して保存する。一例として、制御部51は、自動的に記憶部54や記憶部62にプリセット補正データを保存する。また、制御部51は、保存操作がされると、指定された保存先(記憶部54や記憶部62)に保存する。制御部51は、一例として、プリセット補正データが許容範囲内にあるときに限って、自動に又は手動による記憶部54や記憶部62への保存を許可する。
なお、補正データ生成・適用処理2(パラレル方式)の場合においても、図36に示すように、補正データを欠陥幅データに対して適用する編集処理を測量機1や制御装置50や情報処理端末装置70から行うようにすることもできる。
図39に示すように、補正用ターゲット300は、1つの測定範囲202の中に、複数の補正用ターゲット300を配置してもよい。一例として、1つの測定範囲の中で、補正用ターゲット300は、できるだけ離れていることが好ましい。一例として、一方の補正用ターゲット300における線分オブジェクト302から算出された補正データと他方の補正用ターゲット300における線分オブジェクト302から算出された補正データとが異なる値となることがある。一例として、一方の補正用ターゲット300の位置が日向で他方の補正用ターゲット300の位置が日陰である場合、補正データが異なることがある。このような場合において、2つの補正用ターゲット300の間に位置する欠陥の欠陥データに含まれる欠陥幅データは、2つの異なる補正データの間の値に設定される。すなわち、欠陥の位置に応じて、2つの異なる補正データの間の値を分配する。
以上のような制御装置50によれば、以下に列挙する効果が得られる。
(1)算出システムでは、測定面200に設置された補正用ターゲット300を測量機1で撮像して生成されたターゲット画像データから画像処理により基準オブジェクト301を検出し、基準オブジェクト301の第1線幅データを算出する。そして、第1線幅データと基準オブジェクト301の実際の線幅である既知の第2線幅データとを比較し、補正データを算出する。補正データ及び欠陥幅データを一例としてサーバ装置60に保存しておくことで、制御装置50や情報処理端末装置70でサーバ装置60にアクセスして、欠陥幅データに補正データを適用し、補正後の欠陥幅データを確認することができる。
(2)制御装置50やサーバ装置60は、欠陥検出・測定の処理に連続して、欠陥幅データを補正データによって補正することができる。
(3)一例として、欠陥検出する壁面201が高所等作業者が近づくことが困難な場所であっても、測定範囲202に対して外側、すなわち測定範囲202とは異なる類似壁面201aに補正用ターゲット300を設置して、補正データを算出することができる。
(4)測定範囲202の内側に補正用ターゲット300が設置されているときには、検出する欠陥401の近くに補正用ターゲット300が設置されることになる。したがって、補正データの精度を高めることができる。
(5)欠陥検出・測定の処理に連続して補正データ生成・適用処理を行う場合には、補正用ターゲット300が複数の撮像範囲203に跨ることがあっても、スティッチング済み画像を用いることで、確実に補正用ターゲット300を検出することができる。
(6)補正用ターゲット300が1つの撮像範囲203に位置するときには、スティッチ処理をするまでもなく、補正用ターゲット300を検出することができる。
(7)同じ1つの外観画像すなわち撮像範囲203に、欠陥401及び補正用ターゲット300が含まれているときには、欠陥401と補正用ターゲット300が近いことから、補正データもより正確なものとなる。
(8)欠陥幅データに対して補正データを適用することで、欠陥幅データをより正確なものとすることができる。
(9)線分オブジェクト302は、傾きの異なる複数の線分であるので、欠陥401の延びる向きと同じ、若しくは、近い向きの線分オブジェクト302から生成された補正データで、欠陥幅データを補正することができる。
(10)図形オブジェクト308及び異形オブジェクト308aのパターンによって補正用ターゲット300の種類を識別することができる。
(11)図形オブジェクト308の中の異形オブジェクト308aの位置を特定することで、壁面201における補正用ターゲット300の測量機1と向き合う第1面を含む平面内(測量機1の視準軸O3に直交する面内)における視準軸O3まわりの回転を検出することができる。
(12)傾き検出オブジェクト306や仮想傾き検出オブジェクト307の傾きを検出することで、測量機1に対する補正用ターゲット300の傾きを検出することができ、この傾きを考慮して線分オブジェクト302の線幅を正確に算出することができる。
(13)近距離用基準オブジェクト301aと遠距離用基準オブジェクト301bを備えることで、測量機1までの距離によって測定範囲202や撮像範囲203の広さが異なることになるが、測定範囲の広さに合わせた基準オブジェクト301を使用することができる。
(14)欠陥幅データを含む欠陥データや補正データや補正データを適用した補正後の欠陥幅データをサーバ装置60に保存することで、種々の端末から補正後の欠陥データを閲覧することができる。
(15)補正用ターゲット300を撮像した測量機1の第1測量機識別データを補正データに関連付けて制御装置50の記憶部54やサーバ装置60の記憶部62に保存するようにしている。これと共に、構造物の外観を撮像した測量機1の第2測量機識別データを欠陥データに関連付けて制御装置50の記憶部54やサーバ装置60の記憶部62に保存するようにしている。そして、第1測量機識別データと第2測量機識別データとが一致しているとき、欠陥データに対して補正データを適用し、欠陥データを補正する。したがって、補正データを欠陥データにて適用した際に撮像部の微小な個体差による影響を排除することができる。
(16)繰り返し補正用ターゲット300で補正データを算出したときには、近似直線や近似曲線等の近似線を算出することができ、これにより、距離に応じた補正データを使って欠陥幅データを補正することができる。
なお、上記算出システムは、以下のように変更してもよい。
・補正用ターゲット300は、補正データを算出するための用途以外にも使用することは可能である。一例として、欠陥の幅の検証用や経時変化を確認する際の参照用として使用することもできる。一例として、欠陥401の近くに補正用ターゲット300を1年間等長期間に亘って設置する。補正用ターゲット300が備えた遠距離用基準オブジェクト301bや近距離用基準オブジェクト301aの線分オブジェクト302の線幅は、長期間経過しても変化しない。したがって、作業者が測量機1で補正用ターゲット300の線分オブジェクト302の線分と欠陥401とを目視で比較することによって、欠陥401の経年変化を確認することができる。例えば欠陥の幅が時間の経過とともに広くなったか等を確認することができる。このように、作業者は、補正用ターゲット300を欠陥401の経年変化を確認する際の参照用として使用することができる。すなわち、補正用ターゲット300は、算出システムが補正データを生成できるものであれば、他の用途に利用されてもよい。
・欠陥401の検出は、制御装置50が行ってもよいし、測量機1が行ってもよい。
・座標としては、グローバル座標データではなく、ローカル座標データを用いてもよい。
・スティッチング処理の方法は特に限定されるものではない。
・欠陥401としては、壁面のひびの他、道路、滑走路等のひびや窪みであってもよい。また、橋げた等の構造物の一部である鉄骨が劣化して形成されたひび等であってもよい。欠陥401としては、撮像装置でコントラストによって検出可能なものであれば、ひびや窪みに限定されるものではない。
1…測量機、2…整準部、3…底板、3…画像データ、4…上板、5…整準ねじ、6…本体部、7…撮像部、8…第1対物レンズ、9…第2対物レンズ、10…第3対物レンズ、11…第1撮像部、11a…オートフォーカス部、12…第2撮像部、13…測距部、14…第3撮像部、15…水平角駆動部、16…レーザポインタ、17…鉛直角駆動部、18…第1表示部、19…第2表示部、20…通信部、21…水平角操作部用エンコーダ、22…鉛直角操作部用エンコーダ、23…水平角操作部、24…鉛直角操作部、25…把持部、31…水平角測角部、32…鉛直角測角部、33…画像処理部、34…一時記憶部、35…記憶部、36…操作部、37…傾き検出部、40…制御部、50…制御装置、51…制御部、51a…CPU、51b…ROM、51c…RAM、51d…欠陥検出プログラム、51e…補正プログラム、52…表示部、53…操作部、54…記憶部、55…通信部、60…サーバ装置、61…制御部、62…記憶部、63…通信部、70…情報処理端末装置、200…測定面、201…壁面、201a…類似壁面、201b…壁面、202…測定範囲、202a…測定範囲、203…撮像範囲、204…グローバル座標、205…長方形、206a…領域、206b…領域、207…長方形、207a…長方形、208…長方形、208a…三角形、209…形状、210…重複部分、211…全撮像範囲、300…補正用ターゲット、300a…近距離用補正用ターゲット、300b…遠距離用補正用ターゲット、301…基準オブジェクト、301a…近距離用基準オブジェクト、301b…遠距離用基準オブジェクト、302…線分オブジェクト、302a…第1線幅部、302b…第2線幅部、302c…第3線幅部、302d…第4線幅部、302e…第1線幅部、302f…第2線幅部、302g…第3線幅部、302h…第4線幅部、302i…第5線幅部、302j…第6線幅部、304a…第1領域、304b…第2領域、304c…第3領域、304d…第4領域、304e…第5領域、304f…第6領域、304g…第7領域、304h…第8領域、304i…中央領域、306…傾き検出オブジェクト、306a…縦実直線オブジェクト、306b…横実直線オブジェクト、307…仮想傾き検出オブジェクト、307a…縦仮想直線オブジェクト、307b…横仮想直線オブジェクト、308…図形オブジェクト、308a…異形オブジェクト、309…中心指標オブジェクト、311…第1線幅部、312…第2線幅部、321…基板、322…オブジェクト層、323…マグネットシート、401…欠陥、401a…ラインオブジェクト、402…変化点、403…セグメント、403a…ラインオブジェクト、405…スクロールバー、406…外観画像表示オブジェクト、407…スティッチ画像表示オブジェクト、408…一覧表示オブジェクト、409…選択枠、411a…外観画像、411b…外観画像、412…全体外観画像、412a−412d…外観画像。

Claims (22)

  1. 既知のサイズの基準オブジェクトを備えるターゲットを測量機で撮像して生成されたターゲット画像データから画像処理により前記基準オブジェクトを検出し、前記基準オブジェクトの大きさに関する第1サイズデータを算出する第1算出部と、
    構造物の外観を前記測量機で撮像して生成された外観画像データから画像処理により欠陥を検出し、前記欠陥の大きさに関する欠陥データを算出する第2算出部と、
    前記第1サイズデータと前記基準オブジェクトの実際の大きさに関する第2サイズデータとを比較し、前記欠陥データを補正するための補正データを算出する補正データ算出部とを備え
    前記ターゲットは、前記ターゲットの種類を示す識別オブジェクトを備え、
    前記補正データ算出部は、前記識別オブジェクトが示す種類のターゲットが備える前記基準オブジェクトの前記第2サイズデータと前記第1サイズデータとを比較し、前記補正データを算出する
    算出システム。
  2. 前記算出システムは、さらに、
    前記補正データを前記欠陥データに適用し、前記欠陥データを補正する補正部を備える
    請求項1に記載の算出システム。
  3. 前記ターゲットは、前記欠陥を検出する壁面と異なる壁面に位置している
    請求項1又は2に記載の算出システム。
  4. 前記測量機は、測定範囲を連続して撮像することによって撮像し、
    前記ターゲットは、前記測定範囲内に位置している
    請求項1又は2に記載の算出システム。
  5. 前記測量機によって撮像される測定範囲内に、前記欠陥及び前記ターゲットが位置している
    請求項1又は2に記載の算出システム。
  6. 前記基準オブジェクトは、線分オブジェクトを備え、
    前記第1サイズデータは、前記第1算出部によって検出された前記線分オブジェクトの線幅に関する第1線幅データであり、
    前記第2サイズデータは、前記線分オブジェクトの実際の線幅に関する第2線幅データである
    請求項1又は2に記載の算出システム。
  7. 前記線分オブジェクトは、傾きの異なる複数の線分である
    請求項記載の算出システム。
  8. 前記ターゲットは、複数の図形オブジェクトを備え、
    前記複数の図形オブジェクトは、前記識別オブジェクトを構成する
    請求項に記載の算出システム。
  9. 既知のサイズの基準オブジェクトと、図形オブジェクトと、前記図形オブジェクトと異なる異形形状オブジェクトとを備えるターゲットを測量機で撮像して生成されたターゲット画像データから画像処理により前記基準オブジェクトを検出し、前記基準オブジェクトの大きさに関する第1サイズデータを算出する第1算出部と、
    構造物の外観を前記測量機で撮像して生成された外観画像データから画像処理により欠陥を検出し、前記欠陥の大きさに関する欠陥データを算出する第2算出部と、
    前記第1サイズデータと前記基準オブジェクトの実際の大きさに関する第2サイズデータとを比較し、前記欠陥データを補正するための補正データを算出する補正データ算出部とを備え
    算出システム。
  10. 既知のサイズの基準オブジェクト及び傾き検出オブジェクトを備えるターゲットを測量機で撮像して生成されたターゲット画像データから画像処理により前記基準オブジェクトを検出し、前記基準オブジェクトの大きさに関する第1サイズデータを算出する第1算出部と、
    構造物の外観を前記測量機で撮像して生成された外観画像データから画像処理により欠陥を検出し、前記欠陥の大きさに関する欠陥データを算出する第2算出部と、
    前記第1サイズデータと前記基準オブジェクトの実際の大きさに関する第2サイズデータとを比較し、前記欠陥データを補正するための補正データを算出する補正データ算出部とを備え、
    前記第1算出部は、前記傾き検出オブジェクトの傾きを検出し、前記傾きに合わせて、前記第1サイズデータを算出する
    算出システム。
  11. 既知のサイズの基準オブジェクトを備えるターゲットを測量機で撮像して生成されたターゲット画像データから画像処理により前記基準オブジェクトを検出し、前記基準オブジェクトの大きさに関する第1サイズデータを算出する第1算出部と、
    構造物の外観を前記測量機で撮像して生成された外観画像データから画像処理により欠陥を検出し、前記欠陥の大きさに関する欠陥データを算出する第2算出部と、
    前記第1サイズデータと前記基準オブジェクトの実際の大きさに関する第2サイズデータとを比較し、前記欠陥データを補正するための補正データを算出する補正データ算出部とを備え、
    前記ターゲットは、
    前記測量機から前記ターゲットまでが第1距離のときに前記第1算出部で検出される近距離用の前記基準オブジェクトが配置される領域と、
    前記測量機から前記ターゲットまでが前記第1距離より長い第2距離のときに前記第1
    算出部で検出される遠距離用の前記基準オブジェクトが配置される領域とを備える
    算出システム。
  12. 前記算出システムは、
    前記補正データを前記欠陥データに適用し、前記欠陥データを補正する補正部と、
    ネットワークを介して前記第1サイズデータ、前記欠陥データ及び前記補正データを保存する記憶部をさらに備える
    請求項1,8,9,10,11のうち何れか1項に記載の算出システム。
  13. 前記記憶部は、前記第1サイズデータ及び前記補正データを、前記ターゲット画像データを撮像し生成した前記測量機の第1測量機識別データに関連付けて保存すると共に、
    前記欠陥データを、前記外観画像データを撮像し生成した前記測量機の第2測量機識別データに関連付けて保存し、
    前記補正部は、前記第1測量機識別データと前記第2測量機識別データとが一致しているとき、前記欠陥データに対して前記補正データを適用し、前記欠陥データを補正する
    請求項12に記載の算出システム。
  14. 前記記憶部は、前記補正部が補正した欠陥データを保存する
    請求項13に記載の算出システム。
  15. 既知のサイズの基準オブジェクトを備えるターゲットを測量機で撮像して生成されたターゲット画像データから画像処理により前記基準オブジェクトを検出し、前記基準オブジェクトの大きさに関する第1サイズデータを算出する第1算出部と、
    構造物の外観を前記測量機で撮像して生成された外観画像データから画像処理により欠陥を検出し、前記欠陥の大きさに関する欠陥データを算出する第2算出部と、
    前記第1サイズデータと前記基準オブジェクトの実際の大きさに関する第2サイズデータとを比較し、前記欠陥データを補正するための補正データを算出する補正データ算出部と、
    前記補正データを前記欠陥データに適用し、前記欠陥データを補正する補正部とを備え、
    前記補正部は、前記測量機から前記ターゲットまでの複数の距離のそれぞれに対応した前記補正データに従って、前記測量機から前記ターゲットまでの距離に対する前記補正データの補正関数を算出し、
    前記補正関数を適用して、前記測量機から前記ターゲットまでの実際の距離に対する前記補正データを算出し、前記欠陥データを補正する
    算出システム。
  16. 既知のサイズの基準オブジェクトと、ターゲットの種類を示す識別オブジェクトとを備える前記ターゲットを測量機で撮像して生成されたターゲット画像データから画像処理により前記基準オブジェクトを検出し、前記基準オブジェクトの大きさに関する第1サイズデータを算出するステップと、
    構造物の外観を前記測量機で撮像して生成された外観画像データから画像処理により欠陥を検出し、前記欠陥の大きさに関する欠陥データを算出するステップと、
    前記第1サイズデータと前記基準オブジェクトの実際の大きさに関する第2サイズデータとを比較し、前記欠陥データを補正するための補正データを算出するにあたって、前記識別オブジェクトが示す種類のターゲットが備える前記基準オブジェクトの前記第2サイズデータと前記第1サイズデータとを比較し、前記補正データを算出するステップと
    を実行するプログラム。
  17. 既知のサイズの基準オブジェクトを備えるターゲットを測量機で撮像して生成されたタ
    ーゲット画像データから画像処理により前記基準オブジェクトを検出し、前記基準オブジェクトの大きさに関する第1サイズデータを算出するステップと、
    構造物の外観を前記測量機で撮像して生成された外観画像データから画像処理により欠陥を検出し、前記欠陥の大きさに関する欠陥データを算出するステップと、
    前記第1サイズデータと前記基準オブジェクトの実際の大きさに関する第2サイズデータとを比較し、前記欠陥データを補正するための補正データを算出するにあたって、前記測量機から前記ターゲットまでの複数の距離のそれぞれに対応した前記補正データに従って、前記測量機から前記ターゲットまでの距離に対する前記補正データの補正関数を算出し、前記補正関数を適用して、前記測量機から前記ターゲットまでの実際の距離に対する前記補正データを算出し、前記欠陥データを補正するステップと
    を実行するプログラム
  18. 測量機に撮像されるターゲットであって、
    前記ターゲットは、
    前記測量機から前記ターゲットまでが第1距離に設置されたときに前記測量機に検出される近距離用基準オブジェクトが配置される領域と、
    前記測量機から前記ターゲットまでが前記第1距離より長い第2距離のときに前記測量機に検出される遠距離用基準オブジェクトが配置される領域と
    各領域に設けられる識別オブジェクトであって、前記ターゲットの種類を示す前記識別オブジェクトとを備える
    ターゲット。
  19. 前記近距離用基準オブジェクト及び前記遠距離用基準オブジェクトは、傾きの異なる複数の線分オブジェクトを備える
    請求項18に記載のターゲット。
  20. 測量機に撮像されるターゲットであって、
    前記ターゲットは、
    前記測量機から前記ターゲットまでが第1距離に設置されたときに前記測量機に検出される近距離用基準オブジェクトが配置される領域と、
    前記測量機から前記ターゲットまでが前記第1距離より長い第2距離のときに前記測量機に検出される遠距離用基準オブジェクトが配置される領域と、
    各領域に設けられる図形オブジェクト及び前記図形オブジェクトと異なる異形形状オブジェクトと
    を備えるターゲット。
  21. 測量機に撮像されるターゲットであって、
    前記ターゲットは、
    前記測量機から前記ターゲットまでが第1距離に設置されたときに前記測量機に検出される近距離用基準オブジェクトが配置される第1領域と、
    前記測量機から前記ターゲットまでが前記第1距離より長い第2距離のときに前記測量機に検出される遠距離用基準オブジェクトが配置される第2領域と、
    前記ターゲットの傾きを検出するための傾き検出オブジェクトとを備え、
    前記傾き検出オブジェクトは、前記ターゲットの外周部に沿うようにして実線により構成されおり、前記傾き検出オブジェクトの内側に前記第1領域及び前記第2領域が位置しており、
    縦方向に互いに平行な2つの縦実直線オブジェクトと、横方向に互いに平行な2つの横実直線オブジェクトとを備えているターゲット。
  22. 測量機に撮像されるターゲットであって、
    前記ターゲットは、
    前記測量機から前記ターゲットまでが第1距離に設置されたときに前記測量機に検出される近距離用基準オブジェクトが配置される第1領域と、
    前記測量機から前記ターゲットまでが前記第1距離より長い第2距離のときに前記測量機に検出される遠距離用基準オブジェクトが配置される第2領域とを備え、
    前記第2領域は、互いに直交するように延びる直線オブジェクトで構成された中心指標オブジェクトによって区画された複数の領域で構成されており、前記複数の領域の各々に前記遠距離用基準オブジェクトが配置されており、
    前記第1領域は、前記複数の領域で囲まれる中央領域であって、前記中央領域に複数の前記近距離用基準オブジェクトが配置されており、
    前記近距離用基準オブジェクトの各々及び前記遠距離用基準オブジェクトの各々は、線
    分オブジェクトを放射状に設けて構成されているターゲット。
JP2019524643A 2017-06-14 2017-06-14 算出システム、プログラム及びターゲット Active JP6899436B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022024 WO2018229917A1 (ja) 2017-06-14 2017-06-14 算出システム、算出方法、プログラム及びターゲット

Publications (2)

Publication Number Publication Date
JPWO2018229917A1 JPWO2018229917A1 (ja) 2020-03-26
JP6899436B2 true JP6899436B2 (ja) 2021-07-07

Family

ID=64659035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019524643A Active JP6899436B2 (ja) 2017-06-14 2017-06-14 算出システム、プログラム及びターゲット

Country Status (4)

Country Link
US (1) US11132789B2 (ja)
EP (1) EP3640588B1 (ja)
JP (1) JP6899436B2 (ja)
WO (1) WO2018229917A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660786A4 (en) * 2017-07-25 2020-08-05 FUJIFILM Corporation METHOD FOR GENERATING A DAMAGE DIAGRAM, DEVICE FOR GENERATING A DAMAGE DIAGRAM, SYSTEM FOR GENERATING A DAMAGE DIAGRAM AND RECORDING MEDIUM
KR101836926B1 (ko) * 2017-12-05 2018-04-19 한국지질자원연구원 트렌치 단면 기준선 설정 장치 및 이를 이용한 트렌치 단면 분석 방법
JP2020193081A (ja) * 2019-05-29 2020-12-03 村田機械株式会社 ティーチングシステム、搬送システム、及びティーチングデータ生成方法
JP7341844B2 (ja) * 2019-10-17 2023-09-11 キヤノン株式会社 レンズ制御装置、光学機器およびレンズ制御方法
CN113793332B (zh) * 2021-11-15 2022-02-08 山东德普检测技术有限公司 一种实验仪器缺陷识别分类方法及系统
US12094172B2 (en) * 2022-12-22 2024-09-17 Industrial Technology Research Institute Camera calibration method and camera calibration system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675132A5 (ja) * 1987-09-01 1990-08-31 Zellweger Uster Ag
JP2000018921A (ja) * 1998-07-06 2000-01-21 Hitachi Ltd 寸法測定方法及び装置
JP4005277B2 (ja) * 1999-09-06 2007-11-07 富士フイルム株式会社 画像処理装置、方法及び記録媒体
JP2001280960A (ja) * 2000-03-29 2001-10-10 Nkk Corp 遠隔計測方法及び装置
JP2003065959A (ja) 2001-08-23 2003-03-05 Hitachi Ltd 非破壊検査装置
JP2004163292A (ja) 2002-11-13 2004-06-10 Topcon Corp 測量装置と電子的記憶媒体
JP5097480B2 (ja) 2007-08-29 2012-12-12 株式会社トプコン 画像測定装置
JP4954006B2 (ja) * 2007-09-28 2012-06-13 三洋電機株式会社 クラック幅計測システム、操作装置、クラック幅計測方法、及びクラック幅計測プログラム
US20090154789A1 (en) * 2007-12-17 2009-06-18 Gradience Imaging, Inc. System and method for detecting optical defects
US9235902B2 (en) * 2011-08-04 2016-01-12 University Of Southern California Image-based crack quantification
JP5838138B2 (ja) * 2012-08-30 2015-12-24 株式会社日立ハイテクノロジーズ 欠陥観察システムおよび欠陥観察方法
TW201418662A (zh) * 2012-11-15 2014-05-16 Nat Applied Res Laboratories 遠距離量測裂縫之方法及其裝置
JP5531148B1 (ja) * 2013-08-09 2014-06-25 ジビル調査設計株式会社 構造物の点検装置
JP6198644B2 (ja) 2014-03-11 2017-09-20 株式会社パスコ 精密計測用ターゲット及び精密計測方法
JP6499898B2 (ja) * 2014-05-14 2019-04-10 株式会社ニューフレアテクノロジー 検査方法、テンプレート基板およびフォーカスオフセット方法
JP2016050887A (ja) * 2014-09-01 2016-04-11 関西工事測量株式会社 クラック計測システム
JP6412474B2 (ja) * 2015-09-03 2018-10-24 株式会社 日立産業制御ソリューションズ クラック幅計測システム

Also Published As

Publication number Publication date
WO2018229917A1 (ja) 2018-12-20
EP3640588A1 (en) 2020-04-22
EP3640588A4 (en) 2021-04-21
US11132789B2 (en) 2021-09-28
US20200175666A1 (en) 2020-06-04
JPWO2018229917A1 (ja) 2020-03-26
EP3640588B1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
JP6899436B2 (ja) 算出システム、プログラム及びターゲット
JP6654649B2 (ja) 欠陥検出装置及びプログラム
JP5060358B2 (ja) 測量システム
JP6591676B2 (ja) モニタリング方法、モニタリングシステム及びプログラム
US6731329B1 (en) Method and an arrangement for determining the spatial coordinates of at least one object point
JP4356050B2 (ja) 測量装置と電子的記憶媒体
US11236997B2 (en) Surveying instrument and program
US20150276401A1 (en) Robotic laser pointer apparatus and methods
JP6569002B2 (ja) 欠陥画像表示制御装置及びプログラム
US7177016B2 (en) Electronic surveying apparatus
JP2021039013A (ja) 壁面のひび割れ測定機および測定方法
JP4359083B2 (ja) 測量システム
JP5795853B2 (ja) 測量システム
JP4167509B2 (ja) 測量システム
JP4217083B2 (ja) 測量システム
JP4899129B2 (ja) 測量装置
JP2004085555A (ja) 測量システム
JPH0244280A (ja) テレビ映像を利用した測量装置
Scherer a Circleless" 2D/3D Total STATION": a Low Cost Instrument for Surveying, Recording Point Clouds, Documentation, Image Acquisition and Visualisation
JP2004085554A (ja) 自動測量システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6899436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250