JP6898627B2 - Carbonated layered double hydroxide regeneration method and acidic exhaust gas treatment equipment - Google Patents

Carbonated layered double hydroxide regeneration method and acidic exhaust gas treatment equipment Download PDF

Info

Publication number
JP6898627B2
JP6898627B2 JP2019223146A JP2019223146A JP6898627B2 JP 6898627 B2 JP6898627 B2 JP 6898627B2 JP 2019223146 A JP2019223146 A JP 2019223146A JP 2019223146 A JP2019223146 A JP 2019223146A JP 6898627 B2 JP6898627 B2 JP 6898627B2
Authority
JP
Japan
Prior art keywords
layered double
exhaust gas
double hydroxide
carbonated
ldh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019223146A
Other languages
Japanese (ja)
Other versions
JP2021090913A (en
Inventor
伊藤 一郎
一郎 伊藤
田野 韓
田野 韓
敏明 吉岡
敏明 吉岡
知人 亀田
知人 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Kurita Water Industries Ltd
Original Assignee
Tohoku University NUC
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Kurita Water Industries Ltd filed Critical Tohoku University NUC
Priority to JP2019223146A priority Critical patent/JP6898627B2/en
Priority to KR1020227008188A priority patent/KR102511218B1/en
Priority to CN202080064088.7A priority patent/CN114375220B/en
Priority to PCT/JP2020/009329 priority patent/WO2021117261A1/en
Priority to TW109108022A priority patent/TWI809256B/en
Publication of JP2021090913A publication Critical patent/JP2021090913A/en
Application granted granted Critical
Publication of JP6898627B2 publication Critical patent/JP6898627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/402Alkaline earth metal or magnesium compounds of magnesium

Description

本発明は、火力発電所や焼却施設等の燃焼施設から発生する酸性排ガスの処理に使用された炭酸型層状複水酸化物を再生する方法、及びその再生手段を備えた酸性排ガス処理設備に関する。 The present invention relates to a method for regenerating a carbonated layered double hydroxide used for treating acidic exhaust gas generated from a combustion facility such as a thermal power plant or an incinerator, and an acidic exhaust gas treatment facility provided with the regenerating means.

火力発電や廃棄物焼却等において発生する燃焼排ガス中には、塩化水素や硫黄酸化物、窒素酸化物等の有害な酸性物質が含まれている。このため、前記酸性物質を含む酸性排ガスについて、該酸性物質を除去するための種々の方法による処理が行われている。 Combustion exhaust gas generated in thermal power generation and waste incinerator contains harmful acidic substances such as hydrogen chloride, sulfur oxides, and nitrogen oxides. Therefore, the acidic exhaust gas containing the acidic substance is treated by various methods for removing the acidic substance.

このような酸性物質の除去方法において、本出願人は、複数種の酸性物質を同時に処理し、除去することができる効率的な処理技術として、炭酸型Mg−Al系層状複水酸化物(以下、Mg−Al LDH(Layered Double Hydroxide)とも言う。)を利用した酸性排ガスの処理方法及び処理剤等を提案している(特許文献1参照)。 In such a method for removing an acidic substance, the applicant has applied a carbonated Mg—Al layered double hydroxide (hereinafter referred to as a carbonated Mg—Al layered double hydroxide) as an efficient treatment technique capable of simultaneously treating and removing a plurality of types of acidic substances. , Mg-Al LDH (also referred to as Layered Double Hydroxide)) has been proposed as a treatment method and a treatment agent for acidic exhaust gas (see Patent Document 1).

前記Mg−Al LDHは、再生して繰り返し使用することが可能な処理剤であり、従来は、特許文献1に記載されているように、炭酸型Mg−Al LDHが、酸性排ガス処理に使用されてアニオン型Mg−Al LDHに変換された場合、この使用済み層状複水酸化物は、炭酸水溶液と混合することにより再生されていた。 The Mg-Al LDH is a treatment agent that can be regenerated and used repeatedly. Conventionally, as described in Patent Document 1, a carbonated Mg-Al LDH has been used for acid exhaust gas treatment. When converted to anionic Mg-Al LDH, this used layered double hydroxide was regenerated by mixing with an aqueous carbonic acid solution.

特開2016−190199号公報Japanese Unexamined Patent Publication No. 2016-190199

上記のような使用済み層状複水酸化物と炭酸水溶液とを混合させる手段は、廃棄物焼却施設外に設けられた層状複水酸化物再生施設において実施することが可能である。しかしながら、この場合は、廃棄物焼却施設と層状複水酸化物再生施設との間での使用済み層状複水酸化物及び再生層状複水酸化物の運送や、廃棄物焼却施設とは別の外部施設の設置等のための、労力及びコスト負担が大きいという課題を有していた。
また、使用済み層状複水酸化物の再生設備を廃棄物焼却施設内に設ける場合には、炭酸水溶液の貯留槽や混合槽等も設置及び接続する必要があり、設備全体が大規模化せざるを得なかった。
The means for mixing the used layered double hydroxide and the carbonated aqueous solution as described above can be carried out in a layered double hydroxide recycling facility provided outside the waste incineration facility. However, in this case, the transportation of used layered double hydroxides and regenerated layered double hydroxides between the waste incinerator and the layered double hydroxides recycling facility, and the outside separate from the waste incinerator. There was a problem that the labor and cost burden for setting up the facility was large.
In addition, when installing a used layered double hydroxide recycling facility in a waste incinerator, it is necessary to install and connect a storage tank for an aqueous carbonate solution, a mixing tank, etc., and the entire facility must be scaled up. Did not get.

本発明は、上記のような技術的課題を解決するためになされたものであり、酸性排ガス処理での使用済みのアニオン型Mg−Al LDHを、炭酸型Mg−Al LDHに効率的に再生させることができる炭酸型層状複水酸化物の再生方法、及び酸性排ガス処理設備を提供することを目的とする。 The present invention has been made to solve the above technical problems, and efficiently regenerates the used anionic Mg-Al LDH in the acidic exhaust gas treatment into the carbonated Mg-Al LDH. It is an object of the present invention to provide a method for regenerating a carbonated layered double hydroxide that can be used, and an acidic exhaust gas treatment facility.

本発明は、酸性排ガス処理での使用済み層状複水酸化物を、水及び所定量の二酸化炭素を含む気体、特に、前記酸性排ガス処理の処理後ガスと接触させることにより、効率的に炭酸型層状複水酸化物へと再生できることを見出したことに基づくものである。 According to the present invention, the used layered double hydroxide in the acidic exhaust gas treatment is brought into contact with a gas containing water and a predetermined amount of carbon dioxide, particularly the gas after the treatment of the acidic exhaust gas, thereby efficiently carbonating. It is based on the finding that it can be regenerated into layered double hydroxides.

すなわち、本発明は、以下の[1]〜[4]を提供するものである。
[1]炭酸型Mg−Al系層状複水酸化物を使用する酸性排ガス処理で生成したアニオン型Mg−Al系層状複水酸化物に、水及び濃度5vol%以上の二酸化炭素を含む70℃以上の混合気体を接触させて、炭酸型Mg−Al系層状複水酸化物を再生させる、炭酸型層状複水酸化物の再生方法。
[2]前記混合気体中の水分量が10%以上である、上記[1]に記載の炭酸型層状複水酸化物の再生方法。
[3]前記酸性排ガス処理は、燃焼施設で発生した酸性排ガスの処理であり、前記処理後の二酸化炭素以外の酸性ガスが除去された処理後ガスを、前記混合気体に用いる、上記[1]又は[2]に記載の炭酸型層状複水酸化物の再生方法。
That is, the present invention provides the following [1] to [4].
[1] Anionic Mg-Al layered double hydroxide produced by acid exhaust gas treatment using carbonated Mg-Al layered double hydroxide contains water and carbon dioxide having a concentration of 5 vol% or more at 70 ° C. or higher. A method for regenerating a carbon dioxide-type layered double hydroxide, which regenerates a carbon dioxide-type Mg—Al-based layered double hydroxide by contacting the mixed gases of the above.
[2] The method for regenerating a carbonated layered double hydroxide according to the above [1], wherein the water content in the mixed gas is 10% or more.
[3] The acidic exhaust gas treatment is a treatment of acidic exhaust gas generated in a combustion facility, and the treated gas from which the acidic gas other than carbon dioxide after the treatment has been removed is used as the mixed gas. Alternatively, the method for regenerating a carbon dioxide-type layered double hydroxide according to [2].

[4]炭酸型Mg−Al系層状複水酸化物を使用する酸性排ガス処理を行う手段(1)と、上記[1]〜[3]のいずれか1項に記載の再生方法による炭酸型Mg−Al系層状複水酸化物の再生を行う手段(2)とを備えた、酸性排ガス処理設備。 [4] Carbonated Mg by the means (1) for performing acidic exhaust gas treatment using a carbonated Mg-Al layered double hydroxide and the regeneration method according to any one of the above [1] to [3]. -Acid exhaust gas treatment equipment provided with means (2) for regenerating Al-based layered double hydroxides.

本発明によれば、酸性排ガス処理での使用済み層状複水酸化物を、大規模な設備を要することなく、オンサイトで炭酸型層状複水酸化物への再生を行うことが可能となり、オフサイトの再生施設での再生処理よりも、設備、労力及びコスト負担の観点からも有利である。
また、酸性排ガス処理の処理後ガスを利用することもでき、本発明の酸性排ガス処理装置によれば、効率的に炭酸型層状複水酸化物を再生することができる。
According to the present invention, it is possible to regenerate the used layered double hydroxide in the acidic exhaust gas treatment into a carbonated layered double hydroxide on-site without requiring a large-scale equipment, and it is turned off. It is also more advantageous in terms of equipment, labor and cost burden than the regeneration process at the site regeneration facility.
Further, the gas after the treatment of the acidic exhaust gas treatment can be used, and the carbonated layered double hydroxide can be efficiently regenerated according to the acidic exhaust gas treatment apparatus of the present invention.

本発明の一実施態様の酸性排ガス設備を用いた酸性排ガス処理プロセスの概略フロー図である。It is a schematic flow chart of the acidic exhaust gas treatment process using the acidic exhaust gas equipment of one Embodiment of this invention.

以下、本発明の炭酸型層状複水酸化物の再生方法、及び酸性排ガス処理設備について、一部、図面を参照して説明する。 Hereinafter, the method for regenerating the carbonated layered double hydroxide of the present invention and the acidic exhaust gas treatment equipment will be partially described with reference to the drawings.

[炭酸型層状複水酸化物の再生方法]
本発明の炭酸型層状複水酸化物の再生方法は、炭酸型Mg−Al LDHを使用する酸性排ガス処理で生成したアニオン型Mg−Al LDHに、水及び濃度5vol%以上の二酸化炭素を含む70℃以上の混合気体を接触させて、炭酸型Mg−Al LDHを再生させることを特徴とする。
このように、酸性排ガス処理後のアニオン型Mg−Al LDHの再生処理を、水及び所定量の二酸化炭素を含む気体との接触で行うことにより、炭酸型Mg−Al LDHへの再生を効率的に行うことができる。
[Regeneration method of carbonated layered double hydroxide]
In the method for regenerating a carbonated layered double hydroxide of the present invention, anionic Mg-Al LDH produced by an acidic exhaust gas treatment using carbonated Mg-Al LDH contains water and carbon dioxide having a concentration of 5 vol% or more 70. It is characterized in that carbonated Mg-Al LDH is regenerated by contacting a mixed gas having a temperature of ° C. or higher.
In this way, by performing the regeneration treatment of the anionic Mg-Al LDH after the acidic exhaust gas treatment in contact with water and a gas containing a predetermined amount of carbon dioxide, the regeneration into the carbonated Mg-Al LDH is efficient. Can be done.

<炭酸型Mg−Al LDH>
炭酸型Mg−Al LDHは、水酸化物基本層([Mg2+ 1-xAl3+ x(OH)2])と、層間炭酸イオン及び層間水から構成される中間層([(CO3 2-)x/2・yH2O])とが交互に積層した構造を有しているナノ粒子である。水酸化物基本層がx相当分の正電荷を持ち、これを補償する負電荷を持つ陰イオンとして炭酸イオンが中間層に存在している不定比化合物である。
炭酸型Mg−Al LDHは、水酸化物基本層を保持したまま、例えば、塩化水素、二酸化硫黄、二酸化窒素等の酸性ガスを層間に取り込むことができる。このため、前記酸性ガスを除去する酸性排ガス処理に好適に用いることができる。
<Carbonated Mg-Al LDH>
Carbonated Mg-Al LDH is composed of a hydroxide basic layer ([Mg 2+ 1-x Al 3+ x (OH) 2 ]) and an intermediate layer composed of interlayer carbonate ions and interlayer water ([(CO 3). 2- ) x / 2 · yH 2 O]) are nanoparticles having a structure in which they are alternately laminated. This is a non-stoichiometric compound in which the basic hydroxide layer has a positive charge equivalent to x, and carbonate ions are present in the intermediate layer as anions having a negative charge to compensate for this.
The carbonated Mg-Al LDH can take in an acid gas such as hydrogen chloride, sulfur dioxide, or nitrogen dioxide between layers while retaining the basic hydroxide layer. Therefore, it can be suitably used for acid exhaust gas treatment for removing the acid gas.

なお、炭酸型Mg−Al LDHが酸性排ガス処理に用いられる際、炭酸型Mg−Al LDH以外の層状複水酸化物、あるいはまた、例えば、水酸化カルシウム(消石灰)、酸化カルシウム、重炭酸ナトリウム(重曹)、炭酸ナトリウム、水酸化ドロマイト、軽焼ドロマイト、水酸化アルミニウム、酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム等の層状複水酸化物以外の薬剤が併用されてもよい。ただし、炭酸型Mg−Al LDHを効率的に再生して再利用する観点から、他の層状複水酸化物や薬剤と混在させないことが好ましい。 When carbonated Mg-Al LDH is used for acid exhaust gas treatment, layered double hydroxides other than carbonated Mg-Al LDH, or, for example, calcium hydroxide (slaked lime), calcium oxide, sodium bicarbonate ( Baking soda), sodium carbonate, dolomite hydroxide, light-baked dolomite, aluminum hydroxide, aluminum oxide, magnesium hydroxide, magnesium oxide and other chemicals other than layered compound hydroxide may be used in combination. However, from the viewpoint of efficiently regenerating and reusing the carbonated Mg-Al LDH, it is preferable not to mix it with other layered double hydroxides or chemicals.

炭酸型Mg−Al LDHは、ハイドロタルサイトとして、天然に産出する粘土鉱物も存在するが、通常、合成粉末が用いられる。合成方法は、特に限定されるものではなく、公知の方法(例えば、前記特許文献1に記載の方法)を用いることができる。
例えば、硝酸マグネシウム(Mg(NO3)2)と硝酸アルミニウム(Al(NO3)3)をMg/Al=2/1(モル比)で混合した水溶液を、pH10.5に保持しながら、炭酸ナトリウム(Na2CO3)水溶液に滴下することにより、炭酸型Mg−Al LDHを得ることができる。
Carbonated Mg-Al LDH contains naturally occurring clay minerals as hydrotalcite, but synthetic powder is usually used. The synthesis method is not particularly limited, and a known method (for example, the method described in Patent Document 1) can be used.
For example, an aqueous solution of magnesium nitrate (Mg (NO 3 ) 2 ) and aluminum nitrate (Al (NO 3 ) 3 ) mixed at Mg / Al = 2/1 (molar ratio) is kept at pH 10.5 and carbonated. Carbonated Mg-Al LDH can be obtained by dropping into an aqueous solution of sodium (Na 2 CO 3).

酸性排ガス処理に使用した炭酸型Mg−Al LDHは、前記酸性ガスが層間に取り込まれると、層間炭酸イオンが、塩素イオンや硫酸イオン、硝酸イオン等の酸性排ガス由来の他のアニオンに交換されたアニオン型Mg−Al LDHになる。このようにして生成したアニオン型Mg−Al LDHは、酸性排ガスをさらに除去する能力を有しない。このため、アニオン型Mg−Al LDHは、再度、アニオン交換により炭酸型Mg−Al LDHに再生して、再利用に供される。 In the carbonated Mg-Al LDH used for acid gas treatment, when the acidic gas was taken in between layers, the interlayer carbonate ions were exchanged with other anions derived from acidic exhaust gas such as chloride ion, sulfate ion, and nitrate ion. It becomes an anion type Mg-Al LDH. The anionic Mg-Al LDH thus produced does not have the ability to further remove acidic exhaust gas. Therefore, the anion-type Mg-Al LDH is regenerated into carbonic acid-type Mg-Al LDH by anion exchange again, and is used for reuse.

<混合気体>
本発明の炭酸型層状複水酸化物の再生方法では、酸性排ガス処理の使用済み層状複水酸化物であるアニオン型Mg−Al LDHを、水及び濃度5vol%以上の二酸化炭素を含む70℃以上の混合気体を用いてアニオン交換することにより、炭酸型Mg−Al LDHに再生する。
このような気体接触による再生方法は、液体である炭酸水溶液を用いる従来の再生方法に比べて、炭酸型Mg−Al LDHへの再生手段として効率的である。
<Mixed gas>
In the method for regenerating a carbonated layered double hydroxide of the present invention, anionic Mg-Al LDH, which is a used layered double hydroxide treated with acidic exhaust gas, is mixed with water and carbon dioxide having a concentration of 5 vol% or more at 70 ° C. or higher. By exchanging anions with the mixed gas of the above, carbon dioxide type Mg-Al LDH is regenerated.
Such a regeneration method by gas contact is more efficient as a regeneration means for carbonic acid-type Mg-Al LDH than a conventional regeneration method using a liquid carbonate aqueous solution.

前記混合気体は、水及び濃度5vol%以上の二酸化炭素を含むものとする。
アニオン型Mg−Al LDHにおける、酸性排ガスを由来とする層間アニオンを、炭酸イオンに交換し、中間層に層間炭酸イオン及び層間水を有する炭酸型Mg−Al LDHに再生するために、このような水及び二酸化炭素を含む混合気体を用いる。
なお、ここで言う「水」は、気体の水、すなわち、水蒸気を意味する。
The mixed gas shall contain water and carbon dioxide having a concentration of 5 vol% or more.
In order to exchange the interlayer anion derived from the acidic exhaust gas in the anion type Mg-Al LDH with carbonate ion and regenerate it into the carbonate type Mg-Al LDH having the interlayer carbonate ion and the interlayer water in the intermediate layer, such Use a mixed gas containing water and carbon dioxide.
The term "water" here means gaseous water, that is, water vapor.

前記混合気体中の二酸化炭素の含有量は、5vol%以上、好ましくは10〜75vol%、より好ましくは10〜30vol%である。
前記含有量が10vol%以上であれば、効率的に、アニオン型Mg−Al LDHの層間アニオンを脱着させて、層間炭酸イオンに交換し、炭酸型Mg−Al LDHの再生を行うことができる。
The content of carbon dioxide in the mixed gas is 5 vol% or more, preferably 10 to 75 vol%, and more preferably 10 to 30 vol%.
When the content is 10 vol% or more, the interlayer anion of the anion-type Mg-Al LDH can be efficiently desorbed and exchanged for the interlayer carbonate ion to regenerate the carbonate-type Mg-Al LDH.

前記混合気体中の水分量は、10%以上であることが好ましく、より好ましくは15〜30%、さらに好ましくは20〜25%である。
前記水分量が10%以上であれば、効率的に、アニオン型Mg−Al LDHの層間アニオンを脱着させて、中間層に層間炭酸イオン及び層間水を有する炭酸型Mg−Al LDHの再生を行うことができる。
なお、本発明で言う「水分量」とは、JIS Z 8808:2013における排ガス中に含まれる水蒸気の体積分率[%]に相当するものであり、該JIS規格に記載の吸湿管による方法に準じた方法にて測定することができる。
The amount of water in the mixed gas is preferably 10% or more, more preferably 15 to 30%, still more preferably 20 to 25%.
When the water content is 10% or more, the interlayer anion of the anion-type Mg-Al LDH is efficiently desorbed to regenerate the carbonate-type Mg-Al LDH having interlayer carbonate ions and interlayer water in the intermediate layer. be able to.
The "moisture content" referred to in the present invention corresponds to the volume fraction [%] of water vapor contained in the exhaust gas in JIS Z 8808: 2013, and is based on the method using a moisture absorbing tube described in the JIS standard. It can be measured by the same method.

前記混合気体は、水及び二酸化炭素以外の気体を含んでいてもよいが、二酸化炭素以外の酸性ガスを含まないことが好ましい。所定量の水及び二酸化炭素を含む混合気体を調製する際の簡便性及びコスト等の観点から、前記混合気体は、空気を混合して調製することが好ましい。 The mixed gas may contain a gas other than water and carbon dioxide, but preferably does not contain an acid gas other than carbon dioxide. From the viewpoint of convenience and cost in preparing a mixed gas containing a predetermined amount of water and carbon dioxide, the mixed gas is preferably prepared by mixing air.

前記混合気体の温度は、70℃以上、好ましくは75〜100℃、より好ましくは80〜90℃とする。
前記温度が70℃以上であれば、アニオン型Mg−Al LDHから炭酸型Mg−Al LDHへの再生を効率的に行うことができる。
The temperature of the mixed gas is 70 ° C. or higher, preferably 75 to 100 ° C., and more preferably 80 to 90 ° C.
When the temperature is 70 ° C. or higher, regeneration from anionic Mg-Al LDH to carbonic acid-type Mg-Al LDH can be efficiently performed.

前記混合気体には、燃焼施設で発生した酸性排ガスの処理後の二酸化炭素以外の酸性ガスが除去された処理後ガスを用いることが好ましい。
このような処理後ガスを使用することにより、燃焼施設から生じるガスを有効利用することができ、オンサイトでのアニオン型Mg−Al LDHから炭酸型Mg−Al LDHへの再生が可能となり、再生処理の効率化をより図ることができる。
As the mixed gas, it is preferable to use a treated gas from which acid gases other than carbon dioxide after the treatment of the acidic exhaust gas generated in the combustion facility have been removed.
By using such treated gas, the gas generated from the combustion facility can be effectively used, and on-site regeneration from anionic Mg-Al LDH to carbonated Mg-Al LDH becomes possible, and regeneration is possible. The efficiency of processing can be further improved.

[酸性排ガス処理設備]
本発明の酸性排ガス処理設備は、炭酸型Mg−Al系層状複水酸化物を使用する酸性排ガス処理を行う手段(1)と、上記の本発明の再生方法による炭酸型Mg−Al系層状複水酸化物の再生を行う手段(2)とを備えていることを特徴とするものである。
このような酸性排ガス処理設備によれば、酸性排ガス処理を行いつつ、オンサイトで、酸性排ガス処理に使用する炭酸型層状複水酸化物の再生を行うことができる。
[Acid exhaust gas treatment equipment]
The acidic exhaust gas treatment equipment of the present invention includes a means (1) for performing acidic exhaust gas treatment using a carbonated Mg-Al layered double hydroxide and a carbonated Mg-Al layered double hydroxide according to the above-mentioned regeneration method of the present invention. It is characterized by being provided with a means (2) for regenerating a hydroxide.
According to such an acidic exhaust gas treatment facility, it is possible to regenerate the carbonated layered double hydroxide used for the acidic exhaust gas treatment on-site while performing the acidic exhaust gas treatment.

図1に、本発明の一実施態様の酸性排ガス処理設備を用いた酸性排ガス処理プロセスフローを示す。図1に示す酸性排ガス処理プロセスフローにおいては、まず、燃焼施設10から排出される酸性排ガスaが、炭酸型Mg−Al LDHが収納されている層状複水酸化物収納容器20に導入される。そして、層状複水酸化物収納容器20内で、酸性排ガスaを炭酸型Mg−Al LDHと接触させて酸性排ガス処理を行い、処理後ガスbが、誘引ファン等(図示せず)で排気ダクト50へ送られ、大気中に放出される。
なお、酸性排ガスaとしては、例えば、燃焼施設10が廃棄物焼却炉である場合、焼却炉本体からの高温の排ガスがボイラ等の熱交換器を経て冷却され、集塵機で粉塵等が除去された後のガスが好適に用いられる。
FIG. 1 shows an acidic exhaust gas treatment process flow using the acidic exhaust gas treatment equipment according to the embodiment of the present invention. In the acidic exhaust gas treatment process flow shown in FIG. 1, first, the acidic exhaust gas a discharged from the combustion facility 10 is introduced into the layered double hydroxide storage container 20 in which the carbonated Mg-Al LDH is stored. Then, in the layered double hydroxide storage container 20, the acidic exhaust gas a is brought into contact with the carbonic acid type Mg-Al LDH to perform the acidic exhaust gas treatment, and the treated gas b is discharged into an exhaust duct by an attraction fan or the like (not shown). It is sent to 50 and released into the atmosphere.
As the acidic exhaust gas a, for example, when the combustion facility 10 is a waste incinerator, the high-temperature exhaust gas from the incinerator main body is cooled through a heat exchanger such as a boiler, and dust and the like are removed by a dust collector. The latter gas is preferably used.

酸性排ガス処理の経時に伴い、炭酸型Mg−Al LDHがアニオン型Mg−Al LDHに変化し、酸性排ガス処理能力が低下した場合、酸性排ガスaが、別に設けた層状複水酸化物収納容器21に導入されるように切換弁V1でラインを切り換える。また、切換弁V2を操作して、処理後ガスbの一部を、誘引ファン等でバイパスライン40を通じて、層状複水酸化物収納容器20に導入する。このようにして、アニオン型Mg−Al LDHに、処理後ガスb、すなわち、前記混合気体を接触させて、炭酸型Mg−Al LDHへの再生処理を行う。
前記再生処理において、アニオン型Mg−Al LDHから脱着したアニオンは、酸性排ガスa中の水分が凝縮した水(液体)に吸収され、再生処理排水cとして、再生処理排水回収容器30に貯留される。
前記再生処理が終了したら、切換弁V1及び切換弁V2を元に戻し、層状複水酸化物収納容器20での酸性排ガス処理を再開する。なお、炭酸型Mg−Al LDHの再生処理の終了の判断は、再生処理排水c中に含まれるアニオン成分の濃度分析等に基づいて行うことができる。
別に設けた層状複水酸化物収納容器21でも、同様の再生処理を行えば、切換弁V1によるラインの切り換えにより、層状複水酸化物収納容器20と層状複水酸化物収納容器21とを交互に使用することができ、酸性排ガスaの流れを止めることなく、酸性排ガス処理を連続で効率的に行うことが可能である。
When the carbonic acid type Mg-Al LDH changes to the anion type Mg-Al LDH with the passage of time of the acidic exhaust gas treatment and the acidic exhaust gas treatment capacity is lowered, the acidic exhaust gas a is separately provided in the layered double hydroxide storage container 21. The line is switched by the switching valve V1 so as to be introduced in. Further, the switching valve V2 is operated to introduce a part of the treated gas b into the layered double hydroxide storage container 20 through the bypass line 40 with an attraction fan or the like. In this way, the treated gas b, that is, the mixed gas is brought into contact with the anion-type Mg-Al LDH, and the carbonic acid-type Mg-Al LDH is regenerated.
In the regeneration treatment, the anion desorbed from the anion type Mg-Al LDH is absorbed by the condensed water (liquid) in the acidic exhaust gas a and stored in the regeneration treatment wastewater recovery container 30 as the regeneration treatment wastewater c. ..
When the regeneration process is completed, the switching valve V1 and the switching valve V2 are returned to their original positions, and the acidic exhaust gas treatment in the layered double hydroxide storage container 20 is restarted. The end of the regeneration treatment of the carbonated Mg-Al LDH can be determined based on the concentration analysis of the anion component contained in the regeneration treatment wastewater c.
If the same regeneration process is performed on the separately provided layered double hydroxide storage container 21, the layered double hydroxide storage container 20 and the layered double hydroxide storage container 21 are alternately alternated by switching the line with the switching valve V1. It is possible to continuously and efficiently treat the acidic exhaust gas without stopping the flow of the acidic exhaust gas a.

以下、本発明を実施例に基づいてより詳細に説明するが、本発明は下記実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples.

[炭酸型層状複水酸化物の再生処理試験]
下記の調製例1により、炭酸型Mg−Al LDHに、試験用酸性排ガスとして塩化水素ガスを接触させて、層間炭酸イオンが層間塩化物イオンに置き換えられた塩素型Mg−Al LDH(アニオン型Mg−Al LDH試料)を調製した。この塩素型Mg−Al LDH 20gを、内径40mmのアクリル樹脂製のカラムに充填し、下記の実施例及び比較例の各条件にて再生処理試験を行った。
再生処理試験前後におけるMg−Al LDH中の塩素含有量をイオンクロマトグラフ法にて測定し、塩化物イオンの脱着率を求めることにより、炭酸型層状複水酸化物の再生効率の評価を行った。塩化物イオンの脱着率が高いほど、塩素型Mg−Al LDHから炭酸型Mg−Al LDHへの再生効率が高いと言える。
[Regeneration test of carbonated layered double hydroxide]
According to Preparation Example 1 below, chlorine-type Mg-Al LDH (anion-type Mg) in which the carbonate-type Mg-Al LDH is brought into contact with hydrogen chloride gas as a test acidic exhaust gas and the interlayer carbonate ions are replaced with the interlayer chloride ions. -Al LDH sample) was prepared. 20 g of this chlorine-type Mg-Al LDH was filled in a column made of acrylic resin having an inner diameter of 40 mm, and a regeneration treatment test was conducted under each condition of the following Examples and Comparative Examples.
The chlorine content in Mg-Al LDH before and after the regeneration treatment test was measured by an ion chromatograph method, and the desorption rate of chloride ions was determined to evaluate the regeneration efficiency of the carbonated layered double hydroxide. .. It can be said that the higher the desorption rate of chloride ions, the higher the regeneration efficiency from chlorine-type Mg-Al LDH to carbonic acid-type Mg-Al LDH.

(調製例1)
内径40mmのアクリル樹脂製のカラムに、炭酸型Mg−Al LDH(「キョーワード(登録商標)500 PL」、協和化学工業株式会社製、合成ハイドロタルサイト)を充填し、空気に塩化水素ガスを導入して、塩化水素濃度約1000ppm、100℃に調整した塩化水素含有ガスを、カラム出口で塩化水素が検知されるまで流通させて、塩素型Mg−Al LDHを得た。
なお、塩素型Mg−Al LDHの生成は、粉末X線回折測定法及びイオンクロマトグラフ法にて確認した。
(Preparation Example 1)
A column made of acrylic resin with an inner diameter of 40 mm is filled with carbonated Mg-Al LDH (“Kyoward (registered trademark) 500 PL”, manufactured by Kyowa Chemical Industry Co., Ltd., synthetic hydrotalcite), and hydrogen chloride gas is added to the air. A hydrogen chloride-containing gas having been introduced and adjusted to a hydrogen chloride concentration of about 1000 ppm and 100 ° C. was circulated until hydrogen chloride was detected at the column outlet to obtain a chlorine-type Mg-Al LDH.
The formation of chlorine-type Mg-Al LDH was confirmed by a powder X-ray diffraction measurement method and an ion chromatograph method.

(実施例1)
空気に水及び二酸化炭素を導入して、水分量20%、二酸化炭素濃度30vol%、80℃に調整した混合気体を、塩素型Mg−Al LDHを充填した前記カラム内に8時間流通させて、再生処理試験を行った。
再生処理試験における塩化物イオンの脱着率は96%であった。
(Example 1)
A mixed gas prepared by introducing water and carbon dioxide into the air to have a water content of 20%, a carbon dioxide concentration of 30 vol%, and 80 ° C. was circulated in the column filled with chlorine-type Mg-Al LDH for 8 hours. A regeneration process test was conducted.
The desorption rate of chloride ions in the regeneration treatment test was 96%.

(比較例1)
空気に二酸化炭素を導入して、二酸化炭素濃度30vol%に調整した常温(25℃)の混合気体を、塩素型Mg−Al LDHを充填した前記カラム内に24時間流通させて、再生処理試験を行った。
再生処理試験における塩化物イオンの脱着率は6%であった。
(Comparative Example 1)
A mixed gas at room temperature (25 ° C.) adjusted to a carbon dioxide concentration of 30 vol% by introducing carbon dioxide into the air was circulated in the column filled with chlorine-type Mg-Al LDH for 24 hours to carry out a regeneration treatment test. went.
The desorption rate of chloride ions in the regeneration treatment test was 6%.

(比較例2)
空気に水を導入して、水分量20%、80℃に調整した混合気体を、塩素型Mg−Al LDHを充填した前記カラム内に8時間流通させて、再生処理試験を行った。
再生処理試験における塩化物イオンの脱着率は37%であった。
(Comparative Example 2)
Water was introduced into the air, and a mixed gas adjusted to have a water content of 20% and 80 ° C. was circulated in the column filled with chlorine-type Mg-Al LDH for 8 hours to carry out a regeneration treatment test.
The desorption rate of chloride ions in the regeneration treatment test was 37%.

(比較例3)
空気に二酸化炭素を導入して、二酸化炭素濃度30vol%に調整した80℃の混合気体を、塩素型Mg−Al LDHを充填した前記カラム内に8時間流通させて、再生処理試験を行った。
再生処理試験における塩化物イオンの脱着率は30%であった。
(Comparative Example 3)
A regenerative treatment test was conducted by introducing carbon dioxide into the air and passing a mixed gas at 80 ° C. adjusted to a carbon dioxide concentration of 30 vol% through the column filled with chlorine-type Mg-Al LDH for 8 hours.
The desorption rate of chloride ions in the regeneration treatment test was 30%.

上記実施例及び比較例の各試験結果から、アニオン型Mg−Al LDHに、水及び所定量の二酸化炭素を含む気体と接触させることにより、効率的に炭酸型Mg−Al LDHへと再生することができることが認められた。 From the test results of the above Examples and Comparative Examples, the anionic Mg-Al LDH can be efficiently regenerated into the carbonated Mg-Al LDH by contacting the anionic Mg-Al LDH with a gas containing water and a predetermined amount of carbon dioxide. It was recognized that

10 燃焼施設
20、21 層状複水酸化物収納容器
30 再生処理排水回収容器
40 バイパスライン
50 排気ダクト
V1、V2 切換弁
a 酸性排ガス
b 処理後ガス
c 再生処理排水
10 Combustion facility 20, 21 Layered double hydroxide storage container 30 Recycled wastewater recovery container 40 Bypass line 50 Exhaust duct V1, V2 Switching valve a Acid exhaust gas b Treated gas c Recycled wastewater

Claims (3)

炭酸型Mg−Al系層状複水酸化物を使用する酸性排ガス処理で前記炭酸型Mg−Al系複水酸化物から変換したアニオン型Mg−Al系層状複水酸化物に、水及び濃度5vol%以上の二酸化炭素を含む70℃以上の混合気体を接触させて、前記アニオン型Mg−Al系層状複水酸化物の層間アニオンを、層間炭酸イオンに交換する炭酸型Mg−Al系層状複水酸化物を再生させる方法であって、
前記酸性排ガス処理は、燃焼施設で発生した酸性排ガスの処理であり、
前記処理後の二酸化炭素以外の酸性ガスが除去された処理後ガスを、前記混合気体に用いる、
炭酸型層状複水酸化物の再生方法。
Anionic Mg-Al layered double hydroxide converted from the carbonated Mg-Al layered double hydroxide by acid exhaust gas treatment using carbonated Mg-Al layered double hydroxide, water and concentration 5 vol% Carbonate-type Mg-Al-based layered double hydroxide that exchanges the interlayer anion of the anion-type Mg-Al-based layered double hydroxide with interlayer carbonate ions by contacting the mixed gas containing the above carbon dioxide at 70 ° C. or higher. It ’s a way to regenerate things,
The acidic exhaust gas treatment is a treatment of acidic exhaust gas generated in a combustion facility.
The treated gas from which the acid gas other than carbon dioxide after the treatment has been removed is used as the mixed gas.
A method for regenerating a carbonated layered double hydroxide.
前記混合気体中の水分量が10%以上である、請求項1に記載の炭酸型層状複水酸化物の再生方法。 The method for regenerating a carbonated layered double hydroxide according to claim 1, wherein the water content in the mixed gas is 10% or more. 炭酸型Mg−Al系層状複水酸化物を使用する酸性排ガス処理を行う手段(1)と、請求項1又は2に記載の再生方法による炭酸型Mg−Al系層状複水酸化物の再生を行う手段(2)とを行う装置を備えた、酸性排ガス処理設備。 Regeneration of carbonated Mg-Al layered double hydroxide by means (1) for performing acidic exhaust gas treatment using carbonated Mg-Al layered double hydroxide and the regeneration method according to claim 1 or 2. An acidic exhaust gas treatment facility equipped with a device for performing the means (2).
JP2019223146A 2019-12-10 2019-12-10 Carbonated layered double hydroxide regeneration method and acidic exhaust gas treatment equipment Active JP6898627B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019223146A JP6898627B2 (en) 2019-12-10 2019-12-10 Carbonated layered double hydroxide regeneration method and acidic exhaust gas treatment equipment
KR1020227008188A KR102511218B1 (en) 2019-12-10 2020-03-05 Regeneration method of carbonic acid layered double hydroxide and acid exhaust gas treatment facility
CN202080064088.7A CN114375220B (en) 2019-12-10 2020-03-05 Method for regenerating carbonic acid type layered double hydroxide and acid exhaust gas treatment equipment
PCT/JP2020/009329 WO2021117261A1 (en) 2019-12-10 2020-03-05 Method for regenerating carbonate-type layered double hydroxide and acidic exhaust gas treatment facility
TW109108022A TWI809256B (en) 2019-12-10 2020-03-11 Regeneration method of carbonic acid-type layered double hydroxide and acid exhaust gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019223146A JP6898627B2 (en) 2019-12-10 2019-12-10 Carbonated layered double hydroxide regeneration method and acidic exhaust gas treatment equipment

Publications (2)

Publication Number Publication Date
JP2021090913A JP2021090913A (en) 2021-06-17
JP6898627B2 true JP6898627B2 (en) 2021-07-07

Family

ID=76311394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019223146A Active JP6898627B2 (en) 2019-12-10 2019-12-10 Carbonated layered double hydroxide regeneration method and acidic exhaust gas treatment equipment

Country Status (5)

Country Link
JP (1) JP6898627B2 (en)
KR (1) KR102511218B1 (en)
CN (1) CN114375220B (en)
TW (1) TWI809256B (en)
WO (1) WO2021117261A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249602B1 (en) * 2021-11-22 2023-03-31 栗田工業株式会社 Method for regenerating carbonate-type layered double hydroxide, method for treating acidic exhaust gas, and facility for treating acidic exhaust gas

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114691A (en) * 1990-01-18 1992-05-19 Board Of Trustees Operating Michigan State University Process using sorbents for the removal of SOx from flue gas
US5785938A (en) * 1992-11-16 1998-07-28 Board Of Trustees Operating Michigan State University Process using recyclable sorbents for the removal of sox from flue gases and other gas streams
US5358701A (en) * 1992-11-16 1994-10-25 Board Of Trustees Operating Michigan State University Process of using layered double hydroxides as low temperature recyclable sorbents for the removal of SOx from flue gas and other gas streams
JP3710156B2 (en) * 1995-02-03 2005-10-26 大陽日酸株式会社 Gas processing method and gas processing agent
EP1840113B1 (en) 2004-12-22 2017-05-31 Tayca Corporation Layered double hydroxide peelable in water, and production process and use thereof
FR2916149B1 (en) * 2007-05-15 2010-08-13 Inst Francais Du Petrole PROCESS FOR DEACIDIFYING NATURAL GAS USING DOUBLE LAMELLAR HYDROXIDES
JP5317293B2 (en) * 2007-12-05 2013-10-16 独立行政法人物質・材料研究機構 Method for producing anion-exchange layered double hydroxide
NL2004884C2 (en) * 2010-06-14 2011-12-15 Stichting Energie Method for determining the ratio of biomass-derived and fossil-derived co2 in a flue gas stream.
US9802154B2 (en) * 2012-03-30 2017-10-31 Fuel Tech, Inc. Process for sulfur dioxide, hydrochloric acid and mercury mediation
JP2016190199A (en) * 2015-03-31 2016-11-10 栗田工業株式会社 Treatment method for acid exhaust gas generated from combustion facility, combustion facility and acid exhaust gas treatment agent
JP2017078014A (en) 2015-10-20 2017-04-27 テイカ株式会社 Layered double hydroxide in which hydrogen phosphate ion is intercalated, flame retardant containing layered double hydroxide, flame-retardant synthetic resin composition, and method for producing layered double hydroxide
CN107649093A (en) * 2016-07-26 2018-02-02 中国石化扬子石油化工有限公司 A kind of renovation process of aromatic hydrocarbon refining carclazyte

Also Published As

Publication number Publication date
KR102511218B1 (en) 2023-03-16
CN114375220B (en) 2023-05-23
JP2021090913A (en) 2021-06-17
TWI809256B (en) 2023-07-21
KR20220104675A (en) 2022-07-26
CN114375220A (en) 2022-04-19
WO2021117261A1 (en) 2021-06-17
TW202122349A (en) 2021-06-16

Similar Documents

Publication Publication Date Title
EP3153224B1 (en) Process and device for desulphurization and denitration of flue gas
CN108348849B (en) Method for capturing carbon dioxide and desalting
KR101773813B1 (en) Selective preparing method of carbonate using carbon dioxide
US11027235B2 (en) Method and apparatus for reagent recovery in a flue gas processing system
JP6898627B2 (en) Carbonated layered double hydroxide regeneration method and acidic exhaust gas treatment equipment
JP4747382B1 (en) Flue gas purification treatment method
WO2023089913A1 (en) Method for regenerating carbonate-type layered double hydroxide, acidic exhaust gas treatment method, and acidic exhaust gas treatment equipment
JP5478953B2 (en) Water treatment device for fuel cell
RU2688593C1 (en) Method of sorption extraction of lithium from lithium-containing chloride brines
JP2005028312A (en) Fluorine adsorbent and its manufacturing method
Kameda et al. Regeneration of carbonate-intercalated Mg–Al layered double hydroxides (CO3· Mg–Al LDHs) by CO2-induced desorption of anions (X) from X· Mg–Al LDH (X= Cl, SO4, or NO3): A kinetic study
JP5320323B2 (en) Waste liquid treatment method and treatment apparatus
JP2008029985A (en) Apparatus for regenerating anion adsorbent and method of regenerating anion adsorbent using the same
JP2006247580A (en) Recycling method of adsorbent and purification apparatus for photodegradable chloro substance-containing fluid
JPS60132695A (en) Treatment of waste water containing sulfur compound
WO2022195953A1 (en) Method for treating acidic exhaust gas, equipment for treating acidic exhaust gas, and incineration facility
US20220379285A1 (en) Method &amp; Apparatus for Regenerating Sorbent from Carbon Dioxide Absorption
CN109157946A (en) The multi-stage absorption stripping apparatus of exhaust gas
CA2711555A1 (en) Method for conditioning radioactive ion exchange resins
JPS61245087A (en) Nuclear power generating plant
JP2007087624A (en) Fuel cell power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210603

R150 Certificate of patent or registration of utility model

Ref document number: 6898627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150