JP6897289B2 - Bullion lance - Google Patents

Bullion lance Download PDF

Info

Publication number
JP6897289B2
JP6897289B2 JP2017091165A JP2017091165A JP6897289B2 JP 6897289 B2 JP6897289 B2 JP 6897289B2 JP 2017091165 A JP2017091165 A JP 2017091165A JP 2017091165 A JP2017091165 A JP 2017091165A JP 6897289 B2 JP6897289 B2 JP 6897289B2
Authority
JP
Japan
Prior art keywords
oxygen
bullion
flow path
path
intermediate flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017091165A
Other languages
Japanese (ja)
Other versions
JP2018188698A (en
Inventor
匠 江口
匠 江口
洋一 渡部
洋一 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017091165A priority Critical patent/JP6897289B2/en
Publication of JP2018188698A publication Critical patent/JP2018188698A/en
Application granted granted Critical
Publication of JP6897289B2 publication Critical patent/JP6897289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、銑鉄を精錬する転炉の炉口周辺に付着した地金を酸素ガスの吹き付けによって溶断する地金切りランスに関する。 The present invention relates to a bullion cutting lance that melts the bullion adhering to the vicinity of the furnace mouth of a converter for refining pig iron by blowing oxygen gas.

転炉の操業中、ランスによって酸素ガスが吹き込まれる際に、溶鋼が飛散し炉口周辺に付着すると、その溶鋼は固まり地金として残りやすい。炉口周辺に付着した地金は、ランスによる酸素ガスの吹き込みの繰り返しにより成長することによって、原料の転炉内への供給や、溶鋼又はスラグの転炉からの排出の障害となる。また、肥大した地金が炉口周辺から剥離して落下すると、操業中の溶鋼の温度が急激に低下して操業条件が乱れたり、転炉の内側に設けられた耐火物を損傷させたりするおそれがある。 During the operation of the converter, when oxygen gas is blown by the lance, if the molten steel scatters and adheres to the vicinity of the furnace opening, the molten steel tends to solidify and remain as bare metal. The bullion adhering to the vicinity of the furnace mouth grows due to repeated injection of oxygen gas by the lance, which hinders the supply of raw materials into the converter and the discharge of molten steel or slag from the converter. In addition, if the enlarged bullion peels off from the vicinity of the furnace mouth and falls, the temperature of the molten steel during operation drops sharply, disturbing the operating conditions and damaging the refractory provided inside the converter. There is a risk.

そのため、地金が大きく成長する前に地金を除去する必要がある。地金の除去には、有底円筒状の地金除去用のランス(以下、「地金切りランス」と言う)の先端側を炉口から炉内に挿入してランス先端付近の側壁に設けた吐出孔から酸素ガスを地金に吹き付ける方法があり、その具体例が特許文献1に記載されている。
ここで、地金は炉口周辺に不均一に付着しているため、地金切りランスから炉口全体に向けて酸素ガスを万遍なく噴出すると、炉口周辺で地金のない領域にある耐火物を損傷するおそれがある。この点、特許文献1に記載の地金切りランスは、酸素を噴出する複数の酸素吐出孔(酸素吐出口)を地金切りランスの周方向の所定領域に設けて、特定の方向のみに酸素ガスを噴出するようにしているので、耐火物の損傷を防止可能である。
Therefore, it is necessary to remove the bullion before it grows significantly. To remove the bullion, the tip side of a bottomed cylindrical lance for removing the bullion (hereinafter referred to as "bullet cutting lance") is inserted into the furnace from the furnace opening and provided on the side wall near the tip of the lance. There is a method of blowing oxygen gas onto the bare metal from the discharge hole, and a specific example thereof is described in Patent Document 1.
Here, since the bullion adheres unevenly around the furnace ostium, if oxygen gas is evenly ejected from the bullion cutting lance toward the entire furnace ostium, it will be in the area where there is no bullion around the furnace ostium. There is a risk of damaging refractories. In this regard, the bullion cutting lance described in Patent Document 1 is provided with a plurality of oxygen discharge holes (oxygen discharge ports) for ejecting oxygen in a predetermined region in the circumferential direction of the bullion cutting lance, and oxygen is provided only in a specific direction. Since the gas is ejected, it is possible to prevent damage to the fireproof material.

特開2005−60747号公報Japanese Unexamined Patent Publication No. 2005-60747

ところで、各酸素吐出孔の径を大きくすることによって、酸素ガスの吹き付け量が増加するので、地金の除去効率の向上が期待できる。そのため、特許文献1に記載の地金切りランスを基に、各酸素吐出孔の径を大きくしようとしたところ、所定の吹き付け量を得るためには酸素ガスを地金切りランスに供給するポンプの能力を想定以上に増大させる必要があることが判明した。これは、酸素ガスに対して生じる圧力損失が大きいことによるものと考えられる。
本発明は、かかる事情に鑑みてなされたもので、酸素ガスの圧力損失を抑制しつつ酸素ガスの吹き付け量を増加させることが可能な地金切りランスを提供することを目的とする。
By the way, by increasing the diameter of each oxygen discharge hole, the amount of oxygen gas sprayed increases, so that the efficiency of removing the bare metal can be expected to improve. Therefore, when an attempt was made to increase the diameter of each oxygen discharge hole based on the bullion cutting lance described in Patent Document 1, a pump that supplies oxygen gas to the bullion lance in order to obtain a predetermined spraying amount It turned out that the capacity needed to be increased more than expected. This is considered to be due to the large pressure loss that occurs with respect to the oxygen gas.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a bullion cutting lance capable of increasing the amount of oxygen gas sprayed while suppressing the pressure loss of oxygen gas.

前記目的に沿う本発明に係る地金切りランスは、有底円筒状に形成され、先端側の側壁に設けられた複数の開口から転炉内に酸素ガスを吹き付けて、炉口周辺に付着した地金を除去する地金切りランスにおいて、前記側壁の内側であって該側壁から距離を有する位置に軸心に沿って配置された酸素送出路と、一側が前記酸素送出路に連通し該酸素送出路からの酸素ガスを他側に送る一つの中間流路と、それぞれ一側が前記中間流路の他側に連通し、他側が前記各開口に連通する複数の酸素吐出孔とを備え、前記酸素送出路からの酸素ガスを前記複数の酸素突出孔に送る前記中間流路は、一側から他側に向かって、断面積が漸減している。
また、本発明に係る地金切りランスは、前記複数の酸素吐出孔が周方向に配列され、前記中間流路は、一側から他側に向かって、断面の該地金切りランスの軸心方向長さが縮小していてもよい。
The metal cutting lance according to the present invention according to the above object is formed in a bottomed cylindrical shape, and oxygen gas is blown into the converter from a plurality of openings provided on the side wall on the tip side to adhere to the periphery of the furnace opening. In a metal cutting lance for removing bare metal, an oxygen delivery path arranged along the axis inside the side wall and at a position having a distance from the side wall, and one side communicating with the oxygen delivery path and the oxygen. and one intermediate passage to send the oxygen gas from the delivery passage to the other side, one side each communicating with the other side of the intermediate flow passage, and a plurality of oxygen discharge holes other side communicates with each opening, wherein The cross-sectional area of the intermediate flow path that sends oxygen gas from the oxygen delivery path to the plurality of oxygen protrusions gradually decreases from one side to the other.
Further, in the bullion cutting lance according to the present invention, the plurality of oxygen discharge holes are arranged in the circumferential direction, and the intermediate flow path is the axial center of the bullion cutting lance in the cross section from one side to the other. The directional length may be reduced.

本発明に係る地金切りランスによれば、中間流路は一側から他側に向かって断面積が漸減しているので、酸素ガスの圧力損失を抑制しつつ酸素ガスの吹きつけ量を増加させることが可能である。 According to the bullion cutting lance according to the present invention, since the cross-sectional area of the intermediate flow path gradually decreases from one side to the other, the amount of oxygen gas blown is increased while suppressing the pressure loss of oxygen gas. It is possible to make it.

本発明の一実施の形態に係る地金切りランスの説明図である。It is explanatory drawing of the bullion cutting lance which concerns on one Embodiment of this invention. 同地金切りランスの縦断面図である。It is a vertical cross-sectional view of the same bullion cutting lance. (A)、(B)はそれぞれ、図2のA−A断面図及びB−B断面図である。(A) and (B) are a cross-sectional view taken along the line AA and a cross-sectional view taken along the line BB of FIG. 2, respectively. (A)は中間流路の平面図、(B)、(C)はそれぞれ、図4(A)のL−L断面図及びM−M断面図である。(A) is a plan view of the intermediate flow path, and (B) and (C) are a cross-sectional view taken along the line LL and a cross-sectional view taken along the line MM of FIG. 4 (A), respectively. (A)は本発明の比較例に係る地金切りランスの縦断面図、(B)は図5(A)のQ−Q断面図である。(A) is a vertical sectional view of a bullion cutting lance according to a comparative example of the present invention, and (B) is a QQ sectional view of FIG. 5 (A). (A)、(B)はそれぞれ、本発明の一実施の形態及び比較例に係る地金切りランスの酸素ガスの流路の模式図である。(A) and (B) are schematic views of the oxygen gas flow path of the bullion cutting lance according to the embodiment and the comparative example of the present invention, respectively.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1、図2、図3(A)、(B)に示すように、本発明の一実施の形態に係る地金切りランス10は、有底円筒状に形成され、先端側の側壁11に設けられた複数の開口12から転炉13内に酸素ガスを吹き付けて、炉口14周辺に付着した地金Pを除去する。以下、詳細に説明する。
Subsequently, an embodiment embodying the present invention will be described with reference to the attached drawings, and the present invention will be understood.
As shown in FIGS. 1, 2, 3 (A) and 3 (B), the bullion cutting lance 10 according to the embodiment of the present invention is formed in a bottomed cylindrical shape and is formed on the side wall 11 on the tip side. Oxygen gas is blown into the converter 13 from the plurality of openings 12 provided to remove the bare metal P adhering to the periphery of the furnace opening 14. Hereinafter, a detailed description will be given.

地金切りランス10は、図1、図2、図3(A)に示すように、側壁11の内側に、酸素送出路16、冷却水往路17及び冷却水復路18が設けられている。側壁11の内側には、図2、図3(A)に示すように、地金切りランス10の軸心方向に長い円筒状の仕切材15と、地金切りランス10の先端側で仕切材15に連結された中底15aが設けられ、仕切材15及び中底15aの内側に酸素送出路16が設けられている。 As shown in FIGS. 1, 2, and 3 (A), the bullion cutting lance 10 is provided with an oxygen delivery path 16, a cooling water outward path 17, and a cooling water return path 18 inside the side wall 11. Inside the side wall 11, as shown in FIGS. 2 and 3 (A), a cylindrical partition member 15 long in the axial direction of the bullion cutting lance 10 and a partitioning material on the tip side of the bullion cutting lance 10 An insole 15a connected to 15 is provided, and an oxygen delivery path 16 is provided inside the partition member 15 and the insole 15a.

酸素送出路16は、断面中央(即ち、側壁11から距離を有する位置)に位置し、地金切りランス10の軸心に沿って配置され、地金切りランス10の基端側から先端側に向かって酸素ガスを送る。酸素送出路16の断面積は、酸素ガスの流れに沿って一定である。以下、地金切りランス10の軸心、基端側及び先端側をそれぞれ、単に「軸心」、「基端側」及び「先端側」とも言う。なお、本実施の形態では、酸素送出路16の断面積を酸素ガスの流れに沿って一定としたが、圧損を生じない程度に減少又は拡大していてもよい。 The oxygen delivery path 16 is located at the center of the cross section (that is, at a position having a distance from the side wall 11), is arranged along the axis of the bullion cutting lance 10, and is arranged from the base end side to the tip side of the bullion cutting lance 10. Send oxygen gas toward. The cross-sectional area of the oxygen delivery path 16 is constant along the flow of oxygen gas. Hereinafter, the axial center, the proximal end side, and the distal end side of the bullion cutting lance 10 are also simply referred to as "axial center", "base end side", and "tip end side", respectively. In the present embodiment, the cross-sectional area of the oxygen delivery path 16 is constant along the flow of oxygen gas, but it may be reduced or expanded to the extent that pressure loss does not occur.

側壁11の内側には、円筒状の仕切材15bが仕切材15を囲むように配置され、仕切材15、15bの間に冷却水往路17が設けられ、仕切15b及び側壁11の間に冷却水復路18が設けられている。
冷却水往路17は、円筒状で、軸心に沿って設けられて、基端側から先端側に向かって冷却水を送る。
Inside the side wall 11, a cylindrical partition member 15b is arranged so as to surround the partition member 15, a cooling water outflow path 17 is provided between the partition members 15 and 15b, and cooling is performed between the partition member 15b and the side wall 11. A water return route 18 is provided.
The cooling water outward path 17 has a cylindrical shape and is provided along the axis to send cooling water from the proximal end side to the distal end side.

冷却水復路18は、円筒状で冷却水往路17を囲むように形成され、軸心に沿って設けられている。冷却水往路17の先端側及び冷却水復路18の先端側は連通しており、冷却水往路17を通過した冷却水は、冷却水復路18の先端側に流入し、冷却水復路18の基端側に送られる。
地金切りランス10の先端には、図2に示すように、側壁11に連結された底板19が設けられ、底板19と中底15aの間には、冷却水往路17及び冷却水復路18に連通する底空間部20が形成されている。
The cooling water return path 18 is cylindrical and is formed so as to surround the cooling water outward path 17, and is provided along the axis. The tip side of the cooling water return path 17 and the tip side of the cooling water return path 18 are in communication with each other, and the cooling water that has passed through the cooling water return path 17 flows into the tip side of the cooling water return path 18 and is the base end of the cooling water return path 18. Sent to the side.
As shown in FIG. 2, a bottom plate 19 connected to the side wall 11 is provided at the tip of the bullion cutting lance 10, and a cooling water outward path 17 and a cooling water return path 18 are provided between the bottom plate 19 and the insole 15a. A bottom space portion 20 that communicates with each other is formed.

地金切りランス10の内側の先端側には、図2、図3(B)に示すように、それぞれ一側が冷却水往路17内に配され、他側が底空間部20内に配された複数のL字状の管21が間隔を空けて平行に設けられている。冷却水往路17を流れる冷却水の一部は、各管21の一側に流入し、各管21を通って底空間部20内に送られ、地金切りランス10の先端側を冷却して、冷却水復路18に流入する。 As shown in FIGS. 2 and 3B, one side of the metal cutting lance 10 is arranged in the cooling water outward path 17, and the other side is arranged in the bottom space 20. L-shaped pipes 21 are provided in parallel at intervals. A part of the cooling water flowing through the cooling water outward path 17 flows into one side of each pipe 21 and is sent into the bottom space 20 through each pipe 21 to cool the tip side of the metal cutting lance 10. , Flows into the cooling water return path 18.

また、側壁11の内側には、一側が酸素送出路16の先端側に連続(連通)する中間流路22と、それぞれ一端(一側)が中間流路22の他端(他側)に連続する複数の酸素吐出孔23が設けられている。中間流路22は、酸素送出路16に対し、地金切りランス10の径方向外側に設けられている。各酸素吐出孔23は、断面円形で、軸心が地金切りランス10の径方向に配置され、他側が側壁11に形成された各開口12に連通している。本実施の形態では、複数の開口12が、図3(B)に示すように、地金切りランス10の周方向の所定範囲に間隔を空けて配列され、中間流路22の他端の断面と各酸素吐出孔23の一端の断面とは地金切りランス10の軸心方向長さが等しい。 Further, inside the side wall 11, one side is continuous (communication) with the tip end side of the oxygen delivery path 16, and one end (one side) is continuous with the other end (other side) of the intermediate flow path 22. A plurality of oxygen discharge holes 23 are provided. The intermediate flow path 22 is provided on the radial side of the metal cutting lance 10 with respect to the oxygen delivery path 16. Each oxygen discharge hole 23 has a circular cross section, its axis is arranged in the radial direction of the metal cutting lance 10, and the other side communicates with each opening 12 formed in the side wall 11. In the present embodiment, as shown in FIG. 3B, a plurality of openings 12 are arranged at intervals in a predetermined range in the circumferential direction of the bullion cutting lance 10, and the cross section of the other end of the intermediate flow path 22 is formed. And the cross section of one end of each oxygen discharge hole 23 have the same axial length of the bullion cutting lance 10.

地金切りランス10は、図1に示すように、先端側が転炉13の炉口14から転炉13内に挿入され、鉛直に配置された状態で用いられ、図示しないポンプによって、酸素送出路16の基端側に酸素ガスが供給される。酸素送出路16の基端側に供給された酸素ガスは、酸素送出路16及び中間流路22を順に通過して、複数の酸素吐出孔23に流入し、各開口12から炉口14周辺の転炉13内壁に吹き付けられる。なお、図1において、Gは、酸素ガスの吹き付け方向を示す。 As shown in FIG. 1, the bullion cutting lance 10 is used in a state where the tip side is inserted into the converter 13 from the furnace port 14 of the converter 13 and arranged vertically, and an oxygen delivery path is provided by a pump (not shown). Oxygen gas is supplied to the base end side of 16. The oxygen gas supplied to the base end side of the oxygen delivery path 16 passes through the oxygen delivery path 16 and the intermediate flow path 22 in order, flows into a plurality of oxygen discharge holes 23, and flows from each opening 12 around the furnace opening 14. It is sprayed on the inner wall of the converter 13. In FIG. 1, G indicates the blowing direction of oxygen gas.

よって、中間流路22は、酸素送出路16からの酸素ガスを一側から他側に送って、酸素吐出孔23に向かわせることとなる。そして、転炉13内の炉口14周辺に付着していた地金Pは、地金切りランス10の複数の開口12から吹き付けられる酸素ガスによって溶断される。
中間流路22は、図2、図4(A)〜(C)に示すように、一側(酸素送出路16側)から他側(酸素吐出孔23側)に向かって、断面積が漸減している。
Therefore, the intermediate flow path 22 sends the oxygen gas from the oxygen delivery path 16 from one side to the other side and directs the oxygen gas toward the oxygen discharge hole 23. Then, the bullion P adhering to the periphery of the furnace port 14 in the converter 13 is blown by oxygen gas blown from the plurality of openings 12 of the bullion cutting lance 10.
As shown in FIGS. 2 and 4 (A) to 4 (C), the cross-sectional area of the intermediate flow path 22 gradually decreases from one side (oxygen delivery path 16 side) to the other side (oxygen discharge hole 23 side). doing.

ここで、中間流路22の断面積とは、図4(A)〜(C)に示すように、地金切りランス10の軸心からの距離が等しい曲面(本実施の形態では、地金切りランス10の軸心方向に見て円弧)で中間流路22を切断した際の切断面の面積である。本実施の形態では、中間流路22の断面は、一側から他側に向かって、断面の高さ(地金切りランス10の軸心方向長さ)及び断面の幅(地金切りランス10の周方向の長さ)がそれぞれ漸減する。
中間流路22が一側から他側に向かって断面が漸減しているのは、酸素ガスに生じる圧力損失を抑制するためである。以下、その理由を、比較例と比較して説明する。
Here, as shown in FIGS. 4A to 4C, the cross-sectional area of the intermediate flow path 22 is a curved surface having the same distance from the axis of the metal cutting lance 10 (in the present embodiment, the metal). It is the area of the cut surface when the intermediate flow path 22 is cut by the arc) seen in the axial direction of the cutting lance 10. In the present embodiment, the cross section of the intermediate flow path 22 is the height of the cross section (the axial length of the bullion cutting lance 10) and the width of the cross section (the bullion cutting lance 10) from one side to the other. The length in the circumferential direction of) gradually decreases.
The reason why the cross section of the intermediate flow path 22 gradually decreases from one side to the other is to suppress the pressure loss generated in the oxygen gas. Hereinafter, the reason will be described in comparison with a comparative example.

図5(A)、(B)を参照して、比較例に係る地金切りランス30について説明する。
地金切りランス30は、図5(A)、(B)に示すように、側壁31の内側に配された円筒状の仕切材31aと、仕切材31aに連結された中底31bと、仕切材31aを囲むように配された円筒状の仕切31cが配置されている。
The bullion cutting lance 30 according to a comparative example will be described with reference to FIGS. 5A and 5B.
As shown in FIGS. 5A and 5B, the bullion cutting lance 30 includes a cylindrical partition member 31a arranged inside the side wall 31, an insole 31b connected to the partition member 31a, and a partition. A cylindrical partition member 31c arranged so as to surround the member 31a is arranged.

仕切材31a及び中底31bの内側に酸素送出路32が形成され、仕切材31aと仕切材31cの間に冷却水往路33が形成され、仕切31cと側壁31の間に冷却水復路34が形成されている。そして、側壁31の内側には、酸素送出路32に連通する中間流路35と、それぞれ一側が中間流路35に連通した複数の酸素吐出孔36とが設けられ、側壁31には、それぞれ複数の酸素吐出孔36の他側が連通した複数の開口37が形成されている。 An oxygen delivery path 32 is formed inside the partition member 31a and the insole 31b, a cooling water outward path 33 is formed between the partition member 31a and the partition member 31c, and a cooling water return path 34 is formed between the partition member 31c and the side wall 31. It is formed. Inside the side wall 31 , an intermediate flow path 35 communicating with the oxygen delivery path 32 and a plurality of oxygen discharge holes 36 having one side communicating with the intermediate flow path 35 are provided, and the side wall 31 has a plurality of each. A plurality of openings 37 are formed in which the other side of the oxygen discharge hole 36 communicates with the oxygen discharge hole 36.

酸素送出路32、冷却水往路33及び冷却水復路34は、それぞれ地金切りランス30の軸心に沿って長く、酸素送出路32の断面積は、酸素ガスの流れに沿って一定である。
中間流路35は、一側が酸素送出路32の先端側に連続し、他側が各酸素吐出孔36の一側に連通しており、中間流路35は、酸素ガスの流れに沿って断面積が拡大している。各酸素吐出孔36は、他側が側壁31を貫通して、側壁31に開口37を形成している。
地金切りランス30は、先端側が転炉内に挿入され、鉛直に配置された状態で、酸素送出路32の基端側に酸素ガスが供給される。酸素ガスは、酸素送出路32、中間流路35及び複数の酸素吐出孔36を順に通過し、各開口37から転炉内に吹き付けられる。
地金切りランス30の先端に設けられた底板38と酸素送出路32の間には、底空間部39が形成されており、側壁31の内側には、冷却水の一部を底空間部39内に送る複数のL字状の管40が設けられている。
The oxygen delivery path 32, the cooling water outward path 33, and the cooling water return path 34 are each long along the axis of the bullion cutting lance 30, and the cross-sectional area of the oxygen delivery path 32 is constant along the flow of oxygen gas.
One side of the intermediate flow path 35 is continuous with the tip end side of the oxygen delivery path 32, and the other side communicates with one side of each oxygen discharge hole 36, and the intermediate flow path 35 has a cross-sectional area along the flow of oxygen gas. Is expanding. The other side of each oxygen discharge hole 36 penetrates the side wall 31 to form an opening 37 in the side wall 31.
Oxygen gas is supplied to the base end side of the oxygen delivery path 32 in a state where the tip side of the bullion cutting lance 30 is inserted into the converter and arranged vertically. The oxygen gas passes through the oxygen delivery path 32, the intermediate flow path 35, and the plurality of oxygen discharge holes 36 in this order, and is blown into the converter from each opening 37.
A bottom space 39 is formed between the bottom plate 38 provided at the tip of the metal cutting lance 30 and the oxygen delivery path 32, and a part of the cooling water is provided inside the side wall 31 in the bottom space 39. A plurality of L-shaped tubes 40 to be sent inside are provided.

次に、地金切りランス10、30それぞれの酸素ガスの流路について検討する。
地金切りランス10の酸素ガスの流路は、酸素送出路16、中間流路22及び複数の酸素吐出孔23からなり、複数の酸素吐出孔23全体を一つとして扱うと、当該流路は、模式的に、図6(A)のように示すことができる。当該流路の断面積は、図6(A)に示すように、酸素ガスの進行方向に沿って、酸素送出路16で一定であり、酸素送出路16から中間流路22へ切り替わる箇所で小さくなり、中間流路22で徐々に縮小し、中間流路22から酸素吐出孔23へ切り替わる箇所で縮小し、酸素吐出孔23で一定である。流路の断面積が徐々に縮小する領域においては、流体に対し生じる圧力損失が無視できることが公知であるため、地金切りランス10では、実質的に、酸素送出路16から中間流路22へ切り替わる箇所と、中間流路22から酸素吐出孔23へ切り替わる箇所と、開口12から吹き出る箇所とでのみ、酸素ガスに圧力損失が生じることとなる。
Next, the oxygen gas flow paths of the bullion cutting lances 10 and 30 will be examined.
The oxygen gas flow path of the bullion cutting lance 10 is composed of an oxygen delivery path 16, an intermediate flow path 22, and a plurality of oxygen discharge holes 23. , Schematically, can be shown as shown in FIG. 6 (A). As shown in FIG. 6A, the cross-sectional area of the flow path is constant in the oxygen delivery path 16 along the traveling direction of the oxygen gas, and is small at the point where the oxygen delivery path 16 is switched to the intermediate flow path 22. Therefore, it gradually shrinks in the intermediate flow path 22, shrinks at the point where the intermediate flow path 22 switches to the oxygen discharge hole 23, and is constant in the oxygen discharge hole 23. Since it is known that the pressure loss generated in the fluid can be ignored in the region where the cross-sectional area of the flow path gradually decreases, the metal cutting lance 10 substantially moves from the oxygen delivery path 16 to the intermediate flow path 22. A pressure loss occurs in the oxygen gas only at the portion where the intermediate flow path 22 switches to the oxygen discharge hole 23 and the portion where the oxygen gas blows out from the opening 12.

地金切りランス30の酸素ガスの流路は、酸素送出路32、中間流路35及び複数の酸素吐出孔36からなり、複数の酸素吐出孔36全体を一つとして扱うと、当該流路は、模式的に、図6(B)のように示すことができる。当該流路の断面積は、図6(B)に示すように、酸素ガスの進行方向に沿って、酸素送出路32で一定であり、酸素送出路32から中間流路35へ切り替わる箇所で急激に小さくなり、中間流路35で拡大し、中間流路35から酸素吐出孔36へ切り替わる箇所で縮小し、酸素吐出孔36で一定である。
即ち、地金切りランス30の酸素送出路32から中間流路35へ切り替わる箇所で断面積が一旦急縮小し、その後急拡大するというオリフィスと同様な構造となり大きな圧力損失を生じるため、酸素ガスに生じる圧力損失は、地金切りランス30が地金切りランス10より大きい。
図2、図3(A)、(B)に示す本発明の地金切りランス10と図5(A)、(B)に示す地金切りランス30とで損失係数を計算した結果、地金切りランス30では損失係数ζ1=2.3〜2.5であったのに対し、地金切りランス10では損失係数ζ2=0.04となり、1/60程度の圧力損失の低減となった。
The oxygen gas flow path of the bullion cutting lance 30 is composed of an oxygen delivery path 32, an intermediate flow path 35, and a plurality of oxygen discharge holes 36. , Schematically, can be shown as shown in FIG. 6 (B). As shown in FIG. 6B, the cross-sectional area of the flow path is constant in the oxygen delivery path 32 along the traveling direction of the oxygen gas, and abruptly at the point where the oxygen delivery path 32 switches to the intermediate flow path 35. It becomes smaller, expands in the intermediate flow path 35 , shrinks at the point where the intermediate flow path 35 switches to the oxygen discharge hole 36, and is constant in the oxygen discharge hole 36.
That is, the cross-sectional area is temporarily reduced at the point where the oxygen delivery path 32 of the bullion cutting lance 30 is switched to the intermediate flow path 35, and then the cross-sectional area is rapidly expanded. As for the pressure loss that occurs, the bullion cutting lance 30 is larger than the bullion cutting lance 10.
As a result of calculating the loss coefficient with the bullion cutting lance 10 of the present invention shown in FIGS. 2 and 3 (A) and 3 (B) and the bullion cutting lance 30 shown in FIGS. 5 (A) and 5 (B), the bullion In the cutting lance 30, the loss coefficient ζ 1 = 2.3 to 2.5, whereas in the bullion cutting lance 10, the loss coefficient ζ 2 = 0.04, and the pressure loss was reduced by about 1/60. ..

以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、中間流路は、一側(上流側)から他側(下流側)に向かって断面積が漸減していればよく、一側から他側に向かって断面の地金切りランスの軸心方向長さ(高さ)が縮小している必要はない。
また、酸素吐出孔は、地金切りランスの軸心方向同位置で周方向に配列されている必要はなく、例えば、地金切りランスの軸心方向に異なる位置に配されていてもよい。更に、酸素吐出孔は断面円形である必要はない。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions that do not deviate from the gist are within the scope of the present invention.
For example, in the intermediate flow path, the cross-sectional area may gradually decrease from one side (upstream side) to the other side (downstream side), and the axis of the bullion cutting lance having a cross section from one side to the other side. The directional length (height) does not have to be reduced.
Further, the oxygen discharge holes do not have to be arranged in the circumferential direction at the same position in the axial direction of the bullion cutting lance, and may be arranged at different positions in the axial direction of the bullion cutting lance, for example. Further, the oxygen discharge hole does not have to have a circular cross section.

10:地金切りランス、11:側壁、12:開口、13:転炉、14:炉口、15:仕切材、15a:中底、15b:仕切材、16:酸素送出路、17:冷却水往路、18:冷却水復路、19:底板、20:底空間部、21:管、22:中間流路、23:酸素吐出孔、30:地金切りランス、31:側壁、31a:仕切材、31b:中板、31c:仕切材、32:酸素送出路、33:冷却水往路、34:冷却水復路、35:中間流路、36:酸素吐出孔、37:開口、38:底板、39:底空間部、40:管、G:酸素ガスの吹き付け方向、P:地金 10: Metal cutting lance, 11: Side wall, 12: Opening, 13: Rotating furnace, 14: Furnace, 15: Partition material, 15a: Insole, 15b: Partition material, 16: Oxygen delivery path, 17: Cooling water Outward route, 18: Cooling water return route, 19: Bottom plate, 20: Bottom space, 21: Pipe, 22: Intermediate flow path, 23: Oxygen discharge hole, 30: Metal cutting lance, 31: Side wall, 31a: Partition material, 31b: Middle plate, 31c: Partition material, 32: Oxygen delivery path, 33: Cooling water outward path, 34: Cooling water return path, 35: Intermediate flow path, 36: Oxygen discharge hole, 37: Opening, 38: Bottom plate, 39: Bottom space, 40: pipe, G: oxygen gas spraying direction, P: bare metal

Claims (2)

有底円筒状に形成され、先端側の側壁に設けられた複数の開口から転炉内に酸素ガスを吹き付けて、炉口周辺に付着した地金を除去する地金切りランスにおいて、
前記側壁の内側であって該側壁から距離を有する位置に軸心に沿って配置された酸素送出路と、一側が前記酸素送出路に連通し該酸素送出路からの酸素ガスを他側に送る一つの中間流路と、それぞれ一側が前記中間流路の他側に連通し、他側が前記各開口に連通する複数の酸素吐出孔とを備え、前記酸素送出路からの酸素ガスを前記複数の酸素突出孔に送る前記中間流路は、一側から他側に向かって、断面積が漸減していることを特徴とする地金切りランス。
In a bullion cutting lance, which is formed in a bottomed cylindrical shape and blows oxygen gas into the converter from a plurality of openings provided on the side wall on the tip side to remove the bullion adhering to the periphery of the furnace opening.
An oxygen delivery path located inside the side wall and at a position at a distance from the side wall along the axis, and one side communicates with the oxygen delivery path to send oxygen gas from the oxygen delivery path to the other side. A plurality of oxygen discharge holes having one intermediate flow path and one side communicating with the other side of the intermediate flow path and the other side communicating with each of the openings are provided, and oxygen gas from the oxygen delivery path is supplied to the plurality of oxygen gases. The intermediate flow path sent to the oxygen protrusion hole is a metal cutting lance characterized in that the cross-sectional area gradually decreases from one side to the other side.
前記複数の酸素吐出孔は周方向に配列され、前記中間流路は、一側から他側に向かって、断面の該地金切りランスの軸心方向長さが縮小していることを特徴とする請求項1記載の地金切りランス。 The plurality of oxygen discharge holes are arranged in the circumferential direction, and the intermediate flow path is characterized in that the axial length of the bullion cutting lance in the cross section decreases from one side to the other side. The bullion cutting lance according to claim 1.
JP2017091165A 2017-05-01 2017-05-01 Bullion lance Active JP6897289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017091165A JP6897289B2 (en) 2017-05-01 2017-05-01 Bullion lance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091165A JP6897289B2 (en) 2017-05-01 2017-05-01 Bullion lance

Publications (2)

Publication Number Publication Date
JP2018188698A JP2018188698A (en) 2018-11-29
JP6897289B2 true JP6897289B2 (en) 2021-06-30

Family

ID=64479416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091165A Active JP6897289B2 (en) 2017-05-01 2017-05-01 Bullion lance

Country Status (1)

Country Link
JP (1) JP6897289B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230274A (en) * 1978-07-10 1980-10-28 Pullman Berry Company Lance for removing skulls from steelmaking vessels
US4322033A (en) * 1978-07-10 1982-03-30 Pullman Berry Company Lance and method for removing skulls from steelmaking vessels
JPS6048302B2 (en) * 1979-06-19 1985-10-26 日立精機株式会社 Machine tool pallet automatic loading/unloading device
JP4069837B2 (en) * 2003-09-04 2008-04-02 住友金属工業株式会社 Hot phosphorus dephosphorization method

Also Published As

Publication number Publication date
JP2018188698A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6660044B2 (en) Method of acid refining of molten iron and top blowing lance
JP6897289B2 (en) Bullion lance
JP4742855B2 (en) Molten metal refining lance
US20120067983A1 (en) Use of an altitude-compensating nozzle
JP5298543B2 (en) Converter operation method
KR102228648B1 (en) Sliding nozzle
TWI730710B (en) Nozzle nozzle
KR101261424B1 (en) A Lance Nozzle for Blow-Refinement
JP2011202236A (en) Top-blowing lance for converter, and method for operating converter
KR102088446B1 (en) Lance
JP5412756B2 (en) Converter operation method
JP2010047830A (en) Method for operating converter
KR102308297B1 (en) Shroud nozzle for casting
JP7298649B2 (en) Top-blowing lance for converter refining and molten iron refining method using the lance
JP3909317B2 (en) Bullion chip
JP5459851B2 (en) Long nozzle
JP2000234116A (en) Laval nozzle for converter blowing and operation using this
CN107075594A (en) Inlet port is configured and its manufacturing process
KR20140145382A (en) Apparatus for treating of melting
JP6201971B2 (en) How to cut the bullion of the converter
JP2006213940A (en) Lance used for both blowing and in-furnace skull melting, and operation method of top-bottom-blown converter type refining furnace
JP3769060B2 (en) Method of blowing gas into molten metal
BR112020012085B1 (en) METHOD FOR EXTRACTION WITH CAST IRON OXYGEN TRANSMISSION AND SURFACE BLOWING LANCE
JP2015218339A (en) Top-blowing lance for molten metal refining
JP5387619B2 (en) Nozzle and method for refining molten metal under reduced pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6897289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151