JP6896599B2 - 溶接装置及び溶接方法 - Google Patents

溶接装置及び溶接方法 Download PDF

Info

Publication number
JP6896599B2
JP6896599B2 JP2017245241A JP2017245241A JP6896599B2 JP 6896599 B2 JP6896599 B2 JP 6896599B2 JP 2017245241 A JP2017245241 A JP 2017245241A JP 2017245241 A JP2017245241 A JP 2017245241A JP 6896599 B2 JP6896599 B2 JP 6896599B2
Authority
JP
Japan
Prior art keywords
shield gas
welding
gas supply
movable member
supply port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017245241A
Other languages
English (en)
Other versions
JP2019111543A (ja
Inventor
悠 後藤
悠 後藤
佐々木 和幸
和幸 佐々木
吉延 牧野
吉延 牧野
河野 渉
渉 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017245241A priority Critical patent/JP6896599B2/ja
Publication of JP2019111543A publication Critical patent/JP2019111543A/ja
Application granted granted Critical
Publication of JP6896599B2 publication Critical patent/JP6896599B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明の実施形態は、溶接装置及び溶接方法に関する。
オーステナイト系ステンレス鋼は、低温環境下での靭性が優れているため、低温での破壊靭性値を要求される高付加価値の製品に活用されている。ここで、レーザ溶接法は、アーク溶接法と比較すると入熱量が低いため、オーステナイト系ステンレス鋼に対し、M23C6などの炭化物の析出を抑えられる品質上の利点と、アーク溶接法と比較して溶接効率が高い利点と、があるものの、レーザ発振器などの導入により、初期コストが高くなるため、高付加価値の製品に適用される傾向がある。
厚板材の溶接にレーザ溶接法を適用する場合、レーザ発振器の最大出力での溶込み深さ以上の厚さの厚板材については、レーザ溶接法単独での施工は難しく、TIG(Tungsten Inert Gas)溶接法又はその他のアーク溶接のプロセスを組合せて施工する必要がある。この用途での厚板材の開先形状は、溝部とルートフェース部とを有する。この種の形状の開先に対してレーザ溶接施工を行う場合、レーザ溶接の溶融池をシールドガスで覆うことは溶接品質を向上させるために不可欠である。
溝部を有する開先については、従来では、溝部にパイプ形状のガスシールド冶具を挿入し、レーザ光の加工点を直接、シールドする方法や、レーザ光の加工点を含んだ溝部を既存のトレーラノズルで覆ってシールドする方法などが知られている。
しかしながら、このような従来のシールド方法では、溶接線の近傍を完全にシールドガスに置換できないうえ、シールドガスの粘性により大気がシールドガス内に巻き込まれるため、溶融池への酸素の侵入を防ぐことができず、溶接箇所の酸素含有量を一定量以下に低下させることが難しくなっている。
特許第5951409号公報 特開2013−66910号公報 特開2010−131615号公報 特開2010−23096号公報
ここで、上記したオーステナイト系ステンレス鋼は、溶接箇所の酸素含有量が多くなると、極低温での靭性値が低下するデメリットがある。このため、レーザ溶接時の溶接箇所をシールドする構成についての改善が求められている。
本発明が解決しようとする課題は、レーザ溶接時の溶接箇所に対する酸素の混入を抑制することができる溶接装置及び溶接方法を提供することである。
実施の形態の溶接装置は、レーザヘッド、可動部材、シールドガス供給機構及び遮蔽部材を備えている。レーザヘッドは、母材間の開先にレーザ光を照射する。可動部材は、開先へのレーザ光の照射により生成される溶融池を含む領域を母材との間で包囲しつつ、溶接線に沿った方向に移動する。シールドガス供給機構は、可動部材と母材との間で包囲された領域内にシールドガスを供給する。遮蔽部材は、可動部材に設けられ、母材と可動部材との境界部分をシールする。可動部材は、レーザ光が通過するレーザ光通過口と、可動部材の移動方向を基準として、レーザ光通過口が設けられた位置よりも前方側の位置に設けられた第1のシールドガス供給口と、可動部材の移動方向を基準として、レーザ光通過口が設けられた位置よりも後方側の位置に設けられた第2のシールドガス供給口と、前記可動部材の移動方向を基準として、第1のシールドガス供給口が設けられた位置よりも前方側の位置に設けられた第3のシールドガス供給口とを有する。さらに、溶接装置は、可動部材の移動方向を基準として、第3のシールドガス供給口と前記第1のシールドガス供給口との間の位置に設けられ、包囲された領域を、上流側分割領域と前記溶融池を含む下流側分割領域とに開先内で遮る第2の遮蔽部材を備える。
実施の形態に係る溶接装置を模式的に示す正面方向から観た断面図。 図1に示す溶接装置を側面方向から観た断面図。 図1に示す溶接装置が有するケーシング部のA矢視図。 図3に示すケーシング部のB−B断面図。 図3に示すケーシング部のC−C断面図。 図1の溶接装置において、設定した溶接速度毎の前方ガス流量とノズルユニット内の酸素濃度との関係を示す図。 図6に表された酸素濃度を指標とした場合の溶接速度と前方ガス流量との関係を示す図。
以下、実施の形態を図面に基づき説明する。
図1〜図5に示すように、本実施形態の溶接装置10は、レーザヘッド3と水冷式のトレーラノズル5とを備えた溶接システムである。レーザヘッド3は、一対の母材1、2どうしの間の開先7にレーザ光3aを照射する。レーザ光3aは、母材1、2の開先7の底部を溶融し、溶融池6を形成する。トレーラノズル5は、溶融池6のシールド性を確保するために、溶融池6の上面には、開先7の頂上部の幅以上の幅を有しており、レーザ溶接時の反射光や高温のヒュームやプラズマの輻射熱に耐え得る銅製の水冷式トレーラノズルユニットである。
レーザ光3aの種類としては、波長が1070nm〜1090nmのファイバレーザ、波長が1064nmのYAGレーザ、波長が10600nmの炭酸ガスレーザ、波長が1030nmのディスクレーザなどを例示できる。なお、レーザ光の出力が低い場合、水冷式のトレーラノズルではなく、冷却機能を有さないトレーラノズルを使用することも可能である。
溶接対象となる母材1、2は、ステンレス鋼、炭素鋼、低合金鋼、非鉄合金などである。図2に示すように、母材1、2間の開先7は、溝部7aとルートフェース部7bとを有する。溝部7a及びルートフェース部7bは、両U型の両側開先形状とされているが、片側開先形状としてもよい。図1〜図5に示すように、トレーラノズル5は、可動部材8、シールドガス供給機構9、弾性(可とう性)を有する遮蔽部材(第1の遮蔽部材)11、板状の第2の遮蔽部材12、例えば断面形状が格子状又は網目状の整流部材14を備えている。
可動部材8は、開先7へのレーザ光3aの照射により生成される溶融池6を含む領域15を母材1、2との間で包囲しつつ、溶接線に沿った方向(図1中の矢印X1方向)に移動する。ここで、可動部材8を含むトレーラノズル5は、ロボット、又は加工機のレーザ溶接装置駆動部に保持されており、溶接速度と同じ速度で移動する。また、可動部材8は、図5に示すように、冷媒流路26やシールドガス溜まり部27を内部に備えている。シールドガス供給機構9は、可動部材8と母材1、2との間で包囲された領域15内にシールドガスを供給する。シールドガスとしては、不活性ガスであるアルゴンガス、窒素ガスの他、活性ガスである炭酸ガスなどが挙げられる。
一方、遮蔽部材11は、図1〜図4に示すように、可動部材8に設けられており、母材1、2と可動部材8との境界部分をシールする(気密に塞ぐ)。遮蔽部材11は、トレーラノズル5(領域15)内への大気の侵入(混入)を遮断するために、ゴムなどの弾力性を有する材料を適用し、平面方向からみて矩形状のトレーラノズル5(可動部材8)の3つの辺部を少なくとも覆い、機密性を高めている。より具体的には、遮蔽部材11は、図3に示すように、可動部材8の側面部及び前面部(前方部)に複数のネジ28により締結されている。なお、レーザ溶接より母材温度が70℃以上に上昇することもあることから、遮蔽部材11の材料には、フッ素ゴムなどの耐熱性を有する材料を使用することも可能である。
また、上記した可動部材8は、図1、図3に示すように、レーザ光3aが通過するレーザ光通過口24や、例えば銅製の第1〜第3のシールドガス供給口21〜23を有している。第1のシールドガス供給口21は、可動部材8の移動方向(X1方向)を基準として、レーザ光通過口24が設けられた位置よりも前方側の位置に設けられている。第1のシールドガス供給口(ガス吐出口)21は、トレーラノズル5(領域15)内でのレーザ溶接時のプラズマ及びヒュームを後方(溶接方向X1の逆方向)に吹き飛ばす役割を有する。一方、第2のシールドガス供給口(ガス吐出口)22は、可動部材8の移動方向を基準として、レーザ光通過口24が設けられた位置よりも後方側の位置に設けられている。この第2のシールドガス供給口22は、ビード表層のシールド性を高める(ビード表層の酸化防止の)ために備えられている。これら2系統の第1、第2のシールドガス供給口21、22からのシールドガスの供給により溶融池6の雰囲気はシールドガスに置換される。
さらに、第3のシールドガス供給口23は、可動部材8の移動方向を基準として、第1のシールドガス供給口21が設けられた位置よりも前方側の位置に設けられている。ここで、図1、図4に示すように、第2の遮蔽部材12は、可動部材8の移動方向を基準として、第3のシールドガス供給口23と第1のシールドガス供給口との間の位置に設けられている。第2の遮蔽部材12は、可動部材8と母材1、2との間で包囲された領域15を、上流側分割領域15aと溶融池6を含む下流側分割領域15bとに開先7内で遮る。
このような第2の遮蔽部材12は、図4に示すように、機密性を高めるために、開先7における溝部7aの断面形状に適合(フィット)する形状を有している。第2の遮蔽部材12は、第3のシールドガス供給口23から供給(吐出)されたシールドガスが、当該シールドガスの粘性により周囲の空気を巻き込みながら、トレーラノズル5(溶融池6を含む領域15)内に侵入することを防止する。第2の遮蔽部材12は、可動部材8に対してネジなどで締結されている。第2の遮蔽部材12は、レーザ溶接により発生する高温の溶接ヒュームに対する耐熱性を持つ例えばステンレス鋼などの材料が適用されている。なお、溶接ヒューム(ヒューム)とは、高温で蒸発した金属やフラックスが大気中で冷却されて発生する微細な鉱物性粉塵である。
整流部材14は、第3のシールドガス供給口23の内部に設けられており、第3のシールドガス供給口23を通るシールドガスの流れを整流する、いわゆるガスレンズである。
上記した第2の遮蔽部材12が配置される一方で、整流部材14が組み込まれた第3のシールドガス供給口23から供給(吐出)されるシールドガスにより、トレーラノズル5の前方側の開先7の溝部7a内(上流側分割領域15a)を、空気からシールドガスに置換することが可能となる。ここで、第2の遮蔽部材12と溶融池6との離間距離は、30mm以上であることが好ましく、第2の遮蔽部材12と第3のシールドガス供給口23との離間距離は、10mm以上であることが望ましい。
また、本実施形態の溶接装置10には、溶接ヒュームを逃がすための開口部25が備えられている。開口部25は、可動部材8の移動方向を基準として、第2のシールドガス供給口22の位置よりも後方側の位置に設けられている。
このように構成された溶接装置10による溶接方法は、少なくとも、シールドガス供給工程、レーザ光照射工程、可動部材移動工程を有する。まず、シールドガス供給工程では、母材1、2間の開先7に生じる(生じることになる)溶融池6を含む領域15を母材1、2との間で包囲すると共に母材1、2との境界部分をシールする遮蔽部材11が設けられた可動部材8と、当該母材1、2との間で、前記包囲した領域15内にシールドガスを供給する。一方、レーザ光照射工程では、溶融池6が生じることになる母材1、2間の開先7にレーザヘッド3からレーザ光3aを照射する。さらに、可動部材移動工程では、レーザ光3aが開先7に照射されている状態で、可動部材8を溶接線に沿った方向(X1方向)に移動させる。
既述したように、本実施形態の溶接装置10及び溶接方法によれば、レーザ溶接時の溶接箇所(溶融池6)に対する酸素の混入(侵入)を抑制することができる。より具体的には、トレーラノズル5の前方に設置した3のシールドガス供給口23から供給されるシールドガスにより、トレーラノズル5の前方の上流側分割領域15aを、予めシールドガスに置換できる。このため、トレーラノズル5が溶接速度と同じ速度で移動しても、トレーラノズル5内に進入するガスは、常にシールドガスとなり酸素の進入を防止できる。
また、シールドガス供給口23の内部に整流部材14を設けていることで、シールドガスの流速を抑制でき、さらには、第2の遮蔽部材12を設けていることで、トレーラノズル5内(溶融池6を含む下流側分割領域15b)への、シールドガスの粘性による酸素の巻き込みが防止される。
なお、シールド性は、トレーラノズル5と母材1、2の隙間に影響を受け、隙間を0.5mm未満に保つとトレーラノズル5内の酸素濃度が低下するが、トレーラノズル5の保持状態により、剛体のトレーラノズル5(可動部材8)と母材1、2が溶接中に干渉するリスクがあり、干渉防止のための調整作業が発生する。これを踏まえて、本実施形態の溶接装置10では、トレーラノズル5の側面及び前面部にゴムなどの弾力性を有するシール材として遮蔽部材11を設けている。この遮蔽部材11を介して、トレーラノズル5(可動部材8)を母材1、2で保持させることで、トレーラノズル5と母材1、2が溶接中に干渉するリスクを低減できると共に、トレーラノズル5と母材1、2との隙間がなくなることでシールド性を高めることができる。また、本実施形態の溶接装置10を用いた溶接方法によれば、上記した干渉防止のための調整作業が不要なため、溶接の作業時間を短縮できる。
<実施例>
次に実施例について図6及び図7に基づき説明する。ここで、図1〜図5に示した溶接装置10を実施例に適用した。なお、上記した特許文献1の図4、図6に構成を例示した溶接システムを比較例として適用した。実施例の溶接装置10では、シールドガスとして不活性ガスであるアルゴンガスを使用し、図6に示すように、水冷式のトレーラノズル5の前方に設置したシールドガス供給口23からのシールドガス流量(前方ガス流量)を30L/min以上、トレーラノズル5内のシールドガス流量を5L/min以上に設定すれば、トレーラノズル5(可動部材8)を速度30cm/min〜100cm/minにて動作させても(ドライ運転)、トレーラノズル5内の酸素濃度を0%に下げることが確認できている。なお、この際、シールド性を向上させる目的でトレーラノズル5の前方又は後方の溝部7aを、耐熱性のある布又はゴムシートでカバーする(覆う)ことについては、トレーラノズル5内の酸素濃度の低減には効果がなく、逆に酸素濃度が上昇する傾向がある。
トレーラノズル5内の酸素濃度は、図7に示すように、トレーラノズル5の前方に設置したシールドガス供給口21からのシールドガス流量(前方ガス流量)と溶接速度のパラメータにより影響を受け、トレーラノズル5内の酸素濃度を0%とするためには、溶接速度が30cm/minの場合、トレーラノズル5の前方ガス流量が30L/min以上であることが必要であり、溶接速度が70cm/minの場合、トレーラノズル5の前方ガス流量が20L/min以上であることが必要であり、溶接速度が100cm/minの場合、トレーラノズル5の前方ガス流量が15L/min以上であることが必要である。
特許文献1の図4に例示されたレーザ光の加工点を含んだ開先溝を、水冷式のトレーラノズルで覆ってシールドする比較例の溶接方法では、シールドガスとして不活性ガスのアルゴンガスを使用し、シールドガス流量を45L/min、溶接速度を70cm/minの条件にしてドライ運転し、水冷式トレーラノズルを動作させたところ、水冷式トレーラノズル内の酸素濃度が、0.7%までしか下がらなかった。これに対して、実施例の溶接装置10による溶接方法では、比較例の溶接方法と比べて、トレーラノズル5内の酸素濃度を大幅に低減することができる。
以上説明した少なくとも一つの実施形態によれば、レーザ溶接時の溶接箇所に対する酸素の混入を抑制することができる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1,2…母材、3…レーザヘッド、3a…レーザ光、5…水冷式のトレーラノズル、6…溶融池、7…開先、7a…溝部、7b…ルートフェース部、8…可動部材、9…シールドガス供給機構、10…溶接装置、11…遮蔽部材(第1の遮蔽部材)、12…第2の遮蔽部材、14…整流部材、15…領域、15a…上流側分割領域、15b…下流側分割領域、21…第1のシールドガス供給口、22…第2のシールドガス供給口、23…第3のシールドガス供給口、24…レーザ光通過口、25…開口部、26…冷媒流路、27…シールドガス溜まり部、28…ネジ。

Claims (6)

  1. 母材間の開先にレーザ光を照射するレーザヘッドと、
    前記レーザ光の前記開先への照射により生成される溶融池を含む領域を前記母材との間で包囲しつつ、溶接線に沿った方向に移動する可動部材と、
    前記可動部材と前記母材との間で包囲された前記領域内にシールドガスを供給するシールドガス供給機構と、
    前記可動部材に設けられ、前記母材と前記可動部材との境界部分をシールする遮蔽部材と、
    を備える溶接装置であって、
    前記可動部材は、
    前記レーザ光が通過するレーザ光通過口と、
    前記可動部材の移動方向を基準として、前記レーザ光通過口が設けられた位置よりも前方側の位置に設けられた第1のシールドガス供給口と、
    前記可動部材の移動方向を基準として、前記レーザ光通過口が設けられた位置よりも後方側の位置に設けられた第2のシールドガス供給口と、
    前記可動部材の移動方向を基準として、前記第1のシールドガス供給口が設けられた位置よりも前方側の位置に設けられた第3のシールドガス供給口と
    を有し、
    前記可動部材の移動方向を基準として、前記第3のシールドガス供給口と前記第1のシールドガス供給口との間の位置に設けられ、前記包囲された領域を、上流側分割領域と前記溶融池を含む下流側分割領域とに前記開先内で遮る第2の遮蔽部材をさらに備える
    溶接装置。
  2. 前記遮蔽部材は、弾性を有する、請求項1に記載の溶接装置。
  3. 前記第3のシールドガス供給口を通るシールドガスの流れを整流する整流部材、
    をさらに備える請求項1または2に記載の溶接装置。
  4. 前記開先は、溝部とルートフェース部とを備え、
    前記第2の遮蔽部材は、前記溝部の断面形状に適合する形状を有する、
    請求項1から3のいずれかに記載の溶接装置。
  5. 前記可動部材の移動方向を基準として、前記第2のシールドガス供給口の位置よりも後方側の位置に設けられ、溶接ヒュームを逃がすための開口部、
    をさらに有する請求項1から4のいずれかに記載の溶接装置。
  6. 請求項1から5のいずれかに記載の溶接装置を用いて溶接を行う、溶接方法。
JP2017245241A 2017-12-21 2017-12-21 溶接装置及び溶接方法 Active JP6896599B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017245241A JP6896599B2 (ja) 2017-12-21 2017-12-21 溶接装置及び溶接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017245241A JP6896599B2 (ja) 2017-12-21 2017-12-21 溶接装置及び溶接方法

Publications (2)

Publication Number Publication Date
JP2019111543A JP2019111543A (ja) 2019-07-11
JP6896599B2 true JP6896599B2 (ja) 2021-06-30

Family

ID=67222008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245241A Active JP6896599B2 (ja) 2017-12-21 2017-12-21 溶接装置及び溶接方法

Country Status (1)

Country Link
JP (1) JP6896599B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219269A (ja) * 2000-02-07 2001-08-14 Hitachi Ltd 水中加工装置及びその加工方法
US6889889B2 (en) * 2003-06-05 2005-05-10 General Electric Company Fusion-welding of defective components to preclude expulsion of contaminants through the weld

Also Published As

Publication number Publication date
JP2019111543A (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
US10654129B2 (en) Laser processing heads with a cross-jet nozzle
KR101420950B1 (ko) 용접 방법 및 용접 장치
CN106425090A (zh) 一种用于钛合金零件激光焊接气体保护装置
EP0976488A1 (en) Laser machining head
US8895886B2 (en) Cladding application method and apparatus using hybrid laser process
US20090107970A1 (en) Method for controlling weld quality
JP2001314985A (ja) レーザ溶接方法及びレーザ溶接装置
JP6512880B2 (ja) シールドノズルおよびシールド方法
JP6167055B2 (ja) レーザノズル、レーザ加工装置、及びレーザ加工方法
US20160121427A1 (en) Cross jet laser welding nozzle
JP2019136726A (ja) レーザクラッディング装置
CN105108333A (zh) 一种用于激光-电弧复合焊接的气体保护方法
CN107081524A (zh) 一种钛合金激光焊接保护方法
JP2010172941A (ja) レーザ溶接装置
JP6896599B2 (ja) 溶接装置及び溶接方法
US11724337B2 (en) Hybrid welding device
US8222565B2 (en) Method for laser fusion cutting without cutting gas
JP2014079783A (ja) レーザ・アークハイブリッド溶接方法、ハイブリッド溶接用ヘッド、及びハイブリッド溶接装置
JP6805710B2 (ja) レーザ溶接装置及びレーザ溶接方法
JP2010167483A (ja) レーザ・アーク複合溶接法
US5152453A (en) Laminar barrier inerting for leading and/or trailing shield in welding application
JPH042353B2 (ja)
JP5412813B2 (ja) レーザ溶接シールド方法及びシールドガス供給ノズル及びレーザ溶接シールド装置
JP4506575B2 (ja) 亜鉛メッキ鋼板レーザろう付け装置、亜鉛メッキ鋼板レーザろう付け方法、ろう付け亜鉛メッキ鋼板製造方法。
JP5911204B2 (ja) レーザ溶接方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210609

R150 Certificate of patent or registration of utility model

Ref document number: 6896599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150