JP6896091B2 - Multi-wing blower - Google Patents

Multi-wing blower Download PDF

Info

Publication number
JP6896091B2
JP6896091B2 JP2019549964A JP2019549964A JP6896091B2 JP 6896091 B2 JP6896091 B2 JP 6896091B2 JP 2019549964 A JP2019549964 A JP 2019549964A JP 2019549964 A JP2019549964 A JP 2019549964A JP 6896091 B2 JP6896091 B2 JP 6896091B2
Authority
JP
Japan
Prior art keywords
wings
inner peripheral
wing
cross
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019549964A
Other languages
Japanese (ja)
Other versions
JPWO2019082378A1 (en
Inventor
加藤 康明
康明 加藤
拓矢 寺本
拓矢 寺本
亮 堀江
亮 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019082378A1 publication Critical patent/JPWO2019082378A1/en
Application granted granted Critical
Publication of JP6896091B2 publication Critical patent/JP6896091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/713Shape curved inflexed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、羽根車を備えた多翼送風機に関するものである。 The present invention relates to a multi-blade blower equipped with an impeller.

特許文献1には、遠心ファンの羽根車が記載されている。この羽根車の翼は、羽根車の内周側では圧力面側に凸となるターボファン形状を有しており、羽根車の外周側では圧力面側に凹となるシロッコファン形状を有している。 Patent Document 1 describes an impeller of a centrifugal fan. The blade of this impeller has a turbofan shape that is convex on the pressure surface side on the inner peripheral side of the impeller, and has a sirocco fan shape that is concave on the pressure surface side on the outer peripheral side of the impeller. There is.

特開2005−69183号公報Japanese Unexamined Patent Publication No. 2005-69183

特許文献1に記載されているような羽根車において、空気の流れが翼から大きく剥離しないようにするためには、翼の前縁となる内周端から翼の後縁となる外周端にかけて、翼の反りの曲率半径が小さくならないようにする必要がある。翼の反りの曲率半径を大きく確保すると翼長が長くなるため、羽根車の外径を維持する場合には翼の内周端を回転軸に近づける必要がある。翼の内周端が回転軸に近づけられると、翼の内周端の占める面積比率が増大することにより、翼間の空気流路の入口部が狭まってしまう。したがって、回転軸方向に流通する空気が翼間の空気流路に流入する際、翼間の空気流路の入口部での縮流が過大となるため、ファンの効率が低下してしまうという課題があった。 In an impeller as described in Patent Document 1, in order to prevent the air flow from being largely separated from the wing, from the inner peripheral end which is the front edge of the wing to the outer peripheral end which is the trailing edge of the wing. It is necessary to prevent the radius of curvature of the warp of the wing from becoming small. If a large radius of curvature of the warp of the blade is secured, the blade length becomes long. Therefore, when maintaining the outer diameter of the impeller, it is necessary to bring the inner peripheral end of the blade closer to the rotation axis. When the inner peripheral end of the blade is brought closer to the rotation axis, the area ratio occupied by the inner peripheral end of the blade increases, and the inlet portion of the air flow path between the blades becomes narrower. Therefore, when the air flowing in the direction of the rotation axis flows into the air flow path between the blades, the contraction at the inlet of the air flow path between the blades becomes excessive, so that the efficiency of the fan is lowered. was there.

本発明は、上述のような課題を解決するためになされたものであり、効率を向上できる多翼送風機を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a multi-blade blower capable of improving efficiency.

本発明に係る多翼送風機は、回転軸を中心として回転する羽根車を備えた多翼送風機であって、前記羽根車は、前記回転軸を中心とする周方向に配列した複数の翼と、前記複数の翼を前記回転軸に沿う方向の一方側から支持する主板と、を有しており、前記回転軸に垂直な第1平面で切断された前記羽根車の第1断面において、前記複数の翼のそれぞれは、内周端と、前記内周端よりも外周側に設けられ、前記羽根車の回転方向で前方に向かって傾斜した外周端と、を有しており、前記複数の翼は、複数の第1翼と、複数の第2翼と、を有しており、前記第1断面において、前記複数の第1翼のそれぞれは、前記複数の第2翼のそれぞれの翼長よりも長い翼長を有しており、前記第1断面において、前記回転軸と前記複数の第1翼のそれぞれの前記内周端との距離は、前記回転軸と前記複数の第2翼のそれぞれの前記内周端との距離よりも短くなっており、前記複数の第1翼のうち前記周方向で互いに隣り合う2つの第1翼の間には、前記複数の第2翼のうちの少なくとも1つの第2翼が配置され、前記複数の第1翼のそれぞれは、前記回転軸に沿う方向における前記主板寄りの一部分から構成され、翼長が前記主板に近づくほど長くなるように形成された第1部分と、前記第1部分以外の他の部分から構成され、翼長が一定となるように形成された第2部分とを有し、前記第1部分の前記回転軸に沿う方向における長さは、前記第2部分の前記回転軸に沿う方向における長さより短く、前記主板全体は、前記回転軸に垂直な一平面から構成されているものである。 The multi-blade blower according to the present invention is a multi-blade blower including an impeller that rotates about a rotation axis, and the impeller includes a plurality of blades arranged in a circumferential direction around the rotation axis. In the first cross section of the impeller, which has a main plate that supports the plurality of blades from one side in a direction along the rotation axis and is cut by a first plane perpendicular to the rotation axis, the plurality of blades. Each of the blades has an inner peripheral end and an outer peripheral end provided on the outer peripheral side of the inner peripheral end and inclined forward in the rotational direction of the impeller, and the plurality of blades. Has a plurality of first wings and a plurality of second wings, and in the first cross section, each of the plurality of first wings is derived from the respective blade lengths of the plurality of second wings. Also has a long blade length, and in the first cross section, the distance between the rotation shaft and the inner peripheral end of each of the plurality of first blades is determined by the rotation shaft and the plurality of second blades, respectively. It is shorter than the distance to the inner peripheral end of the plurality of first wings, and at least of the plurality of second wings is between the two first wings adjacent to each other in the circumferential direction. One second wing is arranged, and each of the plurality of first wing is composed of a part closer to the main plate in the direction along the rotation axis, and is formed so that the wing length becomes longer as it approaches the main plate. a first portion, consists portions other than the first portion, possess a second portion blade length is formed to have a constant length in the direction along the rotational axis of the first portion The length of the second portion is shorter than the length in the direction along the rotation axis, and the entire main plate is composed of a plane perpendicular to the rotation axis .

本発明によれば、周方向で互いに隣り合う2つの第1翼の間には、第1翼よりも翼長の短い少なくとも1つの第2翼が配置されるため、2つの第1翼の間に形成される空気流路の入口部が狭くなるのを防ぐことができる。したがって、翼間の空気流路の入口部での縮流を緩和することができるため、多翼送風機の効率を向上させることができる。 According to the present invention, at least one second wing having a wingspan shorter than that of the first wing is arranged between the two first wings adjacent to each other in the circumferential direction, and therefore between the two first wings. It is possible to prevent the inlet portion of the air flow path formed in the above from being narrowed. Therefore, the contraction at the inlet of the air flow path between the blades can be relaxed, so that the efficiency of the multi-blade blower can be improved.

本発明の実施の形態1に係る多翼送風機を回転軸11に沿って見た構成を模式的に示す外観図である。FIG. 5 is an external view schematically showing a configuration in which a multi-blade blower according to a first embodiment of the present invention is viewed along a rotation shaft 11. 図1のII−II断面を模式的に示す図である。It is a figure which shows typically the II-II cross section of FIG. 本発明の実施の形態1に係る多翼送風機の羽根車10の構成を示す斜視図である。It is a perspective view which shows the structure of the impeller 10 of the multi-blade blower which concerns on Embodiment 1 of this invention. 図2のIV−IV断面を示す断面図である。It is sectional drawing which shows the IV-IV cross section of FIG. 図2のV−V断面を示す断面図である。It is sectional drawing which shows the VV cross section of FIG. 本発明の実施の形態1に係る多翼送風機において第1断面での第1翼12Aの形状を説明する図である。It is a figure explaining the shape of the 1st wing 12A in the 1st cross section in the multi-blade blower which concerns on Embodiment 1 of this invention.

実施の形態1.
本発明の実施の形態1に係る多翼送風機について説明する。図1は、本実施の形態に係る多翼送風機を回転軸11に沿って見た構成を模式的に示す外観図である。図2は、図1のII−II断面を模式的に示す図である。図1及び図2に示すように、多翼送風機は、回転軸11を中心として回転する羽根車10と、羽根車10を収容するケーシング30と、羽根車10を駆動する駆動モータ40と、を有している。
Embodiment 1.
The multi-blade blower according to the first embodiment of the present invention will be described. FIG. 1 is an external view schematically showing a configuration of a multi-blade blower according to the present embodiment as viewed along a rotation shaft 11. FIG. 2 is a diagram schematically showing a cross section of II-II of FIG. As shown in FIGS. 1 and 2, the multi-blade blower includes an impeller 10 that rotates about a rotating shaft 11, a casing 30 that houses the impeller 10, and a drive motor 40 that drives the impeller 10. Have.

ケーシング30は、スクロール壁31と、吸込口32と、吹出口33と、を有している。スクロール壁31は、回転軸11に垂直な断面において拡大風路が形成されるようなスクロール形状を有している。吸込口32は、回転軸11を中心としたベルマウス状の環状部により形成された開口である。吸込口32は、ケーシング30の一方の側面に形成されている。吹出口33は、回転軸11に垂直な断面においてスクロール壁31の接線方向を向いて形成された開口である。 The casing 30 has a scroll wall 31, a suction port 32, and an outlet 33. The scroll wall 31 has a scroll shape such that an enlarged air passage is formed in a cross section perpendicular to the rotation axis 11. The suction port 32 is an opening formed by a bell mouth-shaped annular portion centered on the rotation shaft 11. The suction port 32 is formed on one side surface of the casing 30. The air outlet 33 is an opening formed in a cross section perpendicular to the rotation axis 11 so as to face the tangential direction of the scroll wall 31.

駆動モータ40は、吸込口32の形成された側面とは反対側のケーシング30の側面に隣接して配置されている。駆動モータ40のモータシャフト41は、回転軸11上に延びており、ケーシング30の側面を貫通してケーシング30の内部に挿入されている。 The drive motor 40 is arranged adjacent to the side surface of the casing 30 on the side opposite to the side surface on which the suction port 32 is formed. The motor shaft 41 of the drive motor 40 extends on the rotating shaft 11, penetrates the side surface of the casing 30, and is inserted into the casing 30.

羽根車10は、回転軸11を中心とする周方向に配列した複数の翼12と、複数の翼12を回転軸11に沿う方向の一方側から支持する主板13と、を有している。主板13は、駆動モータ40側のケーシング30の側面に沿って、回転軸11に垂直となるように配置されている。主板13の中心部には、ケーシング30の内部に挿入されたモータシャフト41が固定されている。 The impeller 10 has a plurality of blades 12 arranged in the circumferential direction about the rotation shaft 11, and a main plate 13 that supports the plurality of blades 12 from one side in the direction along the rotation shaft 11. The main plate 13 is arranged along the side surface of the casing 30 on the drive motor 40 side so as to be perpendicular to the rotating shaft 11. A motor shaft 41 inserted inside the casing 30 is fixed to the central portion of the main plate 13.

駆動モータ40が運転されると、モータシャフト41及び主板13を介して、複数の翼12が回転軸11を中心として回転する。これにより、外部の空気が吸込口32から羽根車10の内部に吸い込まれ、羽根車10の昇圧作用によりケーシング30内に吹き出される。ケーシング30内に吹き出された空気は、スクロール壁31により形成される拡大風路で減速して静圧を回復し、吹出口33から外部に吹き出される。 When the drive motor 40 is operated, the plurality of blades 12 rotate about the rotation shaft 11 via the motor shaft 41 and the main plate 13. As a result, the outside air is sucked into the impeller 10 from the suction port 32 and blown into the casing 30 by the pressurizing action of the impeller 10. The air blown into the casing 30 is decelerated by the expanded air passage formed by the scroll wall 31 to recover the static pressure, and is blown out from the air outlet 33 to the outside.

図3は、本実施の形態に係る多翼送風機の羽根車10の構成を示す斜視図である。図4は、図2のIV−IV断面を示す断面図である。図4に示す断面は、回転軸11に垂直な第1平面51で羽根車10の主板13寄りの部分が切断された、羽根車10の第1断面である。図5は、図2のV−V断面を示す断面図である。図5に示す断面は、回転軸11に垂直な第2平面52で羽根車10の吸込口32寄りの部分が切断された、羽根車10の第2断面である。 FIG. 3 is a perspective view showing the configuration of the impeller 10 of the multi-blade blower according to the present embodiment. FIG. 4 is a cross-sectional view showing an IV-IV cross section of FIG. The cross section shown in FIG. 4 is the first cross section of the impeller 10 in which the portion of the impeller 10 near the main plate 13 is cut at the first plane 51 perpendicular to the rotating shaft 11. FIG. 5 is a cross-sectional view showing a VV cross section of FIG. The cross section shown in FIG. 5 is a second cross section of the impeller 10 in which a portion of the impeller 10 near the suction port 32 is cut at a second plane 52 perpendicular to the rotating shaft 11.

図3〜図5に示すように、複数の翼12は、複数の第1翼12Aと、複数の第2翼12Bと、を有している。第1翼12Aは、内周端14Aと、内周端14Aよりも外周側に設けられ、羽根車10の回転方向で前方に向かって傾斜した外周端15Aと、を有している。内周端14Aは第1翼12Aの前縁となり、外周端15Aは第1翼12Aの後縁となる。第2翼12Bは、内周端14Bと、内周端14Bよりも外周側に設けられ、羽根車10の回転方向で前方に向かって傾斜した外周端15Bと、を有している。内周端14Bは第2翼12Bの前縁となり、外周端15Bは第2翼12Bの後縁となる。 As shown in FIGS. 3 to 5, the plurality of wings 12 have a plurality of first wings 12A and a plurality of second wings 12B. The first blade 12A has an inner peripheral end 14A and an outer peripheral end 15A provided on the outer peripheral side of the inner peripheral end 14A and inclined forward in the rotation direction of the impeller 10. The inner peripheral end 14A serves as the leading edge of the first wing 12A, and the outer peripheral end 15A serves as the trailing edge of the first wing 12A. The second blade 12B has an inner peripheral end 14B and an outer peripheral end 15B which is provided on the outer peripheral side of the inner peripheral end 14B and is inclined forward in the rotation direction of the impeller 10. The inner peripheral end 14B serves as the front edge of the second wing 12B, and the outer peripheral end 15B serves as the trailing edge of the second wing 12B.

回転軸11に沿う方向において吸込口32寄りの部分では、第1翼12Aの翼長は、第2翼12Bの翼長と等しくなっている(図5参照)。一方、回転軸11に沿う方向において主板13寄りの部分では、第1翼12Aの翼長は、第2翼12Bの翼長よりも長くなっており(図4参照)、かつ主板13に近づくほど長くなっている。このように、本実施の形態では、第1翼12Aの翼長は、回転軸11に沿う方向の少なくとも一部において、第2翼12Bの翼長よりも長くなっている。 The wingspan of the first blade 12A is equal to the wingspan of the second blade 12B at the portion closer to the suction port 32 in the direction along the rotation axis 11 (see FIG. 5). On the other hand, in the portion closer to the main plate 13 in the direction along the rotation axis 11, the wingspan of the first wing 12A is longer than the wingspan of the second wing 12B (see FIG. 4), and the closer to the main plate 13. It's getting longer. As described above, in the present embodiment, the wingspan of the first blade 12A is longer than the blade length of the second blade 12B at least in a part of the direction along the rotation axis 11.

図4に示す主板13寄りの第1断面において、回転軸11と第1翼12Aの内周端14Aとの距離、すなわち第1翼12Aの内径は、ri_Abである。回転軸11と外周端15Aとの距離、すなわち第1翼12Aの外径は、ro_Abである。距離ro_Abと距離ri_Abとの差は、第1断面での第1翼12Aの翼長L1bとなる(L1b=ro_Ab−ri_Ab)。ここで、一般的な多翼送風機では、回転軸に垂直な断面における翼の翼長は、回転軸方向での翼の幅寸法よりも短くなっている。本実施の形態においても、第1翼12Aの最大翼長、すなわち第1翼12Aの主板13寄り端部での翼長は、第1翼12Aの回転軸方向の幅寸法W(図2参照)よりも短くなっている。 In the first cross section near the main plate 13 shown in FIG. 4, the distance between the rotating shaft 11 and the inner peripheral end 14A of the first wing 12A, that is, the inner diameter of the first wing 12A is ri_Ab. The distance between the rotating shaft 11 and the outer peripheral end 15A, that is, the outer diameter of the first blade 12A is ro_Ab. The difference between the distance ro_Ab and the distance ri_Ab is the wingspan L1b of the first blade 12A in the first cross section (L1b = ro_Ab-ri_Ab). Here, in a general multi-blade blower, the blade length in the cross section perpendicular to the rotation axis is shorter than the span of the blade in the rotation axis direction. Also in this embodiment, the maximum wingspan of the first wing 12A, that is, the wing length at the end of the first wing 12A near the main plate 13, is the width dimension W in the rotation axis direction of the first wing 12A (see FIG. 2). Is shorter than.

また、第1断面において、回転軸11と第2翼12Bの内周端14Bとの距離、すなわち第2翼12Bの内径は、距離ri_Abよりも大きいri_Bbである(ri_Bb>ri_Ab)。回転軸11と外周端15Bとの距離、すなわち第2翼12Bの外径は、距離ro_Abと等しいro_Bbである(ro_Bb=ro_Ab)。距離ro_Bbと距離ri_Bbとの差は、第1断面での第2翼12Bの翼長L2bとなる(L2b=ro_Bb−ri_Bb)。第1断面での第2翼12Bの翼長L2bは、同断面での第1翼12Aの翼長L1bよりも短い(L2b<L1b)。 Further, in the first cross section, the distance between the rotating shaft 11 and the inner peripheral end 14B of the second wing 12B, that is, the inner diameter of the second wing 12B is ri_Bb larger than the distance ri_Ab (ri_Bb> ri_Ab). The distance between the rotating shaft 11 and the outer peripheral end 15B, that is, the outer diameter of the second blade 12B is ro_Bb equal to the distance ro_Ab (ro_Bb = ro_Ab). The difference between the distance ro_Bb and the distance ri_Bb is the wingspan L2b of the second blade 12B in the first cross section (L2b = ro_Bb-ri_Bb). The wingspan L2b of the second blade 12B in the first cross section is shorter than the wingspan L1b of the first blade 12A in the same cross section (L2b <L1b).

第1断面における第1翼12Aの出口角は、βbo_Abである。同断面における第2翼12Bの出口角は、βbo_Bbである。第2翼12Bの出口角βbo_Bbは、第1翼12Aの出口角βbo_Abと等しい(βbo_Bb=βbo_Ab)。 The exit angle of the first wing 12A in the first cross section is βbo_Ab. The exit angle of the second wing 12B in the same cross section is βbo_Bb. The exit angle βbo_Bb of the second wing 12B is equal to the exit angle βbo_Ab of the first wing 12A (βbo_Bb = βbo_Ab).

一方、図5に示す吸込口32寄りの第2断面において、回転軸11と第1翼12Aの内周端14Aとの距離は、ri_Aiである。距離ri_Aiは、第1断面での回転軸11と第1翼12Aの内周端14Aとの距離ri_Abよりも長い(ri_Ai>ri_Ab)。回転軸11と第1翼12Aの外周端15Aとの距離は、ro_Aiである。距離ro_Aiと距離ri_Aiとの差は、第2断面での第1翼12Aの翼長L1iとなる(L1i=ro_Ai−ri_Ai)。 On the other hand, in the second cross section near the suction port 32 shown in FIG. 5, the distance between the rotating shaft 11 and the inner peripheral end 14A of the first wing 12A is ri_Ai. The distance ri_Ai is longer than the distance ri_Ab between the rotating shaft 11 and the inner peripheral end 14A of the first wing 12A in the first cross section (ri_Ai> ri_Ab). The distance between the rotating shaft 11 and the outer peripheral end 15A of the first blade 12A is ro_Ai. The difference between the distance ro_Ai and the distance ri_Ai is the wingspan L1i of the first blade 12A in the second cross section (L1i = ro_Ai-ri_Ai).

また、第2断面において、回転軸11と第2翼12Bの内周端14Bとの距離は、ri_Biである。距離ri_Biは、同断面での回転軸11と第1翼12Aの内周端14Aとの距離ri_Aiと等しい(ri_Bi=ri_Ai)。回転軸11と第2翼12Bの外周端15Bとの距離は、ro_Biである。距離ro_Biは、同断面での回転軸11と第1翼12Aの外周端15Aとの距離ro_Aiと等しい(ro_Bi=ro_Ai)。距離ro_Biと距離ri_Biとの差は、第2断面での第2翼12Bの翼長L2iとなる(L2i=ro_Bi−ri_Bi)。第2断面での第2翼12Bの翼長L2iは、同断面での第1翼12Aの翼長L1iと等しい(L2i=L1i)。 Further, in the second cross section, the distance between the rotating shaft 11 and the inner peripheral end 14B of the second blade 12B is ri_Bi. The distance ri_Bi is equal to the distance ri_Ai between the rotating shaft 11 and the inner peripheral end 14A of the first wing 12A in the same cross section (ri_Bi = ri_Ai). The distance between the rotating shaft 11 and the outer peripheral end 15B of the second blade 12B is ro_Bi. The distance ro_Bi is equal to the distance ro_Ai between the rotating shaft 11 and the outer peripheral end 15A of the first blade 12A in the same cross section (ro_Bi = ro_Ai). The difference between the distance ro_Bi and the distance ri_Bi is the wingspan L2i of the second blade 12B in the second cross section (L2i = ro_Bi-ri_Bi). The wingspan L2i of the second blade 12B in the second cross section is equal to the wingspan L1i of the first blade 12A in the same cross section (L2i = L1i).

図5では図示を省略しているが、第2断面においても、第1翼12Aの出口角と第2翼12Bの出口角とは等しい。 Although not shown in FIG. 5, the outlet angle of the first wing 12A and the exit angle of the second wing 12B are equal even in the second cross section.

図3〜図5に示すように、周方向で互いに隣り合う2つの第1翼12Aの間には、少なくとも1つの第2翼12Bが配置されている。このため、第2翼12Bの数は、第1翼12Aの数と同数又はそれより多くなっている。本実施の形態では、2つの第1翼12Aの間には2つの第2翼12Bが配置されているため、第2翼12Bの数は、第1翼12Aの数の2倍となっている。 As shown in FIGS. 3 to 5, at least one second wing 12B is arranged between the two first wings 12A adjacent to each other in the circumferential direction. Therefore, the number of the second wings 12B is equal to or larger than the number of the first wings 12A. In the present embodiment, since the two second wings 12B are arranged between the two first wings 12A, the number of the second wings 12B is twice the number of the first wings 12A. ..

回転軸11と平行に見たとき、図5に示す第2断面での第1翼12Aは、図4に示す第1断面での第1翼12Aの輪郭からはみ出ないように当該第1翼12Aと重なっている。このため、ro_Ai≦ro_Ab、ri_Ai≧ri_Ab、及びL1i≦L1bの関係が満たされている。 When viewed in parallel with the rotating shaft 11, the first wing 12A in the second cross section shown in FIG. 5 does not protrude from the contour of the first wing 12A in the first cross section shown in FIG. It overlaps with. Therefore, the relationships of ro_Ai ≦ ro_Ab, ri_Ai ≧ ri_Ab, and L1i ≦ L1b are satisfied.

同様に、回転軸11と平行に見たとき、図5に示す第2断面での第2翼12Bは、図4に示す第1断面での第2翼12Bの輪郭からはみ出ないように当該第2翼12Bと重なっている。このため、ro_Bi≦ro_Bb、ri_Bi≧ri_Bb、及びL2i≦L2bの関係が満たされている。 Similarly, when viewed in parallel with the rotating shaft 11, the second wing 12B in the second cross section shown in FIG. 5 does not protrude from the contour of the second wing 12B in the first cross section shown in FIG. It overlaps with 2 wings 12B. Therefore, the relationships of ro_Bi ≦ ro_Bb, ri_Bi ≧ ri_Bb, and L2i ≦ L2b are satisfied.

図6は、本実施の形態に係る多翼送風機において第1断面での第1翼12Aの形状を説明する図である。図6に示すように、第1断面での第1翼12Aは、回転軸11を中心として第2翼12Bの内周端14Bに接する円C1よりも外周側に位置する外周側翼部12A1と、円C1よりも内周側に位置する内周側翼部12A2と、を有している。 FIG. 6 is a diagram illustrating the shape of the first blade 12A in the first cross section in the multi-blade blower according to the present embodiment. As shown in FIG. 6, the first wing 12A in the first cross section includes the outer peripheral wing portion 12A1 located on the outer peripheral side of the circle C1 which is in contact with the inner peripheral end 14B of the second wing 12B with the rotation axis 11 as the center. It has an inner peripheral side wing portion 12A2 located on the inner peripheral side of the circle C1.

外周側翼部12A1の弦線20の長さを外周側翼部12A1の弦長L_Ab1とし、弦線20と外周側翼部12A1の反り線22との最大距離を外周側翼部12A1の反り高さd_Ab1とする。ここで、羽根車10の回転方向の逆方向への反り高さを正の値で表し、羽根車10の回転方向への反り高さを負の値で表すものとする。外周側翼部12A1は羽根車10の回転方向とは逆方向に反っているため、反り高さd_Ab1は正の値となる(d_Ab1>0)。弦長L_Ab1に対する反り高さd_Ab1の比(d_Ab1/L_Ab1)を、外周側翼部12A1の反り比とする。 The length of the chord wire 20 of the outer peripheral side wing portion 12A1 is defined as the chord length L_Ab1 of the outer peripheral side wing portion 12A1, and the maximum distance between the chord wire 20 and the warp line 22 of the outer peripheral side wing portion 12A1 is defined as the warp height d_Ab1 of the outer peripheral side wing portion 12A1. .. Here, the warp height in the direction opposite to the rotation direction of the impeller 10 is represented by a positive value, and the warp height in the rotation direction of the impeller 10 is represented by a negative value. Since the outer peripheral side wing portion 12A1 is warped in the direction opposite to the rotation direction of the impeller 10, the warp height d_Ab1 is a positive value (d_Ab1> 0). The ratio of the warp height d_Ab1 to the chord length L_Ab1 (d_Ab1 / L_Ab1) is defined as the warp ratio of the outer peripheral side wing portion 12A1.

また、内周側翼部12A2の弦線21の長さを内周側翼部12A2の弦長L_Ab2とし、弦線21と内周側翼部12A2の反り線23との最大距離を内周側翼部12A2の反り高さd_Ab2とする。本実施の形態では、内周側翼部12A2は羽根車10の回転方向に反っているため、反り高さd_Ab2は負の値となる(d_Ab2<0)。ただし、内周側翼部12A2は、羽根車10の回転方向の逆方向に反っていてもよい。弦長L_Ab2に対する反り高さd_Ab2の比(d_Ab2/L_Ab2)を、内周側翼部12A2の反り比とする。このとき、外周側翼部12A1の反り比(d_Ab1/L_Ab1)は、内周側翼部12A2の反り比(d_Ab2/L_Ab2)よりも大きくなっている(d_Ab1/L_Ab1>d_Ab2/L_Ab2)。 Further, the length of the chord wire 21 of the inner peripheral side wing portion 12A2 is set to the chord length L_Ab2 of the inner peripheral side wing portion 12A2, and the maximum distance between the chord wire 21 and the warp line 23 of the inner peripheral side wing portion 12A2 is set to the inner peripheral side wing portion 12A2. The warp height is d_Ab2. In the present embodiment, since the inner peripheral side blade portion 12A2 is warped in the rotation direction of the impeller 10, the warp height d_Ab2 has a negative value (d_Ab2 <0). However, the inner peripheral side blade portion 12A2 may be warped in the direction opposite to the rotation direction of the impeller 10. The ratio of the warp height d_Ab2 to the chord length L_Ab2 (d_Ab2 / L_Ab2) is defined as the warp ratio of the inner peripheral side wing portion 12A2. At this time, the warp ratio (d_Ab1 / L_Ab1) of the outer peripheral side wing portion 12A1 is larger than the warp ratio (d_Ab2 / L_Ab2) of the inner peripheral side wing portion 12A2 (d_Ab1 / L_Ab1> d_Ab2 / L_Ab2).

以上説明したように、本実施の形態に係る多翼送風機は、回転軸11を中心として回転する羽根車10を備えた多翼送風機である。羽根車10は、回転軸11を中心とする周方向に配列した複数の翼12と、複数の翼12を回転軸11に沿う方向の一方側から支持する主板13と、を有している。回転軸11に垂直な第1平面51で切断された羽根車10の第1断面(例えば、図4に示す断面)において、複数の翼12のそれぞれは、内周端(例えば、内周端14A又は内周端14B)と、内周端よりも外周側に設けられ、羽根車10の回転方向で前方に向かって傾斜した外周端(例えば、外周端15A又は外周端15B)と、を有している。複数の翼12は、複数の第1翼12Aと、複数の第2翼12Bと、を有している。上記第1断面において、複数の第1翼12Aのそれぞれは、複数の第2翼12Bのそれぞれの翼長L2bよりも長い翼長L1bを有している。上記第1断面において、回転軸11と複数の第1翼12Aのそれぞれの内周端14Aとの距離ri_Abは、回転軸11と複数の第2翼12Bのそれぞれの内周端14Bとの距離ri_Bbよりも短くなっている。複数の第1翼12Aのうち周方向で互いに隣り合う2つの第1翼12Aの間には、複数の第2翼12Bのうちの少なくとも1つの第2翼12Bが配置されている。 As described above, the multi-blade blower according to the present embodiment is a multi-blade blower including an impeller 10 that rotates about a rotating shaft 11. The impeller 10 has a plurality of blades 12 arranged in the circumferential direction about the rotation shaft 11, and a main plate 13 that supports the plurality of blades 12 from one side in the direction along the rotation shaft 11. In the first cross section (for example, the cross section shown in FIG. 4) of the impeller 10 cut by the first plane 51 perpendicular to the rotation axis 11, each of the plurality of blades 12 has an inner peripheral end (for example, an inner peripheral end 14A). Alternatively, it has an inner peripheral end 14B) and an outer peripheral end (for example, outer peripheral end 15A or outer peripheral end 15B) provided on the outer peripheral side of the inner peripheral end and inclined forward in the rotation direction of the impeller 10. ing. The plurality of wings 12 have a plurality of first wings 12A and a plurality of second wings 12B. In the first cross section, each of the plurality of first wings 12A has a wingspan L1b longer than the wingspan L2b of each of the plurality of second wings 12B. In the first cross section, the distance ri_Ab between the rotating shaft 11 and the inner peripheral ends 14A of the plurality of first wings 12A is the distance ri_Bb between the rotating shaft 11 and the inner peripheral ends 14B of the plurality of second wings 12B. Is shorter than. At least one of the plurality of second wings 12B is arranged between the two first wings 12A adjacent to each other in the circumferential direction among the plurality of first wings 12A.

この構成によれば、第1翼12Aの翼長L1bが第2翼12Bの翼長L2bよりも長いため、少なくとも第1翼12Aにおいて遠心力による昇圧作用を高めることができる。一方で、周方向で互いに隣り合う2つの第1翼12Aの間には、第1翼12Aよりも翼長の短い少なくとも1つの第2翼12Bが配置される。これにより、2つの第1翼12Aの間に形成される空気流路の入口部が狭くなるのを防ぐことができるため、翼間の空気流路の入口部での縮流を緩和することができる。したがって、上記構成によれば、多翼送風機の効率を向上させることができるとともに、多翼送風機の所要動力を低減することができる。 According to this configuration, since the wingspan L1b of the first wing 12A is longer than the wingspan L2b of the second wing 12B, the pressurizing action due to the centrifugal force can be enhanced at least in the first wing 12A. On the other hand, at least one second wing 12B having a wingspan shorter than that of the first wing 12A is arranged between the two first wings 12A adjacent to each other in the circumferential direction. As a result, it is possible to prevent the inlet portion of the air flow path formed between the two first blades 12A from narrowing, so that the contraction at the inlet portion of the air flow path between the blades can be alleviated. it can. Therefore, according to the above configuration, the efficiency of the multi-blade blower can be improved, and the required power of the multi-blade blower can be reduced.

また、本実施の形態に係る多翼送風機では、上記第1断面において、複数の第1翼12Aのそれぞれは、回転軸11を中心として複数の第2翼12Bのそれぞれの内周端14Bに接する円C1よりも外周側に位置する外周側翼部12A1と、円C1よりも内周側に位置する内周側翼部12A2と、を有している。外周側翼部12A1及び内周側翼部12A2のそれぞれにおいて、弦長に対する反り高さの比を反り比とし、上記回転方向の逆方向への反り高さを正の値で表し、上記回転方向への反り高さを負の値で表す。このとき、外周側翼部12A1の反り比(d_Ab1/L_Ab1)は、内周側翼部12A2の反り比(d_Ab2/L_Ab2)よりも大きい。 Further, in the multi-blade blower according to the present embodiment, in the first cross section, each of the plurality of first blades 12A is in contact with the inner peripheral end 14B of each of the plurality of second blades 12B about the rotation shaft 11. It has an outer peripheral side wing portion 12A1 located on the outer peripheral side of the circle C1 and an inner peripheral side wing portion 12A2 located on the inner peripheral side of the circle C1. In each of the outer peripheral side wing portion 12A1 and the inner peripheral side wing portion 12A2, the ratio of the warp height to the chord length is defined as the warp ratio, and the warp height in the direction opposite to the rotation direction is represented by a positive value. The warp height is represented by a negative value. At this time, the warp ratio (d_Ab1 / L_Ab1) of the outer peripheral side wing portion 12A1 is larger than the warp ratio (d_Ab2 / L_Ab2) of the inner peripheral side wing portion 12A2.

この構成によれば、2つの第1翼12Aの間に形成される空気流路の入口部において、空気の流れ方向と第1翼12Aの翼面との角度差を小さくすることができる。これにより、翼間の空気流路での剥離を抑制できるため、多翼送風機の効率をさらに向上させることができる。 According to this configuration, the angle difference between the air flow direction and the blade surface of the first blade 12A can be reduced at the inlet of the air flow path formed between the two first blades 12A. As a result, separation in the air flow path between the blades can be suppressed, so that the efficiency of the multi-blade blower can be further improved.

また、本実施の形態に係る多翼送風機において、回転軸11に垂直な平面であって主板13からの距離が上記第1平面と主板13との距離よりも長い平面を第2平面52とする。第2平面52で切断された羽根車10の第2断面(例えば、図5に示す断面)における回転軸11と複数の第1翼12Aのそれぞれの内周端14Aとの距離ri_Aiは、上記第1断面における回転軸11と複数の第1翼12Aのそれぞれの内周端14Aとの距離ri_Abよりも長い。 Further, in the multi-blade blower according to the present embodiment, the plane perpendicular to the rotation axis 11 and the distance from the main plate 13 is longer than the distance between the first plane and the main plate 13 is defined as the second plane 52. .. The distance ri_Ai between the rotating shaft 11 and the inner peripheral ends 14A of the plurality of first wings 12A in the second cross section (for example, the cross section shown in FIG. 5) of the impeller 10 cut by the second plane 52 is the above-mentioned first. The distance between the rotating shaft 11 in one cross section and the inner peripheral end 14A of each of the plurality of first wings 12A is longer than the distance ri_Ab.

この構成によれば、回転軸11を中心とする第1翼12Aの内径は、羽根車10の主板13側よりも羽根車10の吸込口32側で大きくなる。このため、羽根車10の吸込口32側では、吸込口32から羽根車10内部に流入し回転軸11に沿って流れる空気の流路断面積を大きくすることができる。これにより、羽根車10内部に流入した空気の回転軸11方向の速度成分を減少させることができるため、羽根車10内部に流入した空気の流れが羽根車10の径方向に曲げられるときの損失を低減することができる。したがって、多翼送風機の効率をさらに向上させることができる。一方、羽根車10内部を流通する空気は、吸込口32から主板13に向かう回転軸11方向の運動量を有している。このため、羽根車10から流出する空気の風量分布は、回転軸11方向において主板13寄りに偏る。上記構成では、第1翼12Aの翼長が主板13寄りの部分で長くなっているため、第1翼12Aでの昇圧作用を風量分布が多い部分で高めることができる。したがって、多翼送風機の出力を効果的に向上させることができる。 According to this configuration, the inner diameter of the first blade 12A centered on the rotating shaft 11 is larger on the suction port 32 side of the impeller 10 than on the main plate 13 side of the impeller 10. Therefore, on the suction port 32 side of the impeller 10, the cross-sectional area of the air flow path that flows into the impeller 10 from the suction port 32 and flows along the rotation shaft 11 can be increased. As a result, the velocity component of the air flowing into the impeller 10 in the rotation axis 11 direction can be reduced, so that the loss when the flow of the air flowing into the impeller 10 is bent in the radial direction of the impeller 10. Can be reduced. Therefore, the efficiency of the multi-blade blower can be further improved. On the other hand, the air circulating inside the impeller 10 has a momentum in the direction of the rotating shaft 11 from the suction port 32 toward the main plate 13. Therefore, the air volume distribution of the air flowing out from the impeller 10 is biased toward the main plate 13 in the direction of the rotation axis 11. In the above configuration, since the wingspan of the first blade 12A is longer in the portion closer to the main plate 13, the pressurizing action in the first blade 12A can be enhanced in the portion where the air volume distribution is large. Therefore, the output of the multi-blade blower can be effectively improved.

また、本実施の形態に係る多翼送風機において、回転軸11と平行に見たとき、上記第2断面における複数の翼12のそれぞれは、上記第1断面における複数の翼12のそれぞれの輪郭からはみ出ないように上記第1断面における複数の翼12のそれぞれと重なっている。 Further, in the multi-blade blower according to the present embodiment, when viewed in parallel with the rotating shaft 11, each of the plurality of blades 12 in the second cross section is derived from the contours of the plurality of blades 12 in the first cross section. It overlaps with each of the plurality of wings 12 in the first cross section so as not to protrude.

この構成によれば、回転軸11方向に開く簡易的な金型を用いて、主板13と複数の翼12とを一体的に成形することができる。したがって、多翼送風機の製造コストを削減することができる。 According to this configuration, the main plate 13 and the plurality of blades 12 can be integrally formed by using a simple mold that opens in the direction of the rotation shaft 11. Therefore, the manufacturing cost of the multi-blade blower can be reduced.

また、本実施の形態に係る多翼送風機では、上記第1断面において、複数の第1翼12Aのそれぞれの外周端15Aと回転軸11との距離ro_Abは、複数の第2翼12Bのそれぞれの外周端15Bと回転軸11との距離ro_Bbと等しい。上記第1断面において、複数の第1翼12Aのそれぞれの出口角βbo_Abは、複数の第2翼12Bのそれぞれの出口角βbo_Bbと等しい。 Further, in the multi-blade blower according to the present embodiment, in the first cross section, the distance ro_Ab between the outer peripheral end 15A of each of the plurality of first blades 12A and the rotating shaft 11 is the distance ro_Ab of each of the plurality of second blades 12B. It is equal to the distance ro_Bb between the outer peripheral end 15B and the rotating shaft 11. In the first cross section, each outlet angle βbo_Ab of the plurality of first wings 12A is equal to each exit angle βbo_Bb of the plurality of second wings 12B.

この構成によれば、羽根車10から流出する気流の向きを羽根車10の周方向位置によらず均一にすることができる。仮に、羽根車10から流出する気流の向きが羽根車10の周方向位置によって変動する場合、回転音などの騒音が生じる。したがって、上記構成によれば、回転音などの騒音を抑制することができる。 According to this configuration, the direction of the airflow flowing out from the impeller 10 can be made uniform regardless of the circumferential position of the impeller 10. If the direction of the airflow flowing out of the impeller 10 varies depending on the circumferential position of the impeller 10, noise such as rotation noise is generated. Therefore, according to the above configuration, noise such as rotating noise can be suppressed.

なお、上記実施の形態では、主板13の一方側のみに複数の翼12が形成された片吸込型の羽根車10を備えた多翼送風機を例に挙げたが、本発明は、主板の両側にそれぞれ複数の翼が形成された両吸込型の羽根車を備えた多翼送風機にも適用できる。 In the above embodiment, a multi-blade blower provided with a single-suction impeller 10 in which a plurality of blades 12 are formed only on one side of the main plate 13 is given as an example, but the present invention has described both sides of the main plate 13. It can also be applied to a multi-blade blower equipped with a double-suction impeller with multiple blades formed on each.

10 羽根車、11 回転軸、12 翼、12A 第1翼、12A1 外周側翼部、12A2 内周側翼部、12B 第2翼、13 主板、14A、14B 内周端、15A、15B 外周端、20、21 弦線、22、23 反り線、30 ケーシング、31 スクロール壁、32 吸込口、33 吹出口、40 駆動モータ、41 モータシャフト、51 第1平面、52 第2平面、C1 円。 10 impeller, 11 rotating shaft, 12 wings, 12A 1st wing, 12A1 outer peripheral wing, 12A2 inner peripheral wing, 12B 2nd wing, 13 main plate, 14A, 14B inner peripheral end, 15A, 15B outer peripheral end, 20, 21 string wire, 22, 23 warp wire, 30 casing, 31 scroll wall, 32 suction port, 33 outlet, 40 drive motor, 41 motor shaft, 51 first plane, 52 second plane, C1 circle.

Claims (6)

回転軸を中心として回転する羽根車を備えた多翼送風機であって、
前記羽根車は、前記回転軸を中心とする周方向に配列した複数の翼と、前記複数の翼を前記回転軸に沿う方向の一方側から支持する主板と、を有しており、
前記回転軸に垂直な第1平面で切断された前記羽根車の第1断面において、前記複数の翼のそれぞれは、内周端と、前記内周端よりも外周側に設けられ、前記羽根車の回転方向で前方に向かって傾斜した外周端と、を有しており、
前記複数の翼は、複数の第1翼と、複数の第2翼と、を有しており、
前記第1断面において、前記複数の第1翼のそれぞれは、前記複数の第2翼のそれぞれの翼長よりも長い翼長を有しており、
前記第1断面において、前記回転軸と前記複数の第1翼のそれぞれの前記内周端との距離は、前記回転軸と前記複数の第2翼のそれぞれの前記内周端との距離よりも短くなっており、
前記複数の第1翼のうち前記周方向で互いに隣り合う2つの第1翼の間には、前記複数の第2翼のうちの少なくとも1つの第2翼が配置され、
前記複数の第1翼のそれぞれは、
前記回転軸に沿う方向における前記主板寄りの一部分から構成され、翼長が前記主板に近づくほど長くなるように形成された第1部分と、
前記第1部分以外の他の部分から構成され、翼長が一定となるように形成された第2部分と
を有し、
前記第1部分の前記回転軸に沿う方向における長さは、前記第2部分の前記回転軸に沿う方向における長さより短く、
前記主板全体は、前記回転軸に垂直な一平面から構成されている、
多翼送風機。
A multi-blade blower equipped with an impeller that rotates around a rotating shaft.
The impeller has a plurality of blades arranged in a circumferential direction about the rotation axis, and a main plate that supports the plurality of blades from one side in a direction along the rotation axis.
In the first cross section of the impeller cut in the first plane perpendicular to the rotation axis, each of the plurality of blades is provided on the inner peripheral end and the outer peripheral side of the inner peripheral end, and the impeller is provided. Has an outer peripheral edge that is inclined forward in the direction of rotation of
The plurality of wings have a plurality of first wings and a plurality of second wings.
In the first cross section, each of the plurality of first wings has a wingspan longer than the wingspan of each of the plurality of second wings.
In the first cross section, the distance between the rotating shaft and the inner peripheral end of each of the plurality of first wings is larger than the distance between the rotating shaft and the inner peripheral end of each of the plurality of second wings. It's getting shorter
At least one second wing of the plurality of second wing is arranged between the two first wing adjacent to each other in the circumferential direction among the plurality of first wing.
Each of the plurality of first wings
A first portion composed of a part closer to the main plate in the direction along the rotation axis and formed so that the wingspan becomes longer as it approaches the main plate.
It consists portions other than the first portion, possess a second portion blade length is formed so as to be constant,
The length of the first portion in the direction along the rotation axis is shorter than the length of the second portion in the direction along the rotation axis.
The entire main plate is composed of a plane perpendicular to the rotation axis.
Multi-wing blower.
前記第1断面において、前記複数の第1翼のそれぞれは、前記回転軸を中心として前記複数の第2翼のそれぞれの前記内周端に接する円よりも外周側に位置する外周側翼部と、前記円よりも内周側に位置する内周側翼部と、を有しており、
前記複数の第1翼のそれぞれの前記第1部分は、前記外周側翼部と前記内周側翼部とを含み、
前記複数の第1翼のそれぞれの前記第2部分は、前記外周側翼部を含み、
前記外周側翼部及び前記内周側翼部のそれぞれにおいて、弦長に対する反り高さの比を反り比とし、前記回転方向の逆方向への反り高さを正の値で表し、前記回転方向への反り高さを負の値で表したとき、
前記外周側翼部の反り比は、前記内周側翼部の反り比よりも大きい請求項1に記載の多翼送風機。
In the first cross section, each of the plurality of first wings has an outer peripheral wing portion located on the outer peripheral side of the circle in contact with the inner peripheral end of each of the plurality of second wings about the rotation axis. It has an inner peripheral wing located on the inner peripheral side of the circle.
The first portion of each of the plurality of first wings includes the outer peripheral side wing portion and the inner peripheral side wing portion.
The second portion of each of the plurality of first wings includes the outer peripheral wing portion.
In each of the outer peripheral side wing portion and the inner peripheral side wing portion, the ratio of the warp height to the chord length is defined as the warp ratio, the warp height in the direction opposite to the rotation direction is represented by a positive value, and the warp height in the rotation direction is expressed as a positive value. When the warp height is expressed as a negative value,
The multi-blade blower according to claim 1, wherein the warp ratio of the outer peripheral side blade portion is larger than the warp ratio of the inner peripheral side blade portion.
前記回転軸に垂直な平面であって前記主板からの距離が前記第1平面と前記主板との距離よりも長い平面を第2平面としたとき、
前記第2平面で切断された前記羽根車の第2断面における前記回転軸と前記複数の第1翼のそれぞれの前記内周端との距離は、前記第1断面における前記回転軸と前記複数の第1翼のそれぞれの前記内周端との距離よりも長い請求項1又は請求項2に記載の多翼送風機。
When the plane perpendicular to the axis of rotation and the distance from the main plate is longer than the distance between the first plane and the main plate is defined as the second plane.
The distance between the rotating shaft in the second cross section of the impeller cut in the second plane and the inner peripheral end of each of the plurality of first blades is the distance between the rotating shaft in the first cross section and the plurality. The multi-blade blower according to claim 1 or 2, which is longer than the distance of each of the first blades from the inner peripheral end.
前記回転軸と平行に見たとき、前記第2断面における前記複数の翼のそれぞれは、前記第1断面における前記複数の翼のそれぞれの輪郭からはみ出ないように前記第1断面における前記複数の翼のそれぞれと重なっている請求項3に記載の多翼送風機。 When viewed in parallel with the rotation axis, each of the plurality of blades in the second cross section does not protrude from the contours of the plurality of blades in the first cross section. The multi-blade blower according to claim 3, which overlaps with each of the above. 前記第1断面において、前記複数の第1翼のそれぞれの前記外周端と前記回転軸との距離は、前記複数の第2翼のそれぞれの前記外周端と前記回転軸との距離と等しく、
前記第1断面において、前記複数の第1翼のそれぞれの出口角は、前記複数の第2翼のそれぞれの出口角と等しい請求項1〜請求項4のいずれか一項に記載の多翼送風機。
In the first cross section, the distance between the outer peripheral end of each of the plurality of first wings and the rotating shaft is equal to the distance between the outer peripheral end of each of the plurality of second wings and the rotating shaft.
The multi-blade blower according to any one of claims 1 to 4, wherein in the first cross section, the outlet angle of each of the plurality of first blades is equal to the outlet angle of each of the plurality of second blades. ..
前記回転軸に沿う方向における前記複数の第1翼のそれぞれおよび前記複数の第2翼のそれぞれの中心部で切断された前記羽根車の第3断面において、前記複数の第1翼のそれぞれの前記内周端と前記回転軸との距離は、前記複数の第2翼のそれぞれの前記内周端と前記回転軸との距離と等しい
請求項1〜請求項5のいずれか一項に記載の多翼送風機。
In the third cross section of the impeller cut at the center of each of the plurality of first blades and the plurality of second blades in the direction along the rotation axis, the said one of the plurality of first blades. The multiple according to any one of claims 1 to 5, wherein the distance between the inner peripheral end and the rotating shaft is equal to the distance between the inner peripheral end of each of the plurality of second blades and the rotating shaft. Wing blower.
JP2019549964A 2017-10-27 2017-10-27 Multi-wing blower Active JP6896091B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038914 WO2019082378A1 (en) 2017-10-27 2017-10-27 Multivane blower

Publications (2)

Publication Number Publication Date
JPWO2019082378A1 JPWO2019082378A1 (en) 2020-11-05
JP6896091B2 true JP6896091B2 (en) 2021-06-30

Family

ID=66246324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019549964A Active JP6896091B2 (en) 2017-10-27 2017-10-27 Multi-wing blower

Country Status (2)

Country Link
JP (1) JP6896091B2 (en)
WO (1) WO2019082378A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217367A1 (en) * 2019-04-25 2020-10-29 三菱電機株式会社 Impeller, multi-blade blower, and air-conditioning device
CN211525137U (en) * 2019-12-17 2020-09-18 中山大洋电机股份有限公司 Draught fan
US11988220B2 (en) 2019-12-17 2024-05-21 Zhongshan Broad-Ocean Motor Co., Ltd. Volute assembly and induced draft fan comprising the same
US20220372990A1 (en) * 2019-12-23 2022-11-24 Mitsubishi Electric Corporation Impeller, multi-blade fan, and air-conditioning apparatus
WO2021210127A1 (en) * 2020-04-16 2021-10-21 三菱電機株式会社 Impeller, centrifugal blower, and air-conditioning device
EP4234945A4 (en) * 2020-10-22 2023-12-13 Mitsubishi Electric Corporation Centrifugal blower and air conditioning device
WO2022085175A1 (en) * 2020-10-23 2022-04-28 三菱電機株式会社 Multiblade centrifugal fan

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256598A (en) * 1984-06-01 1985-12-18 Matsushita Electric Ind Co Ltd Electric blower
JPH01113196U (en) * 1988-01-22 1989-07-31
JPH05321891A (en) * 1992-05-21 1993-12-07 Matsushita Seiko Co Ltd Multiblade fan
JP2000240590A (en) * 1999-02-23 2000-09-05 Hitachi Ltd Multiblade forward fan
JP2001159396A (en) * 1999-12-03 2001-06-12 Daikin Ind Ltd Centrifugal fan and air conditioner equipped with the same
JP3516909B2 (en) * 2000-08-28 2004-04-05 松下エコシステムズ株式会社 Centrifugal blower
JP3649157B2 (en) * 2001-06-06 2005-05-18 ダイキン工業株式会社 Centrifugal fan and air conditioner equipped with the centrifugal fan
JP4779627B2 (en) * 2005-12-14 2011-09-28 パナソニック株式会社 Multi-blade blower

Also Published As

Publication number Publication date
JPWO2019082378A1 (en) 2020-11-05
WO2019082378A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
JP6896091B2 (en) Multi-wing blower
EP0458864A4 (en) Centrifugal fan with variably cambered blades
WO2006006668A1 (en) Centrifugal blower and air conditionaer with centrifugal blower
JP2009203897A (en) Multi-blade blower
JP5879363B2 (en) Multi-blade fan and air conditioner equipped with the same
JP5425192B2 (en) Propeller fan
JP6621194B2 (en) Turbofan and blower using the turbofan
JP6330738B2 (en) Centrifugal blower and air conditioner using the same
JP4712714B2 (en) Centrifugal multi-blade fan
KR100858395B1 (en) Axial Fan
JP6739656B2 (en) Impeller, blower, and air conditioner
JP6844526B2 (en) Multi-wing centrifugal fan
JP4657810B2 (en) Multi-blade impeller structure
JPWO2020121484A1 (en) Centrifugal fan and air conditioner
CN115335607A (en) Impeller, multi-wing blower and air conditioner
JPWO2021186676A5 (en)
JP2007154685A (en) Turbo fan and air conditioner using the same
JP6063684B2 (en) Axial fan
JP6134407B2 (en) Centrifugal fan
JP2019127865A (en) Centrifugal fan
JP2006125229A (en) Sirocco fan
JPH05296195A (en) Axial fan
JPWO2018189931A1 (en) Centrifugal fan, molding die and fluid feeder
JP2014139412A (en) Multiblade centrifugal fan and multiblade centrifugal blower including the same
JP2012202362A (en) Impeller, and centrifugal fan including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210608

R150 Certificate of patent or registration of utility model

Ref document number: 6896091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250