JP6895287B2 - How to produce plant cuttings - Google Patents
How to produce plant cuttings Download PDFInfo
- Publication number
- JP6895287B2 JP6895287B2 JP2017061828A JP2017061828A JP6895287B2 JP 6895287 B2 JP6895287 B2 JP 6895287B2 JP 2017061828 A JP2017061828 A JP 2017061828A JP 2017061828 A JP2017061828 A JP 2017061828A JP 6895287 B2 JP6895287 B2 JP 6895287B2
- Authority
- JP
- Japan
- Prior art keywords
- medium
- rooting
- cuttings
- plant
- seedling raising
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Cultivation Of Plants (AREA)
Description
本発明は、植物の挿し木苗の生産方法に関する。 The present invention relates to a method for producing plant cuttings.
挿し木は人為的に切断された植物組織を用いて発根床内で発根させ、独立した一つの植物体を作出する方法であり、遺伝的に均一な苗を大量増殖するのに優れた方法である。 Cuttings are a method of rooting in the rooting bed using artificially cut plant tissue to produce one independent plant, which is an excellent method for mass growth of genetically uniform seedlings. Is.
挿し木による増殖は簡便で、一度に大量の苗を作出するのに適しており、優良な形質を持った個体を大量に増殖できることから商業的にも有利な方法とされている。しかし、挿し木では発根が困難な植物種も多くある。 Propagation by cuttings is simple, suitable for producing a large number of seedlings at one time, and it is a commercially advantageous method because a large number of individuals with excellent traits can be proliferated. However, there are many plant species that are difficult to root with cuttings.
非特許文献1には、挿し木における施肥のタイミングは芽の伸びが再開してからがよいことが記載されている。その理由は、挿し木床に肥料分が多いと浸透圧で挿し木の切り口から水分が逃げやすく、新根が濃度障害を受けやすくなるためであることも記載されている。 Non-Patent Document 1 describes that the timing of fertilization in cuttings should be after the growth of buds is resumed. It is also described that the reason is that when the cutting bed has a large amount of fertilizer, water easily escapes from the cut end of the cutting due to osmotic pressure, and the new roots are easily affected by the concentration disorder.
特許文献1には、有機質汚泥の好気発酵物である汚泥コンポストに施肥して成る挿し床を用いることにより、挿し付け時の施肥障害を抑制し、発根率が高まることが記載されている。 Patent Document 1 describes that by using a cutting bed made by applying fertilizer to sludge compost, which is an aerobic fermentation product of organic sludge, fertilization obstacles at the time of insertion are suppressed and the rooting rate is increased. ..
しかし、特許文献1の方法でも、挿し付け時の適切な施肥量は肥料の種類、植物種、温度、湿度、pH等の栽培条件によって異なるため、施肥管理が困難であるという問題があった。本発明は、挿し木による苗生産の効率を高めることのできる、植物の挿し木苗の生産方法の提供を目的とする。 However, even with the method of Patent Document 1, there is a problem that fertilizer application management is difficult because the appropriate amount of fertilizer applied at the time of insertion differs depending on the cultivation conditions such as the type of fertilizer, plant species, temperature, humidity, and pH. An object of the present invention is to provide a method for producing plant cuttings, which can increase the efficiency of seedling production by cuttings.
本発明は、以下の〔1〕〜〔4〕を提供する。
〔1〕挿し穂を発根培地に挿し付けて発根培養する発根培養工程、及び発根後の挿し穂を育苗培地にて育苗する育苗工程を含む、植物の挿し木苗の生産方法において、
発根培地中の電気伝導度を0.01mS/cmを超えて0.5mS/cm未満に制御し、
育苗培地中の電気伝導度を0.5mS/cm以上に制御する
方法。
〔2〕発根培地中の電気伝導度と育苗培地中の電気伝導度との差が、0.05〜0.6mS/cmである、〔1〕の方法。
〔3〕植物が、スギ属植物、マツ属植物又はユーカリ属植物である、〔1〕又は〔2〕の方法。
〔4〕発根培養工程において、発根促進剤を用いる、〔1〕〜〔3〕のいずれかの方法。
The present invention provides the following [1] to [4].
[1] In a method for producing plant cuttings, which includes a rooting culture step in which cuttings are inserted into a rooting medium and rooting culture is performed, and a seedling raising step in which the cuttings after rooting are raised in a seedling raising medium.
The electrical conductivity in the rooting medium was controlled to exceed 0.01 mS / cm and less than 0.5 mS / cm.
A method of controlling the electrical conductivity in a seedling raising medium to 0.5 mS / cm or more.
[2] The method of [1], wherein the difference between the electrical conductivity in the rooting medium and the electrical conductivity in the seedling raising medium is 0.05 to 0.6 mS / cm.
[3] The method of [1] or [2], wherein the plant is a plant of the genus Sugi, a plant of the genus Pine or a plant of the genus Eucalyptus.
[4] The method according to any one of [1] to [3], which uses a rooting promoter in the rooting culture step.
本発明によれば、挿し木による苗生産の効率を高めることができる。具体的には、無施肥で発根培養して育苗時に追肥する場合よりも優れた得苗率で、挿し木による苗生産の効率を高めることができる。また、電気伝導度(「EC値」とも呼ぶ)を制御することにより、肥料の種類によらず、苗生産の効率を高めるための培地への施肥量を適正に管理することが可能となる。 According to the present invention, the efficiency of seedling production by cuttings can be increased. Specifically, it is possible to increase the efficiency of seedling production by cuttings with a better seedling acquisition rate than in the case of rooting culture without fertilizer and topdressing at the time of raising seedlings. Further, by controlling the electric conductivity (also referred to as "EC value"), it is possible to appropriately control the amount of fertilizer applied to the medium for increasing the efficiency of seedling production regardless of the type of fertilizer.
本発明は、発根培養工程、及び育苗工程を含む植物の挿し木苗の生産方法を提供する。 The present invention provides a method for producing plant cuttings, which includes a rooting culture step and a seedling raising step.
〔発根培養工程〕
発根培養工程においては、挿し穂を発根培地に挿し付けて発根培養する。
[Rooting culture process]
In the rooting culture step, cuttings are inserted into a rooting medium for rooting culture.
(挿し穂)
挿し穂は、挿し木苗を得たい植物の挿し穂であればよい。植物の種類は特に限定されない。植物は木本植物と草本植物とに分類されうるが、本発はこれらのいずれにも適用可能であり、木本植物に適用されることが好ましく、草本植物よりも発根能が劣っている木本植物に適用されることがより好ましい。木本植物としては、ユーカリ属(Eucalyptus)植物、マツ属(Pinus)植物、スギ属(Cryptomeria)植物(スギ(Cryptomeria japonica)など)、サクラ属(Prunus)植物(サクラ(Prunus spp.)、ウメ(Prunus mume)、ユスラウメ(Prunus tomentosa)など)、マンゴー属(Mangifera)植物(マンゴー(Mangifera indica)など)、アカシア属(Acacia)植物、ヤマモモ属(Myrica)植物、クヌギ属(Quercus)植物(クヌギなど(Quercus acutissima))、ブドウ(Vitis)属植物、リンゴ(Malus)属植物、バラ属(Rosa)植物、ツバキ属(Camellia)植物(チャ(Camellia sinensis)など)、ジャカランダ属(Jacaranda)植物(ジャカランダ(Jacaranda mimosifolia)など)、ワニナシ属(Persea)植物(アボカド(Persea americana)など)、ナシ属(Pyrus)植物(ナシ(Pyrus serotina Rehder、Pyrus pyrifolia)など)、ビャクダン属(Santalum)植物(ビャクダン(サンダルウッド;Santalum album)など)が例示される。このうち、ユーカリ、マツ、スギ、サクラ、マンゴー、アボカド、アカシア、ヤマモモ、クヌギ、ブドウ、リンゴ、バラ、ツバキ、チャ、ウメ、ユスラウメ、ジャカランタ等に適用した場合に、より本発明の効果を発揮しうる。中でもユーカリ属植物、マツ属植物、スギ属植物、ツバキ属植物、マンゴー属植物、ワニナシ属植物が好ましく、ユーカリ属植物、マツ属植物、スギ属植物がより好ましく、スギ属植物がさらに好ましい。
(Cutting)
The cuttings may be the cuttings of the plant for which cutting seedlings are to be obtained. The type of plant is not particularly limited. Plants can be classified into woody plants and herbaceous plants, but this plant can be applied to any of these, preferably applied to woody plants, and has inferior rooting ability to herbaceous plants. More preferably, it is applied to woody plants. As woody plants, Eucalyptus plants, Pinus plants, Cryptomeria plants (Cryptomeria japonica, etc.), Sakura genus (Prunus spp.), Ume (Prunus mume), Yusuraume (Prunus tomentosa, etc.), Mangofera plants (Mangifera indica, etc.), Acacia plants, Yamamomo (Myrica) plants, Kunugi (Qu) Etc. (Quarcus actissima), grapes (Vitis), apples (Marus), roses (Rosa), camellia plants (Camellia sinensis, etc.), Jacaranda plants (Jacaraanda) Jacaranda (Jacaranda mimosifolia, etc.), crocodile (Persea) plants (Avocado (Persea americana), etc.), Pear (Pyrus) plants (Pear (Pyrus serotina Rehder, Pyrus) (Sandalum album, etc.) and the like) are exemplified. Of these, the effect of the present invention is more exhibited when applied to eucalyptus, pine, cedar, cherry, mango, avocado, acacia, bayberry, kunugi, grape, apple, rose, camellia, tea, plum, tomentosa, jacaranta, etc. Can be done. Among them, eucalyptus plants, pine plants, sugi genus plants, camellia genus plants, mango genus plants, and crocodile genus plants are preferable, eucalyptus genus plants, pine genus plants, and sugi genus plants are more preferable, and sugi genus plants are further preferable.
挿し穂は、植物の少なくとも一部であればよく、緑枝(当年枝)、熟枝(前年以前に伸びた枝)等の枝;頂芽、腋芽などの芽;葉、子葉;胚軸などが例示される。木本植物の場合の挿し穂は、通常は緑枝又は熟枝であり、草本植物の場合の挿し穂は、通常は葉又は芽であるが、これらには限定されない。 The cuttings may be at least a part of the plant, and branches such as green branches (current year branches) and mature branches (branches that grew before the previous year); shoots such as apical buds and axillary buds; leaves, cotyledons; hypocotyls, etc. Is illustrated. The cuttings in the case of woody plants are usually green or mature branches, and the cuttings in the case of herbaceous plants are usually leaves or buds, but are not limited thereto.
不定根を形成することが期待されるという観点から、挿し穂としてシュートを用いてもよい。シュートとは、発根能を有する組織全般をいう。該組織としては、枝、茎、頂芽、腋芽、不定芽、葉、子葉、胚軸、不定胚、苗条原基等が例示される。シュートの由来は特に限定されず、温室又は屋外に生育している植物個体から得られる組織でもよいし、組織培養法により得られた培養組織であってもよいし、天然の植物体の一部の組織であってもよい。シュートは、挿し穂の母本植物、又は多芽体から効率良く取得することができる。中でも、挿し穂(母本植物から得た挿し穂)、母本植物から採取した器官を無菌的に培養することにより得た多芽体、もしくは前記器官を無菌的に育成して得た茎葉であることが好ましい。 Shoots may be used as cuttings from the viewpoint that they are expected to form adventitious roots. The shoot refers to all tissues having rooting ability. Examples of the tissue include branches, stems, apical buds, axillary buds, adventitious buds, leaves, cotyledons, hypocotyls, adventitious embryos, shoot primordia and the like. The origin of the shoot is not particularly limited, and it may be a tissue obtained from an individual plant growing in a greenhouse or outdoors, a cultured tissue obtained by a tissue culture method, or a part of a natural plant body. It may be an organization of. Shoots can be efficiently obtained from the mother plant of cuttings or polyblasts. Among them, cuttings (cuttings obtained from the mother plant), polyblasts obtained by aseptically culturing an organ collected from the mother plant, or foliage obtained by aseptically growing the organ. It is preferable to have.
多芽体は、本発明を適用してクローン苗を生産しようとする植物から、頂芽、腋芽等の組織を切取って、これを組織培養して誘導することができる。多芽体を、母本植物から採取した器官を無菌的に培養して、形成させるには、特開平8−228621号公報に記載の方法、条件に従って行い得る。その方法、条件は概ね次の通りである。まず、材料とする植物から頂芽、腋芽等の組織を採取し、採取した組織について、有効塩素量約0.5%〜約4%の次亜塩素酸ナトリウム水溶液又は有効塩素量約5%〜約15%の過酸化水素水溶液に約10分〜約20分間浸漬して表面殺菌を行う。次いで、これを滅菌水で洗浄し、固体培地に挿し付けて芽を開じょさせ、伸長してきた茎葉を同じ組成の培地で継代培養することにより、多芽体を形成させる。ユーカリ属又はアカシア属の組織(例えば腋芽)を用いる場合には、固体培地は、ショ糖1〜5重量%、植物ホルモンとしてベンジルアデニン(以下、BAと略す。)約0.02mg/L以上約1mg/L以下、ゲランガム約0.2重量%以上約0.3重量%若しくは寒天約0.5重量%以上約1重量%以下を含有するムラシゲスクーグ(以下、MSと略す。)培地、又は、MS培地の硝酸アンモニウム成分と硝酸カリウム成分とを半減させた改変MS培地を用いるのが好ましい。こうして形成された多芽体からは活発にシュートが伸長してくる。多芽体自体は、適当に分割して多芽体形成に用いた培地と同一組成の培地で培養することにより維持し、増殖させることができる。 The multi-bud can be derived by cutting tissues such as apical buds and axillary buds from a plant for which the present invention is to be produced to produce cloned seedlings, and tissue culturing the tissues. The polybuds can be formed by aseptically culturing an organ collected from a mother plant according to the method and conditions described in JP-A-8-228621. The method and conditions are as follows. First, tissues such as apical buds and axillary buds are collected from the plant as a material, and the collected tissues are subjected to an aqueous solution of sodium hypochlorite having an effective chlorine content of about 0.5% to about 4% or an effective chlorine content of about 5% to. Surface sterilization is performed by immersing in an aqueous solution of hydrogen peroxide of about 15% for about 10 minutes to about 20 minutes. Then, this is washed with sterile water, inserted into a solid medium to open the buds, and the elongated foliage is subcultured in a medium having the same composition to form polyblasts. When a tissue of the genus Eucalyptus or the genus Acacia (for example, axillary bud) is used, the solid medium contains 1 to 5% by weight of sucrose, and benzyladenine (hereinafter abbreviated as BA) as a plant hormone is about 0.02 mg / L or more. Murashige sucrose (hereinafter abbreviated as MS) medium containing 1 mg / L or less, about 0.2% by weight or more of gellan gum or about 0.3% by weight or about 0.5% by weight or more of adenine or about 1% by weight or less, or MS. It is preferable to use a modified MS medium in which the ammonium nitrate component and the potassium nitrate component of the medium are halved. Shoots actively grow from the polyblasts formed in this way. The polyblast itself can be maintained and proliferated by appropriately dividing and culturing in a medium having the same composition as the medium used for polyblast formation.
(発根培地のEC値)
発根培養工程においては、発根培地中の電気伝導度(「EC値」とも呼ぶ)を0.5mS/cm未満、好ましくは0.49mS/cm以下、より好ましくは0.48mS/cm以下に制御する。これにより、無施肥で発根培養して育苗時に追肥する場合よりも優れた得苗率が得られ、また、発根培養中の施肥量を適切な範囲に調整できる。下限は0.01mS/cmを超えていればよく、好ましくは、0.02mS/cm以上、0.05mS/cm以上、0.15mS/cm以上、又は0.20mS/cm以上である。電気伝導度は、電荷の流れやすさを意味し、培地中のイオン濃度の指標となり得る。電気伝導度の測定方法は特に限定されないが、培地を直接的に又は間接的に(例えば、水等での希釈を経て)測定してもよい。測定機器は特に限定されず、例えば、ポータブル型EC測定装置が挙げられる。発根培地のEC値は発根培養工程中定期的に測定して確認してもよいが、通常、発根培養期間の経過に伴い低下していくことから、発根培養開始時の発根培地のEC値が0.5mS/cm未満であることを確認できれば、それ以降の確認作業を省略できる。発根培地中の電気伝導度の制御方法としては、例えば、肥料成分追加、温度調整、pH調整などが挙げられる。
(EC value of rooting medium)
In the rooting culture step, the electrical conductivity (also referred to as “EC value”) in the rooting medium is set to less than 0.5 mS / cm, preferably 0.49 mS / cm or less, more preferably 0.48 mS / cm or less. Control. As a result, an excellent seedling acquisition rate can be obtained as compared with the case of rooting culture without fertilization and topdressing at the time of raising seedlings, and the amount of fertilizer applied during rooting culture can be adjusted to an appropriate range. The lower limit may exceed 0.01 mS / cm, preferably 0.02 mS / cm or more, 0.05 mS / cm or more, 0.15 mS / cm or more, or 0.20 mS / cm or more. The electrical conductivity means the ease of charge flow and can be an index of the ion concentration in the medium. The method for measuring the electrical conductivity is not particularly limited, but the medium may be measured directly or indirectly (for example, after dilution with water or the like). The measuring device is not particularly limited, and examples thereof include a portable EC measuring device. The EC value of the rooting medium may be measured and confirmed periodically during the rooting culture process, but since it usually decreases with the lapse of the rooting culture period, rooting at the start of rooting culture If it can be confirmed that the EC value of the medium is less than 0.5 mS / cm, the subsequent confirmation work can be omitted. Examples of the method for controlling the electrical conductivity in the rooting medium include addition of fertilizer components, temperature adjustment, pH adjustment and the like.
(発根培地)
発根培地は特に限定されず、例えば、養液、水耕栽培水、植物組織培養用培地等の栽培用培地、前記栽培用培地の希釈培地、前記栽培用培地に適宜肥料成分を追加した培地が挙げられる。発根培養工程程は、例えば、水耕、又は土耕のいずれで実施してもよい。
(Rooting medium)
The rooting medium is not particularly limited, and for example, a cultivation medium such as a nutrient solution, hydroponic cultivation water, a plant tissue culture medium, a diluted medium of the cultivation medium, or a medium in which a fertilizer component is appropriately added to the cultivation medium. Can be mentioned. The rooting culture step may be carried out by, for example, hydroponics or soil cultivation.
肥料成分としては、例えば、無機成分、銀イオン、抗酸化剤、炭素源、ビタミン類、アミノ酸類、植物ホルモン類等の植物の栄養素の供給源となり得る成分が挙げられる。肥料成分の形態は特に限定されず、固形物(例、粉剤、粒剤)、又は液体(例、液肥)のいずれでもよい。 Examples of the fertilizer component include components that can be a source of plant nutrients such as inorganic components, silver ions, antioxidants, carbon sources, vitamins, amino acids, and plant hormones. The form of the fertilizer component is not particularly limited, and may be either a solid substance (eg, powder, granule) or a liquid (eg, liquid fertilizer).
無機成分としては、窒素、リン、カリウム、硫黄、カルシウム、マグネシウム、鉄、マンガン、亜鉛、ホウ素、モリブデン、塩素、ヨウ素、コバルト等の元素や、これらを含む無機塩が例示される。該無機塩としては例えば、硝酸カリウム、硝酸アンモニウム、塩化アンモニウム、硝酸ナトリウム、リン酸1水素カリウム、リン酸2水素ナトリウム、塩化カリウム、硫酸マグネシウム、硫酸第1鉄、硫酸第2鉄、硫酸マンガン、硫酸亜鉛、硫酸銅、硫酸ナトリウム、塩化カルシウム、塩化マグネシウム、ホウ酸、三酸化モリブデン、モリブデン酸ナトリウム、ヨウ化カリウム、塩化コバルト等やこれらの水和物が挙げられる。無機成分として、上記具体例の中から1種を選択して、或いは2種以上を組み合わせて用いうる。本発明で用いられる液体培地においては、窒素、リン、カリウムが必須元素として含まれることが好ましい。よって、これら無機成分の具体例のうち、窒素、リン、カリウム、窒素を含む無機塩、リンを含む無機塩、及びカリウムを含む無機塩が好ましく、窒素、リン、カリウム、窒素を含む無機塩がより好ましい。無機成分は、液体培地中の濃度が、1種の場合は約1μM〜約100mMとなるように添加することが好ましく、約0.1μM〜約100mMとなるように添加することがより好ましい。2種以上の組み合わせの場合はそれぞれ約0.1μM〜約100mMとなるよう添加することが好ましく、約1μM〜約100mMとなるように添加することがより好ましい。 Examples of the inorganic component include elements such as nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, iron, manganese, zinc, boron, molybdenum, chlorine, iodine and cobalt, and inorganic salts containing these elements. Examples of the inorganic salt include potassium nitrate, ammonium nitrate, ammonium chloride, sodium nitrate, potassium monohydrogen phosphate, sodium dihydrogen phosphate, potassium chloride, magnesium sulfate, ferrous sulfate, ferric sulfate, manganese sulfate, and zinc sulfate. , Copper sulfate, sodium sulfate, calcium chloride, magnesium chloride, boric acid, molybdenum trioxide, sodium molybdate, potassium nitrate, cobalt chloride and the like, and hydrates thereof. As the inorganic component, one type may be selected from the above specific examples, or two or more types may be used in combination. The liquid medium used in the present invention preferably contains nitrogen, phosphorus and potassium as essential elements. Therefore, among the specific examples of these inorganic components, nitrogen, phosphorus, potassium, an inorganic salt containing nitrogen, an inorganic salt containing phosphorus, and an inorganic salt containing potassium are preferable, and an inorganic salt containing nitrogen, phosphorus, potassium, and nitrogen is preferable. More preferred. The inorganic component is preferably added so that the concentration in the liquid medium is about 1 μM to about 100 mM in the case of one kind, and more preferably about 0.1 μM to about 100 mM. In the case of a combination of two or more kinds, it is preferable to add them so as to be about 0.1 μM to about 100 mM, and more preferably to add them so as to be about 1 μM to about 100 mM.
銀イオンとしては、例えば、チオ硫酸銀(STS、AgS4O6)、硝酸銀等の銀化合物(銀イオン源)が挙げられ、STSが好ましい。STSは培地中で、チオ硫酸銀イオンの形態を取り、マイナスに帯電していると推測され、これにより健全な根の発根及び伸長を促進に寄与することができる。培地中に添加する銀イオンの濃度は、銀イオン源の種類その他の培養条件などにもよるが、銀イオン源の濃度として約0.5μM以上約6μM以下が好ましく、約2μM以上約6μM以下がより好ましい。 Examples of the silver ion include silver compounds (silver ion source) such as silver thiosulfate (STS, AgS 4 O 6) and silver nitrate, and STS is preferable. STS takes the form of silver thiosulfate ions in the medium and is presumed to be negatively charged, which can contribute to the promotion of healthy root rooting and elongation. The concentration of silver ions added to the medium depends on the type of silver ion source and other culture conditions, but the concentration of the silver ion source is preferably about 0.5 μM or more and about 6 μM or less, and about 2 μM or more and about 6 μM or less. More preferred.
抗酸化剤としては、例えば、アスコルビン酸、亜硫酸塩が挙げられ、アスコルビン酸が好ましい。アスコルビン酸は、培地への残留性が低いため、環境汚染を抑制できる。培地中に添加する抗酸化剤の濃度は、約5mg/l以上約200mg/l以下が好ましく、約20mg/l以上約100mg/l以下がより好ましい。 Examples of the antioxidant include ascorbic acid and sulfite, and ascorbic acid is preferable. Since ascorbic acid has low persistence in the medium, environmental pollution can be suppressed. The concentration of the antioxidant added to the medium is preferably about 5 mg / l or more and about 200 mg / l or less, and more preferably about 20 mg / l or more and about 100 mg / l or less.
炭素源としては、ショ糖等の炭水化物とその誘導体;脂肪酸等の有機酸;エタノール等の1級アルコール、などの化合物を使用することができる。炭素源として、上記具体例の中から1種を選択して、或いは2種以上を組み合わせて用いうる。炭素源は、液体培地中に約1g/l〜約100g/lとなるよう添加することが好ましく、約10g/l〜約100g/lとなるように添加することがより好ましい。しかし、栽培を炭酸ガスを供給しながら行う場合には、培地は炭素源を含む必要は無く、含まないことが好ましい。ショ糖等の炭素源となりうる有機化合物は微生物の炭素源ともなるので、これらを添加した培地を用いる場合には、無菌環境下で栽培を行う必要があるが、炭素源を含まない培地を用いることにより、非無菌環境下での栽培が可能となる。 As the carbon source, compounds such as carbohydrates such as sucrose and derivatives thereof; organic acids such as fatty acids; and primary alcohols such as ethanol can be used. As the carbon source, one type may be selected from the above specific examples, or two or more types may be used in combination. The carbon source is preferably added to the liquid medium in an amount of about 1 g / l to about 100 g / l, and more preferably to an amount of about 10 g / l to about 100 g / l. However, when the cultivation is carried out while supplying carbon dioxide gas, the medium does not need to contain a carbon source and is preferably not contained. Organic compounds that can be a carbon source such as sucrose also serve as a carbon source for microorganisms. Therefore, when using a medium containing these, it is necessary to cultivate in a sterile environment, but a medium that does not contain a carbon source is used. This enables cultivation in a non-sterile environment.
ビタミン類としては、例えば、ビオチン、チアミン(ビタミンB1)、ピリドキシン(ビタミンB4)、ピリドキサール、ピリドキサミン、パントテン酸カルシウム、イノシトール、ニコチン酸、ニコチン酸アミド及び/又はリボフラビン(ビタミンB2)等を使用することができる。ビタミン類として、上記具体例の中から1種を選択して、或いは2種以上を組み合わせて用いうる。ビタミン類は、液体培地中の濃度が、1種の場合は液体培地中に約0.01mg/l〜約200mg/lとなるように添加することが好ましく、約0.02mg/l〜約100mg/lとなるように添加することがより好ましい。2種以上の組み合わせの場合はそれぞれ、液体培地中に約0.01mg/l〜約150mg/lとなるよう添加することが好ましく、約0.02mg/l〜約100mg/lとなるように添加することがより好ましい。 As vitamins, for example, biotin, thiamine (vitamin B1), pyridoxine (vitamin B4), pyridoxal, pyridoxamine, calcium pantothenate, inositol, nicotinic acid, nicotinamide and / or riboflavin (vitamin B2) and the like should be used. Can be done. As the vitamins, one type may be selected from the above specific examples, or two or more types may be used in combination. The vitamins are preferably added to the liquid medium so that the concentration in the liquid medium is about 0.01 mg / l to about 200 mg / l, and about 0.02 mg / l to about 100 mg. It is more preferable to add it so as to be / l. In the case of a combination of two or more, it is preferable to add them to the liquid medium so as to be about 0.01 mg / l to about 150 mg / l, and to add them to about 0.02 mg / l to about 100 mg / l, respectively. It is more preferable to do so.
アミノ酸類としては、例えば、グリシン、アラニン、グルタミン酸、システイン、フェニルアラニン及び/又はリジン等を使用することができる。アミノ酸類として、上記具体例の中から1種を選択して、或いは2種以上を組み合わせて用いうる。アミノ酸類は、液体培地中の濃度が、1種の場合は液体培地中に約0.1mg/l〜約1000mg/lとなるように添加することが好ましく、2種以上の組み合わせの場合は、それぞれ液体培地中に約0.2mg/l〜約1000mg/lとなるよう添加することが好ましい。
植物ホルモンとしては、例えば、オーキシン及びサイトカイニン等の発根促進剤が挙げられる。オーキシンとしては、ナフタレン酢酸(NAA)、インドール酢酸(IAA)、p−クロロフェノキシ酢酸、2,4−ジクロロフェノキシ酢酸(2,4D)、インドール酪酸(IBA)及びこれらの誘導体等が例示され、これらから選択される1種以上又は2種以上を組み合わせて用い得る。また、サイトカイニンとしては、ベンジルアデニン(BA)、カイネチン、ゼアチン及びこれらの誘導体等が例示され、これらから選択される1種以上又は2種以上を組み合わせて用い得る。植物ホルモンは、オーキシン、又は、オーキシンとサイトカイニンの組み合わせが好ましい。
As the amino acids, for example, glycine, alanine, glutamic acid, cysteine, phenylalanine and / or lysine can be used. As the amino acids, one type may be selected from the above specific examples, or two or more types may be used in combination. Amino acids are preferably added to the liquid medium so that the concentration in the liquid medium is about 0.1 mg / l to about 1000 mg / l in the case of one type, and in the case of a combination of two or more types, the amino acids are preferably added. It is preferable to add each to a liquid medium so as to have a concentration of about 0.2 mg / l to about 1000 mg / l.
Examples of plant hormones include rooting promoters such as auxin and cytokinin. Examples of auxins include naphthalene acetic acid (NAA), indoleacetic acid (IAA), p-chlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid (2,4D), indolebutyric acid (IBA) and derivatives thereof. One or more or a combination of two or more selected from the above can be used. Examples of cytokinins include benzyladenine (BA), kinetin, zeatin and derivatives thereof, and one or more or a combination of two or more selected from these can be used. The plant hormone is preferably auxin or a combination of auxin and cytokinin.
発根用培地中の植物ホルモンの濃度は、植物ホルモンを1種用いる場合には0.001mg/l〜10mg/lであることが好ましく、0.01mg/l〜10mg/lであることがより好ましい。植物ホルモンが2種以上の場合にはそれぞれ、0.001mg/l〜10mg/lであることが好ましく、0.01mg/l〜10mg/lであることがより好ましい。植物ホルモンの添加方法は特に限定されず、市販品の説明書に従って添加すればよく、例えば、粉末のまま挿し穂の基部に塗布する方法、培地に添加する方法が挙げられる。 The concentration of the plant hormone in the rooting medium is preferably 0.001 mg / l to 10 mg / l, and more preferably 0.01 mg / l to 10 mg / l when one type of plant hormone is used. preferable. When there are two or more plant hormones, the amount is preferably 0.001 mg / l to 10 mg / l, and more preferably 0.01 mg / l to 10 mg / l, respectively. The method of adding the plant hormone is not particularly limited, and it may be added according to the instruction manual of a commercially available product. Examples thereof include a method of applying the plant hormone as it is to the base of cuttings and a method of adding it to a medium.
養液、水耕栽培水、植物組織培養用培地は、公知のものから適宜選択し、必要に応じて希釈されていてもよい。植物組織培養用培地としては、例えば、MS(ムラシゲ−スクーグ)培地、リンスマイヤースクーグ培地、ホワイト培地、ガンボーグのB−5培地、ニッチニッチ培地等を挙げることができる。中でも、MS培地及びガンボーグのB−5培地が好ましい。 The nutrient solution, hydroponic cultivation water, and medium for plant tissue culture may be appropriately selected from known ones and diluted as necessary. Examples of the medium for culturing plant tissues include MS (Murashige-Skoog) medium, Rinsemeier Skoog medium, White medium, Gambog B-5 medium, Nitch Nitch medium and the like. Of these, MS medium and Ganborg's B-5 medium are preferable.
発根培地は、支持体を含んでもよい。これにより、挿し穂を発根培地中で支持し、発根培養を効率的に実施できる。支持体は、発根培養工程中、挿し穂を支持した状態で保持できれば特に限定されず、従来慣用の支持体を用いることができる。支持体としては例えば、砂、土(例、赤玉土)等の自然土壌(好ましくは、赤玉土);籾殻燻炭、ココナッツ繊維、バーミキュライト、パーライト、ピートモス、ガラスビーズ等の人工土壌;発泡フェノール樹脂、ロックウール等の多孔性成形品;固化剤(例、寒天又はゲランガム)などが挙げられる。支持体は、挿し穂と培地との接触を妨げないものであればよく、支持体が培地の少なくとも一部を含んでいてもよい。
培地と支持体は、容器に載置されていてもよい。容器は特に限定されないが、複数の挿し穂を一株ずつ処理できるように区分けされた構造の容器であることが好ましい。挿し穂が枝の場合、密閉型の培養容器を用いることが好ましい。これにより挿し穂を高湿度下に置くことが容易となるので、枝についた葉の蒸散作用が抑制され、従来行われていた葉の一部切除処理を省略することができる。
容器への発根培地の載置方法は特に限定されず、例えば、支持体を容器に入れた後、培地を入れる方法、培地を容器に入れた後に支持体を入れる方法、支持体に容器内に入れ培地を保持させる方法、支持体を予め培地で膨潤させ、膨潤した支持体を容器に載置する方法が挙げられる。
The rooting medium may include a support. Thereby, the cuttings can be supported in the rooting medium and the rooting culture can be efficiently carried out. The support is not particularly limited as long as the cuttings can be held in a supported state during the rooting culture step, and a conventional support can be used. As the support, for example, natural soil such as sand and soil (eg, Akadama soil) (preferably Akadama soil); artificial soil such as paddy husk charcoal, coconut fiber, vermiculite, pearlite, peat moss, glass beads; , Porous molded products such as rock wool; solidifying agents (eg, agar or gellan gum) and the like. The support may be any one that does not interfere with the contact between the cuttings and the medium, and the support may contain at least a part of the medium.
The medium and support may be placed in a container. The container is not particularly limited, but a container having a structure divided so that a plurality of cuttings can be processed one by one is preferable. When the cuttings are branches, it is preferable to use a closed culture vessel. As a result, the cuttings can be easily placed under high humidity, so that the transpiration of the leaves attached to the branches can be suppressed, and the conventional partial excision of the leaves can be omitted.
The method of placing the rooting medium in the container is not particularly limited, and for example, a method of putting the support in the container and then putting the medium, a method of putting the medium in the container and then putting the support in the container, and a method of putting the support in the container. Examples thereof include a method of holding the medium in a container and a method of inflating the support with the medium in advance and placing the swollen support in a container.
発根工程においては、通常は1種類の発根培地を用いるが、期間を区切る等して2種以上の発根培地の組合せを用いてもよい。 In the rooting step, usually one kind of rooting medium is used, but a combination of two or more kinds of rooting media may be used by dividing the period or the like.
発根培養工程において、発根培地への挿し穂の挿し付け方法は、培地の種類、培養条件等により適宜選択すればよい。また、発根用培地に挿し付ける時に挿し穂の基部に傷をつける等の物理的刺激を加えることも、発根率の向上のために好ましい。挿し穂の基部とは、挿し穂の一端であって根が形成される領域(葉の形成される端部に対し反対側)を意味する。挿し穂として多芽体を用いる場合の基部は、多芽体を分割する際の切断面を有する領域である。挿し穂の基部への傷のサイズ(大きさ、形状など)は特に限定されない。例えば、挿し穂として多芽体を用いる場合、挿し穂の基部(上述の切断面)を正面方向から見た際に十字型となるような傷を付けることが好ましい。傷を付ける際には、ハサミ、ナイフなどの器具を用いることができる。 In the rooting culture step, the method of inserting the cuttings into the rooting medium may be appropriately selected depending on the type of medium, the culture conditions and the like. It is also preferable to apply a physical stimulus such as scratching the base of the cutting when the rooting medium is inserted to improve the rooting rate. The base of the cutting means the region at one end of the cutting where the root is formed (opposite to the end where the leaf is formed). When a multi-bud is used as a cutting, the base is a region having a cut surface when the multi-bud is divided. The size (size, shape, etc.) of the wound on the base of the cutting is not particularly limited. For example, when a polyblast is used as the cutting, it is preferable to scratch the base of the cutting (the cut surface described above) so as to form a cross when viewed from the front. When scratching, tools such as scissors and knives can be used.
(培養場所)
発根培養工程を実施する場所は、閉鎖空間(例、ビニールハウス内、炭酸ガス培養室内、屋内)又は解放空間(例、屋外)であってもよいが、閉鎖空間が好ましい。これにより、温度、湿度等の育苗条件の調整が容易となる。
(Culture place)
The place where the rooting culture step is carried out may be a closed space (eg, in a vinyl house, a carbon dioxide gas culture room, indoors) or an open space (eg, outdoors), but a closed space is preferable. This makes it easy to adjust seedling raising conditions such as temperature and humidity.
発根培養工程の培養期間は、植物種によっても異なるが、通常は2週間〜3ヶ月であり、4週間〜2ヶ月であることが好ましい。発根培養工程は、挿し穂から発根が観察されるまで続ければよい。 The culture period of the rooting culture step varies depending on the plant species, but is usually 2 weeks to 3 months, preferably 4 weeks to 2 months. The rooting culture step may be continued until rooting is observed from the cuttings.
〔育苗工程〕
育苗工程においては、発根後の挿し穂を育苗培地にて育苗する。
[Seedling raising process]
In the seedling raising process, the cuttings after rooting are raised in a seedling raising medium.
発根後の挿し穂は、発根培養工程を経て発根した挿し穂である。挿し穂が発根していることは、肉眼による観察にて根を確認できればよい。 The cuttings after rooting are cuttings that have been rooted through a rooting culture step. The rooting of the cuttings should be confirmed by visual observation.
(育苗培地のEC値)
育苗工程においては、育苗培地中のEC値を0.5mS/cm以上、好ましくは0.53mS/cm以上、より好ましくは0.55mS/cm以上、さらに好ましくは0.58mS/cm以上に制御する。これにより、十分な量の施肥を行い、挿し穂の生育を効率よく促進できる。上限は特に限定されず、通常は100mS/cm以下、50mS/cm以下、10mS/cm以下、又は5mS/cm以下である。EC値の測定方法、測定機器は、発根培地のEC値の項目において説明したとおりである。育苗培地のEC値の制御は、定期的に測定しながら、肥料成分追加、温度調整、pH調整等の方法により行えばよい。
(EC value of seedling medium)
In the seedling raising step, the EC value in the seedling raising medium is controlled to 0.5 mS / cm or more, preferably 0.53 mS / cm or more, more preferably 0.55 mS / cm or more, still more preferably 0.58 mS / cm or more. .. As a result, a sufficient amount of fertilizer can be applied and the growth of cuttings can be efficiently promoted. The upper limit is not particularly limited, and is usually 100 mS / cm or less, 50 mS / cm or less, 10 mS / cm or less, or 5 mS / cm or less. The EC value measuring method and measuring device are as described in the item of EC value of the rooting medium. The EC value of the seedling raising medium may be controlled by a method such as adding a fertilizer component, adjusting the temperature, or adjusting the pH while measuring it regularly.
発根培地中のEC値と育苗培地中のEC値との差は、0.05mS/cm以上が好ましく、0.07mS/cm以上がより好ましく、0.1mS/cm以上がさらに好ましい。上限は、0.6mS/cm以下が好ましく、0.55mS/cm以下がより好ましく、0.5mS/cm以下が更により好ましい。これにより、挿し木苗を効率よく生産することができる。 The difference between the EC value in the rooting medium and the EC value in the seedling raising medium is preferably 0.05 mS / cm or more, more preferably 0.07 mS / cm or more, and even more preferably 0.1 mS / cm or more. The upper limit is preferably 0.6 mS / cm or less, more preferably 0.55 mS / cm or less, and even more preferably 0.5 mS / cm or less. As a result, cuttings can be efficiently produced.
(育苗培地)
育苗培地の例は、発根培地の項目において説明した発根培地の例と同様である。発根培地と育苗培地とは共通でも異なっていてもよいが、発根培地と共通であることが好ましく、発根培地をそのまま育苗培地として用いてもよい。すなわち、発根後の挿し穂を発根培地に挿し付けたまま、発根培地を育苗培地として育苗工程を継続して実施してもよい。一方、発根後の挿し穂を発根培地から別途調製された育苗培地に挿し替えて育苗工程を実施してもよい。育苗工程は、例えば、水耕、又は土耕のいずれで実施してもよい。
(Seedling medium)
The example of the seedling raising medium is the same as the example of the rooting medium described in the item of rooting medium. The rooting medium and the seedling raising medium may be common or different, but are preferably common with the rooting medium, and the rooting medium may be used as it is as the seedling raising medium. That is, the seedling raising step may be continuously carried out using the rooting medium as the seedling raising medium while the cuttings after rooting are inserted into the rooting medium. On the other hand, the seedling raising step may be carried out by replacing the cuttings after rooting with a seedling raising medium prepared separately from the rooting medium. The seedling raising step may be carried out by, for example, hydroponics or soil cultivation.
(育苗場所)
育苗工程を実施する場所は、閉鎖空間(例、ビニールハウス内、炭酸ガス培養室内、屋内)又は解放空間(例、屋外)であってもよいが、閉鎖空間が好ましい。これにより、温度、湿度等の育苗条件の調整が容易となる。発根培養工程と育苗工程を実施する場所は同じ場所であることが好ましい。
発根培養工程において発根後、すぐに育苗工程を実施してもよいが、発根培養工程終了後育苗工程の実施前に、順化工程を経てもよい。これにより、挿し穂が不定芽、苗条原基等の培養組織由来のシュートである場合には、育苗を効率よく行うことができる。
(Nursery place)
The place where the seedling raising step is carried out may be a closed space (eg, in a vinyl house, a carbon dioxide gas culture room, indoors) or an open space (eg, outdoors), but a closed space is preferable. This makes it easy to adjust seedling raising conditions such as temperature and humidity. It is preferable that the rooting culture step and the seedling raising step are carried out at the same place.
In the rooting culture step, the seedling raising step may be carried out immediately after rooting, but the acclimatization step may be carried out after the rooting culture step is completed and before the seedling raising step is carried out. As a result, when the cuttings are shoots derived from cultured tissues such as adventitious shoots and seedling primordia, seedlings can be raised efficiently.
〔栽培条件〕
植物を栽培する際の栽培条件としては、植物から発根させ得る条件である限り特に限定されない。栽培条件は、植物の種類、部位、状態、発根用培地の種類などにより一概に規定することは難しいが、以下に一例を挙げて説明する。
[Cultivation conditions]
The cultivation conditions for cultivating a plant are not particularly limited as long as the conditions allow rooting from the plant. It is difficult to unconditionally define the cultivation conditions depending on the type, site, condition, type of rooting medium, etc. of the plant, but an example will be described below.
(温度)
発根培地及び育苗培地の温度は、通常は20℃〜30℃であり、22℃〜26℃であることが好ましく、上記範囲でそれぞれ異なってもよいし同一でもよい。発根培養工程及び育苗工程における栽培環境の温度は、20℃以上であるのが好ましく、22℃以上であるのがより好ましく、23℃以上であるのがさらに好ましい。発根培養工程及び育苗工程における栽培環境の温度の上限値は、30℃以下が好ましく、28℃以下であることがより好ましく、26℃以下がさらに好ましい。発根培養工程及び育苗工程における栽培環境の温度は、異なってもよいし、同一でもよい。
(temperature)
The temperatures of the rooting medium and the seedling raising medium are usually 20 ° C. to 30 ° C., preferably 22 ° C. to 26 ° C., and may be different or the same within the above range. The temperature of the cultivation environment in the rooting culture step and the seedling raising step is preferably 20 ° C. or higher, more preferably 22 ° C. or higher, and even more preferably 23 ° C. or higher. The upper limit of the temperature of the cultivation environment in the rooting culture step and the seedling raising step is preferably 30 ° C. or lower, more preferably 28 ° C. or lower, and even more preferably 26 ° C. or lower. The temperature of the cultivation environment in the rooting culture step and the seedling raising step may be different or may be the same.
(培地のpH)
発根培地及び育苗培地のpHは、4〜8が好ましく、pH4程度(例えば、pH4〜6)がより好ましい。これにより、雑菌などの増殖を抑制することができる。発根培地及び育苗培地のpHは異なってもよいし、同一でもよい。
(PH of medium)
The pH of the rooting medium and the seedling raising medium is preferably 4 to 8, and more preferably about pH 4 (for example, pH 4 to 6). This makes it possible to suppress the growth of germs and the like. The pH of the rooting medium and the seedling raising medium may be different or may be the same.
(光量)
光照射条件は、特に限定されず、太陽光を用いてもよいし、人工光を用いてもよい。光強度は特に限定されないが、光合成有効光量子束密度として表され、約10μmol/m2/s以上約1000μmol/m2/s以下であることが好ましく、約50μmol/m2/s以上約500μmol/m2/s以下であることがより好ましい。
(Amount of light)
The light irradiation conditions are not particularly limited, and sunlight may be used or artificial light may be used. The light intensity is not particularly limited, photosynthetic expressed as photon flux density is preferably not more than about 10μmol / m 2 / s or more to about 1000 micro mol / m 2 / s, about 50μmol / m 2 / s or more to about 500 [mu] mol / More preferably, it is m 2 / s or less.
光波長は特に限定されないが、約650nm以上約670nm以下の波長成分と約450nm以上約470nm以下の波長成分とを9:1〜7:3の割合で含む光の照射下で行うことが好ましく、これらの波長成分を9:1〜8:2の割合で含む光の照射下で行うことがより好ましい。かかる波長成分を含む光を照射して栽培を行うことで、植物からの発根がより促進され得る。 The light wavelength is not particularly limited, but it is preferable to carry out the irradiation under irradiation of light containing a wavelength component of about 650 nm or more and about 670 nm or less and a wavelength component of about 450 nm or more and about 470 nm or less in a ratio of 9: 1 to 7: 3. It is more preferable to carry out the irradiation under irradiation of light containing these wavelength components at a ratio of 9: 1 to 8: 2. Rooting from plants can be further promoted by cultivating by irradiating light containing such a wavelength component.
発根工程においては、遮光を行うことが好ましい。遮光率は、30%以上70%以下が好ましく、40%以上60%以下がより好ましい。 In the rooting step, it is preferable to perform shading. The shading rate is preferably 30% or more and 70% or less, and more preferably 40% or more and 60% or less.
(炭酸ガス濃度)
栽培環境中の炭酸ガスは、通常は300ppm以上2000ppm以下、好ましくは800ppm以上1500ppm以下となるように供給することが好ましい。炭酸ガスの供給量の制御は、人工気象器等の設備や、二酸化炭素透過性の膜を開口部に有する培養容器などを利用して行われうる。
(Carbon dioxide concentration)
The carbon dioxide gas in the cultivation environment is usually preferably supplied so as to be 300 ppm or more and 2000 ppm or less, preferably 800 ppm or more and 1500 ppm or less. The amount of carbon dioxide supplied can be controlled by using equipment such as an artificial meteorological instrument or a culture vessel having a carbon dioxide permeable membrane at the opening.
湿度は植物の種類等栽培条件に応じて調整することができるが、通常は、50%以上、好ましくは60%以上である。これにより、植物からの発根を促進し、育苗を効率よく行うことができる。上限については特に制限はない。 Humidity can be adjusted according to cultivation conditions such as the type of plant, but is usually 50% or more, preferably 60% or more. As a result, rooting from plants can be promoted and seedlings can be raised efficiently. There is no particular limit on the upper limit.
以下実施例により本発明を説明するが本発明はこれに限定されない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
(実施例1)
スギ(タノアカ;Cryptomeria japonica)の越年枝より挿し穂となる20cmの頂芽枝を採取し、下部5cmの範囲の葉をすべて切断して挿し穂を調製した。培養容器としてセルトレーを用い、赤玉小粒土(簗島商事(株)製)とピートモス(トーホー(株)製)を1対1に混合し、基肥として市販の化学肥料(粉剤:商品名「アミノハウス1号」(大塚アグリテクノ(株)製))を5g/Lの割合で添加して混合し、これらに水を添加して培地とした。混合した用土を培養容器(セルトレー)に充填して挿し床を調製した。挿し床を調製後に土壌ダイレクトEC/℃テスターHI 98331N(ハンナ インスツルメンツ・ジャパン(株))を用いて培地の電気伝導度(以下EC値)を測定した。上述のようにして調製した挿し穂の基部(切断部)にルートン(登録商標)(石原バイオサイエンス(株)製、植物ホルモンα−ナフチルアセトアミド(NAA)を含む白色粉末、NAAの濃度は0.4%)の粉末を5〜10mg塗布した後、該挿し穂を基部から4〜5cmのところまで挿し床に挿しつけた。挿し穂を、ビニールハウス内に配置して2ヶ月間発根培養した。培養後の挿し穂を肉眼により観察し、根が確認されれば発根したと判断した。
発根培養後は、引き続きビニールハウス内で4ヶ月間育苗した。育苗中はEC値で0.5〜1.0(mS/cm)となるように測定しながら希釈した化学肥料(液肥)(液剤:商品名「ハイポネックス原液」(ハイポネックスジャパン(株)製))を毎週1回散布し追肥とした。また、追肥直後のEC値を測定した。育苗後の苗を肉眼により観察し、挿し付け時の穂よりも伸長して生存していれば得苗したと判断した。EC値、発根数、発根率((発根数/挿し木本数)×100)、得苗数、得苗率((得苗数/発根数)×100)、及び成長量(苗高)を表1に示した。なお、試験はビニールハウス内で行い、上述した条件以外は特に調整しなかったが、試験を通じて、培養中の培地pHは約6であり、炭酸ガス濃度は自然界値(約400ppm)であり、光としては人工光を用いず太陽光を用い、温度は25℃前後、湿度は60%前後であった。
(Example 1)
A 20 cm apical bud branch to be a cutting was collected from a perennial branch of Sugi (Tanoaka; Cryptomeria japonica), and all the leaves in the lower 5 cm range were cut to prepare cuttings. Using a cell tray as a culture container, Akatama small-grain soil (manufactured by Yasushima Shoji Co., Ltd.) and peat moss (manufactured by Toho Co., Ltd.) are mixed 1: 1 and a commercially available chemical fertilizer (powder: trade name "Amino House") is used as the base fertilizer. No. 1 ”(manufactured by Otsuka Agrio Techno Co., Ltd.) was added at a ratio of 5 g / L and mixed, and water was added to these to prepare a medium. The mixed medium was filled in a culture vessel (cell tray) and inserted to prepare a bed. After preparing the cutting bed, the electrical conductivity (hereinafter referred to as EC value) of the medium was measured using a soil direct EC / ° C tester HI 98331N (Hanna Instruments Japan Co., Ltd.). Luton (registered trademark) (manufactured by Ishihara Bioscience Co., Ltd., a white powder containing the plant hormone α-naphthylacetamide (NAA)) at the base (cut portion) of the cuttings prepared as described above, the concentration of NAA is 0. After applying 5 to 10 mg of the powder of 4%), the cuttings were inserted up to 4 to 5 cm from the base and inserted into the floor. The cuttings were placed in a plastic greenhouse and rooted and cultured for 2 months. The cuttings after culturing were observed with the naked eye, and if roots were confirmed, it was judged that the roots had rooted.
After rooting culture, seedlings were continuously raised in a plastic greenhouse for 4 months. Chemical fertilizer (liquid fertilizer) diluted while measuring the EC value to 0.5 to 1.0 (mS / cm) during seedling raising (liquid agent: trade name "Hyponex undiluted solution" (manufactured by Hyponex Japan Co., Ltd.)) Was sprayed once a week to add fertilizer. In addition, the EC value immediately after topdressing was measured. The seedlings after raising the seedlings were observed with the naked eye, and it was judged that the seedlings were obtained if they were longer than the ears at the time of insertion and were alive. EC value, number of roots, rooting rate ((number of roots / number of cuttings) x 100), number of seedlings, rate of seedlings ((number of seedlings / number of roots) x 100), and growth amount (seedling height) ) Is shown in Table 1. The test was carried out in a vinyl house, and no particular adjustment was made except for the above-mentioned conditions. However, throughout the test, the pH of the medium during culturing was about 6, the carbon dioxide concentration was a natural value (about 400 ppm), and light. The temperature was around 25 ° C. and the humidity was around 60%, using sunlight instead of artificial light.
(実施例2)
基肥として市販の化学肥料(粉剤)を2.5g/Lの割合で添加して混合した以外、実施例1と同様に実施した。
(Example 2)
The same procedure as in Example 1 was carried out except that a commercially available chemical fertilizer (powder) was added as a base fertilizer at a ratio of 2.5 g / L and mixed.
(比較例1)
基肥を添加しない以外、実施例1と同様に実施した。
(Comparative Example 1)
The procedure was carried out in the same manner as in Example 1 except that no basal fertilizer was added.
(比較例2)
基肥として市販の化学肥料(粉剤)を10g/Lの割合で添加して混合した以外、実施例1と同様に実施した。
(Comparative Example 2)
The same procedure as in Example 1 was carried out except that a commercially available chemical fertilizer (powder) was added as a base fertilizer at a ratio of 10 g / L and mixed.
(比較例3)
発根培養後は、追肥しない以外、実施例2と同様に実施した。
(Comparative Example 3)
After rooting culture, it was carried out in the same manner as in Example 2 except that no additional fertilizer was applied.
表1に示すように、比較例2と比較して実施例1及び2の発根率(生存率)は高かった。この結果から、本発明によれば、EC値を0.01(mS/cm)を超えて0.5(mS/cm)未満に制御することで、挿し穂を枯渇させないように発根培養できるということがわかった。
また、比較例1〜3と比較して実施例1及び2の得苗率(生存率)は高く、成長量が多かった。この結果から、発根培養時に培地のEC値を0.01(mS/cm)を超えて0.5(mS/cm)未満に制御し、かつ育苗時に培地のEC値を0.5(mS/cm)以上に制御することで、EC値をこの範囲に制御しない場合と比べて得苗率(生存率)及び成長量(苗高)を向上させることが可能だとわかった。
As shown in Table 1, the rooting rate (survival rate) of Examples 1 and 2 was higher than that of Comparative Example 2. From this result, according to the present invention, by controlling the EC value to exceed 0.01 (mS / cm) and less than 0.5 (mS / cm), rooting culture can be performed so as not to deplete the cuttings. It turned out that.
In addition, the seedling acquisition rate (survival rate) of Examples 1 and 2 was higher and the amount of growth was larger than that of Comparative Examples 1 to 3. From this result, the EC value of the medium was controlled to exceed 0.01 (mS / cm) and less than 0.5 (mS / cm) during rooting culture, and the EC value of the medium was controlled to 0.5 (mS / cm) during seedling raising. It was found that by controlling the value above / cm), it is possible to improve the seedling yield rate (survival rate) and the growth amount (seedling height) as compared with the case where the EC value is not controlled within this range.
(実施例3)
挿し穂としてスギに代えてクロマツ(Pinus thunbergii)の越年枝より挿し穂となる20cmの頂芽枝を採取して下部5cmの範囲の葉をすべて切断して挿し穂を調製したこと、基肥として市販の有機肥料(堆肥:商品名「ハイパワー堆肥」(朝日工業(株)製))を25g/Lの割合で添加して混合して用土(発根培地)を調製したこと、調製した挿し穂の基部(切断部)にオキシベロン(登録商標)液剤(バイエルクロップサイエンス(株)製、インドール−3−酪酸(IBA)を含む植物ホルモン、植物ホルモンの濃度は0.4%)に10秒浸漬したこと、ビニール温室に代えて炭酸ガス培養室(炭酸ガスを1000ppmとなるように供給)内に挿し穂を配置して2ヶ月間発根培養したこと、順化(25℃、湿度60〜80%、14日間)を経たこと以外は実施例1と同様に実施した。EC値、発根数、発根率(発根数/挿し木本数)、得苗数、得苗率(得苗数/発根数)、及び成長量(苗高)を表2に示した。
(Example 3)
As a cutting, instead of a cedar, a 20 cm apical bud branch to be a cutting was collected from a perennial branch of a black pine (Pinus sunbergii), and all the leaves in the lower 5 cm range were cut to prepare a cutting, as a basal fertilizer. Commercially available organic fertilizer (compost: trade name "High Power Compost" (manufactured by Asahi Kogyo Co., Ltd.)) was added at a ratio of 25 g / L and mixed to prepare a medium (rooting medium). Immerse the base (cut part) of the ear in Oxyberon (registered trademark) solution (manufactured by Bayer Crop Science Co., Ltd., plant hormone containing indol-3-butyric acid (IBA), plant hormone concentration 0.4%) for 10 seconds. What was done, the cuttings were placed in a carbon dioxide gas culture room (supplying carbon dioxide gas to 1000 ppm) instead of the vinyl greenhouse, and rooting culture was performed for 2 months, acclimatization (25 ° C, humidity 60-80). %, 14 days), but the same procedure as in Example 1 was carried out. Table 2 shows the EC value, the number of roots, the rooting rate (number of roots / number of cuttings), the number of seedlings obtained, the rate of seedlings obtained (number of seedlings / number of roots), and the amount of growth (seedling height).
(実施例4)
基肥として市販の有機肥料(堆肥)を12.5g/Lの割合で添加して混合した以外、実施例3と同様に実施した。
(Example 4)
The same procedure as in Example 3 was carried out except that a commercially available organic fertilizer (compost) was added as a basal fertilizer at a ratio of 12.5 g / L and mixed.
(比較例4)
基肥を添加しない以外、実施例3と同様に実施した。
(Comparative Example 4)
It was carried out in the same manner as in Example 3 except that the basal fertilizer was not added.
(比較例5)
基肥として市販の有機肥料(堆肥)を50g/Lの割合で添加して混合した以外、実施例3と同様に実施した。
(Comparative Example 5)
The same procedure as in Example 3 was carried out except that a commercially available organic fertilizer (compost) was added as a basal fertilizer at a ratio of 50 g / L and mixed.
表2に示すように、比較例5と比較して実施例3及び4の発根率(生存率)は高かった。この結果から、本発明によれば、EC値を0.01m(S/cm)を超えて0.5(mS/cm)未満に制御することで、挿し穂を枯渇させないように発根培養できることがわかった。
また、比較例4と比較して実施例3及び4の得苗率(生存率)は高かった。この結果から、発根培養時に培地のEC値を0.01m(S/cm)を超えて0.5(mS/cm)未満に制御し、かつ育苗時に培地のEC値を0.5(mS/cm)以上に制御することで、EC値をこの範囲に制御しない場合と比べて得苗率(生存率)及び成長量(苗高)を向上させることが可能だとわかった。
As shown in Table 2, the rooting rate (survival rate) of Examples 3 and 4 was higher than that of Comparative Example 5. From this result, according to the present invention, by controlling the EC value to exceed 0.01 m (S / cm) and less than 0.5 (mS / cm), rooting culture can be performed so as not to deplete the cuttings. I understood.
In addition, the seedling acquisition rate (survival rate) of Examples 3 and 4 was higher than that of Comparative Example 4. From this result, the EC value of the medium was controlled to exceed 0.01 m (S / cm) and less than 0.5 (mS / cm) during rooting culture, and the EC value of the medium was set to 0.5 (mS) during seedling raising. It was found that by controlling the value above / cm), it is possible to improve the seedling yield rate (survival rate) and the growth amount (seedling height) as compared with the case where the EC value is not controlled within this range.
(実施例5)
挿し穂としてクロマツに代えてユーカリ・アルビータ(Eucalyptus albida)の当年枝より挿し穂となる10cmの頂芽枝を採取し、下部2cmの範囲の葉をすべて切断して挿し穂を調整したこと、基肥として市販の化学肥料(粉剤)を5g/Lの割合で添加して混合して用土(発根培地)を調製したこと、該挿し穂を基部から1.5〜2cmのところまで挿し床に挿しつけたこと、挿し穂を炭酸ガス培養室内に配置して1ヶ月間発根培養したこと以外は実施例3と同様に実施した。EC値、発根数、発根率(発根数/挿し木本数)、得苗数、得苗率(得苗数/発根数)、及び成長量(苗高)を表3に示した。
(Example 5)
As cuttings, 10 cm apical buds to be cuttings were collected from the current year's branches of Eucalyptus albida instead of black pine, and all the leaves in the lower 2 cm range were cut to adjust the cuttings, basal fertilizer. A commercially available chemical fertilizer (powder) was added at a ratio of 5 g / L and mixed to prepare a medium (rooting medium). The same procedure as in Example 3 was carried out except that the cuttings were attached and the cuttings were placed in a carbon dioxide gas culture chamber and rooted and cultured for 1 month. Table 3 shows the EC value, the number of roots, the rooting rate (number of roots / number of cuttings), the number of seedlings obtained, the rate of seedlings obtained (number of seedlings / number of roots), and the amount of growth (seedling height).
(実施例6)
基肥として市販の化学肥料(粉剤)を2.5g/Lの割合で添加(×1/4量)して混合した以外、実施例5と同様に実施した。
(Example 6)
The same procedure as in Example 5 was carried out except that a commercially available chemical fertilizer (powder) was added (× 1/4 amount) as a basal fertilizer at a ratio of 2.5 g / L and mixed.
(比較例6)
基肥を添加しない以外、実施例5と同様に実施した。
(Comparative Example 6)
The procedure was carried out in the same manner as in Example 5 except that no basal fertilizer was added.
(比較例7)
基肥として市販の化学肥料(粉剤)を10g/Lの割合で添加(×1量)して混合した以外、実施例5と同様に実施した。
(Comparative Example 7)
The same procedure as in Example 5 was carried out except that a commercially available chemical fertilizer (powder) was added (x1 amount) as a base fertilizer at a ratio of 10 g / L and mixed.
表3に示すように、比較例7と比較して実施例5及び6の発根率(生存率)は高かった。この結果から、本発明によれば、EC値を0.01m(S/cm)を超えて0.5(mS/cm)未満に制御することで、挿し穂を枯渇させないように発根培養できることがわかった。
また、比較例6と比較して実施例5及び6の得苗率(生存率)は高かった。この結果から、発根培養時に培地のEC値を0.01m(S/cm)を超えて0.5(mS/cm)未満に制御し、かつ育苗時に培地のEC値を0.5(mS/cm)以上に制御することで、EC値をこの範囲に制御しない場合と比べて得苗率(生存率)及び成長量(苗高)を向上させることが可能だとわかった。
As shown in Table 3, the rooting rate (survival rate) of Examples 5 and 6 was higher than that of Comparative Example 7. From this result, according to the present invention, by controlling the EC value to exceed 0.01 m (S / cm) and less than 0.5 (mS / cm), rooting culture can be performed so as not to deplete the cuttings. I understood.
In addition, the seedling acquisition rate (survival rate) of Examples 5 and 6 was higher than that of Comparative Example 6. From this result, the EC value of the medium was controlled to exceed 0.01 m (S / cm) and less than 0.5 (mS / cm) during rooting culture, and the EC value of the medium was set to 0.5 (mS) during seedling raising. It was found that by controlling the value above / cm), it is possible to improve the seedling yield rate (survival rate) and the growth amount (seedling height) as compared with the case where the EC value is not controlled within this range.
Claims (3)
発根培養工程において、発根培地中の電気伝導度を0.05mS/cm以上0.49mS/cm以下に制御し、
育苗工程において、育苗培地中の電気伝導度を0.5mS/cm以上0.75mS/cm以下であり、かつ、発根培地中の電気伝導度との差が0.1〜0.5mS/cmとなるように制御し、
植物が、木本植物である、
方法。 In a method for producing cuttings of a plant, which includes a rooting culture step in which cuttings are inserted into a rooting medium and rooting culture is performed, and a seedling raising step in which the cuttings after rooting are raised in a seedling raising medium.
In the rooting culture step, the electrical conductivity in the rooting medium is controlled to be 0.05 mS / cm or more and 0.49 mS / cm or less.
In the seedling raising step, the electric conductivity in the seedling raising medium is 0.5 mS / cm or more and 0.75 mS / cm or less, and the difference from the electric conductivity in the rooting medium is 0.1 to 0.5 mS / cm. controlled in such a way that,
The plant is a woody plant,
Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017061828A JP6895287B2 (en) | 2017-03-27 | 2017-03-27 | How to produce plant cuttings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017061828A JP6895287B2 (en) | 2017-03-27 | 2017-03-27 | How to produce plant cuttings |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018161116A JP2018161116A (en) | 2018-10-18 |
JP6895287B2 true JP6895287B2 (en) | 2021-06-30 |
Family
ID=63859055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017061828A Active JP6895287B2 (en) | 2017-03-27 | 2017-03-27 | How to produce plant cuttings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6895287B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7194575B2 (en) * | 2018-12-11 | 2022-12-22 | 日本製紙株式会社 | How to produce cuttings |
JP7161421B2 (en) * | 2019-02-13 | 2022-10-26 | 日本製紙株式会社 | Method for producing saplings of Cupressaceae trees and method for producing Cupressaceae trees |
CN112568043A (en) * | 2019-09-29 | 2021-03-30 | 永州市茶叶研究所 | Tea container cutting seedling one-time breeding method |
CN113994819B (en) * | 2021-09-18 | 2023-06-23 | 江苏省中国科学院植物研究所 | Tissue culture and cutting combined rapid propagation method for larch |
CN115363059B (en) * | 2022-08-25 | 2023-05-30 | 浙江大学 | Preparation and application methods of tea tree root promoter with difficult cutting root |
CN115885706A (en) * | 2022-11-21 | 2023-04-04 | 重庆文理学院 | Method for cultivating pepper trees |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3010887B2 (en) * | 1992-02-18 | 2000-02-21 | 王子製紙株式会社 | How to promote rooting of plant cuttings |
JP2007319047A (en) * | 2006-05-31 | 2007-12-13 | Oji Paper Co Ltd | Method for creating seedling or scion-production mother tree |
JP6209053B2 (en) * | 2013-10-28 | 2017-10-04 | 東洋ゴム工業株式会社 | Plant growth medium and plant growth kit |
-
2017
- 2017-03-27 JP JP2017061828A patent/JP6895287B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018161116A (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6895287B2 (en) | How to produce plant cuttings | |
JP5612605B2 (en) | Clone seedling production method | |
JP5013143B2 (en) | Production method of cuttings of Pinaceae trees | |
JP2013150559A (en) | Method for cultivating fruit tree | |
JP7061864B2 (en) | How to produce plant cuttings | |
JP6316545B2 (en) | Cutting seedling production method | |
JP5337838B2 (en) | Adventitious root formation promoter, rooting medium containing the adventitious root formation promoter, and method for producing clone seedling using the adventitious root formation promoter | |
JP4661178B2 (en) | Plant production method | |
JP7325925B2 (en) | Production method of the mother tree | |
JP2012055216A (en) | Method for producing plant seedling, and rooting bed for plant seedling production | |
JP2020129978A (en) | Production method of seedlings of Cunninghamia and production method of Cunninghamia | |
JP5792933B2 (en) | Clone seedling production method | |
JP2013021989A (en) | Method for producing clone seedling | |
JP7292162B2 (en) | Production method of the mother tree | |
JP6470987B2 (en) | Method for evaluating light intensity suitable for rooting | |
JP2990687B2 (en) | Mass production method of Eucalyptus woody cloned seedlings | |
JP6951896B2 (en) | How to produce plant cuttings | |
JP4403764B2 (en) | Rooting method of plant tissue | |
JP5784456B2 (en) | Triazole compounds and uses thereof | |
CN105010133B (en) | Smoothbark birch method for plant tissue culture and its culture medium | |
JP7161421B2 (en) | Method for producing saplings of Cupressaceae trees and method for producing Cupressaceae trees | |
JP2023117878A (en) | Method for producing cuttings of plants of genus larix | |
JP2022157476A (en) | Method of evaluating rooting of cutting | |
JP2023146086A (en) | Method for producing conifer rooted cutting | |
JP2022154610A (en) | Method of producing rooted cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210511 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210607 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6895287 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |