JP6894515B2 - Ferritic stainless cold-rolled steel sheet and its manufacturing method - Google Patents

Ferritic stainless cold-rolled steel sheet and its manufacturing method Download PDF

Info

Publication number
JP6894515B2
JP6894515B2 JP2019534678A JP2019534678A JP6894515B2 JP 6894515 B2 JP6894515 B2 JP 6894515B2 JP 2019534678 A JP2019534678 A JP 2019534678A JP 2019534678 A JP2019534678 A JP 2019534678A JP 6894515 B2 JP6894515 B2 JP 6894515B2
Authority
JP
Japan
Prior art keywords
cold
ferritic stainless
steel sheet
rolled steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019534678A
Other languages
Japanese (ja)
Other versions
JP2020509217A (en
Inventor
オン パク,ジ
オン パク,ジ
ナム パク,ミ
ナム パク,ミ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2020509217A publication Critical patent/JP2020509217A/en
Application granted granted Critical
Publication of JP6894515B2 publication Critical patent/JP6894515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Description

本発明は、フェライト系ステンレス冷延鋼板およびその製造方法に係り、より詳しくは、析出物および結晶粒の制御を通じて強度および耐酸性を向上させることができる強度および耐酸性が優秀なフェライト系ステンレス冷延鋼板およびその製造方法に関する。 The present invention relates to ferrites stainless cold-rolled steel sheet and a manufacturing method thereof, and more particularly, precipitates and strength and acid resistance superior ferritic stainless capable of improving the strength and acid resistance by controlling a grain Regarding cold-rolled steel sheets and their manufacturing methods.

ステンレス鋼のうち特にフェライト系ステンレス鋼は、建築資材、食品容器、家電製品、自動車の排気系部品などに広く使われている。 Of the stainless steels, ferritic stainless steels are widely used in building materials, food containers, home appliances, exhaust system parts of automobiles, and the like.

フェライト系ステンレス鋼は最近自動車のバッテリーセル用として一部適用されており、自動車メーカーでは長期間のバッテリー性能を保証するために、既存のフェライト系ステンレス鋼より高い強度と耐食性を要求しており、バッテリーの価格を下げるためにさらに低い価格の素材も要求している。 Ferritic stainless steel has recently been partially applied for automobile battery cells, and automobile manufacturers require higher strength and corrosion resistance than existing ferritic stainless steel in order to guarantee long-term battery performance. They are also demanding lower priced materials to lower the price of batteries.

このような自動車メーカーの要求を満足するためのフェライト系ステンレス鋼の高強度化方法は、加工硬化、固溶強化、析出硬化などの方法があるが、相変態のないフェライト系ステンレス鋼の特性上加工硬化時に加工性が急激に落ちる問題があり、固溶強化効果が優秀なMo、Nbなどは高価な元素であるため活用するのが難しい。 There are methods such as work hardening, solid solution strengthening, and precipitation hardening as methods for increasing the strength of ferritic stainless steel in order to satisfy the demands of automobile manufacturers, but due to the characteristics of ferritic stainless steel without phase transformation. There is a problem that workability drops sharply during work hardening, and it is difficult to utilize Mo, Nb, etc., which have excellent solid solution strengthening effects, because they are expensive elements.

従来は、Cはフェライト系ステンレス鋼の加工性を害する元素であって、特別な用途でなければ殆ど0.02wt%以下に低く管理した。しかし、その反対に多量のCを添加すると、炭化物(carbide)の析出によってフェライト系ステンレス鋼の強度を向上させることができ、最近は加工技術の発達によりある程度の軟性さえ確保できれば強度と加工性を同時に確保可能である。 Conventionally, C is an element that impairs the workability of ferritic stainless steel, and is controlled to be almost 0.02 wt% or less unless it is used for special purposes. However, on the contrary, when a large amount of C is added, the strength of the ferritic stainless steel can be improved by the precipitation of carbides, and recently, if a certain degree of softness can be secured due to the development of processing technology, the strength and workability can be improved. It can be secured at the same time.

しかし、Cを多量入れるとしても高温で熱延したり圧下率が低く巻き取り温度が高くなると、炭化物が変形組織内に微細に析出できずに粗大となるため、結晶粒の微細化が難しく、また所望する強度を確保し難い問題点がある。 However, even if a large amount of C is added, if it is hot-rolled at a high temperature or the reduction rate is low and the winding temperature is high, the carbides cannot be finely deposited in the deformed structure and become coarse, so that it is difficult to refine the crystal grains. In addition, there is a problem that it is difficult to secure the desired strength.

特開2006−183081号公報Japanese Unexamined Patent Publication No. 2006-183081

本発明が目的とするところは、フェライト系ステンレス鋼の合金成分を制御して、フェライト系ステンレス鋼の析出物および結晶粒の制御を通じて強度および耐酸性を向上させることができる優秀なフェライト系ステンレス冷延鋼板を提供することである。
また、熱間圧延時にスラブ再加熱温度、圧下率および巻き取り温度を制御して、析出物および結晶粒の制御を通じて強度および耐酸性を向上させることができるフェライト系ステンレス冷延鋼板の製造方法を提供することである。
When the present invention is intended controls the alloy components of ferritic stainless steel, excellent ferritic stainless cold that can improve the strength and acid resistance through the control of precipitates and the crystal grains of ferritic stainless steel To provide ferritic stainless steel.
In addition, a method for producing a ferritic stainless cold-rolled steel sheet that can improve strength and acid resistance through control of precipitates and crystal grains by controlling the slab reheating temperature, reduction rate, and winding temperature during hot rolling. To provide.

本発明のフェライト系ステンレス冷延鋼板は、質量%で、炭素(C):0.1〜0.2%、窒素(N):0.005〜0.05%、マンガン(Mn):0.01〜0.5%、クロム(Cr):12.0〜19.0%、ニッケル(Ni):0.01〜0.5%、銅(Cu):0.3〜1.5%、を含み、残りが鉄(Fe)およびその他不可避不純物からなり、100nm以上の直径を有する炭化物の単位面積当たりの個数が50〜200ea/100μmであることを特徴とする。 Ferrites stainless cold-rolled steel sheet of the present invention, in mass%, carbon (C): 0.1 to 0.2%, nitrogen (N): 0.005 to 0.05%, manganese (Mn): 0 0.01 to 0.5%, chromium (Cr): 12.0 to 19.0%, nickel (Ni): 0.01 to 0.5%, copper (Cu): 0.3 to 1.5%, The residue is iron (Fe) and other unavoidable impurities, and the number of carbides having a diameter of 100 nm or more per unit area is 50 to 200 ea / 100 μm 2 .

前記フェライト系ステンレス冷延鋼板の平均結晶粒径は10μm以下であり、引張強度が520MPa以上であり、伸び率が20%以上であることを特徴とする。 The average crystal grain size of the ferrite-based stainless cold-rolled steel sheet is 10 μm or less, the tensile strength is 520 MPa or more, and the elongation rate is 20% or more.

前記フェライト系ステンレス冷延鋼板の実施例によると、5%硫酸雰囲気で臨界電流密度(Icrit)が10mA以下であることを特徴とする。 According to the examples of the ferritic stainless cold-rolled steel sheet , the critical current density (Icrit) is 10 mA or less in a 5% sulfuric acid atmosphere.

また、本発明のフェライト系ステンレス冷延鋼板の製造方法は、質量%で、炭素(C):0.1〜0.2%、窒素(N):0.005〜0.05%、マンガン(Mn):0.01〜0.5%、クロム(Cr):12.0〜19.0%、ニッケル(Ni):0.01〜0.5%、銅(Cu):0.3〜1.5%、を含み、残りが鉄(Fe)およびその他不可避不純物からなるフェライト系ステンレス鋼スラブを熱間圧延する段階および冷間圧延する段階を含み、熱間圧延時の式(1)の値が1,000以下を満足することを特徴とする。
15*RHT/R4+CT −−−−−−式(1)
ここで、RHT(℃)はスラブ再加熱温度を意味し、R4(%)は粗圧延のR4スタンドの圧下率を意味し、CT(℃)は巻き取り温度を意味する。
In the method of manufacturing ferrites stainless cold-rolled steel sheet of the present invention, in mass%, carbon (C): 0.1 to 0.2%, nitrogen (N): 0.005 to 0.05%, manganese (Mn): 0.01 to 0.5%, chromium (Cr): 12.0 to 19.0%, nickel (Ni): 0.01 to 0.5%, copper (Cu): 0.3 to The formula (1) for hot rolling includes a step of hot rolling and a step of cold rolling of a ferritic stainless steel slab containing 1.5%, the rest of which is composed of iron (Fe) and other unavoidable impurities. It is characterized in that the value satisfies 1,000 or less.
15 * RHT / R4 + CT -------- Equation (1)
Here, RHT (° C.) means the slab reheating temperature, R4 (%) means the reduction rate of the R4 stand for rough rolling, and CT (° C.) means the take-up temperature.

前記フェライト系ステンレス冷延鋼板の式(1)の値は800〜1,000を満足することを特徴とする。 The value of the formula (1) of the ferritic stainless cold-rolled steel sheet is characterized by satisfying 800 to 1,000.

前記フェライト系ステンレス冷延鋼板のRHTは1,250℃未満であり、R4は40%以上であり、CTは650℃未満であることを特徴とする。 The RHT of the ferritic stainless cold-rolled steel sheet is less than 1,250 ° C, the R4 is 40% or more, and the CT is less than 650 ° C.

前記フェライト系ステンレス冷延鋼板は100nm以上の直径を有する炭化物の単位面積当たりの個数が50〜200ea/100μmであり、平均結晶粒径が10μm以下であることを特徴とする。 The ferritic stainless cold-rolled steel sheet is characterized in that the number of carbides having a diameter of 100 nm or more per unit area is 50 to 200 ea / 100 μm 2 , and the average crystal grain size is 10 μm or less.

本発明によれば、フェライト系ステンレス鋼の合金成分および熱間圧延条件を制御して、析出物および結晶粒の制御を通じてフェライト系ステンレス冷延鋼板の強度および耐酸性を向上させることができる。


According to the present invention, the alloy composition and hot rolling conditions of ferritic stainless steel can be controlled to improve the strength and acid resistance of the ferritic stainless cold-rolled steel sheet through the control of precipitates and crystal grains.


フェライト系ステンレス鋼の熱間圧延条件および冷延鋼板の炭化物個数の相関関係を説明するためのグラフである。It is a graph for demonstrating the correlation between the hot rolling condition of a ferritic stainless steel, and the number of carbides of a cold-rolled steel sheet. 本発明の一実施例に係るフェライト系ステンレス冷延鋼板の析出物分布状態を透過電子顕微鏡(TEM)を通じて撮影した写真である。It is a photograph which took the precipitation distribution state of the ferritic stainless cold-rolled steel sheet which concerns on one Example of this invention through a transmission electron microscope (TEM). 本発明の比較例に係るフェライト系ステンレス冷延鋼板の析出物分布状態を透過電子顕微鏡(TEM)を通じて撮影した写真である。It is a photograph of the precipitate distribution state of the ferritic stainless cold-rolled steel sheet according to the comparative example of the present invention taken through a transmission electron microscope (TEM). フェライト系ステンレス鋼の冷延鋼板の炭化物個数および引張強度の相関関係を説明するためのグラフである。It is a graph for demonstrating the correlation between the number of carbides and tensile strength of a cold-rolled steel sheet of ferritic stainless steel.

本発明の強度および耐酸性が優秀なフェライト系ステンレス鋼は、質量%で、炭素(C):0.1〜0.2%、窒素(N):0.005〜0.05%、マンガン(Mn):0.01〜0.5%、クロム(Cr):12.0〜19.0%、ニッケル(Ni):0.01〜0.5%、銅(Cu):0.3〜1.5%、を含み、残りが鉄(Fe)およびその他不可避不純物からなり、100nm以上の直径を有する炭化物の単位面積当たりの個数が50〜200ea/100μmである。 The ferritic stainless steel having excellent strength and acid resistance of the present invention is, in mass%, carbon (C): 0.1 to 0.2%, nitrogen (N): 0.005 to 0.05%, manganese ( Mn): 0.01 to 0.5%, chromium (Cr): 12.0 to 19.0%, nickel (Ni): 0.01 to 0.5%, copper (Cu): 0.3 to 1. The number of carbides having a diameter of 100 nm or more per unit area is 50 to 200 ea / 100 μm 2 , containing 5.5%, the rest consisting of iron (Fe) and other unavoidable impurities.

以下、図面を参照して本発明について詳細に説明する。以下の実施例は、本発明が属する技術分野で通常の知識を有する者に本発明の思想を十分に伝達するために提示するものである。本発明はここで提示した実施例にのみ限定されず、他の形態で具体化されてもよい。図面は本発明を明確にするために説明と関係のない部分の図示を省略し、理解を助けるために構成要素の大きさを多少誇張して表現することができる。 Hereinafter, the present invention will be described in detail with reference to the drawings. The following examples are presented in order to fully convey the idea of the present invention to a person who has ordinary knowledge in the technical field to which the present invention belongs. The present invention is not limited to the examples presented here, and may be embodied in other forms. The drawings may omit the illustration of parts unrelated to the description in order to clarify the present invention, and the size of the components may be exaggerated to help understanding.

本発明の一実施例に係る強度および耐酸性が優秀なフェライト系ステンレス鋼は、質量%で、炭素(C):0.1〜0.2%、窒素(N):0.005〜0.05%、マンガン(Mn):0.01〜0.5%、クロム(Cr):12.0〜19.0%、ニッケル(Ni):0.01〜0.50%、銅(Cu):0.3〜1.5%、を含み、残りが鉄(Fe)およびその他不可避不純物からなる。 The ferritic stainless steel having excellent strength and acid resistance according to an embodiment of the present invention has carbon (C): 0.1 to 0.2% and nitrogen (N): 0.005 to 0 in mass%. 05%, manganese (Mn): 0.01 to 0.5%, chromium (Cr): 12.0 to 19.0%, nickel (Ni): 0.01 to 0.50%, copper (Cu): It contains 0.3-1.5%, the rest consisting of iron (Fe) and other unavoidable impurities.

炭素(C):0.1〜0.2%
炭素(C)の量は0.1〜0.2%である。炭素(C)の量が0.1%未満であると、熱延中に生成されるオーステナイトの量が減少してフェライトバンド組織が破壊されずに残存することとなって結晶粒の大きさが大きくなる問題があり、これに伴い、最終冷延製品の引張強度が500MPa未満と強度が低下する問題点がある。また、炭素(C)の量が0.2%を超過すると、素材の炭化物が過度に増加して最終製品の伸び率が落ち、炭化物の脱落で表面品質および耐食性が低下する問題点がある。
Carbon (C): 0.1 to 0.2%
The amount of carbon (C) is 0.1 to 0.2%. When the amount of carbon (C) is less than 0.1%, the amount of austenite generated during hot spreading decreases and the ferrite band structure remains without being destroyed, resulting in a crystal grain size. There is a problem that the strength becomes large, and there is a problem that the tensile strength of the final cold-rolled product decreases to less than 500 MPa. Further, when the amount of carbon (C) exceeds 0.2%, there is a problem that the carbides of the material are excessively increased and the elongation rate of the final product is lowered, and the surface quality and the corrosion resistance are lowered due to the removal of the carbides.

窒素(N):0.005〜0.05%
窒素(N)の量は0.005〜0.05%である。窒素(N)の量が0.005%未満であると、精錬時間の増加および耐火物の寿命の短縮により製造原価が上昇し、また、鋳造時の過冷度が低いためスラブの等軸晶率が低くなり、窒素(N)の量が0.05%を超過すると、スラブ鋳造中に窒素によるピンホールが発生する可能性が高く、最終冷延製品でCrN析出物の単位面積当たりの個数が増加してCrN析出物周辺に形成されたクロム枯渇領域(Cr depleted zone)によって最終冷延製品の表面に多数のピット(pit)を形成して表面品質が低下することになる。
Nitrogen (N): 0.005-0.05%
The amount of nitrogen (N) is 0.005 to 0.05%. If the amount of nitrogen (N) is less than 0.005%, the manufacturing cost will increase due to the increase in refining time and the life of the refractory material, and the isobaric crystal of the slab due to the low degree of supercooling during casting. the rate is low, the amount of nitrogen (N) exceeds 0.05%, likely pinholes by nitrogen during slab casting occurs, per unit area of the Cr 2 N precipitates in the final cold rolled product numerous pits (pit) surface quality by forming a is lowered to the surface of the final cold rolled product by the number is increased by Cr 2 N precipitate around the formed chromium depleted regions (Cr depleted zone) of ..

マンガン(Mn):0.01〜0.5%
マンガン(Mn)の量は0.01〜0.5%である。マンガン(Mn)の量が0.01%未満であると、精錬価格が高くなる問題があり、マンガン(Mn)の量が0.5%を超過すると、伸び率と耐食性が低下する問題がある。
クロム(Cr):12.0〜19.0%
クロム(Cr)の量は12.0〜19.0%である。クロム(Cr)の量が12.0%未満であると、耐食性が悪くなる問題があり、クロム(Cr)の量が19.0%を超過すると、伸び率が低下して熱延スチッキング(sticking)欠陥が発生する問題がある。
ニッケル(Ni):0.01〜0.50%
ニッケル(Ni)の量は0.01〜0.50%である。ニッケル(Ni)の量が0.01%未満であると、精錬価格が高くなる問題があり、ニッケル(Ni)の量が0.5%を超過すると、素材の不純物が増加して伸び率が低下する問題がある。
Manganese (Mn): 0.01-0.5%
The amount of manganese (Mn) is 0.01-0.5%. If the amount of manganese (Mn) is less than 0.01%, there is a problem that the refining price becomes high, and if the amount of manganese (Mn) exceeds 0.5%, there is a problem that the elongation rate and the corrosion resistance are lowered. ..
Chromium (Cr): 12.0 to 19.0%
The amount of chromium (Cr) is 12.0 to 19.0%. If the amount of chromium (Cr) is less than 12.0%, there is a problem that the corrosion resistance is deteriorated, and if the amount of chromium (Cr) exceeds 19.0%, the elongation rate is lowered and the hot-rolled ticking (sticking) is performed. ) There is a problem that defects occur.
Nickel (Ni): 0.01-0.50%
The amount of nickel (Ni) is 0.01 to 0.50%. If the amount of nickel (Ni) is less than 0.01%, there is a problem that the refining price becomes high, and if the amount of nickel (Ni) exceeds 0.5%, impurities in the material increase and the elongation rate increases. There is a problem of decline.

銅(Cu):0.3〜1.5%
銅(Cu)の量は0.3〜1.5%である。銅(Cu)の量が0.3%未満であると、5%硫酸雰囲気で臨界電流密度(Icrit)が10mAを超過して十分な耐酸性を確保することができず、銅(Cu)の量が1.5%を超過すると原料価格が過度に高くなるだけでなく、熱間加工性の低下と最終製品の伸び率低下を招く。
Copper (Cu): 0.3-1.5%
The amount of copper (Cu) is 0.3-1.5%. If the amount of copper (Cu) is less than 0.3%, the critical current density ( Icrit ) exceeds 10 mA in a 5% sulfuric acid atmosphere, and sufficient acid resistance cannot be ensured, so that copper (Cu) If the amount of copper exceeds 1.5%, not only the raw material price becomes excessively high, but also the hot workability is lowered and the growth rate of the final product is lowered.

フェライト系ステンレス鋼の最終冷延製品で所望の引張強度を得るためには、微細な炭化物を多数確保することが必要であり、結晶粒の微細化が要求される。
本発明の強度および耐酸性が優秀なフェライト系ステンレス鋼は、100nm以上の直径を有する炭化物の単位面積当たりの個数が50ea/100μm以上である。
例えば、前記炭化物はM23C6型炭化物系金属析出物である。
前記炭化物の単位面積当たりの個数を増加させるためには、熱延工程中に熱延素材に十分な変形組織を形成しなければならない。変形組織が十分に形成されない場合、炭化物析出サイト(site)が充分でないため炭化物の量を増加させ難い。
In order to obtain the desired tensile strength in the final cold-rolled product of ferritic stainless steel, it is necessary to secure a large number of fine carbides, and the refinement of crystal grains is required.
The ferritic stainless steel having excellent strength and acid resistance of the present invention has a carbide having a diameter of 100 nm or more and having a number of carbides of 50 ea / 100 μm 2 or more per unit area.
For example, the carbide is an M23C6 type carbide-based metal precipitate.
In order to increase the number of carbides per unit area, a sufficient deformed structure must be formed on the hot-rolled material during the hot-rolling process. When the deformed structure is not sufficiently formed, it is difficult to increase the amount of carbide because the carbide precipitation site (site) is not sufficient.

熱延素材に十分な変形組織を形成するためには、熱延工程中にスラブ再加熱温度、粗圧延圧下率、熱延コイル巻き取り温度を制御しなければならず、詳細については後述する。
すなわち、熱延工程条件の制御を通じて100nm以上の直径を有する炭化物の単位面積当たりの個数が50ea/100μm以上を達成することができ、したがって、微細な炭化物を多数確保することによって520MPa以上の引張強度を確保することができる。前記工程条件を外れる場合、炭化物が粗大になって炭化物の量を十分に得ることができない。
例えば、100nm以上の直径を有する炭化物の単位面積当たりの個数が50ea/100μm未満の場合、炭化物の量が少ないため結晶粒の粗大化が発生して引張強度が低下する。
In order to form a sufficiently deformed structure in the hot-rolled material, it is necessary to control the slab reheating temperature, the rough rolling reduction rate, and the hot-rolled coil winding temperature during the hot-rolling process, which will be described in detail later.
That is, the number of carbides having a diameter of 100 nm or more per unit area can be achieved to be 50 ea / 100 μm 2 or more through the control of the hot spreading process conditions, and therefore, a tension of 520 MPa or more can be achieved by securing a large number of fine carbides. Strength can be ensured. If the process conditions are not met, the carbides become coarse and a sufficient amount of carbides cannot be obtained.
For example, when the number of carbides having a diameter of 100 nm or more per unit area is less than 50 ea / 100 μm 2 , the amount of carbides is small, so that the crystal grains become coarse and the tensile strength decreases.

例えば、前記フェライト系ステンレス鋼は平均結晶粒径が10μm以下であり、
引張強度が520MPa以上であり、
伸び率が20%以上であり、
5%硫酸雰囲気で臨界電流密度(Icrit)が10mA以下である。
For example, the ferritic stainless steel has an average crystal grain size of 10 μm or less.
The tensile strength is 520 MPa or more,
The growth rate is 20% or more,
The critical current density (I crit ) is 10 mA or less in a 5% sulfuric acid atmosphere.

本発明のフェライト系ステンレス鋼の製造方法によると、質量%で、炭素(C):0.1〜0.2%、窒素(N):0.005〜0.05%、マンガン(Mn):0.01〜0.5%、クロム(Cr):12.0〜19.0%、ニッケル(Ni):0.01〜0.5%、銅(Cu):0.3〜1.5%を含み、残りが鉄(Fe)およびその他不可避不純物からなるフェライト系ステンレス鋼スラブを熱間圧延する段階および冷間圧延する段階を含み、熱間圧延時の式(1)の値が1,000以下を満足する。
15*RHT/R4+CT −−−−−−式(1)
ここで、RHT(℃)はスラブ再加熱温度を意味し、R4(%)は粗圧延のR4スタンドの圧下率を意味し、CT(℃)は巻き取り温度を意味する。
According to the method for producing a ferritic stainless steel of the present invention, in terms of mass%, carbon (C): 0.1 to 0.2%, nitrogen (N): 0.005 to 0.05%, manganese (Mn): 0.01 to 0.5%, chromium (Cr): 12.0 to 19.0%, nickel (Ni): 0.01 to 0.5%, copper (Cu): 0.3 to 1.5% Includes a step of hot rolling and a step of cold rolling of a ferritic stainless steel slab consisting of iron (Fe) and other unavoidable impurities, and the value of the formula (1) during hot rolling is 1,000. Satisfy the following:
15 * RHT / R4 + CT -------- Equation (1)
Here, RHT (° C.) means the slab reheating temperature, R4 (%) means the reduction rate of the R4 stand for rough rolling, and CT (° C.) means the take-up temperature.

前記成分を含む溶鋼を連続鋳造を通じてフェライト系ステンレス鋼スラブを製造する。その後、前記スラブを熱間圧延し、熱間圧延を通じて2〜10mm厚さの熱延コイルを製造する。
例えば、スラブ再加熱温度(RHT)は1,250℃未満であり、粗圧延のR4スタンドの圧下率(R4)は40%以上であり、巻き取り温度(CT)は650℃未満で遂行するが、このとき、熱間圧延条件は式(1)の値が1,000以下を満足するように遂行される。
Ferritic stainless steel slabs are manufactured by continuously casting molten steel containing the above components. Then, the slab is hot-rolled to produce a hot-rolled coil having a thickness of 2 to 10 mm.
For example, the slab reheating temperature (RHT) is less than 1,250 ° C., the reduction rate (R4) of the rough-rolled R4 stand is 40% or more, and the take-up temperature (CT) is less than 650 ° C. At this time, the hot rolling conditions are carried out so that the value of the formula (1) satisfies 1,000 or less.

図1は、フェライト系ステンレス鋼の熱間圧延条件および冷延鋼板の炭化物個数の相関関係を説明するためのグラフである。
図1に示す通り、式(1)による値が1,000以下である場合、100nm以上の直径を有する炭化物の単位面積当たりの個数が50ea/100μm以上であることが分かる。
炭素含量が充分でも式(1)の熱間圧延条件を外れる場合には熱延素材に十分な変形組織が形成されないため、炭化物析出サイトが十分に形成されない。
特に、巻き取り温度が650℃以上と高い場合、析出物の粗大化が発生して所望の炭化物個数を得ることができず、これに伴い結晶粒が粗大になって最終製品で所望の引張強度を得ることができなくなる。
例えば、式(1)の値は800〜1,000を満足することができる。
式(1)の値が800未満の場合、熱間圧延時温度が過度に低いため板形状の不良を引き起こす。
FIG. 1 is a graph for explaining the correlation between the hot rolling conditions of ferritic stainless steel and the number of carbides in cold-rolled steel sheets.
As shown in FIG. 1, when the value according to the formula (1) is 1,000 or less, it can be seen that the number of carbides having a diameter of 100 nm or more per unit area is 50 ea / 100 μm 2 or more.
Even if the carbon content is sufficient, if the hot rolling conditions of the formula (1) are not formed, a sufficient deformed structure is not formed in the hot-rolled material, so that carbide precipitation sites are not sufficiently formed.
In particular, when the winding temperature is as high as 650 ° C. or higher, coarsening of the precipitate occurs and the desired number of carbides cannot be obtained, and as a result, the crystal grains become coarse and the desired tensile strength in the final product is obtained. Can no longer be obtained.
For example, the value of the formula (1) can satisfy 800 to 1,000.
When the value of the formula (1) is less than 800, the temperature during hot rolling is excessively low, which causes a defect in the plate shape.

熱延板材は焼鈍工程を経るが、前記焼鈍工程で700〜900℃の温度での焼鈍熱処理を通じて炭化物を十分に析出させる。例えば、前記焼鈍熱処理はBAF焼鈍工程で遂行される。前記焼鈍熱処理後に、冷間圧延を通じて2mm厚さ未満の冷延板材を製造して800〜900℃の温度の熱処理を通じて最終熱処理を遂行できる。
例えば、前記冷延板材は100nm以上の直径を有する炭化物の単位面積当たりの個数が50ea/100μm以上であり、平均結晶粒径が10μm以下である。
The hot-rolled plate material undergoes an annealing step, and in the annealing step, carbides are sufficiently precipitated through an annealing heat treatment at a temperature of 700 to 900 ° C. For example, the annealing heat treatment is carried out in a BAF annealing step. After the annealing heat treatment, a cold-rolled plate material having a thickness of less than 2 mm can be produced through cold rolling, and the final heat treatment can be carried out through heat treatment at a temperature of 800 to 900 ° C.
For example, in the cold-rolled plate material, the number of carbides having a diameter of 100 nm or more per unit area is 50 ea / 100 μm 2 or more, and the average crystal grain size is 10 μm or less.

以下、実施例を通じて本発明についてより詳細に説明する。
実施例
連続鋳造を通じて表1の成分を満足する発明鋼1〜4そして比較鋼1〜9のスラブを製造して表2の熱間圧延条件により再加熱した後、熱間圧延を通じて5mmtの熱延コイルを製造した。そして、BAF焼鈍工程で900℃の焼鈍熱処理を遂行した。その後、冷間圧延を通じて1mmtの冷延版を製造し900℃の熱処理を遂行し、表面ショットボール処理および硫酸および過酸化水素を含む酸洗液で酸洗して最終製品を製造した。
Hereinafter, the present invention will be described in more detail through examples.
Examples: Slabs of invention steels 1 to 4 and comparative steels 1 to 9 satisfying the components of Table 1 are produced through continuous casting, reheated under the hot rolling conditions of Table 2, and then hot-rolled to 5 mmt through hot rolling. Manufactured the coil. Then, an annealing heat treatment at 900 ° C. was carried out in the BAF annealing step. Then, a 1 mmt cold-rolled plate was produced through cold rolling, heat-treated at 900 ° C., and pickled with a surface shot ball treatment and a pickling solution containing sulfuric acid and hydrogen peroxide to produce a final product.

Figure 0006894515
Figure 0006894515

Figure 0006894515
Figure 0006894515

これに伴い、最終生産された冷延鋼板の100nm以上の直径を有する炭化物の単位面積当たりの個数、平均結晶粒径、引張強度、伸び率、5%硫酸雰囲気で臨界電流密度を測定して表3に示した。
最終生産された冷延板材に対しTEM Replicaを作って単位面積当たり(100μm)炭化物析出物の個数を測定した。
Along with this, the number of carbides having a diameter of 100 nm or more in the final produced cold-rolled steel sheet per unit area, average crystal grain size, tensile strength, elongation, and critical current density were measured in a 5% sulfuric acid atmosphere. Shown in 3.
A TEM Replica was prepared for the finally produced cold-rolled plate material, and the number of carbide precipitates per unit area (100 μm 2) was measured.

Figure 0006894515
Figure 0006894515

図2は、本発明のフェライト系ステンレス冷延鋼板の析出物分布状態を透過電子顕微鏡(TEM)を通じて撮影した写真である。図3は、本発明の比較例に係るフェライト系ステンレス冷延鋼板の析出物分布状態を透過電子顕微鏡(TEM)を通じて撮影した写真である。
図2は前記実施例2による冷延鋼板を撮影した写真であり、図3は前記比較例2による冷延鋼板を撮影した写真である。
図2および図3に示す通り、比較例1〜4のように、熱間圧延時のスラブ再加熱温度、R4圧下率、巻き取り温度に関する関係式による、15*RHT/R4+CTの値が1,000を超過して炭素含量が充分であるとしても、熱延素材に十分な変形組織が形成されないため、炭化物析出サイトが充分でない。
それだけでなく、比較例2でのように、巻き取り温度が高いと析出物の粗大化が発生して所望の炭化物個数を得ることができないことが分かる。
FIG. 2 is a photograph of the precipitate distribution state of the ferritic stainless cold-rolled steel sheet of the present invention taken through a transmission electron microscope (TEM). FIG. 3 is a photograph of the precipitation distribution state of the ferritic stainless cold-rolled steel sheet according to the comparative example of the present invention taken through a transmission electron microscope (TEM).
FIG. 2 is a photograph of the cold-rolled steel sheet according to the second embodiment, and FIG. 3 is a photograph of the cold-rolled steel sheet according to the second comparative example.
As shown in FIGS. 2 and 3, as in Comparative Examples 1 to 4, the value of 15 * RHT / R4 + CT according to the relational expressions relating to the slab reheating temperature during hot rolling, the R4 reduction rate, and the winding temperature is 1, Even if the carbon content exceeds 000 and is sufficient, the carbide precipitation site is not sufficient because a sufficient deformed structure is not formed on the hot-rolled material.
Not only that, as in Comparative Example 2, it can be seen that when the winding temperature is high, the precipitates become coarse and the desired number of carbides cannot be obtained.

比較例5のように、銅の含量が多すぎる場合、最終製品の伸び率が18.8%を有して伸び率が低下することが分かり、比較例6のように銅の含量が少ない場合、5%硫酸雰囲気で臨界電流密度(Icrit)が14.5mAを示して十分な耐酸性を確保することができない。
比較例7および8のように、炭素の含量が多すぎる場合、炭化物の個数が増加して伸び率が低下することを確認することができる。比較例9〜13のように、炭素の含量が少ない場合、結晶粒の大きさが大きくなり、引張強度が500MPa未満と強度が低下することを確認することができる。
When the copper content is too high as in Comparative Example 5, it is found that the elongation rate of the final product is 18.8% and the elongation rate decreases, and when the copper content is low as in Comparative Example 6. The critical current density (I crit ) is 14.5 mA in a 5% sulfuric acid atmosphere, and sufficient acid resistance cannot be ensured.
It can be confirmed that when the carbon content is too large as in Comparative Examples 7 and 8, the number of carbides increases and the elongation rate decreases. It can be confirmed that when the carbon content is small as in Comparative Examples 9 to 13, the size of the crystal grains becomes large and the tensile strength decreases to less than 500 MPa.

図4は、フェライト系ステンレス鋼の冷延鋼板の炭化物個数および引張強度の相関関係を説明するためのグラフである。
図4に示す通り、前記実施例および比較例による冷延鋼板の炭化物数と引張強度をグラフで示したものであって、炭化物の数が増加するほど引張強度も増加する傾向があることが分かる。
前述において、本発明の例示的な実施例を説明したが、本発明はこれに限定されず、該当技術分野で通常の知識を有する者であれば次に記載する特許請求の範囲の概念と範囲を逸脱しない範囲内で多様な変更および変形が可能であることが理解できるはずである。
本発明の実施例に係る強度および耐酸性が優秀なフェライト系ステンレス鋼およびその製造方法は、建築資材、食品容器、家電製品、自動車の排気系部品、自動車のバッテリーなどに適用可能である。
FIG. 4 is a graph for explaining the correlation between the number of carbides and the tensile strength of a cold-rolled steel sheet of ferritic stainless steel.
As shown in FIG. 4, the number of carbides and the tensile strength of the cold-rolled steel sheet according to the above Examples and Comparative Examples are shown in a graph, and it can be seen that the tensile strength tends to increase as the number of carbides increases. ..
Although the exemplary embodiments of the present invention have been described above, the present invention is not limited to this, and any person who has ordinary knowledge in the relevant technical field will describe the concept and scope of the claims described below. It should be understood that various changes and modifications are possible within the range that does not deviate from.
The ferritic stainless steel having excellent strength and acid resistance according to the embodiment of the present invention and its manufacturing method can be applied to building materials, food containers, home appliances, automobile exhaust system parts, automobile batteries and the like.

Claims (7)

質量%で、炭素(C):0.1〜0.2%、窒素(N):0.005〜0.05%、マンガン(Mn):0.01〜0.5%、クロム(Cr):12.0〜19.0%、ニッケル(Ni):0.01〜0.5%、銅(Cu):0.3〜1.5%、を含み、残りが鉄(Fe)およびその他不可避不純物からなり、
100nm以上の直径を有する炭化物の単位面積当たりの個数が50〜200ea/100μmであり、平均結晶粒径が10μm以下であることを特徴とするフェライト系ステンレス冷延鋼板
By mass%, carbon (C): 0.1 to 0.2%, nitrogen (N): 0.005 to 0.05%, manganese (Mn): 0.01 to 0.5%, chromium (Cr) 12.0 to 19.0%, nickel (Ni): 0.01 to 0.5%, copper (Cu): 0.3 to 1.5%, the rest is iron (Fe) and other unavoidable Consists of impurities
A ferritic stainless cold-rolled steel sheet characterized in that the number of carbides having a diameter of 100 nm or more per unit area is 50 to 200 ea / 100 μm 2 and the average crystal grain size is 10 μm or less.
引張強度が520MPa以上であることを特徴とする請求項1に記載のフェライト系ステンレス冷延鋼板 The ferrite-based stainless cold-rolled steel sheet according to claim 1, wherein the tensile strength is 520 MPa or more. 伸び率が20%以上であることを特徴とする請求項1に記載のフェライト系ステンレス冷延鋼板 The ferrite-based stainless cold-rolled steel sheet according to claim 1, wherein the elongation rate is 20% or more. 5%硫酸雰囲気で臨界電流密度(Icrit)が10mA以下であることを特徴とする請求項1に記載のフェライト系ステンレス冷延鋼板 The ferrite-based stainless cold-rolled steel sheet according to claim 1, wherein the critical current density (Icrit) is 10 mA or less in a 5% sulfuric acid atmosphere. 質量%で、炭素(C):0.1〜0.2%、窒素(N):0.005〜0.05%、マンガン(Mn):0.01〜0.5%、クロム(Cr):12.0〜19.0%、ニッケル(Ni):0.01〜0.5%、銅(Cu):0.3〜1.5%、を含み、残りが鉄(Fe)およびその他不可避不純物からなるフェライト系ステンレス鋼スラブを熱間圧延する段階および冷間圧延する段階を含み、
前記熱間圧延の時、式(1)の値が1,000以下を満足し、
前記冷間圧延した冷延板材は100nm以上の直径を有する炭化物の単位面積当たりの個数が50〜200ea/100μmであり、平均結晶粒径が10μm以下であることを特徴とするフェライト系ステンレス冷延鋼板の製造方法。
15*RHT/R4+CT−−−−−−式(1)
ここで、RHT(℃)はスラブ再加熱温度を意味し、R4(%)は粗圧延のR4スタンドの圧下率を意味し、CT(℃)は巻き取り温度を意味する。
By mass%, carbon (C): 0.1-0.2%, nitrogen (N): 0.005-0.05%, manganese (Mn): 0.01-0.5%, chromium (Cr) 12.0 to 19.0%, nickel (Ni): 0.01 to 0.5%, copper (Cu): 0.3 to 1.5%, the rest is iron (Fe) and other unavoidable Including the steps of hot rolling and cold rolling of ferritic stainless steel slabs composed of impurities.
At the time of the hot rolling, the value of the formula (1) was satisfied with 1,000 or less.
The cold-rolled cold-rolled sheet is the number that 50~200ea / 100μm 2 per unit area of the carbides having a diameter greater than 100 nm, ferritic stainless cold, wherein the average crystal grain size is 10μm or less Manufacturing method of ferritic stainless steel.
15 * RHT / R4 + CT -------- Equation (1)
Here, RHT (° C.) means the slab reheating temperature, R4 (%) means the reduction rate of the R4 stand for rough rolling, and CT (° C.) means the take-up temperature.
前記式(1)の値は800〜1,000を満足することを特徴とする請求項5に記載のフェライト系ステンレス冷延鋼板の製造方法。 The method for producing a ferritic stainless cold-rolled steel sheet according to claim 5, wherein the value of the formula (1) satisfies 800 to 1,000. RHTは1,250℃未満であり、R4は40%以上であり、CTは650℃未満であることを特徴とする請求項5に記載のフェライト系ステンレス冷延鋼板の製造方法。 The method for producing a ferritic stainless cold-rolled steel sheet according to claim 5, wherein RHT is less than 1,250 ° C, R4 is 40% or more, and CT is less than 650 ° C.
JP2019534678A 2016-12-23 2017-12-06 Ferritic stainless cold-rolled steel sheet and its manufacturing method Active JP6894515B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160177454A KR101903182B1 (en) 2016-12-23 2016-12-23 Ferritic stainless steel having excellent strength and corrosion resistance to acid and method of manufacturing the same
KR10-2016-0177454 2016-12-23
PCT/KR2017/014205 WO2018117489A1 (en) 2016-12-23 2017-12-06 Ferrite-based stainless steel having excellent strength and acid resistance and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2020509217A JP2020509217A (en) 2020-03-26
JP6894515B2 true JP6894515B2 (en) 2021-06-30

Family

ID=62626827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019534678A Active JP6894515B2 (en) 2016-12-23 2017-12-06 Ferritic stainless cold-rolled steel sheet and its manufacturing method

Country Status (6)

Country Link
US (1) US20200087745A1 (en)
JP (1) JP6894515B2 (en)
KR (1) KR101903182B1 (en)
CN (1) CN110199049B (en)
MX (1) MX2019007636A (en)
WO (1) WO2018117489A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102135158B1 (en) * 2018-09-19 2020-07-17 주식회사 포스코 Ferritic stainless steel excellent in workability and high temperature strength and manufacturing method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108314A (en) * 1976-03-09 1977-09-10 Nippon Steel Corp Highly tough ferritic stainless steel having improved hydrogen-induced crack resistance
SE451465B (en) * 1984-03-30 1987-10-12 Sandvik Steel Ab FERRIT-AUSTENITIC STAINLESS STEEL MICROLEGATED WITH MOLYBID AND COPPER AND APPLICATION OF THE STEEL
JPH01159319A (en) * 1987-12-16 1989-06-22 Kawasaki Steel Corp Production of high-corrosion resistance ferritic stainless steel having excellent moldability
JPH05179357A (en) * 1991-12-27 1993-07-20 Sumitomo Metal Ind Ltd Production of cold rolled ferritic stainless steel sheet
TW429270B (en) * 1996-03-15 2001-04-11 Ugine Sa Process for producing a ferritic stainless steel having an improved corrosion resistance, especially resistance to intergranular and pitting corrosion
JP2000178694A (en) * 1998-12-09 2000-06-27 Nippon Steel Corp Ferritic stainless steel excellent in surface property and workability and its production
JP4285843B2 (en) 1999-07-21 2009-06-24 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method
CN1226442C (en) * 2002-11-18 2005-11-09 烨联钢铁股份有限公司 Austenitic stainless steel having low nickel content
JP4082205B2 (en) * 2002-12-20 2008-04-30 Jfeスチール株式会社 Ferritic stainless steel sheet excellent in workability and ridging resistance and method for producing the same
JP2007186764A (en) * 2006-01-13 2007-07-26 Nisshin Steel Co Ltd Free-cutting ferritic stainless steel
CN101008043B (en) * 2006-01-27 2010-05-12 宝山钢铁股份有限公司 Process for producing ferritic stainless steel
JP2007211313A (en) 2006-02-10 2007-08-23 Nippon Metal Ind Co Ltd Ferritic stainless steel having excellent ridging resistance and its production method
JP4915923B2 (en) * 2007-02-09 2012-04-11 日立金属株式会社 Ferritic stainless cast steel and cast member with excellent acid resistance
JP2011001564A (en) * 2008-03-21 2011-01-06 Nisshin Steel Co Ltd Ferritic stainless steel sheet having excellent roughening resistance and method for producing the same
JP5375069B2 (en) 2008-12-15 2013-12-25 Jfeスチール株式会社 Ferritic stainless steel plate with excellent corrosion resistance on the shear end face
JP5744575B2 (en) * 2010-03-29 2015-07-08 新日鐵住金ステンレス株式会社 Double phase stainless steel sheet and strip, manufacturing method
CA2904122C (en) * 2013-03-14 2018-07-10 Nippon Steel & Sumitomo Metal Corporation High strength steel sheet excellent in delayed fracture resistance and low temperature toughness, and high strength member manufactured using the same
CN103643157B (en) * 2013-11-26 2015-11-18 攀钢集团江油长城特殊钢有限公司 A kind of copper-bearing ferritic Stainless Steel Disc unit and manufacture method thereof

Also Published As

Publication number Publication date
US20200087745A1 (en) 2020-03-19
CN110199049B (en) 2021-07-09
KR20180073915A (en) 2018-07-03
MX2019007636A (en) 2019-12-09
JP2020509217A (en) 2020-03-26
WO2018117489A1 (en) 2018-06-28
KR101903182B1 (en) 2018-10-01
CN110199049A (en) 2019-09-03

Similar Documents

Publication Publication Date Title
JP6588440B2 (en) High strength low specific gravity steel plate and method for producing the same
JP6285462B2 (en) 780 MPa class cold rolled duplex steel and method for producing the same
JP5111119B2 (en) Method for producing austenitic iron-carbon-manganese metal steel sheet, and steel sheet produced thereby
KR100974737B1 (en) Manufacturing method of ultra soft high carbon hot-rolled steel sheets
JP2023538680A (en) Gigapascal grade bainite steel with ultra-high yield ratio and its manufacturing method
JP6872009B2 (en) Cold-rolled steel sheet for hot forming, non-plated hot forming member with excellent corrosion resistance and spot weldability, and its manufacturing method
CN107148488B (en) Ultra-high strength plated steel sheet having tensile strength of 1300MPa or more and method for producing same
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP6894515B2 (en) Ferritic stainless cold-rolled steel sheet and its manufacturing method
CN107109581B (en) High-strength, high-ductility ferritic stainless steel sheet and method for producing same
CN114040990A (en) Austenitic stainless steel having improved strength and method for manufacturing the same
JPS5850299B2 (en) Manufacturing method for precipitation-strengthened high-strength cold-rolled steel sheets
KR102020511B1 (en) Ferritic stainless steel with excellent impact toughness and manufacturing method thereof
JP7192112B2 (en) HIGH STRENGTH FERRITIC STAINLESS STEEL FOR CLAMP AND METHOD FOR MANUFACTURING SAME
JP7445744B2 (en) Ferritic stainless steel cold-rolled annealed steel sheet with improved high-temperature creep resistance and its manufacturing method
JP2021502480A (en) Ultra-high-strength, high-ductility steel sheet with excellent cold formability and its manufacturing method
KR102523533B1 (en) Ferritic stainless steel with improved grain boundary erosion and its manufacturing method
JP5586704B2 (en) Cold-rolled steel sheet for processing excellent in heat resistance and method for producing the same
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
JP2024500859A (en) Cold rolled steel sheet with excellent workability and its manufacturing method
KR101344663B1 (en) Cold-rolled steel sheet and method of manufacturing the same
KR101308718B1 (en) High strength and heat-resistance cold-rolled steel sheet having excellent formability, heat resistance for working and manufacturing method thereof
KR20120121802A (en) Hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet
KR20120044122A (en) Heat resistant steel with excellent reheating cracking resistance and high temperature strength and method of manufacturing the heat resistant steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210330

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210603

R150 Certificate of patent or registration of utility model

Ref document number: 6894515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350