JPH01159319A - Production of high-corrosion resistance ferritic stainless steel having excellent moldability - Google Patents

Production of high-corrosion resistance ferritic stainless steel having excellent moldability

Info

Publication number
JPH01159319A
JPH01159319A JP31838187A JP31838187A JPH01159319A JP H01159319 A JPH01159319 A JP H01159319A JP 31838187 A JP31838187 A JP 31838187A JP 31838187 A JP31838187 A JP 31838187A JP H01159319 A JPH01159319 A JP H01159319A
Authority
JP
Japan
Prior art keywords
weight
stainless steel
ferritic stainless
corrosion resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31838187A
Other languages
Japanese (ja)
Other versions
JPH0579732B2 (en
Inventor
Sadao Hasuno
貞夫 蓮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31838187A priority Critical patent/JPH01159319A/en
Publication of JPH01159319A publication Critical patent/JPH01159319A/en
Publication of JPH0579732B2 publication Critical patent/JPH0579732B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high-corrosion resistance ferritic stainless steel having excellent moldability by subjecting a high-Cr ferritic stainless steel contg. specific ratios of Nb and Ti, Zr to hot rolling, then coiling the steel sheet a a low temp. and further subjecting the same to base-sheet annealing at a specific temp. CONSTITUTION:The high-Cr ferritic stainless steel ingot contg., by weight %, 0.015-0. 03% C, 0.1-1.0% Si, <1% Mn, <0.01% S, 20-25% Cr, 0.3-1.0% Mo, 0.2-1.5% Ni, 0.004-0.5% Cu, 0.015-0.03% Ni, 8 (C+N)-20 (C+N)% Nb, and 0.02-0.1% Ti and Zr as total content of Ti+Zr/2 is made into a slab by the hot rolling. This slab is coiled at <=350 deg.C to solutionize C and N in the steel and to suppress the formation of the carbonitride of Cr. The hot rolled steel sheet which is coiled is then subjected to the base-sheet annealing in the [800+1250(Ti+Zr/2)]+ or -25 deg.C temp. region. This slab is cold rolled after picking and is annealed and pickled, by which the cold rolled steel strip of the ferritic stainless steel is produced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、自動車外装部品あるいは各種装飾用素材とし
て用いられるフェライト系ステンレス鋼の製造方法に係
り、特に成形性、製造時の強靭性に優れた高耐食フェラ
イト系ステンレス鋼の製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing ferritic stainless steel used as automobile exterior parts or various decorative materials, and particularly has excellent formability and toughness during manufacturing. The present invention relates to a method for producing highly corrosion-resistant ferritic stainless steel.

〈従来技術およびその問題点〉 5US430に代表されるフェライト系ステンレス鋼は
、安価で耐応力腐食割れ性にも優れているが、ニッケル
を多量に含むオーステナイト系ステンレス鋼と比較する
と塩素イオンを含む水溶液における耐錆性をはじめとす
る一般耐食性でかなり劣っている。
<Prior art and its problems> Ferritic stainless steels, such as 5US430, are inexpensive and have excellent stress corrosion cracking resistance, but compared to austenitic stainless steels that contain large amounts of nickel, they are less susceptible to aqueous solutions containing chloride ions. It is considerably inferior in general corrosion resistance, including rust resistance.

近年、ステンレス鋼溶製技術の進歩に伴ない、特開昭5
2−30715号に開示されているように、極低C%N
の高Crフェライト系ステンレス鋼の製造が可能となり
、耐食性の点では著しく改善されたフェライト系ステン
レス鋼が開発されている。
In recent years, with the advancement of stainless steel melting technology,
2-30715, ultra-low C%N
It has become possible to produce high Cr ferritic stainless steel, and ferritic stainless steel with significantly improved corrosion resistance has been developed.

ところが、高クロムフェライト鋼ではCおよびNがCr
と炭窒化物を形成し、耐食性が逆に低下し、熱延焼鈍板
での靭性が低下し、最終製品においては強度の上昇と、
r値の低下を招く。
However, in high chromium ferritic steel, C and N are Cr
and carbonitrides, resulting in a decrease in corrosion resistance, a decrease in toughness in hot-rolled annealed sheets, and an increase in strength in the final product.
This results in a decrease in r value.

従って、高クロムフェライト鋼はC%Nを0.01%以
下と厳しく制限されるため、製造コストが上昇し、価格
はオーステナイト系ステンレス鋼より高く設定されてい
る。
Therefore, the C%N of high chromium ferritic steel is strictly limited to 0.01% or less, which increases manufacturing costs and makes the price higher than that of austenitic stainless steel.

C%Nが0601%以上でも、耐食性、製造時の強靭性
、加工性の優れた高クロムフェライト系ステンレス鋼の
開発が望まれている。
It is desired to develop a high chromium ferritic stainless steel that has excellent corrosion resistance, toughness during manufacture, and workability even when the C%N is 0.601% or more.

〈発明の目的〉 本発明の目的は上述した従来の技術の問題点を解決しよ
うとするもので、加工性、製造時の強靭性、耐食性の優
れたフェライト系ステンレス鋼の製造方法を提供しよう
とするものである。
<Object of the Invention> The object of the present invention is to solve the problems of the conventional technology described above, and to provide a method for producing ferritic stainless steel that has excellent workability, toughness during production, and corrosion resistance. It is something to do.

〈発明の構成〉 本発明はC,0,015〜0.03重量%、St;0.
1〜1重量%、Mn;1重量%以下、S、0.01重量
%以下、Cr;20〜25重量%、Mo;0.3〜1.
0重量%、N i ; 0.2〜1.5重量%、Cu;
0.04〜0.5重量%、N;0.015〜0.03重
量%、Nb 、 8 (C+N)〜20 (C+N)重
量%、Tiおよび/またはZrが(T i +Z r 
/ 2 )の総量として;o、02〜0.1重量%を含
有し、残部は鉄および不可避的不純物からなるフェライ
ト系ステンレス鋼板を熱間圧延した後、350℃以下で
巻取り、その後、[800+1250x (Ti+Zr
/2)]±25℃の温度域で母板焼鈍を行なうことを特
徴とする成形性の優れた高耐食フェライト系ステンレス
鋼の製造方法を提供するものである。
<Structure of the invention> The present invention contains C, 0,015 to 0.03% by weight, St; 0.
1-1% by weight, Mn: 1% by weight or less, S, 0.01% by weight or less, Cr: 20-25% by weight, Mo: 0.3-1.
0% by weight, Ni; 0.2-1.5% by weight, Cu;
0.04-0.5% by weight, N; 0.015-0.03% by weight, Nb, 8 (C+N)-20 (C+N)% by weight, Ti and/or Zr (Ti + Zr
A ferritic stainless steel plate containing 0.02 to 0.1% by weight as the total amount of /2), with the remainder consisting of iron and inevitable impurities is hot-rolled, then wound at 350°C or less, and then [ 800+1250x (Ti+Zr
/2)] The present invention provides a method for manufacturing highly corrosion-resistant ferritic stainless steel with excellent formability, which is characterized in that base plate annealing is performed in a temperature range of ±25°C.

“ 以下に本発明を更に詳細に説明男る。“The present invention will be explained in more detail below.

本発明に用いるフェライト系ステンレス鋼の組成は、C
;0.015〜0.03重量%、Si;0.1〜1重量
%、Mn;1重量%以下、S;0.01重量%以下、C
r;20〜25重量%、Mo;0.3〜1.0重量%、
Ni ;0.2〜1..5重量%、Cu;0.04〜0
.5重量%、N;C1,015〜0.03重量%、Nb
 ; 8 (C+N)〜20 (C+N)重量1%、T
iおよび/またはZrが(T i +Z r / 2 
)の総量として;o、02〜0.1重量%を含有し、残
部は鉄および不可避的不純物である。
The composition of the ferritic stainless steel used in the present invention is C
; 0.015 to 0.03% by weight, Si; 0.1 to 1% by weight, Mn; 1% by weight or less, S; 0.01% by weight or less, C
r; 20 to 25% by weight, Mo; 0.3 to 1.0% by weight,
Ni: 0.2-1. .. 5% by weight, Cu; 0.04-0
.. 5% by weight, N; C1,015-0.03% by weight, Nb
; 8 (C+N) ~ 20 (C+N) 1% by weight, T
i and/or Zr is (T i +Z r / 2
);02 to 0.1% by weight, the remainder being iron and unavoidable impurities.

Cが0.03重量%を越えるときは、クロム炭化物を形
成し、フェライト系ステンレス鋼の耐食性、製造時の強
靭性を劣化させる。 Cが0.015重量%未満のとき
は、溶製するのにコストがかかる。
When C exceeds 0.03% by weight, chromium carbide is formed, which deteriorates the corrosion resistance of ferritic stainless steel and the toughness during manufacturing. When C is less than 0.015% by weight, it is expensive to melt.

Siが1重量%を越えるときは、成形性に有害であり、
0.1重量%未満のときは、脱酸作用が十分でない。
When Si exceeds 1% by weight, it is harmful to moldability,
When it is less than 0.1% by weight, the deoxidizing effect is not sufficient.

Mnは脱硫、脱酸作用のある元素であるが、1重量%を
越えるときは、フェライト系ステンレス鋼の耐食性が低
下する。
Mn is an element that has desulfurization and deoxidizing effects, but when it exceeds 1% by weight, the corrosion resistance of ferritic stainless steel decreases.

Sは0.01重量%を越えるときは、フェライト系ステ
ンレス鋼の耐食性が低下する。
When S exceeds 0.01% by weight, the corrosion resistance of the ferritic stainless steel decreases.

Crは耐食性を決定する中心元素であり、オーステナイ
ト系ステンレス鋼と同等の耐食性を得るためには20重
量%以上でなければならない。 Crが25重量%超の
ときはCrの炭窒化物が粒界に生成し、得られるフェラ
イト系ステンレス鋼の製造時の靭性が低下し、製造が困
難となる。
Cr is a central element that determines corrosion resistance, and in order to obtain corrosion resistance equivalent to that of austenitic stainless steel, the content must be 20% by weight or more. When the Cr content exceeds 25% by weight, carbonitrides of Cr are generated at grain boundaries, and the toughness during production of the resulting ferritic stainless steel decreases, making production difficult.

Moが0.3重量%未満のときは、耐食性が劣化し、1
.0重量%を越えるときは、Moが高価なため、製造コ
ストが高くなる。
When Mo is less than 0.3% by weight, corrosion resistance deteriorates and 1
.. When it exceeds 0% by weight, Mo is expensive and the manufacturing cost increases.

Niが0.2重量%未満のときは、耐食性、靭性が劣化
し、1.5重量%を越えるときは、Niが高価なため、
製造コストが高くなる。
When Ni is less than 0.2% by weight, corrosion resistance and toughness deteriorate, and when it exceeds 1.5% by weight, Ni is expensive.
Manufacturing costs increase.

Cuが0.04重量%未満のときは、大気中における耐
誘性が劣化し、0.5重量%を越えるときは、熱間圧延
時に表面割れが発生する。
When Cu is less than 0.04% by weight, the induction resistance in the atmosphere deteriorates, and when it exceeds 0.5% by weight, surface cracks occur during hot rolling.

Nが0.03重量%以上のときは、Cr窒化物を生成し
、製造時に靭性が低下する。
When N is 0.03% by weight or more, Cr nitrides are produced and the toughness is reduced during manufacturing.

0.015重量%未満のときは、製造コストが著しく上
昇する。
When it is less than 0.015% by weight, manufacturing costs increase significantly.

Nbは炭窒化物生成傾向が大きく、Crの炭窒化物生成
を抑制するために添加するが、C+Hの総量の8倍未満
のとぎは、上記Crの炭窒化物生成を抑制する効果が十
分ではなく、C+Hの総量の20倍を越えるときは、上
記Crの炭窒化物生成を抑制する効果が飽和し、強度を
著しく増大させ、成形性をそこなう。
Nb has a strong tendency to form carbonitrides and is added to suppress the formation of carbonitrides from Cr, but if the amount of Nb is less than 8 times the total amount of C+H, the effect of suppressing the formation of carbonitrides from Cr is not sufficient. If the amount exceeds 20 times the total amount of C+H, the effect of suppressing carbonitride formation by Cr is saturated, the strength increases significantly, and formability is impaired.

TiおよびZrはNbより炭窒化物生成傾向が大きく、
Crの炭窒化物生成を抑制する効果が大きな元素である
。 T i + Z r / 2の総量が0.02重量
%未満のときは、上記Crの炭窒化物生成の抑制効果が
十分でなく、0.  Ili量%を越えるときは、粗大
なTiおよびZrの窒化物を生成し、表面清浄を著しく
低下させる。
Ti and Zr have a greater tendency to form carbonitrides than Nb;
It is an element that has a great effect of suppressing the carbonitride formation of Cr. When the total amount of T i + Z r /2 is less than 0.02% by weight, the above-mentioned effect of suppressing the carbonitride formation of Cr is insufficient, and the amount of 0.02% by weight is less than 0.02% by weight. When the amount of Ili exceeds %, coarse nitrides of Ti and Zr are formed, and the surface cleanliness is significantly reduced.

T i + Z r / 2の総量がo、を重量%以下
と制限されるため、Crの炭窒化物の生成を抑制するに
はNb、およびTiおよび/またはZrの複合添加が不
可欠である。
Since the total amount of T i + Z r /2 is limited to less than 0% by weight, the combined addition of Nb and Ti and/or Zr is essential to suppress the formation of Cr carbonitrides.

上記の組成のフェライト系ステンレス鋼を以下の条件で
製造し、成形性の優れた高耐食フェライト系ステンレス
鋼を得ることができる。
A ferritic stainless steel having the above composition can be produced under the following conditions to obtain a highly corrosion-resistant ferritic stainless steel with excellent formability.

上記組成のフェライト系ステンレス鋼をスラブとなし、
熱間圧延後350℃以下の低温巻取りを行なう。
Ferritic stainless steel with the above composition is used as a slab,
After hot rolling, winding is performed at a low temperature of 350°C or less.

巻取り温度を350℃以下とすることにより、Cおよび
Nを固溶状態に存在させ、Crの炭窒化物の生成を抑制
し、得られるフェライト系ステンレス鋼の耐食性、製造
時に必要な強靭性を低下させない。
By setting the winding temperature to 350°C or less, C and N are present in a solid solution state, suppressing the formation of Cr carbonitrides, and improving the corrosion resistance and toughness required during manufacturing of the resulting ferritic stainless steel. Don't lower it.

その後、上記巻取りを行った熱延鋼板を[800+12
50X (Ti+Zr/2)]±25℃の温度域で母板
焼鈍を行ない、成形性の優れた高耐食フェライト系ステ
ンレス鋼を製造することができる。
After that, the hot-rolled steel sheet that had been wound above was heated to [800+12
By annealing the mother plate in a temperature range of 50X (Ti+Zr/2)]±25°C, a highly corrosion-resistant ferritic stainless steel with excellent formability can be produced.

第1a図にT i + Z r / 2の総量と最適焼
鈍温度の関係を示す。
FIG. 1a shows the relationship between the total amount of T i + Z r /2 and the optimum annealing temperature.

第2図に、表1に示すTi添加量の異なるNo、  2
.3.9の化学組成のステンレス鋼についての焼鈍温度
とi撃試験による吸収エネルギーとの関係を示す。
Figure 2 shows No. 2 with different amounts of Ti added shown in Table 1.
.. 3.9 shows the relationship between annealing temperature and absorbed energy by i-impact test for stainless steel having a chemical composition of 3.9.

第2図かられかるように、衝撃試験での吸収エネルギー
の焼鈍温度依存性は、焼鈍温度が高すぎても、低すぎて
も吸収エネルギーは低くなり、吸収エネルギーの高い適
度な温度域が存在する。 この適度な温度域の中心温度
を最適焼鈍温度と言う。 吸収エネルギーの高い温度域
は最適焼鈍温度±25℃の領域である。
As can be seen from Figure 2, the dependence of the absorbed energy on the annealing temperature in the impact test shows that even if the annealing temperature is too high or too low, the absorbed energy will be low, and there is a moderate temperature range where the absorbed energy is high. do. The center temperature of this moderate temperature range is called the optimum annealing temperature. The temperature range with high absorbed energy is the range of the optimum annealing temperature ±25°C.

最適焼鈍温度とT i + Z r / 2の総量は、
第1a図に示すように直線関係にあり、T層+Z r 
/ 2の総量が増加すると最適焼鈍温度も上昇し、最適
焼鈍温度は 800+1250 (Ti+Zr/2)で表わされる。
The optimal annealing temperature and the total amount of T i + Z r /2 are:
As shown in Figure 1a, there is a linear relationship, and T layer + Z r
/2 increases, the optimum annealing temperature also increases, and the optimum annealing temperature is expressed as 800+1250 (Ti+Zr/2).

フェライト系ステンレス鋼を上記最適焼鈍温度±25℃
で母材焼鈍することにより、製造時の強靭性に悪影響を
およぼすCrの炭窒化物の形成を抑制し、加工性の良好
なオーステナイト系ステンレス鋼と同等の耐食性を有す
るフェライト系ステンレス鋼とすることができる。
The optimum annealing temperature for ferritic stainless steel is ±25°C.
By annealing the base material, the formation of Cr carbonitrides that adversely affect the toughness during manufacturing is suppressed, and the ferritic stainless steel has corrosion resistance equivalent to that of austenitic stainless steel with good workability. Can be done.

本発明により製造されたフェライト系ステンレス鋼は酸
洗後冷間圧延し、その後、焼鈍・酸洗(あるいは光輝焼
鈍)を行なうことにより、冷間圧延鋼帯として使用され
る。
The ferritic stainless steel produced according to the present invention is pickled, cold rolled, and then annealed and pickled (or bright annealed) to be used as a cold rolled steel strip.

〈実施例〉 本発明を実施例を用いて具体的に説明する。<Example> The present invention will be specifically explained using examples.

(実施例) TiおよびZr量の異なる表1に示す組成の鋼を真空溶
解炉にて溶製し、厚さ180mmのスラブを製造した。
(Example) Steels having compositions shown in Table 1 with different amounts of Ti and Zr were melted in a vacuum melting furnace to produce slabs with a thickness of 180 mm.

 No、  1〜No、 8は本発明鋼であり、No、
  9〜No、  13は、T i + Z r / 
2の総量が0.02〜0.1重量%の範囲からはずれて
いる比較鋼である。
No. 1 to No. 8 are steels of the present invention;
9-No, 13 is T i + Z r /
This is a comparative steel in which the total amount of 2 is outside the range of 0.02 to 0.1% by weight.

上記スラブを1250℃に加熱し、圧延終了温度850
℃で板厚4mmまで熱間圧延し、表2に示す温度で巻取
った。
The above slab is heated to 1250°C, and the rolling end temperature is 850°C.
It was hot-rolled at ℃ to a plate thickness of 4 mm and coiled at the temperature shown in Table 2.

その後、上記熱延鋼板を[800+1250x (T 
i +Z r/2) ]±25℃の温度域(表2に焼鈍
温度を示す)で母材焼鈍を行ない、母材焼鈍温度に2分
間保持した後、急冷した。
After that, the hot rolled steel plate was heated to [800+1250x (T
i + Z r/2) ] ±25° C. (annealing temperatures are shown in Table 2), the base material was annealed, held at the base material annealing temperature for 2 minutes, and then rapidly cooled.

得られた熱延鋼板に対して、2mmVノツチ付シャルピ
ー′a撃試験を行なった。
A 2 mm V-notched Charpy'a impact test was conducted on the obtained hot rolled steel sheet.

結果を表2および第1b図に示す。The results are shown in Table 2 and Figure 1b.

得られた熱延鋼板を酸洗後、厚さ2mmに冷間圧延し、
その後、母材焼鈍と同一条件で焼鈍した。
The obtained hot rolled steel plate was pickled and then cold rolled to a thickness of 2 mm,
Thereafter, it was annealed under the same conditions as the base metal annealing.

さらに、上記冷延鋼板を酸洗し、厚さ0.4 mmに冷
間圧延し、950℃×2分間の大気焼鈍を行なった後に
、酸洗を行ない最終製品の冷延鋼板を得た。
Further, the cold-rolled steel sheet was pickled, cold-rolled to a thickness of 0.4 mm, annealed in the atmosphere at 950° C. for 2 minutes, and then pickled to obtain a final cold-rolled steel sheet.

得られた冷延鋼板に対して引張試験を行ない、0.2%
耐力、引張強さを測定した。
A tensile test was conducted on the obtained cold-rolled steel sheet, and 0.2%
Yield strength and tensile strength were measured.

結果を表2、第3b図および第3C図に示した。The results are shown in Table 2, Figures 3b and 3C.

さらに、得られた冷延鋼板のランクフォード値(r値)
を測定した。
Furthermore, the Lankford value (r value) of the obtained cold rolled steel sheet
was measured.

結果を表2および第3a図に示した。The results are shown in Table 2 and Figure 3a.

本発明鋼においては、0.2%耐力が32〜34 kg
f/mm2の範囲にあり、引張強さは48〜50 kg
f/mm2の範囲にあり、r値は1.9〜2.1の範囲
にあり、加工性は良好であった。
In the steel of the present invention, the 0.2% yield strength is 32 to 34 kg.
f/mm2 and tensile strength is 48-50 kg
The r value was in the range of f/mm2, and the r value was in the range of 1.9 to 2.1, and the workability was good.

比較鋼においては、T i + Z r / 2の総量
が0.02重量%未満のときは0.2%耐力、引張強さ
は高く、r値は低く、加工性は劣化していた。 T i
 + Z r / 2の総量が0.1重量%を超えると
きは、加工性は本発明例と同様であったが、鋼中の介在
物に起因する表面清浄が劣化していた。
In the comparative steel, when the total amount of T i + Z r /2 was less than 0.02% by weight, the 0.2% proof stress and tensile strength were high, the r value was low, and the workability was deteriorated. Ti
When the total amount of +Zr/2 exceeded 0.1% by weight, the workability was similar to the inventive example, but the surface cleanliness due to inclusions in the steel was deteriorated.

また、JIS  GO577に従って測定した孔食電位
を表2に示す。 5US304の孔食電位0.32(■
v、5CE)に比べていづれも高い値を示している。
Table 2 also shows pitting potentials measured according to JIS GO577. Pitting corrosion potential of 5US304 0.32 (■
v, 5CE), all of which show higher values.

〈発明の効果〉 本発明の方法によれば、Crより炭窒化物の生成傾向の
大きなNbおよびTiおよび/またはZrを適量含有さ
せた高Crフェライト系ステンレス鋼を熱間圧延後低温
捲取りし、その後適当な温度で母材焼鈍をすることによ
り、NbおよびTiおよび/またはZrが炭窒化物を生
成し、Crの炭窒化物の生成を抑制することにより、オ
ーステナイト系ステンレス鋼程度の耐食性を有し、製造
時の強靭性に優れた、加工性の良好なフェライト系ステ
ンレス鋼を得ることができる。
<Effects of the Invention> According to the method of the present invention, high Cr ferritic stainless steel containing an appropriate amount of Nb, Ti and/or Zr, which has a greater tendency to form carbonitrides than Cr, is hot-rolled and then rolled at a low temperature. Then, by annealing the base material at an appropriate temperature, Nb, Ti, and/or Zr generate carbonitrides, and by suppressing the formation of carbonitrides of Cr, it has corrosion resistance comparable to that of austenitic stainless steel. It is possible to obtain a ferritic stainless steel having excellent toughness during production and good workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図はT i + Z r / 2の総量と最適焼
鈍温度の関係を示す図である。 第1b図は母材焼鈍を行なった熱延鋼板のT i + 
Z r / 2の総量と吸収エネルギーの関係を示す図
である。 第2図は母材焼鈍温度と母材焼鈍を行なった熱延鋼板の
吸収エネルギーの関係を示す図である。 第3a図は実施例で得られた冷延鋼板のT i + Z
 r / 2の総量とランクフォード値(r値)の関係
を示す図である。 第3b図は実施例で得られた冷延鋼板のT i + Z
 r / 2の総量と引張強さの関係を示す図である。 第3c図は実施例で得られた冷延鋼板のTi + Z 
r / 2の総量と0.2%耐力の関係を示す図である
。 FIG、1a Ti+Zr/2  (%) FIG、1b Ti+Zr/2  (%) FIG、2 燻4モ温度(°C) FIG、3a Ti+Zr/2(シ・゛) F I G、 3b 0      0.05     0.1      
0.15Ti+Zr/2 (−/、) FIG、3c 0      0.05     0.1      
0.15Ti+Zr/2  (’10)
FIG. 1a is a diagram showing the relationship between the total amount of T i + Z r /2 and the optimum annealing temperature. Figure 1b shows the T i + of the hot rolled steel plate that has been annealed in the base material.
It is a figure which shows the relationship between the total amount of Zr/2 and absorbed energy. FIG. 2 is a diagram showing the relationship between base material annealing temperature and absorbed energy of a hot rolled steel sheet subjected to base material annealing. Figure 3a shows T i + Z of the cold rolled steel sheet obtained in the example.
FIG. 2 is a diagram showing the relationship between the total amount of r/2 and the Lankford value (r value). Figure 3b shows T i + Z of the cold rolled steel sheet obtained in the example.
It is a figure showing the relationship between the total amount of r/2 and tensile strength. Figure 3c shows Ti + Z of the cold rolled steel plate obtained in the example.
It is a figure showing the relationship between the total amount of r/2 and 0.2% proof stress. FIG, 1a Ti+Zr/2 (%) FIG, 1b Ti+Zr/2 (%) FIG, 2 Smoking temperature (°C) FIG, 3a Ti+Zr/2 (shi・゛) FIG, 3b 0 0.05 0 .1
0.15Ti+Zr/2 (-/,) FIG, 3c 0 0.05 0.1
0.15Ti+Zr/2 ('10)

Claims (1)

【特許請求の範囲】[Claims] (1)C;0.015〜0.03重量%、 Si;0.1〜1重量%、Mn;1重量% 以下、S;0.01重量%以下、Cr;20〜25重量
%、Mo;0.3〜1.0重量%、Ni:0.2〜1.
5重量%、Cu; 0.04〜0.5重量%、N;0.015〜0.03重
量%、Nb;8(C+N)〜20(C+N)重量%、T
iおよび/またはZrが(Ti+Zr/2)の総量とし
て;0.02〜0.1重量%を含有し、残部は鉄および
不可避的不純物からなるフェライト系ステンレス鋼板を
熱間圧延した後、350℃以下で巻取り、その後、[8
00+1250×(Ti+Zr/2)]±25℃の温度
域で母板焼鈍を行なうことを特徴とする成形性の優れた
高耐食フェライト系ステンレス鋼の製造方法。
(1) C: 0.015 to 0.03% by weight, Si: 0.1 to 1% by weight, Mn: 1% by weight or less, S: 0.01% by weight or less, Cr: 20 to 25% by weight, Mo ; 0.3-1.0% by weight, Ni: 0.2-1.
5% by weight, Cu; 0.04 to 0.5% by weight, N; 0.015 to 0.03% by weight, Nb; 8(C+N) to 20(C+N)% by weight, T
After hot rolling a ferritic stainless steel plate containing 0.02 to 0.1% by weight of i and/or Zr as the total amount of (Ti+Zr/2), with the remainder consisting of iron and unavoidable impurities, the sheet was heated at 350°C. Wind it up below, then [8
00+1250×(Ti+Zr/2)] A method for producing highly corrosion-resistant ferritic stainless steel with excellent formability, characterized by annealing the mother plate in a temperature range of ±25°C.
JP31838187A 1987-12-16 1987-12-16 Production of high-corrosion resistance ferritic stainless steel having excellent moldability Granted JPH01159319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31838187A JPH01159319A (en) 1987-12-16 1987-12-16 Production of high-corrosion resistance ferritic stainless steel having excellent moldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31838187A JPH01159319A (en) 1987-12-16 1987-12-16 Production of high-corrosion resistance ferritic stainless steel having excellent moldability

Publications (2)

Publication Number Publication Date
JPH01159319A true JPH01159319A (en) 1989-06-22
JPH0579732B2 JPH0579732B2 (en) 1993-11-04

Family

ID=18098513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31838187A Granted JPH01159319A (en) 1987-12-16 1987-12-16 Production of high-corrosion resistance ferritic stainless steel having excellent moldability

Country Status (1)

Country Link
JP (1) JPH01159319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199049A (en) * 2016-12-23 2019-09-03 株式会社Posco Ferritic stainless steel and its manufacturing method with excellent intensity and acid-resistant corrosion
CN114959435A (en) * 2022-05-26 2022-08-30 中联先进钢铁材料技术有限责任公司 Nb-Cr-Fe ternary intermediate alloy and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199049A (en) * 2016-12-23 2019-09-03 株式会社Posco Ferritic stainless steel and its manufacturing method with excellent intensity and acid-resistant corrosion
CN114959435A (en) * 2022-05-26 2022-08-30 中联先进钢铁材料技术有限责任公司 Nb-Cr-Fe ternary intermediate alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0579732B2 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
JP2006509912A (en) Steel product manufacturing method
JPH0610040A (en) Production of high strength refractory steel excellent in toughness at low temperature in weld zone
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JPH01159319A (en) Production of high-corrosion resistance ferritic stainless steel having excellent moldability
JP4715530B2 (en) Method for producing Cr-containing steel sheet excellent in high-temperature strength and toughness, and Cr-containing steel sheet
JP2530338B2 (en) High strength cold rolled steel sheet with good formability and its manufacturing method
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JPS61124556A (en) Low nickel austenitic stainless steel sheet and its manufacture
KR870000703B1 (en) Process for producing strip of corrosion resistant alloy steel
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JPH02305926A (en) Production of hot rolled steel sheet for enamel
JP2001303128A (en) Method for producing rolled weather resistant shape steel
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JPH03240918A (en) Production of wide flange shape excellent in refractoriness and reduced in yield ratio
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
JP4560994B2 (en) Cr-containing steel sheet for building / civil engineering structure and its manufacturing method
JPS61257421A (en) Production of extra-high tensile steel plate
JPS624450B2 (en)
JPS63183128A (en) Manufacture of cold rolled steel sheet for enamel having superior fish scale resistance
JP3420375B2 (en) Ferritic stainless steel sheet with excellent formability and secondary work brittleness resistance
JPH01225727A (en) Production of extremely low carbon cold-rolled steel sheet
JPS61157660A (en) Nonageable cold rolled steel sheet for deep drawing and its manufacture