JP6892605B2 - 超音波速度算出装置及び超音波速度算出方法 - Google Patents

超音波速度算出装置及び超音波速度算出方法 Download PDF

Info

Publication number
JP6892605B2
JP6892605B2 JP2018011830A JP2018011830A JP6892605B2 JP 6892605 B2 JP6892605 B2 JP 6892605B2 JP 2018011830 A JP2018011830 A JP 2018011830A JP 2018011830 A JP2018011830 A JP 2018011830A JP 6892605 B2 JP6892605 B2 JP 6892605B2
Authority
JP
Japan
Prior art keywords
ultrasonic
pair
probe
transmission time
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018011830A
Other languages
English (en)
Other versions
JP2019128323A (ja
Inventor
大輔 内堀
大輔 内堀
大 奥津
大 奥津
千紘 齋藤
千紘 齋藤
宏行 高橋
宏行 高橋
中川 雅史
雅史 中川
柳 秀一
秀一 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2018011830A priority Critical patent/JP6892605B2/ja
Publication of JP2019128323A publication Critical patent/JP2019128323A/ja
Application granted granted Critical
Publication of JP6892605B2 publication Critical patent/JP6892605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波伝達時間測定用治具、超音波伝達時間測定方法、超音波速度算出方法、及び超音波速度算出装置に関する。
セメントコンクリートやレジンコンクリート等のコンクリートを伝搬する超音波の速度を用いて、コンクリートの強度を推定する方法が提案されている。例えば、非特許文献1に記載の超音波速度の測定方法では、超音波発信用探触子と超音波受信用探触子とをコンクリート面に設置し、発信用探触子から発生させた弾性波が受信用探触子まで伝搬した距離を、伝達した時間で除することによって算出を行う。超音波のコンクリート中の伝達速度は、低いもので2000m/s以下から高いもので4000m/sを超える場合があるが、数百m/sの超音波速度が変化すると、推定するコンクリートの強度が大きく変化するため、正確な速度の算出が必要不可欠になる。
非特許文献2に記載の超音波速度の測定方法は、コンクリートの同一面に発信用及び受信用の一対の探触子を設置する表面法と、異なる面に探触子を設置する対称法や斜角法とを含む。建物の外壁やトンネルや地中のマンホールのような構造物を調査する場合は、作業スペースや探触子を設置できる壁面が限られるため、1平米以内程度の限られた同一面へ発信用及び受信用の一対の探触子を設置する表面法が主な測定方法となる。表面法には、発信用探触子から出力された超音波がコンクリートの表面を伝搬し、同一表面に設置した受信用探触子に入力される表面波を測定する方法と、コンクリートの内部で反射した反射波を測定する方法とが含まれる。厚みが不明なコンクリート構造物の場合は、表面波を測定する方法に限定される。表面波は、1mに満たない探触子間を高速で伝搬する。したがって、正確な超音波速度の算出には、発信用及び受信用の探触子間距離をミリ単位で測定することが重要になる。
荒木志帆,吉田秀典,中川裕之,難波美枝:各種劣化要因が超音波法における波形に及ぼす影響に関する数値解析的検討,構造工学論文集,Vol.60A,2014. 明石外世樹:コンクリートの非破壊試験に関する研究,土木学会論文集,第390号,V−8,1988.
しかしながら、コンクリート表面を伝搬する超音波の伝搬距離を、設置した探触子間隔から正確に測定することは難しい。探触子は、内部に振動子が設置されていて、その振動子を用いて超音波の発信と受信とを行っている。探触子の設置面の形状が円形であれば、円形の振動子であり、四角形であれば四角形の振動子を用いている。対称法では、発信用探触子と受信用探触子の設置面を同一直線上で向い合せて、コンクリートを挟み込むように測定するため、発信用と受信用の探触子の設置面間の距離が超音波の伝達距離と等しくなる。一方、表面法による表面波の観測は、探触子の設置面が同一平面上にあるため、超音波は探触子の設置面の水平方向に発信され、水平方向から受信される。探触子の設置面の大きさは様々あるが、コンクリートの表面は様々な大きさの骨材や空隙や凹凸があるため、設置面が小さい点ではなく一定以上の面積を有する探触子を用いる必要がある。しかし、一定以上の面をコンクリート面に設置した場合、超音波を発信した発信点と受信した受信点を探触子の設置面上に目視で定めることは困難となる。このことから、探触子の設置位置から超音波が伝搬した距離を正確に測定することは難しいという課題がある。
また、超音波の測定においては、探触子を動かさずにコンクリート面に固定しておく方法が必要となる。測定時は、超音波のコンクリートへの伝達を良くするために、探触子の設置面にグリースなどの粘性剤を塗布して、探触子がコンクリートの表面と密着するように設置を行うが、このグリースには粘性があるため、発信用探触子と受信用探触子を同じ位置から動かすことなく固定することが難しい。特に、壁や天井のコンクリート面を測定する場合は、真横や真上に探触子を設置するため、既定の探触子間隔を維持し続けることは困難となる。
以上のような理由から、コンクリートを伝搬する超音波の速度を表面法により測定する技術が要求されている反面、これまでの技術では実現困難である。
このような問題点に鑑みてなされた本発明の目的は、表面法においてコンクリート等を含む対象物を伝搬する超音波の表面波を測定する際に、探触子の設置面の発信点と受信点の正確な位置がわからなくても超音波速度を求めることができる超音波伝達時間測定方法、超音波速度算出方法、及び超音波速度算出装置と、超音波伝達時間測定方法に用いる探触子を精度良く対象物の表面に設置することができる超音波伝達時間測定用治具と、を提供することにある。
上記課題を解決するために、本発明の一実施形態に係る超音波速度算出装置は、対象物を伝搬する超音波の速度を算出する超音波速度算出装置であって、発信用及び受信用の一対の探触子をそれぞれ支持する一対の探触子ホルダーと、前記一対の探触子ホルダーの移動を制限する移動切替部と、を有する超音波伝達時間測定用治具を用いて、発信用及び受信用の前記一対の探触子ホルダーの間隔ごとに測定された超音波の伝達時間を取得する取得部と、取得された前記伝達時間を前記間隔に対応する距離ごとに平均化する平均化部と、前記距離及び平均化された前記伝達時間に基づいて回帰直線を取得し、該回帰直線の傾きに基づいて超音波速度を算出する算出部と、前記回帰直線に基づいて決定係数を算出し、算出された前記超音波速度の妥当性を前記決定係数に基づいて評価する評価部と、を備える。
本発明の一実施形態に係る超音波速度算出方法は、超音波速度算出装置により対象物を伝搬する超音波の速度を算出する超音波速度算出方法であって、発信用及び受信用の一対の探触子をそれぞれ支持する一対の探触子ホルダーと、前記一対の探触子ホルダーの移動を制限する移動切替部と、を有する超音波伝達時間測定用治具を用いて発信用及び受信用の前記一対の探触子ホルダーの間隔ごとに測定された超音波の伝達時間を取得するステップと、取得された前記伝達時間を前記間隔に対応する距離ごとに平均化するステップと、前記距離及び平均化された前記伝達時間に基づいて回帰直線を取得し、該回帰直線の傾きに基づいて超音波速度を算出するステップと、前記回帰直線に基づいて決定係数を算出し、算出された前記超音波速度の妥当性を前記決定係数に基づいて評価するステップと、を含む。
本発明によれば、表面法においてコンクリート等を含む対象物を伝搬する超音波の表面波を測定する際に、探触子の設置面の発信点と受信点の正確な位置がわからなくても超音波速度を求めることができ、測定方法に用いる探触子を精度良く対象物の表面に設置することができる。
一実施形態に係る超音波伝達時間測定用治具を正面から模式的に示した外観斜視図である。 図1の超音波伝達時間測定用治具を背面から模式的に示した外観斜視図である。 探触子ホルダーを模式的に示した外観斜視図である。 図3の探触子ホルダーの底面図である。 探触子ホルダーに探触子がはめ込まれた後の様子を模式的に示した外観斜視図である。 発信用及び受信用の一対の探触子が装着された超音波伝達時間測定用治具及び超音波伝達時間測定装置の上面図である。 一実施形態に係る超音波伝達時間測定方法のフローを示すフローチャートである。 一実施形態に係る超音波速度算出装置の構成を示すブロック図である。 =40mm及びn=1のときの測定データを示す模式図である。 超音波速度の測定結果を示す模式図である。
以下、添付図面を参照しながら本発明の一実施形態について説明する。以下の説明中の前後、左右、及び上下の方向は、図中の矢印の方向を基準としている。各矢印の方向は、図1乃至図6において異なる図面同士で互いに整合している。
図1は、一実施形態に係る超音波伝達時間測定用治具1を正面から模式的に示した外観斜視図である。図2は図1の超音波伝達時間測定用治具1を背面から模式的に示した外観斜視図である。以下では、図1及び図2を参照しながら、超音波伝達時間測定方法に用いる超音波伝達時間測定用治具1の構造について主に説明する。
超音波伝達時間測定用治具1は、対象物を伝搬する超音波の速度の測定に用いられる。対象物は、セメントコンクリート及びレジンコンクリート等を含む。超音波伝達時間測定用治具1は、左右対称に配置されている一対の探触子ホルダー11を有する。一対の探触子ホルダー11は、後述する発信用及び受信用の一対の探触子をそれぞれ支持する。
超音波伝達時間測定用治具1は、一対の探触子ホルダー11を前後左右方向から囲繞するフレーム12を有する。フレーム12は、正面側に位置する正面フレーム12aと、背面側に位置する背面フレーム12bと、左右両側に位置する一対の側面フレーム12cと、を有する。一対の探触子ホルダー11は、フレーム12により挟持される。より具体的には、正面の正面フレーム12aと背面の背面フレーム12bとが、一対の探触子ホルダー11を前後方向に沿って挟み込み、それらの左右両側面で側面フレーム12cにねじ止めされている。このとき、探触子ホルダー11は、一対の側面フレーム12cの方向、すなわち左右方向に移動することが可能である。
超音波伝達時間測定用治具1は、正面フレーム12a及び背面フレーム12bにねじ止めされている把持部13を有する。把持部13は、正面において正面フレーム12aとねじ止めされている正面基体13aと、背面において背面フレーム12bとねじ止めされている背面基体13bと、を有する。把持部13は、その上部において正面基体13aと背面基体13bとを連接するグリップ13cを有する。グリップ13cは、超音波伝達時間測定用治具1の上端部において一方向、例えば前後方向に延在する。グリップ13cは、使用者が片手で把持可能な持ち手の役割を果たす。
超音波伝達時間測定用治具1は、例えば把持部13の正面基体13aに形成されている移動切替部14を有する。移動切替部14は、一対の探触子ホルダー11の移動と固定とを切り替える。すなわち、移動切替部14は、必要に応じて一対の探触子ホルダー11の左右方向の移動を制限する。移動切替部14は、正面基体13aの上面から突設される移動切替バー14aと、移動切替バー14aを上面方向に上げることによって正面フレーム12aの後面から背面方向、すなわち後方に突出する固定ボタン14bと、を有する。
超音波伝達時間測定用治具1は、一対の探触子ホルダー11それぞれと連接し、一対の探触子ホルダー11それぞれの位置を調整する調整バー15を有する。移動切替バー14aが上がることによって突出した固定ボタン14bが調整バー15を固定することによって、一対の探触子ホルダー11の位置が固定される。すなわち、移動切替部14は、調整バー15と係合することで一対の探触子ホルダー11の移動を制限する。
グリップ13cの太さは、片手で握れる太さである。グリップ13cの長さは、使用者がグリップ13cを片手で握った際に、移動切替バー14aを親指で押し込める程度の長さである。使用者が移動切替バー14aを下面方向に押し込むことによって、一対の探触子ホルダー11の位置が調整できるようになる。そのため、使用者は、片手で超音波伝達時間測定用治具1を持って、片手で探触子ホルダー11をスライドすることができるので、一対の探触子の間隔を片手で調整できる。探触子ホルダー11の位置が決まった後は、使用者が移動切替バー14aを上面方向に上げることによって、探触子ホルダー11の位置が固定される。移動切替バー14aによる探触子ホルダー11の移動固定切替操作は、これに限定されない。移動固定切替操作は、任意の操作を含んでもよい。例えば、使用者は、移動切替バー14aを押し込むことによって探触子ホルダー11を固定し、移動切替バー14aを上げることによって探触子ホルダー11の位置を調整してもよい。
図2に示すように、超音波伝達時間測定用治具1は、正面フレーム12aの上面に形成され、一対の探触子ホルダー11の間隔を示す目盛り16を有する。調整バー15が一定間隔でロックされるようになっているため、使用者は、目盛り16付近で探触子ホルダー11の固定位置を微調整する必要はない。使用者は、あらかじめ設計した目盛り16の位置に合うように探触子ホルダー11を正確に固定することができる。これにより、使用者が探触子の間隔を数ミリ単位で調整する必要はなく、探触子ホルダー11が事前に設計した間隔で固定されるため、探触子の間隔の調整作業が効率化される。この目盛り16は、グリップ13cを中心として、左右対称の位置に振られている。使用者は、対称となる目盛り16の位置に一対の探触子ホルダー11をそれぞれ固定することによって、事前に設計した間隔で一対の探触子ホルダー11を固定することができる。また、調整バー15は、耐摩耗性が高い金属等により構成することで複数回使用された際でも耐久性を担保できる。
図3は、探触子ホルダー11を模式的に示した外観斜視図である。図4は、図3の探触子ホルダー11の底面図である。以下では、図3及び図4を参照しながら、探触子ホルダー11の構造について主に説明する。
一対の探触子ホルダー11それぞれは、支持する探触子の回転を制限する弾性体を有する。より具体的には、探触子ホルダー11は、超音波伝達時間測定用治具1の正面と背面側にねじ止めにより固定されている2枚の板バネ11aを有する。2枚の板バネ11aは、探触子ホルダー11に探触子がはめ込まれた後に探触子を固定する。
図5は、探触子ホルダー11に探触子20がはめ込まれた後の様子を模式的に示した外観斜視図である。以下では、図5を参照しながら、探触子ホルダー11に探触子20がはめ込まれた後の状態について主に説明する。
探触子ホルダー11に探触子20がはめ込まれた後、探触子20が板バネ11aによって固定される。そのため、一度はめ込んだ探触子20の向きは、探触子ホルダー11のスライドによって一対の探触子20の中心間隔が変更されても変化しにくい。探触子20の向きが変化しにくいため、超音波の発信点と受信点との最短距離は探触子ホルダー11のスライドした移動距離のみに依存する。したがって、探触子20の向きが変わることによる発信点と受信点との最短距離の変化が抑制される。加えて、発信用及び受信用の一対の探触子20と超音波伝達時間測定用治具1とが一体型になっているため、グリースによって探触子20が対象物の設置面に対してすべり、探触子20の間隔が設置後に変化することが抑制される。ここで、探触子ホルダー11は、円柱形の探触子20を支持するとして説明したが、これに限定されない。探触子ホルダー11は、多角柱の探触子20を支持してもよい。このとき、探触子ホルダー11において探触子20がはめ込まれる孔部は、探触子20の形状に対応する形状により形成される。板バネ11aの個数も探触子20の形状によって増減可能である。また、探触子ホルダー11と探触子20とは、互いにはめ込まれた際に、探触子20の中心Pが探触子ホルダー11の中心軸C上に位置するように設計される。
探触子20の間隔は、正面フレーム12aに一定間隔でふられている目盛り16に探触子ホルダー11の中心軸Cを合わせて探触子ホルダー11を固定することで、既知の値で定めることができる。したがって、発信用の探触子20の中心Pと受信用の探触子20の中心Pとが正確な間隔で固定できる。目盛り16の間隔は、設計者によって自由に決められる。探触子20の間隔の最大値は、超音波伝達時間測定用治具1を片手で持って、対象物の表面に設置できる任意の大きさまで大きくできる。探触子20の間隔の最小値は、左右対称の一対の探触子ホルダー11同士が接触するまで小さくできる。
図6は、発信用及び受信用の一対の探触子20が装着された超音波伝達時間測定用治具1及び超音波伝達時間測定装置25の上面図である。発信用及び受信用の一対の探触子20が超音波伝達時間測定用治具1と一体化するため、使用者は、対象物の表面に一対の探触子20を片手で設置することができる。したがって、発信用及び受信用の一対の探触子20を別々に固定する必要性がなくなり作業性が向上する。
図6に示すように、発信用及び受信用の一対の探触子20は、超音波伝達時間測定装置25に接続されている。超音波伝達時間測定装置25は、超音波の伝達時間を測定できる任意の装置を含む。例えば、超音波伝達時間測定装置25は、超音波を発生させる超音波発生部と、超音波伝達時間測定装置25の全体の制御を行う制御部とをその内部に含む。超音波伝達時間測定装置25は、超音波の伝達時間の測定結果を表示できる表示部と、使用者による操作を受け付ける操作部とをその外面にさらに有してもよい。超音波伝達時間測定装置25は、例えば、発信用の探触子20から超音波を発信した時刻を0として、受信用の探触子20が超音波を受信した時刻を超音波の伝達時間として定める。超音波伝達時間測定装置25は上記のように各機能部を一体的に有するとして説明したが、その構成はこれに限定されない。超音波伝達時間測定装置25は、例えば、制御部、表示部、及び操作部として機能するパーソナルコンピュータ等を含む情報処理装置と、超音波発生部として機能する任意の他の装置とを別々に有してもよい。
図7は、一実施形態に係る超音波伝達時間測定方法のフローを示すフローチャートである。図7を参照しながら、一実施形態に係る超音波伝達時間測定用治具1を用いて対象物を伝搬する超音波の速度を測定する手順について主に説明する。以下では、距離Lは、発信用の探触子20を支持する探触子ホルダー11の中心軸Cと受信用の探触子20を支持する探触子ホルダー11の中心軸Cとの距離を示す。すなわち、距離Lは、一対の探触子ホルダー11の間隔に対応する。固定回数mは、目盛り16に対する一対の探触子ホルダー11の固定回数を示す。伝達時間tm,nは、距離Lで超音波速度の測定を実施した際の超音波の伝達時間を示す。測定回数nは、距離Lのときの超音波速度の測定回数である。
発信用及び受信用の一対の探触子20を一対の探触子ホルダー11がそれぞれ支持した状態で、ステップS101では、固定回数mを1とする。すなわち、ステップS101は、目盛り16に対する一対の探触子ホルダー11の固定回数が1回目であることを意味する。
ステップS102では、一対の探触子ホルダー11を固定したことがない目盛り16の位置で固定する。このとき、一対の探触子ホルダー11の移動を移動切替部14により制限する。
ステップS103では、測定回数nを1とする。このとき、距離Lで1回目の測定が開始される。
ステップS104では、対象物の表面において、一対の探触子20を設置したことがない箇所で超音波の伝達時間tm,nを測定する。加えて、一対の探触子ホルダー11の距離Lを目盛り16により測定する。
ステップS105では、規定した回数bに測定回数nが一致するか否かを判定する。規定した回数bに測定回数nが一致しない場合、ステップS106に進む。規定した回数bに測定回数nが一致する場合、ステップS107に進む。回数bは、測定回数nに対して規定された最大値である。すなわち、超音波速度の測定は、最大でb回実施される。規定した回数bの測定が完了した際に、ステップS107に進む。
ステップS106では、測定回数nに1を加える。すなわち、さらなる測定が実施されるよう、測定回数nの値が1だけ増加する。
対象物が例えばコンクリートである場合、コンクリートは骨材やモルタル等の不均一な材質で構成されているため、一対の探触子20間の距離が同一であっても、探触子20の設置箇所において伝達時間tm,nにバラツキが生じる。そのため、一対の探触子20の設置位置を変えた状態で、複数回の測定が必要となる。よって、距離Lごとに測定がn回実施される。例えば、測定回数nは3以上の値を含む。すなわち、距離Lにおいて少なくとも3回、最大でb回、測定が実施される。また、同一距離Lで測定が実施される場合、測定ごとに一対の探触子20を過去に設置したことがない場所へ設置する。
ステップS107では、測定回数nが回数bに一致する場合に、測定された伝達時間tm,1〜tm,bのうち、骨材の影響等で数値が大きく外れているものに関して、再測定を実施する。このような再測定を実施しながら、b個の伝達時間tm,nを測定することもできる。
ステップS108では、規定した回数aに固定回数mが一致するか否かを判定する。規定した回数aに固定回数mが一致しない場合、ステップS109に進む。規定した回数aに固定回数mが一致する場合、測定を終了する。回数aは、固定回数mに対して規定された最大値である。すなわち、目盛り16に対する一対の探触子ホルダー11の固定は、最大でa回実施される。
ステップS109では、固定回数mに1を加える。すなわち、一対の探触子ホルダー11が固定されている目盛り16を変更して、一対の探触子20間の距離Lを変更する。例えば、目盛り16に対する一対の探触子ホルダー11の固定回数mは3以上の値を含む。すなわち、少なくとも3回、最大でa回、固定が実施される。
図8は、一実施形態に係る超音波速度算出装置30の構成を示すブロック図である。超音波速度算出装置30は、測定された伝達時間tm,nを用いて、対象物を伝搬する超音波の速度を算出する。
超音波速度算出装置30は、取得部31と、平均化部32と、算出部33と、評価部34と、を有する。取得部31は、超音波伝達時間測定用治具1を用いて各距離Lで測定された超音波の伝達時間tm,nを探触子20又は探触子20に接続されている装置から取得する。平均化部32は、取得された伝達時間tm,nを各距離Lで平均化する。この平均化処理によって、対象物の材質の不均一性によって生じるバラツキが抑制される。算出部33は、距離L及び平均化された伝達時間tに基づいて最小二乗法によって回帰直線の算出を行い、算出された回帰直線の傾きαを超音波速度として算出する。算出部33は、平均化部32によって計算された各距離Lにおける超音波の平均伝達時間t及び各距離Lをデータの組(t,L)として、以下の式(1)乃至式(3)によって表される1次のモデル関数で回帰直線を求める。モデル関数が1次とできる理由は、超音波速度は、距離と伝達時間の1次モデルで算出することができるためである。
Figure 0006892605
Figure 0006892605
Figure 0006892605
Figure 0006892605
超音波速度算出装置30は、回帰直線が算出された後、傾きαを超音波速度として定義する。超音波速度算出装置30は、発信用の探触子20と受信用の探触子20との中心間距離からの実際の超音波の発信点と受信点との距離のずれとして切片βを定義する。なぜならば、超音波伝達時間測定用治具1によって、探触子ホルダー11に一度装着された探触子20は、回転することなくスライド可能となる。そのため、探触子ホルダー11をスライドさせて移動した距離が探触子20の発信点と受信点との間隔の変化と等しくなる。よって、探触子20の設置面の発信点と受信点の位置が不明であっても、少なくとも探触子ホルダー11を2つの異なる目盛り16の位置で固定して測定を実施すれば、探触子ホルダー11の移動距離と超音波の伝達時間tm,nの差分とから超音波速度を算出することが可能である。
評価部34は、超音波速度が算出された後、回帰直線の決定係数Rを以下の式(4)に従い算出する。
Figure 0006892605
Figure 0006892605
評価部34は、算出された超音波速度の妥当性を式(4)の決定係数Rに基づいて評価する。より具体的には、評価部34は、算出された決定係数Rに一定の閾値を設けて、決定係数Rが閾値以上であれば超音波速度が妥当であると判断する。評価部34は、決定係数Rが閾値未満であれば、測定データにバラツキが多いと判断する。これにより、測定データの取り直しを実施することができる。そのため、探触子ホルダー11を少なくとも3つの異なる目盛り16の位置で固定し、最小二乗法で算出する方法を用いた。
提案した超音波伝達時間測定用治具1及び超音波伝達時間測定方法と超音波速度算出装置30とを用いれば、実際の超音波の探触子20の設置面における発信点と受信点が不明であっても、傾きαを算出することで超音波速度を測定することができる。
図9は、L=40mm及びn=1のときの測定データを示す模式図である。横軸は時間を示す。縦軸は探触子20の受信強度を示す。図9を参照しながら、上述した方法を用いて実際のコンクリート面を測定した具体的な例における測定データについて説明する。
コンクリートを伝搬する超音波速度の測定を図7に示すフローに従い実施した。このとき、a=3、b=3とした。探触子20で受信する超音波のサンプリング速度は、0.2μ秒ごととなっており、8.2μ秒の場所で、超音波の表面波が到達している。表面波は、最も早く一対の探触子20間を伝達する。したがって、初期のピーク位置が表面波に対応する。初期のピークが現れた後、第2、第3の内部を伝達した超音波が到達している。すべての測定を終了した際の結果を表1に示す。
Figure 0006892605
図10は、超音波速度の測定結果を示す模式図である。図10に示すグラフでは、一対の探触子20の距離40mm、100mm、及び160mmの各々で測定された伝達時間tm,nの平均値がプロットされる。加えて、超音波速度に対応する傾きαと探触子20の間隔のずれに対応する切片βの値が示される。図8の超音波速度算出装置30を用いて表1のデータから超音波速度を算出すると、超音波速度は、式(1)乃至式(3)より4225.4m/sと算出される。決定係数Rの値は1を示す。
以上のような一実施形態に係る超音波伝達時間測定用治具1によれば、探触子20を精度良く対象物の表面に設置することができる。一対の探触子ホルダー11により発信用及び受信用の一対の探触子20が安定して支持されるので、一対の探触子20の設置面上での移動が抑制される。したがって、超音波速度の測定中においてもグリース等の影響により一対の探触子20が位置ずれを引き起こす可能性は低い。これにより、超音波速度の測定の精度が向上する。加えて、移動切替部14によって一対の探触子ホルダー11の移動が制限された状態で目盛り16の値を読み取ることで、使用者は、一対の探触子ホルダー11の距離を測定できる。これにより、超音波の発信点と受信点を探触子20の設置面上で目視により定めることが困難な場合でも、使用者は、一対の探触子20の距離を正確に測定することができる。したがって、超音波速度の測定の精度がさらに向上する。
超音波伝達時間測定用治具1が探触子20の回転を制限する弾性体を有することで、探触子ホルダー11による探触子20の支持性が向上する。すなわち、一対の探触子ホルダー11によって一対の探触子20がそれぞれより安定して支持される。結果、超音波速度の測定中における探触子20の位置ずれがより強く抑制される。したがって、超音波速度の測定の精度がさらに向上する。
超音波伝達時間測定用治具1が探触子ホルダー11それぞれの位置を調整する調整バー15を有することで、探触子ホルダー11の位置調整が容易となる。使用者は、移動切替部14と調整バー15との組み合わせによって容易に一対の探触子ホルダー11の距離を定めることができる。したがって、超音波速度の測定の作業効率が向上する。
移動切替部14が調整バー15と係合することで、一対の探触子ホルダー11の移動がより強く制限される。したがって、移動が制限されている際の一対の探触子ホルダー11の距離が安定し、結果、一対の探触子20の距離も安定する。したがって、超音波速度の測定の精度がさらに向上する。
超音波伝達時間測定用治具1が把持部13、より具体的にはグリップ13cを有することで、使用者は、超音波伝達時間測定用治具1を片手で把持できる。これにより、一対の探触子20を効率的に対象物の表面に設置できる。したがって、超音波伝達時間測定用治具1の製品としての利便性が向上する。
一実施形態に係る超音波速度算出装置30によれば、表面法においてコンクリート等を含む対象物を伝搬する超音波の表面波を測定する際に、探触子20の設置面の発信点と受信点の正確な位置がわからなくても超音波速度を求めることができる。探触子ホルダー11の移動距離と超音波の伝達時間tm,nの差分とから超音波速度を算出することができるので、超音波速度の測定が容易となる。
本発明は、その精神又はその本質的な特徴から離れることなく、上述した実施形態以外の他の所定の形態で実現できることは当業者にとって明白である。したがって、先の記述は例示的であり、これに限定されない。発明の範囲は、先の記述によってではなく、付加した請求項によって定義される。あらゆる変更のうちその均等の範囲内にあるいくつかの変更は、その中に包含されるとする。
例えば、上述した各構成部の形状、配置、向き及び個数等は、上記の説明及び図面における図示の内容に限定されない。各構成部の形状、配置、向き及び個数等は、その機能を実現できるのであれば、任意に構成されてもよい。
本発明は、上述した超音波速度算出装置30に実質的に相当する超音波速度算出方法としても実現し得るものである。本発明の範囲には、これらも包含されると理解されたい。
上述した超音波伝達時間測定方法及び超音波速度算出方法の各ステップに含まれる機能等は、論理的に矛盾しないように再配置可能であり、複数のステップを1つに組み合わせたり、又は分割したりすることが可能である。
1 超音波伝達時間測定用治具
11 探触子ホルダー
11a 板バネ
12 フレーム
12a 正面フレーム
12b 背面フレーム
12c 側面フレーム
13 把持部
13a 正面基体
13b 背面基体
13c グリップ
14 移動切替部
14a 移動切替バー
14b 固定ボタン
15 調整バー
16 目盛り
20 探触子
25 超音波伝達時間測定装置
30 超音波速度算出装置
31 取得部
32 平均化部
33 算出部
34 評価部
C 中心軸
P 中心

Claims (6)

  1. 対象物を伝搬する超音波の速度を算出する超音波速度算出装置であって、
    発信用及び受信用の一対の探触子をそれぞれ支持する一対の探触子ホルダーと、前記一対の探触子ホルダーの移動を制限する移動切替部と、を有する超音波伝達時間測定用治具を用いて、発信用及び受信用の前記一対の探触子ホルダーの間隔ごとに測定された超音波の伝達時間を取得する取得部と、
    取得された前記伝達時間を前記間隔に対応する距離ごとに平均化する平均化部と、
    前記距離及び平均化された前記伝達時間に基づいて回帰直線を取得し、該回帰直線の傾きに基づいて超音波速度を算出する算出部と、
    前記回帰直線に基づいて決定係数を算出し、算出された前記超音波速度の妥当性を前記決定係数に基づいて評価する評価部と、
    を備える、
    超音波速度算出装置
  2. 前記一対の探触子ホルダーそれぞれは、支持する前記探触子の回転を制限する弾性体を有する、
    請求項1に記載の超音波速度算出装置
  3. 前記超音波伝達時間測定用治具は、前記一対の探触子ホルダーの間隔を示す目盛りと、前記一対の探触子ホルダーそれぞれと連接し、前記一対の探触子ホルダーそれぞれの位置を調整する調整バーと、をさらに有する
    請求項1又は2に記載の超音波速度算出装置
  4. 前記移動切替部は、前記調整バーと係合することで前記一対の探触子ホルダーの移動を制限する、
    請求項3に記載の超音波速度算出装置
  5. 前記超音波伝達時間測定用治具は、前記一対の探触子ホルダーを挟持するフレームと、前記フレームにねじ止めされている把持部と、をさらに有する
    請求項1乃至4のいずれか1項に記載の超音波速度算出装置
  6. 超音波速度算出装置により対象物を伝搬する超音波の速度を算出する超音波速度算出方法であって、
    発信用及び受信用の一対の探触子をそれぞれ支持する一対の探触子ホルダーと、前記一対の探触子ホルダーの移動を制限する移動切替部と、を有する超音波伝達時間測定用治具を用いて発信用及び受信用の前記一対の探触子ホルダーの間隔ごとに測定された超音波の伝達時間を取得するステップと、
    取得された前記伝達時間を前記間隔に対応する距離ごとに平均化するステップと、
    前記距離及び平均化された前記伝達時間に基づいて回帰直線を取得し、該回帰直線の傾きに基づいて超音波速度を算出するステップと、
    前記回帰直線に基づいて決定係数を算出し、算出された前記超音波速度の妥当性を前記決定係数に基づいて評価するステップと、
    を含む、
    超音波速度算出方法。
JP2018011830A 2018-01-26 2018-01-26 超音波速度算出装置及び超音波速度算出方法 Active JP6892605B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018011830A JP6892605B2 (ja) 2018-01-26 2018-01-26 超音波速度算出装置及び超音波速度算出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018011830A JP6892605B2 (ja) 2018-01-26 2018-01-26 超音波速度算出装置及び超音波速度算出方法

Publications (2)

Publication Number Publication Date
JP2019128323A JP2019128323A (ja) 2019-08-01
JP6892605B2 true JP6892605B2 (ja) 2021-06-23

Family

ID=67472139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018011830A Active JP6892605B2 (ja) 2018-01-26 2018-01-26 超音波速度算出装置及び超音波速度算出方法

Country Status (1)

Country Link
JP (1) JP6892605B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427997Y2 (ja) * 1974-07-10 1979-09-10
JPS6219753A (ja) * 1985-07-18 1987-01-28 Nichizou Tec:Kk 超音波探傷用治具
JP2922348B2 (ja) * 1991-12-11 1999-07-19 日本鋼管株式会社 表面波音速測定器
JPH06258297A (ja) * 1993-03-04 1994-09-16 Japan Steel Works Ltd:The 超音波材料試験装置および超音波を用いた材料の試験方法
JP2840040B2 (ja) * 1994-12-22 1998-12-24 アロカ株式会社 組織内音速測定方法
KR20140001764U (ko) * 2012-09-18 2014-03-26 현대중공업 주식회사 탐촉자용 거리조절장치

Also Published As

Publication number Publication date
JP2019128323A (ja) 2019-08-01

Similar Documents

Publication Publication Date Title
GB2381583A (en) Measuring and levelling device and method of using same
CN108827193A (zh) 一种用于精确检测模板平整度的检测装置
JP2006337112A (ja) 逐次3点法における零点誤差補正方法及び零点誤差補正装置
CN105300578A (zh) 一种可调节声束角及测试区域的超声波应力检测设备
TW201017095A (en) Straightness measuring method and straightness measuring apparatus
JP6892605B2 (ja) 超音波速度算出装置及び超音波速度算出方法
CN108872386A (zh) 混凝土强度超声波角测法检测的校正方法
CN109521092A (zh) 一种表面波和板波声速的非接触式测量装置及其方法
JP2001194137A (ja) 材料厚さの非接触測定方法及び装置
JP5562118B2 (ja) 超音波非破壊計測方法、超音波非破壊計測装置、及びプログラム
CN205228690U (zh) 一种可调节声束角及测试区域的超声波应力检测装置
JP4691656B2 (ja) 構造物内の物体探査方法、コンピュータ・プログラム及び記録媒体
CN104914039A (zh) 一种汽车内饰件划痕测试装置
RU2419816C2 (ru) Способ измерения расстояния до различных точек поверхности объекта
KR20140085999A (ko) 강판 평탄도 측정 장치
JP4701396B2 (ja) 超音波法によるコンクリート構造物のひび割れ深さ探査方法及びそのひび割れ深さ探査装置
KR20160135036A (ko) 건축물의 패널 설치용 수준기
JP2007132758A (ja) レール探傷装置、レール探傷システムおよび超音波探傷用試験片
CN212378720U (zh) 一种同时监测混凝土表面浅裂缝宽度和深度的装置
JP2019060740A (ja) 温度測定方法
CN206756093U (zh) 测量装置
JP2005070017A (ja) 縦波と横波回折波による超音波探傷方法及び装置
JPH10307094A (ja) コンクリートの非破壊強度試験方法
RU167852U1 (ru) Устройство для измерения механических свойств материалов
CN212300316U (zh) 一种建筑工程质量检测装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6892605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150