JP6892141B2 - Aspergillus that can be used for producing brewed foods and a method for producing brewed foods using the aspergillus that lacks the function of the gene encoding AogdhB. - Google Patents

Aspergillus that can be used for producing brewed foods and a method for producing brewed foods using the aspergillus that lacks the function of the gene encoding AogdhB. Download PDF

Info

Publication number
JP6892141B2
JP6892141B2 JP2019181178A JP2019181178A JP6892141B2 JP 6892141 B2 JP6892141 B2 JP 6892141B2 JP 2019181178 A JP2019181178 A JP 2019181178A JP 2019181178 A JP2019181178 A JP 2019181178A JP 6892141 B2 JP6892141 B2 JP 6892141B2
Authority
JP
Japan
Prior art keywords
strain
aspergillus
jiuqu
soy sauce
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019181178A
Other languages
Japanese (ja)
Other versions
JP2021052702A (en
Inventor
快幸 豊島
快幸 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Corp
Original Assignee
Yamasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Corp filed Critical Yamasa Corp
Priority to JP2019181178A priority Critical patent/JP6892141B2/en
Publication of JP2021052702A publication Critical patent/JP2021052702A/en
Application granted granted Critical
Publication of JP6892141B2 publication Critical patent/JP6892141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、AogdhBをコードする遺伝子の機能が欠損している、醸造食品の製造に適した麹菌株および当該菌株を用いた醸造食品の製造法に関する。 The present invention relates to a Jiuqu strain suitable for producing a brewed food, which lacks the function of a gene encoding AogdhB, and a method for producing a brewed food using the strain.

醤油の醸造工程における諸味のpHは、各種酵素の作用や発酵微生物の挙動に大きな影響を及ぼすものであり、pHの制御は、原料窒素の回収率や風味を管理する上で非常に重要である。中でも、諸味熟成の上流である製麹工程における醤油麹のpHは、培地や製麹条件、他の微生物など様々な要素により複雑に制御されている。
The pH of various flavors in the soy sauce brewing process has a great influence on the action of various enzymes and the behavior of fermenting microorganisms, and pH control is very important for controlling the recovery rate and flavor of raw material nitrogen. .. Above all, the pH of soy sauce koji in the koji making process, which is upstream of moromi aging, is complicatedly controlled by various factors such as the medium, koji making conditions, and other microorganisms.

醤油麹を製造する際には、水分、原料の配合割合、培養温度、時間などの影響で麹pHが過剰に上昇し、その後の発酵へ悪い影響を与えることがある。また麹pHが高いことで、それにより得られる醤油のpHが高くなる場合には、色の濃化や、味のぼやけた風味の悪い醤油となり、品質上問題が生じることもある。 When producing soy sauce jiuqu, the pH of the jiuqu may rise excessively due to the influence of water content, mixing ratio of raw materials, culture temperature, time, etc., which may adversely affect the subsequent fermentation. In addition, if the pH of the soy sauce obtained is high due to the high pH of the jiuqu, the soy sauce may have a darker color or a blurred taste and a bad taste, which may cause a quality problem.

麹のpHに影響を及ぼす要素として、従来、麹中におけるクエン酸等の有機酸の減少とアンモニアの生成により、製麹中におけるpHの上昇が生じることが報告されている(非特許文献1)。また、製麹工程のpHを制御する方法としては、原料配合や原料の種別の選択、製麹方法などによる方法が検討されているものの(非特許文献2)、醤油麹の製麹において、麹菌のどのような遺伝子がアンモニア生成やpHの変動に関わるのか、従来まったく知られていない。 Conventionally, as factors affecting the pH of Jiuqu, it has been reported that the decrease of organic acids such as citric acid in Jiuqu and the production of ammonia cause an increase in pH during Jiuqu production (Non-Patent Document 1). .. In addition, as a method of controlling the pH of the koji making process, a method of blending raw materials, selecting the type of raw material, a koji making method, etc. has been studied (Non-Patent Document 2). It has not been known at all what kind of gene is involved in ammonia production and pH fluctuation.

なお、麹菌によるアミノ酸代謝経路について様々な研究が従来なされている。たとえば、醤油や酒の製造に用いられるアスペルギルス・オリゼー(Aspergillus oryzae)について、親株と比べて酸性プロテアーゼの分泌が上昇し、生育が良好な変異株の網羅的な遺伝子発現解析を行った結果、変異株では各種のアミノ酸脱水素酵素の発現量が変化しており、グルタミン酸脱水素酵素AO1008_09334の発現量が大きく上昇していたことが報告されている(非特許文献3)。しかしながら、当該知見は、実際の醤油麹の製造中における遺伝子発現を解析したものではなく、解析結果が製麹工程における実態を反映しているか不明であった。


Various studies have been conducted on the amino acid metabolism pathway by Jiuqu. For example, aspergillus oryzae, which is used in the production of soy sauce and liquor, has increased secretion of acidic proteases as compared with the parent strain, and as a result of comprehensive gene expression analysis of mutant strains with good growth, mutations have occurred. It has been reported that the expression levels of various amino acid dehydrogenases were changed in the strains, and the expression levels of glutamate dehydrogenase AO1008_09334 were significantly increased (Non-Patent Document 3). However, this finding was not an analysis of gene expression during the actual production of soy sauce koji, and it was unclear whether the analysis results reflected the actual conditions in the koji making process.


日本醤油研究所雑誌 第12巻 第6号,224−228頁Japan Salty Sauce Research Institute Magazine Vol. 12, No. 6, pp. 224-228 やさしい醤油の技術のまとめ 上巻(一般財団法人日本醤油技術センター),93−99頁Summary of Easy Soy Sauce Technology Volume 1 (Japan Soy Sauce Technology Center), pp. 93-99 Biomed Research International,Vol.2015,Article ID456802Biomed Research International, Vol. 2015, Article ID 456802

上記のように、製麹におけるアンモニアの含有量は、麹pHの上昇や、醤油におけるアミノ酸態窒素の含量に影響しうるものであり、麹生成におけるアンモニア生成を適切に制御することは、醤油の製造工程やできあがる醤油の品質を適切に管理する上で非常に重要である。 As described above, the content of ammonia in the production of koji can affect the increase in the pH of the koji and the content of amino acid nitrogen in the soy sauce, and it is important to appropriately control the production of ammonia in the production of the soy sauce. It is very important for proper control of the manufacturing process and the quality of the finished soy sauce.

また、製麹中にはアンモニア態窒素が全窒素の11〜15%存在しているが、これらはアミノ酸の分解に起因している。一方でグルタミン酸をはじめとする各種の呈味性アミノ酸は、醤油の旨みや甘み、濃厚さに大きく寄与する成分であり、全窒素に対するアンモニア態窒素を低減させ、アミノ酸態窒素の含有量を増加させることは、醤油中のアミノ酸率を高め、呈味をさらに改善するためにも有効な手法であると期待できる。 In addition, ammonia nitrogen is present in 11 to 15% of the total nitrogen in the koji making, which is caused by the decomposition of amino acids. On the other hand, various tasting amino acids such as glutamic acid are components that greatly contribute to the taste, sweetness, and richness of soy sauce, reduce ammonia nitrogen relative to total nitrogen, and increase the content of amino acid nitrogen. This can be expected to be an effective method for increasing the amino acid content in soy sauce and further improving the taste.

したがって本願発明の課題は、製麹工程においてアンモニア生成に係る麹菌中の酵素を特定することで、製麹工程におけるアンモニア生産やpHの制御を容易にし、品質の高い醤油を容易に得られるような醤油菌株を得ること、および当該菌株を用いた製麹方法・醸造食品の製造方法を得ることである。 Therefore, the subject of the present invention is to identify the enzyme in the aspergillus that is involved in the production of ammonia in the koji making process, thereby facilitating the production of ammonia and the control of pH in the koji making process, and making it easy to obtain high quality soy sauce. To obtain a salty soy sauce strain, and to obtain a method for producing koji and brewed foods using the strain.

本願発明者は、麹菌を育種し、製麹工程においてpHの上昇が生じにくいような変異菌株を得た。そして、当該菌株のゲノムシークエンスを実施した結果、非特許文献3に記載されるような網羅的解析では従来まったく検出されていなかった、配列番号1に記載するアミノ酸配列から成る遺伝子が変異し、機能欠損していることを明らかにした。 The inventor of the present application bred the aspergillus and obtained a mutant strain in which the pH was less likely to increase in the aspergillus production process. Then, as a result of performing the genome sequencing of the strain, the gene consisting of the amino acid sequence shown in SEQ ID NO: 1, which had not been detected at all in the comprehensive analysis as described in Non-Patent Document 3, was mutated and functioned. It was revealed that it was missing.

当該配列番号1に記載するアミノ酸配列から成る遺伝子は、アスペルギルス・ニドゥランスにおいてグルタミン酸脱水素酵素をコードするgdhB遺伝子と高い相同性を示すものであることから、AogdhBと称する。アスペルギルス・ニドゥランスにおけるgdhBは、グルタミン酸脱水素酵素活性を有することが知られているものの、例えば製麹工程等において実際に機能しているのか、その寄与はどの程度なのかは明らかになっていない。 The gene consisting of the amino acid sequence shown in SEQ ID NO: 1 is referred to as AogdhB because it shows high homology with the gdhB gene encoding glutamate dehydrogenase in Aspergillus nidurance. Although gdhB in Aspergillus nidurance is known to have glutamate dehydrogenase activity, it has not been clarified whether it actually functions in, for example, the koji making process and its contribution.

そこで、さらなる検討として、醸造食品の製造に使用可能なゲノム中のAogdhB遺伝子を、遺伝子組み換えにより機能欠損させ、得られた株を用いて製麹を行った結果、製麹工程におけるアンモニア生成および麹pHの上昇が抑制されることが判明した。 Therefore, as a further study, the AogdhB gene in the genome that can be used for the production of brewed foods was functionally deficient by genetic recombination, and as a result of koji making using the obtained strain, ammonia production and koji in the koji making process. It was found that the increase in pH was suppressed.

以上のような検討から本願発明者は、AogdhBは、醸造食品製造の製麹工程における麹のpH制御に実際に関わる遺伝子であり、醸造食品製造におけるpH管理において重要であること、麹菌において当該遺伝子の機能を欠損させることで、アンモニアの生成が少なく、麹pHの上昇を抑えられた良好な麹を得ることができることを明らかにし、本願発明を完成させた。 From the above studies, the inventor of the present application found that AogdhB is a gene that is actually involved in pH control of Jiuqu in the Jiuqu manufacturing process of brewed food production and is important for pH control in Jiuqu food production. It was clarified that it is possible to obtain good Jiuqu in which the production of ammonia is small and the increase in the pH of Jiuqu is suppressed by deficient in the function of Jiuqu, and the present invention has been completed.

本願発明の、AogdhB遺伝子の機能欠損した麹菌を用いて麹を得ることで、製麹工程における麹pHを低く維持することができ、安定的な醸造食品の製造が可能となる。また、例えば醸造食品として醤油を製造した時には、醤油中のアンモニア態窒素が減少するために、遊離アミノ酸量の多い醤油が得られ、官能的に良好な醤油を醸造することが可能となる。 By obtaining the Jiuqu using the Jiuqu bacterium lacking the function of the AogdhB gene of the present invention, the pH of the Jiuqu in the Jiuqu making process can be kept low, and a stable brewed food can be produced. Further, for example, when soy sauce is produced as a brewed food, the amount of ammonia nitrogen in the soy sauce is reduced, so that a soy sauce having a large amount of free amino acids can be obtained, and it becomes possible to brew a sensually good salty sauce.

図1は、ヤマサ保有麹菌株である親株A、Bと、それぞれから得られた変異株A、Bについて醤油培地で培養を行ったときの、pHの時間的推移を表すものである。FIG. 1 shows the temporal transition of pH when parent strains A and B, which are Yamasa-carrying aspergillus strains, and mutant strains A and B obtained from the respective strains A and B were cultured in a soy sauce medium. 図2は、変異株A、BにおけるAogdhBのアミノ酸配列において変異が生じている部分のアミノ酸配列を、野生株の配列と比較したものである。FIG. 2 compares the amino acid sequence of the portion of the amino acid sequence of AogdhB in the mutant strains A and B in which the mutation occurs with the sequence of the wild strain. 図3は、親株(ΔligD株)のAogdhB遺伝子への変異導入の様子および変異導入後の機能欠損株(ΔGdhB株)におけるAogdhB遺伝子構造を模式的に表したものである。FIG. 3 schematically shows the state of introduction of a mutation into the AogdhB gene of the parent strain (ΔligD strain) and the AogdhB gene structure of the functionally deficient strain (ΔGdhB strain) after the introduction of the mutation. 図4は、変異導入株において、AogdhB遺伝子への変異導入が行われたことを確認するためのPCRを行った結果を表す電気泳動図である。FIG. 4 is an electrophoretogram showing the results of PCR for confirming that the mutation was introduced into the AogdhB gene in the mutagenesis strain. 図5は、ΔGdhB株および親株について醤油培地で培養を行ったときの、pHの時間的推移を表すものである。FIG. 5 shows the temporal transition of pH when the ΔGdhB strain and the parent strain were cultured in a soy sauce medium.

本願発明において、醸造食品製造に使用できる麹菌とは、醤油、味噌、焼酎、清酒、みりん等の醸造食品の製造に使用可能で、安全性の確立されているアスペルギルス属に属する麹菌であれば、特に限定はされない。具体的には、アスペルギルス・オリゼー(Aspergillus oryzae)、アスペルギルス・ソーヤ(A.sojae)、アスペルギルス・カワチ(A.kawachii)、アスペルギルス・アワモリ(A.awamori)、アスペルギルス・ニガー(A.niger)等が好ましい。中でも特に好ましいのはアスペルギルス・オリゼーまたはアスペルギルス・ソーヤであり、さらに好ましいのはアルペルギルス・オリゼーである。 In the present invention, the aspergillus that can be used in the production of brewed foods is any aspergillus that can be used in the production of brewed foods such as soy sauce, miso, shochu, sake, and mirin and belongs to the genus Aspergillus, for which safety has been established. There is no particular limitation. Specifically, Aspergillus oryzae, Aspergillus sojae, Aspergillus kawachii, Aspergillus awamori, Aspergillus niger, etc. preferable. Of these, Aspergillus oryzae or Aspergillus sawyer is particularly preferred, and Alpergillus oryzae is even more preferred.

本願発明においてAogdhB遺伝子とは、塩基配列を配列番号2に、遺伝子産物のアミノ酸配列を配列番号1に示す遺伝子を指す。アスペルギルス・オリゼーにおけるAodghB遺伝子(AO090001000717遺伝子)は、例えばNCBIのウェブサイト(https://www.ncbi.nlm.nih.gov/gene)等から情報を取得することが可能である。 In the present invention, the AogdhB gene refers to a gene whose base sequence is shown in SEQ ID NO: 2 and the amino acid sequence of the gene product is shown in SEQ ID NO: 1. Information on the AodghB gene (AO090001000717 gene) in Aspergillus oryzae can be obtained from, for example, the NCBI website (https://www.ncbi.nlm.nih.gov/gene).

AogdhB遺伝子の機能欠損株は、相同組換えによる遺伝子破壊や、変異導入、ゲノム編集等による機能欠損の誘導により取得することができる。 A functionally deficient strain of the AogdhB gene can be obtained by gene disruption by homologous recombination, induction of functional deficiency by mutation introduction, genome editing, or the like.

相同組換えによる遺伝子の破壊方法としては、公知の方法を用いることができる。たとえば、AogdhB遺伝子の断片もしくはその上流・下流の領域とマーカー遺伝子とを組み合わせたDNA断片をベクターに組み込み、プロトプラスト−PEG法やエレクトロポレーション法などによってベクターを麹菌に取り込ませ、相同組換えによって当該DNA断片を麹菌のゲノム中に導入する方法などを挙げられる。DNA断片を麹菌細胞中に取り込ませる他の方法としては、パーティクルガン法、アグロバクテリウム法、マイクロインジェクション法などが挙げられる。 As a method for disrupting a gene by homologous recombination, a known method can be used. For example, a fragment of the AogdhB gene or a DNA fragment combining the upstream / downstream regions thereof and a marker gene is incorporated into the vector, the vector is incorporated into the aspergillus by the protoplast-PEG method, the electroporation method, etc., and the vector is incorporated into the aspergillus by homologous recombination. Examples thereof include a method of introducing a DNA fragment into the genome of Aspergillus oryzae. Other methods for incorporating the DNA fragment into the Jiuqu cell include a particle gun method, an Agrobacterium method, a microinjection method, and the like.

相同組換え法によって所期の遺伝子が麹菌に導入されたことを確認する方法としては、公知の方法を用いることができる。たとえば、遺伝子を導入する際に、親株として栄養要求性の突然変異株を、マーカー遺伝子として当該栄養要求性を補償するような機能を持つ遺伝子を用い、形質転換後に栄養要求性培地上で正常に生育した株を選抜する方法などが挙げられる。ただし、このような栄養要求性だけでは、目的とする遺伝子座が導入したマーカー遺伝子と置換されたかどうか確認できない。従って、栄養要求性に合わせて適宜PCR法、サザンハイブリダイゼーション法等を用いて、目的とする遺伝子座がマーカーによって置換されていることを確認する必要がある。 A known method can be used as a method for confirming that the desired gene has been introduced into Jiuqu by the homologous recombination method. For example, when introducing a gene, an auxotrophic mutant strain is used as a parent strain, and a gene having a function of compensating for the auxotrophy is used as a marker gene, and after transformation, it is normally performed on an auxotrophic medium. Examples include a method of selecting a grown strain. However, it is not possible to confirm whether or not the target locus has been replaced with the introduced marker gene only by such auxotrophy. Therefore, it is necessary to confirm that the target locus is replaced by a marker by appropriately using a PCR method, a Southern hybridization method, or the like according to the auxotrophy.

また、変異導入法としては、公知の処理方法を用いることができ、紫外線、イオンビーム、放射線等を照射させる物理的方法、エチルメタンスルホネート、N−メチル−N’−ニトロ−N−ニトロソグアニジン、亜硝酸、アクリジン色素等の変異剤を用いる化学的方法がある。特に好ましくは、イオンビーム、紫外線を照射する方法を挙げることができる。 Further, as the mutation introduction method, a known treatment method can be used, and a physical method of irradiating with ultraviolet rays, an ion beam, radiation, etc., ethyl methanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, There are chemical methods using mutant agents such as nitrous acid and acrydin dyes. Particularly preferably, a method of irradiating an ion beam or ultraviolet rays can be mentioned.

さらに、ゲノム編集による方法としては、ZFN(Zinc-Finger Nuclease)、TALEN(Transcription Activator-Like Effector Nuclease)、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9等の部位特異的ヌクレアーゼを用いて、標的のゲノム部位におけるDNAの二本鎖切断を起こし、その後に誘導されるDNAの修復機構を利用して標的ゲノムの破壊や塩基置換を生じさせる方法を挙げることができる。 Furthermore, as a method by genome editing, a site-specific nuclease such as ZFN (Zinc-Finger Nuclease), TALEN (Transcription Activator-Like Effector Nuclease), CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) / Cas9, etc. Examples thereof include a method in which double-strand breaks in DNA at a genome site are caused, and the DNA repair mechanism induced thereafter is used to cause disruption of the target genome or base substitution.

上記のような遺伝子破壊法、変異導入法またはゲノム編集等によってAogdhB遺伝子の機能が欠損した株において、実際にアンモニア生成能が低下しているかどうかは、例えば下記のような試験方法によって検証することが可能である。 Whether or not the ammonia-producing ability is actually reduced in a strain in which the function of the AogdhB gene is deleted by the above-mentioned gene disruption method, mutation introduction method, genome editing, etc. should be verified by, for example, the following test method. Is possible.

(検証方法)
醤油培地(脱脂加工大豆5gに水を7ml加え、割砕小麦5gをよく混合したのち、オートクレーブにて121℃、40分間処理)に麹菌胞子を10個/g程度となるように植菌し、所定の時間培養し、培養産物中のアンモニア量を定量することで検証する。アンモニアの抽出は培養物に水100mlを加えてよく撹拌し、5℃で4時間以上静置後、ろ過し、分析サンプル液を得る。分析は市販のアミノ酸分析装置やF−キット アンモニア(J.K.インターナショナル)などを用いて分析できる。
(Method of verification)
Sauce medium (added water 7ml defatted processed soybean 5g, were mixed well split砕小wheat 5g, 121 ° C. in an autoclave for 40 minutes treatment) and Aspergillus oryzae spores was inoculated so as to be 10 6 cells / g of about a , Cultivate for a predetermined time and verify by quantifying the amount of ammonia in the culture product. To extract ammonia, add 100 ml of water to the culture, stir well, allow to stand at 5 ° C. for 4 hours or more, and then filter to obtain an analytical sample solution. The analysis can be performed using a commercially available amino acid analyzer or F-kit ammonia (JK International).

本願発明の麹菌は、各種の醸造食品の製造に使用することができる。醸造食品の例としては、醤油、味噌、焼酎、清酒、みりん等が挙げられ、中でも醤油または味噌に用いることが好ましく、醤油に用いることが特に好ましい。 The aspergillus of the present invention can be used in the production of various brewed foods. Examples of brewed foods include soy sauce, miso, shochu, sake, mirin, etc. Among them, it is preferably used for soy sauce or miso, and particularly preferably for soy sauce.

本願発明の麹菌を用いた麹の製法およびその麹を用いた醸造食品を製造する方法としては、公知の方法を用いることができる。一例として、醤油の製造においては、通常の麹原料、たとえば撒水して蒸煮した大豆原料と炒熬割砕した小麦原料の混合物に、上記のAogdhB遺伝子の機能欠損した麹菌を接種混合して麹を調製し、得られた麹を通常の仕込みタンクに適当な濃度の食塩水で仕込み、適宜撹拌しつつ3〜6ヶ月間程度発酵熟成させて醤油諸味を得、常法により圧搾、精製、必要により火入れを行い、製品醤油(生醤油あるいは火入醤油)とすればよい。 As a method for producing Jiuqu using the Jiuqu of the present invention and a method for producing a brewed food using the Jiuqu, a known method can be used. As an example, in the production of soy sauce, a mixture of ordinary koji raw materials, for example, a mixture of sprinkled and steamed soy sauce raw materials and roasted and crushed wheat raw materials, is inoculated and mixed with the above-mentioned AogdhB gene-deficient aspergillus. The prepared Jiuqu is charged in a normal preparation tank with an appropriate concentration of salt solution, and fermented and aged for about 3 to 6 months with appropriate stirring to obtain various flavors of soy sauce, which is squeezed, refined, and if necessary. It may be fired to make product soy sauce (raw soy sauce or fired soy sauce).

(実施例1:アンモニア低生産変異麹菌株の取得と変異箇所の分析)
2種のヤマサ保有麹菌株(アルペルギルス・オリゼー、以下「親株A」、「親株B」と記載する)に対して紫外線を照射し、変異原処理を行った。なお、変異原処理の方法は下記に拠った。
(Example 1: Acquisition of mutant aspergillus strain with low ammonia production and analysis of mutant site)
Two types of Yamasa-carrying aspergillus strains (Alpergillus oryzae, hereinafter referred to as "parent strain A" and "parent strain B") were irradiated with ultraviolet rays and subjected to mutagen treatment. The method of mutagen treatment was as follows.

(変異処理の方法)
メンブレンフィルターに麹菌胞子を吸着させ、当該フィルターにUVを照射した後、0.1Mリン酸バッファー(pH7.0)に懸濁した(生存率1%程度)。1プレートあたり10コロニー程度となるように、0.05%ツィーン液にて1000倍希釈し、L−アルギニン、オルニチンを含む最小培地(組成:スクロース0.5%、リン酸2カリウム0.1%、硫酸マグネシウム0.05%、塩化カリウム0.05%、トレースエレメント0.1%、ブロモクレゾールパープル0.005%、寒天1.5%、pH5.5)へプレーティングした。
(Mutation processing method)
Aspergillus spores were adsorbed on a membrane filter, the filter was irradiated with UV, and then suspended in 0.1 M phosphate buffer (pH 7.0) (survival rate of about 1%). Dilute 1000 times with 0.05% tween solution so that there are about 10 colonies per plate, and the minimum medium containing L-arginine and ornithine (composition: 0.5% sucrose, 0.1% dipotassium phosphate). , Magnesium sulfate 0.05%, Potassium chloride 0.05%, Trace element 0.1%, Bromocresol purple 0.005%, Agar 1.5%, pH 5.5).

当該培地における培養では、ブロモクレゾールパープルの作用により、pHが上昇するとコロニーが青く呈色する。3日間培養した後、黄色のコロニーを、pH上昇が生じない変異候補菌株として選抜した。 In the culture in the medium, the colonies turn blue when the pH rises due to the action of bromocresol purple. After culturing for 3 days, yellow colonies were selected as mutation candidate strains that did not cause a pH increase.

取得した麹菌変異候補菌株を、醤油培地(脱脂加工大豆5gに水を7ml加え、割砕小麦5gをよく混合したのち、オートクレーブにて121℃、40分間処理)に植菌し、28℃で24、48、72時間培養することで培養物(麹)を製造した。各培養物に水100mlを加えてよく撹拌し、5℃で4時間以上静置後、ろ紙ろ過した。ろ液のpHを測定し、pHの上昇が抑制されている株を2次スクリーニングした。 The obtained Jiuqu mutation candidate strain was inoculated into a soy sauce medium (7 ml of water was added to 5 g of defatted soybeans, 5 g of crushed wheat was mixed well, and then treated in an autoclave at 121 ° C. for 40 minutes), and the cells were inoculated at 28 ° C. for 24 minutes. , 48, 72 hours to produce a culture (jiuqu). 100 ml of water was added to each culture, the mixture was stirred well, allowed to stand at 5 ° C. for 4 hours or more, and then filtered through a filter paper. The pH of the filtrate was measured, and strains in which the increase in pH was suppressed were secondarily screened.

結果、親株A由来、親株B由来の変異体候補株からそれぞれ1株ずつの変異株を取得した(以下それぞれ「変異株A」、「変異株B」と記載する)。 As a result, one mutant strain was obtained from each of the mutant candidate strains derived from the parent strain A and the parent strain B (hereinafter, referred to as "mutant strain A" and "mutant strain B", respectively).

pHの測定結果を図1に示す。結果、親株A、Bでは培養時間が長くなるにつれてpHの上昇が確認されたのに対し、取得された変異株A、Bでは、pHの過剰な上昇は確認されなかった。 The pH measurement results are shown in FIG. As a result, in the parent strains A and B, an increase in pH was confirmed as the culture time became longer, whereas in the obtained mutant strains A and B, an excessive increase in pH was not confirmed.

そこで、これら変異株Aおよび変異株Bのゲノム配列を解読し、変異点解析を行った。異なる親株で同じ箇所に変異がみられれば、当該変異がpH過剰上昇の抑制をもたらす機能遺伝子である可能性が高いと考えられる。 Therefore, the genome sequences of these mutant strains A and B were decoded, and mutation point analysis was performed. If mutations are found at the same site in different parent strains, it is highly likely that the mutation is a functional gene that suppresses an excessive increase in pH.

ゲノム抽出にはDNeasy Plant Maxiキット(QIAGEN)を用い、得られたゲノムDNAの解析をフィルジェン株式会社に委託した。ゲノム解析はillumina HiSeq4000(イルミナ株式会社)を用いてPE150で2Gbpずつシークエンスを実施し、両側で合計4Gbpのシークエンスデータが得られた。 変異点解析の手順は、下記のようにして行った。 The DNeasy Plant Maxi kit (QIAGEN) was used for genome extraction, and the analysis of the obtained genomic DNA was outsourced to Filgen Co., Ltd. For genome analysis, a sequence of 2 Gbp was carried out on PE150 using illumina HiSeq4000 (Illumina Co., Ltd.), and a total of 4 Gbp sequence data was obtained on both sides. The procedure for mutation point analysis was as follows.

(解析方法)
親株、変異株それぞれのシークエンスデータについて、Burrows−Wheeler Aligner(BWA)を使用し、アスペルギルス・オリゼー RIB40株の全ゲノム配列を参照配列としてマッピングを行った。Genome Analysis Tool Kit (GATK)のHaplotype Callerで変異株に特有の変異箇所を検出した。
(analysis method)
For the sequence data of each of the parent strain and the mutant strain, the entire genome sequence of the Aspergillus oryzae RIB40 strain was mapped as a reference sequence using the Burrows-Wheeler Aligner (BWA). The mutant site specific to the mutant strain was detected by the Haplotype Caller of Genome Analysis Tool Kit (GATK).

変異点解析の結果、変異株Aは親株Aの遺伝子領域の27箇所、変異株Bは親株Bの遺伝子領域の48箇所に変異が確認された。そのうち、両者に共通する変異遺伝子は、AO090001000717のみであった。 As a result of the mutation point analysis, it was confirmed that the mutant strain A had mutations at 27 sites in the gene region of the parent strain A and the mutant strain B had mutations at 48 sites in the gene region of the parent strain B. Among them, the only mutant gene common to both was AO090001000717.

AO090001000717遺伝子は、1061アミノ酸をコードし、アスペルギルス・ニドゥランスのグルタミン酸脱水素酵素(GDH)であるgdhBとアミノ酸レベルで89.6%と高い相同性を示した。以下、当該遺伝子(AO090001000717遺伝子)をAogdhB遺伝子と称する。 The AO090001000717 gene encodes 1061 amino acids and shows high homology at the amino acid level of 89.6% with gdhB, the glutamate dehydrogenase (GDH) of Aspergillus nidulans. Hereinafter, the gene (AO090001000717 gene) is referred to as an AogdhB gene.

変異株A、Bはいずれも、AogdhB遺伝子において、変異によりフレームシフトが生じており、変異株Aでは697番目以降(704番目にStopコドン)、変異株Bでは249番目以降(298番目にStopコドン)のアミノ酸配列が全く異なるものとなったために、機能を失っていることが強く示唆された(図2)。 In both mutant strains A and B, a frameshift occurs due to a mutation in the AogdhB gene. Mutant strain A has a frameshift after the 697th (704th Stop codon), and mutant strain B has a 249th or later (298th Stop codon). It was strongly suggested that the function was lost because the amino acid sequence of) was completely different (Fig. 2).

(実施例2:供与菌株を用いたAogdhB機能欠損株の作成と評価)
(実施例2−1:gdhB破壊株ベクターおよび破壊株の作成)
アスペルギルス・オリゼーにおけるAogdhB遺伝子が製麹中に実際に機能しているか否かをさらに明らかにするため、供与菌株を親株に用いたAogdhB機能欠損株の作成を試みた。
(Example 2: Preparation and evaluation of AogdhB function-deficient strain using donor strain)
(Example 2-1: Preparation of gdhB disrupted strain vector and disrupted strain)
In order to further clarify whether the AogdhB gene in Aspergillus oryzae actually functions during koji production, we attempted to create an AogdhB function-deficient strain using the donor strain as the parent strain.

AogdhB遺伝子のORF上流1.8kbp(配列番号3)、下流1.3kbの領域(配列番号4)、アスペルギルス・ニドゥランス由来のsCマーカー(Mol Gen Genet.1995 May 20;247(4):423−429.)の3断片をIn−Fusion HD Cloning Kit(TaKaRa)を用いて結合し、破壊用ベクターを作成した。 ORF upstream 1.8 kbp (SEQ ID NO: 3), downstream 1.3 kb region (SEQ ID NO: 4) of the AogdhB gene, sC marker from Aspergillus nidurance (Mol Gen Genet. 1995 May 20; 247 (4): 423-249 The three fragments of.) Were combined using an In-Fusion HD Cloning Kit (TaKaRa) to prepare a disruption vector.

得られた破壊断片をPCRにて増幅し、アスペルギルス・オリゼーRIB40株由来であるΔligD株(niaD, sC, ligD::ptrA)を親株に用いて形質転換を行った。コントロール株として、アスペルギルス・オリゼーのsC遺伝子領域に、アスペルギルス・ニドゥランス由来のsCマーカーを挿入した株をコントロール株とした。なお、RIB40株は公知の供与株であり、ΔligDおよびその作成方法も論文により公知である(Mizutani et al.,Fungal Genetics and Biology,45(2008) 878−889頁)。 The obtained disrupted fragment was amplified by PCR and transformed using the ΔligD strain (niaD − , sC , ligD :: ptrA) derived from the Aspergillus oryzae RIB40 strain as the parent strain. As a control strain, a strain in which an sC marker derived from Aspergillus nidurance was inserted into the sC gene region of Aspergillus oryzae was used as a control strain. The RIB40 strain is a known donor strain, and ΔligD and a method for producing the same are also known from papers (Mizutani et al., Fungal Genetics and Biology, 45 (2008) pp. 878-889).

得られた形質転換体について、ベクター由来のDNA断片が組換えにより確かに挿入されている株であることをPCRによって確認した(図3、4)。PCRではフォワードプライマーとしてプライマーA(配列番号5)、リバースプライマーとしてプライマーB(配列番号6)を用いた。プライマーA、Bの作成位置は、図3に示す通りである。
以上の方法により、アスペルギルス・オリゼーAodghB遺伝子機能欠損株(以下、「ΔAogdhB株」と記す場合がある)を得た。
Regarding the obtained transformant, it was confirmed by PCR that the DNA fragment derived from the vector was certainly inserted by recombination (FIGS. 3 and 4). In PCR, primer A (SEQ ID NO: 5) was used as the forward primer, and primer B (SEQ ID NO: 6) was used as the reverse primer. The production positions of the primers A and B are as shown in FIG.
By the above method, an Aspergillus oryzae AodghB gene function-deficient strain (hereinafter, may be referred to as "ΔAogdhB strain") was obtained.

(実施例2−2:原料培地での生育)
脱脂加工大豆5gに水を7ml加え、割砕小麦5gをよく混合したのち、オートクレーブにて121℃、40分間処理した。得られた原料に、コントロール株およびΔAogdhB株の胞子懸濁液(1.4×10個/ml)を1mlずつ加え、24時間、48時間、72時間、96時間培養した。各培養物に水100mlを加えて振とうし、4時間静置後、ろ紙ろ過したろ液のpHを測定した。
(Example 2-2: Growth in raw material medium)
7 ml of water was added to 5 g of degreased soybeans, 5 g of crushed wheat was mixed well, and then the mixture was treated in an autoclave at 121 ° C. for 40 minutes. The obtained raw material, added with a spore suspension of the control strains and ΔAogdhB strain (1.4 × 10 7 cells / ml) by 1 ml, 24 hours, 48 hours, 72 hours, and cultured for 96 hours. 100 ml of water was added to each culture, the mixture was shaken, allowed to stand for 4 hours, and then the pH of the filtrate filtered through filter paper was measured.

[結果]
結果、コントロール株では時間と共にpHが直線的に上昇しているのに対し、ΔAogdhB株では、製麹後期でのpH上昇は確認されなかった。このことから、製麹後期におけるpHの上昇にはAogdhBが寄与していることが明らかとなった(図5)。
[result]
As a result, in the control strain, the pH increased linearly with time, whereas in the ΔAogdhB strain, the pH increase in the late stage of koji making was not confirmed. From this, it was clarified that AogdhB contributed to the increase in pH in the late stage of koji making (Fig. 5).

(実施例2−3:遺伝子破壊株の醤油醸造における評価)
脱脂加工大豆200gに水を260L加え吸水させ、常法に従って蒸煮した。また、生小麦200gを常法に従って焙焼し、割砕した。ΔAogdhB株およびコントロール株の胞子1×10cfu/gをそれぞれ混合し、常法に従い48時間製麹した。
(Example 2-3: Evaluation of gene-disrupted strain in soy sauce brewing)
260 L of water was added to 200 g of degreased soybeans to absorb water, and the soybeans were steamed according to a conventional method. In addition, 200 g of raw wheat was roasted and crushed according to a conventional method. Spores of ΔAogdhB strain and control strain 1 × 10 6 cfu / g were mixed and koji was prepared according to a conventional method for 48 hours.

得られた麹について食塩濃度約25%(w/v)の塩水を700mL添加して、濃口醤油の仕込みを行った。麹と塩水が十分になじんだ翌日によく撹拌した後、諸味をろ過し、それぞれのろ液のアンモニア量とpHを測定した。なお、アンモニア量はアミノ酸分析装置(日立ハイテク)を用いて測定した。 700 mL of salt water having a salt concentration of about 25% (w / v) was added to the obtained Jiuqu to prepare a concentrated soy sauce. After stirring well the next day when the jiuqu and salt water were sufficiently familiar, the moromi mash was filtered and the amount of ammonia and pH of each filtrate were measured. The amount of ammonia was measured using an amino acid analyzer (Hitachi High-Tech).

結果、コントロール株におけるろ液1mL当たりのアンモニア濃度は2.22(mg/mL)であったのに対し、ΔAogdhB株におけるアンモニア濃度は1.37(mg/mL)に低下していた。アンモニア量比およびpHについて、コントロール株における測定値を1.00としたときの比を表1に示す。このように、ΔAogdhB株を用いて製造した麹では、コントロール株を用いて製造した麹と比べて有意にアンモニア量の低減が確認され、pHも有意に低かった。 As a result, the ammonia concentration per 1 mL of the filtrate in the control strain was 2.22 (mg / mL), whereas the ammonia concentration in the ΔAogdhB strain was reduced to 1.37 (mg / mL). Table 1 shows the ratio of ammonia content and pH when the measured value in the control strain was 1.00. As described above, in the Jiuqu produced using the ΔAogdhB strain, a significant reduction in the amount of ammonia was confirmed and the pH was also significantly lower than that in the Jiuqu produced using the control strain.

Figure 0006892141
Figure 0006892141

塩水を添加して仕込んだ諸味は、常法に従って乳酸菌、酵母を添加し、4ヶ月間発酵・熟成させた。熟成後の諸味をろ過し、生醤油を得た。 The moromi mash prepared by adding salt water was fermented and aged for 4 months by adding lactic acid bacteria and yeast according to a conventional method. The moromi mash after aging was filtered to obtain raw soy sauce.

当該生醤油中の総遊離アミノ酸量およびアンモニア量を、アミノ酸分析装置(日立ハイテク)を用いて測定した。結果、コントロール株使用生醤油における全窒素濃度1%(w/v)当たりのアンモニア濃度は1.65(mg/mL)であったのに対し、ΔAogdhB株使用生醤油におけるアンモニア濃度は1.05(mg/mL)に低下していた。また、コントロール株使用生醤油における全窒素濃度1%(w/v)当たりの総遊離アミノ酸濃度は31.57(mg/mL)であったのに対し、ΔAogdhB株使用生醤油における総遊離アミノ酸濃度は35.27(mg/mL)に増加していた。コントロール株における測定値を1.00としたときの量比を下記表2に示す。 The total amount of free amino acids and the amount of ammonia in the raw soy sauce were measured using an amino acid analyzer (Hitachi High-Tech). As a result, the ammonia concentration per 1% (w / v) of the total nitrogen concentration in the raw soy sauce using the control strain was 1.65 (mg / mL), whereas the ammonia concentration in the raw soy sauce using the ΔAogdhB strain was 1.05. It had decreased to (mg / mL). The total free amino acid concentration per 1% (w / v) of the total nitrogen concentration in the raw soy sauce using the control strain was 31.57 (mg / mL), whereas the total free amino acid concentration in the raw soy sauce using the ΔAogdhB strain was 31.57 (mg / mL). Was increased to 35.27 (mg / mL). Table 2 below shows the amount ratio when the measured value in the control strain is 1.00.

このように、ΔAogdhB株を用いて製造した濃口醤油では、コントロール株を用いて製造した濃口醤油と比べて、有意に遊離アミノ酸量が増加し、かつアンモニア量が低減していることが確認された。 As described above, it was confirmed that the dark soy sauce produced using the ΔAogdhB strain significantly increased the amount of free amino acids and decreased the amount of ammonia as compared with the concentrated soy sauce produced using the control strain. ..

Figure 0006892141
Figure 0006892141

(実施例3:実用麹菌株の醤油醸造における評価)
実施例1で得られた、AogdhB遺伝子の機能が欠損している変異株である変異株Bを用いて、醤油醸造を行った。
(Example 3: Evaluation of practical aspergillus strain in soy sauce brewing)
Soy sauce brewing was carried out using the mutant strain B obtained in Example 1, which is a mutant strain lacking the function of the AogdhB gene.

脱脂加工大豆15kgに水を20L加え吸水させ、常法に従って蒸煮した。また、生小麦15kgを常法に従って焙焼し、割砕した。親株Bおよび変異株Bの胞子1×10cfu/gをそれぞれ混合し、常法に従い48時間製麹した後、得られた麹に食塩濃度約25%(w/v)の塩水を50L添加して、濃口醤油の仕込みを行った。麹と塩水が十分になじんだ翌日によく撹拌した後、諸味をろ過し、pHを測定した。変異株Bでは有意にpHの低下が確認された(表3)。 20 L of water was added to 15 kg of degreased soybeans to absorb water, and the soybeans were steamed according to a conventional method. In addition, 15 kg of raw wheat was roasted and crushed according to a conventional method. Spores of parent strain B and mutant strain B were mixed 1 × 10 6 cfu / g, respectively, and koji was prepared for 48 hours according to a conventional method, and then 50 L of salt water having a salt concentration of about 25% (w / v) was added to the obtained koji. Then, I prepared the dark soy sauce. After stirring well the next day when the jiuqu and salt water were sufficiently familiar, the moromi mash was filtered and the pH was measured. A significant decrease in pH was confirmed in mutant strain B (Table 3).

Figure 0006892141
Figure 0006892141

塩水を添加して仕込んだ諸味は、常法に従って乳酸菌、酵母を添加し、4ヶ月間発酵・熟成させた。熟成後の諸味をろ過し、遊離アミノ酸量を測定した。 The moromi mash prepared by adding salt water was fermented and aged for 4 months by adding lactic acid bacteria and yeast according to a conventional method. After aging, the moromi mash was filtered and the amount of free amino acids was measured.

結果、親株B使用生醤油における全窒素濃度1%(w/v)当たりのアンモニア濃度は1.22(mg/mL)であったのに対し、変異株B使用生醤油におけるアンモニア濃度は1.03(mg/mL)に低下していた。また、親株B使用生醤油における全窒素濃度1%(w/v)当たりの総遊離アミノ酸濃度は33.29(mg/mL)であったのに対し、変異株B使用生醤油における総遊離アミノ酸濃度は34.32(mg/mL)に増加していた。親株Bにおける測定値をそれぞれ1.00としたときの量比を下記表4に示す。 As a result, the ammonia concentration per 1% (w / v) of the total nitrogen concentration in the raw soy sauce using the parent strain B was 1.22 (mg / mL), whereas the ammonia concentration in the raw soy sauce using the mutant strain B was 1. It had decreased to 03 (mg / mL). The total free amino acid concentration per 1% (w / v) of the total nitrogen concentration in the raw soy sauce using the parent strain B was 33.29 (mg / mL), whereas the total free amino acids in the raw soy sauce using the mutant strain B was 33.29 (mg / mL). The concentration had increased to 34.32 (mg / mL). Table 4 below shows the amount ratios when the measured values of the parent strain B are 1.00.

Figure 0006892141
Figure 0006892141

このように、AogdhB遺伝子の機能欠損した変異株Bを用いて製麹を行い、濃口醤油を製造したときには、野生株を用いて濃口醤油を製造したときと比較して、できあがる醤油において有意な遊離アミノ酸量の増加およびアンモニア量の低減が確認され、良好な品質の醤油を製造できることが明らかになった。 As described above, when the koji was produced using the mutant strain B lacking the function of the AogdhB gene and the concentrated salty soy sauce was produced, the resulting soy sauce was significantly freed as compared with the case where the concentrated salty sauce was produced using the wild strain. An increase in the amount of amino acids and a decrease in the amount of ammonia were confirmed, and it became clear that soy sauce of good quality could be produced.

Claims (5)

AogdhBをコードする遺伝子の機能が欠損している、醸造食品の製造に利用可能な麹菌。 Jiuqu that is deficient in the function of the gene encoding AogdhB and can be used in the production of brewed foods. 麹菌がアスペルギルス・オリゼー(Aspergillus oryzae)またはアスペルギルス・ソーヤ(Aspergillus sojae)である請求項1記載の麹菌。 The aspergillus according to claim 1, wherein the aspergillus is Aspergillus oryzae or Aspergillus sojae. 請求項1または2に記載の麹菌を用いて製麹することを特徴とする麹の製造法。 A method for producing Jiuqu, which comprises producing Jiuqu using the Jiuqu bacterium according to claim 1 or 2. 請求項1または2に記載の麹菌を用いて麹を調製し、その麹を用いて常法により仕込みし、発酵、熟成せしめることを特徴とする醸造食品の製造法。 A method for producing a brewed food, which comprises preparing Jiuqu using the Jiuqu bacterium according to claim 1 or 2, preparing the Jiuqu using the Jiuqu by a conventional method, and fermenting and aging it. 醸造食品が醤油または味噌である、請求項4の製造法。 The production method of claim 4, wherein the brewed food is soy sauce or miso.
JP2019181178A 2019-10-01 2019-10-01 Aspergillus that can be used for producing brewed foods and a method for producing brewed foods using the aspergillus that lacks the function of the gene encoding AogdhB. Active JP6892141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019181178A JP6892141B2 (en) 2019-10-01 2019-10-01 Aspergillus that can be used for producing brewed foods and a method for producing brewed foods using the aspergillus that lacks the function of the gene encoding AogdhB.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019181178A JP6892141B2 (en) 2019-10-01 2019-10-01 Aspergillus that can be used for producing brewed foods and a method for producing brewed foods using the aspergillus that lacks the function of the gene encoding AogdhB.

Publications (2)

Publication Number Publication Date
JP2021052702A JP2021052702A (en) 2021-04-08
JP6892141B2 true JP6892141B2 (en) 2021-06-23

Family

ID=75271434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019181178A Active JP6892141B2 (en) 2019-10-01 2019-10-01 Aspergillus that can be used for producing brewed foods and a method for producing brewed foods using the aspergillus that lacks the function of the gene encoding AogdhB.

Country Status (1)

Country Link
JP (1) JP6892141B2 (en)

Also Published As

Publication number Publication date
JP2021052702A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
KR101916611B1 (en) Novel polypeptide and method of producing IMP using the same
TWI714015B (en) A novel promoter and a method for producing l-amino acid using the same
DE60222167T2 (en) GAMMA GLUTAMYLCYSTEIN PRODUCING YEAST
JP2022172297A (en) Method for transforming filamentous fungi
JP5315600B2 (en) Y-glutamylcysteine-producing yeast and use thereof
JP6489014B2 (en) Yeast high in Abu, γ-Glu-Abu, and / or γ-Glu-Abu-Gly
JP6892141B2 (en) Aspergillus that can be used for producing brewed foods and a method for producing brewed foods using the aspergillus that lacks the function of the gene encoding AogdhB.
CN106701649B (en) L-glutamine producing strain and method for producing L-glutamine
WO2010106813A1 (en) Method for imparting mating ability to yeast
JP3822415B2 (en) Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant
JP5582628B2 (en) Neisseria gonorrhoeae that can be used for the production of seasonings lacking the function of the gene encoding creC and use thereof
JP5846417B2 (en) Method for culturing transformant and method for producing itaconic acid
JP6509196B2 (en) Method of producing yeast extract
JP5992020B2 (en) Chigosaccharomyces yeasts that do not produce an unpleasant odor
JP4228644B2 (en) Method for producing γ-glutamylcysteine
JP3831400B2 (en) Yeast mutant for alcoholic beverage production and method for producing alcoholic beverages using the yeast mutant
JP5506159B2 (en) A novel wine yeast obtained by crossing sake yeast and wine yeast and its production method
JP4269037B2 (en) Process for producing organic acid-rich sake
JP7101362B2 (en) Method for producing yeast with low ability to produce 1,2-dihydroxy-5- (methylsulfinyl) pentane-3-one
JP5901827B1 (en) Organic acid-producing liquor yeast strain and method for producing sake using the same
JP2009095280A (en) Method for breeding mutant strain of yellow koji mold
JP6953106B1 (en) A composition for promoting the production of a fermented product as a fermentation raw material and a method for producing a fermented product using the same.
JP5506160B2 (en) A novel wine yeast obtained by crossing shochu yeast and wine yeast and its production method
US20190284586A1 (en) Filamentous Fungus Variant and C4-Dicarboxylic Acid Production Method Using Same
JP2882830B2 (en) Mutant yeast and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6892141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150