JP6888940B2 - Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane - Google Patents

Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane Download PDF

Info

Publication number
JP6888940B2
JP6888940B2 JP2016218750A JP2016218750A JP6888940B2 JP 6888940 B2 JP6888940 B2 JP 6888940B2 JP 2016218750 A JP2016218750 A JP 2016218750A JP 2016218750 A JP2016218750 A JP 2016218750A JP 6888940 B2 JP6888940 B2 JP 6888940B2
Authority
JP
Japan
Prior art keywords
hollow fiber
porous hollow
fiber membrane
polyvinylidene fluoride
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016218750A
Other languages
Japanese (ja)
Other versions
JP2018075522A5 (en
JP2018075522A (en
Inventor
雄介 井川
雄介 井川
波形 和彦
和彦 波形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2016218750A priority Critical patent/JP6888940B2/en
Publication of JP2018075522A publication Critical patent/JP2018075522A/en
Publication of JP2018075522A5 publication Critical patent/JP2018075522A5/ja
Application granted granted Critical
Publication of JP6888940B2 publication Critical patent/JP6888940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法に関する。さらに詳しくは、浄水処理や下廃水処理などの処理膜、燃料電池用加湿膜あるいは除湿膜等として有効に用いられる繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法に関する。 The present invention relates to a method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane. More specifically, the present invention relates to a method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane that is effectively used as a treatment membrane for water purification treatment and wastewater treatment, a humidification membrane for a fuel cell, a dehumidification membrane, and the like.

近年、環境への関心が高まり、排水や浄水などの水処理分野において水質の規制が厳しくなっている中、高分離性、省エネルギーの面から分離膜、中でも中空状多孔質膜の研究開発、実用化が大いに進められている。 In recent years, with increasing interest in the environment and stricter water quality regulations in the water treatment field such as wastewater and purified water, research and development and practical use of separation membranes, especially hollow porous membranes, from the viewpoint of high separability and energy saving. The conversion is being greatly promoted.

膜ろ過による浄水処理や下廃水処理は、これまでの凝集沈殿のろ過方式と比較し、運転の維持や管理が容易であり、処理水質も良好であることから、膜ろ過は水処理分野で幅広く用いられている。ここで、近年の水資源確保の観点より、高強度で単位容積当りの膜面積が大きい多孔質中空糸膜モジュールが多く用いられている。例えば、廃水処理の場合、一般的には単位容積当りの膜面積が約50〜100m2の多孔質中空糸膜モジュールが用いられ、かかる膜モジュールに毎分数十リットルから数百リットルといった量の水が供給されることとなる。その場合、発生する荷重の影響により、多孔質中空糸膜が破断するおそれがある。また、多孔質中空糸膜モジュールが工業用途に用いられる場合には、通常数年〜10年といった長期間にわたって使用されることから、疲労による多孔質中空糸膜の破断を回避する必要もある。 Compared with conventional coagulation sedimentation filtration methods, water purification treatment by membrane filtration and wastewater treatment are easier to maintain and manage in operation, and the quality of treated water is also good, so membrane filtration is widely used in the water treatment field. It is used. Here, from the viewpoint of securing water resources in recent years, a porous hollow fiber membrane module having high strength and a large membrane area per unit volume is often used. For example, in the case of waste water treatment, a porous hollow fiber membrane module having a membrane area of about 50 to 100 m 2 per unit volume is generally used, and the amount of such a membrane module is tens to hundreds of liters per minute. Water will be supplied. In that case, the porous hollow fiber membrane may be broken due to the influence of the generated load. Further, when the porous hollow fiber membrane module is used for industrial purposes, it is usually used for a long period of several years to 10 years, so that it is necessary to avoid breakage of the porous hollow fiber membrane due to fatigue.

化学的安定性にすぐれた中空糸膜材料としては、ポリフッ化ビニリデン(PVDF)が用いられている。本出願人は先に、中空糸膜材料としてPVDFを、またその溶媒、凝固浴(および芯液)に添加する溶媒としてリン酸トリエチルを用い、さらに溶媒の置換速度を遅らせることによってスキン層およびボイド層のない均質なPVDF多孔質膜を製造する方法を提案している(特許文献1)。しかしながら、かかる製造方法では凝固速度が遅くなることにより、中空糸状に形成することが容易ではない場合がみられた。 Polyvinylidene fluoride (PVDF) is used as a hollow fiber membrane material having excellent chemical stability. Applicants first used PVDF as the hollow fiber membrane material and triethyl phosphate as the solvent to be added to the coagulation bath (and core liquid), and further slowed the replacement rate of the solvent to cause the skin layer and voids. We have proposed a method for producing a layerless and homogeneous PVDF porous membrane (Patent Document 1). However, in such a manufacturing method, there are cases where it is not easy to form a hollow thread due to a slow solidification rate.

物理的安定性については、本出願人はまた、円筒状組紐を二重環状紡糸ノズルの内側ノズル内を通過させ、二重環状紡糸ノズルの内側ノズルを通過した円筒状組紐の外表面に二重環状紡糸ノズルの外側ノズルから吐出させた製膜原液を塗布し、含浸させた後、凝固液中で凝固させ、乾燥することにより製造される繊維補強多孔質中空糸膜の製造方法において、
製膜原液としてリン酸トリエチルにポリフッ化ビニリデンが濃度16〜27重量%となるように溶解した溶液を用いるとともに、紡糸後に得られる中空糸状物を10〜90重量%の濃度のリン酸トリエチル水溶液からなる凝固液中で40〜120秒間凝固させる多孔質中空糸膜の製造方法を提案している(特許文献2)。
For physical stability, Applicants also passed the cylindrical braid through the inner nozzle of the double annular spinning nozzle and doubled on the outer surface of the cylindrical braid that passed through the inner nozzle of the double annular spinning nozzle. In a method for producing a fiber-reinforced porous hollow fiber membrane, which is produced by applying a film-forming stock solution discharged from an outer nozzle of an annular spinning nozzle, impregnating it, coagulating it in a coagulating solution, and drying it.
As the film-forming stock solution, a solution prepared by dissolving polyvinylidene fluoride in triethyl phosphate at a concentration of 16 to 27% by weight is used, and the hollow fiber obtained after spinning is prepared from an aqueous solution of triethyl phosphate having a concentration of 10 to 90% by weight. We have proposed a method for producing a porous hollow fiber membrane that is coagulated in a coagulating solution for 40 to 120 seconds (Patent Document 2).

かかる製造方法により得られる多孔質中空糸膜モジュールは、膜原液や凝固液の組成により、凝固速度を遅くして均質膜化することにより、高い透過特性を有し、耐荷重性、耐疲労性を向上せしめる一方、高流量の気体あるいは液体などの流体による多孔質中空糸膜の破断あるいは疲労による破断を抑制しうるといったすぐれた効果を奏する。 The porous hollow fiber membrane module obtained by such a manufacturing method has high permeation characteristics by slowing the coagulation rate and forming a homogeneous film depending on the composition of the membrane stock solution and the coagulation liquid, and has high load resistance and fatigue resistance. On the other hand, it has an excellent effect of suppressing breakage of the porous hollow fiber membrane due to a fluid such as a high-flow gas or liquid or breakage due to fatigue.

しかしながら、低コストでかつ生産性向上のために中空糸膜の製造工程において紡糸速度を速くすると、円筒組紐にコーティングした多孔質膜の軸方向に沿った割れの起点が形成され、膜の乾燥収縮などにより、軸方向に割れる現象が発生してしまうようになる。 However, if the spinning speed is increased in the process of manufacturing the hollow yarn film at low cost and in order to improve productivity, the starting point of cracking along the axial direction of the porous film coated on the cylindrical braid is formed, and the film dries and shrinks. As a result, the phenomenon of cracking in the axial direction will occur.

軸方向に発生する割れの起点が発生する要因としては、次の2点が考えられる。
(1)中空糸形成において問題となる、樹脂の合流部に形成されるウェルドライン
(2) 凝固速度を遅くすることにより組紐内部へ製膜原液を浸透させ剥離強度向上が図られる一方、製膜原液が浸透しすぎることにより外径形状が安定せず、膜厚が不均一となり、ひいては膜乾燥時の収縮による応力が一部に集中してしまう
The following two points can be considered as factors that cause the origin of cracks that occur in the axial direction.
(1) Weld line formed at the confluence of resins, which is a problem in hollow fiber formation
(2) By slowing the solidification rate, the film-forming stock solution permeates the inside of the braid to improve the peeling strength. On the other hand, the film-forming stock solution permeates too much and the outer diameter shape becomes unstable and the film thickness becomes uneven. As a result, the stress due to shrinkage during membrane drying is concentrated in a part.

特許第3,261,761号公報Japanese Patent No. 3,261,761 特開2012−179603号公報Japanese Unexamined Patent Publication No. 2012-179603 特開2016−010792号公報JP-A-2016-010792

本発明の目的は、紡糸速度を速くした場合にも得られる多孔質中空糸膜に割れなどの不具合を発生させることなく、耐荷重性、耐疲労性を向上せしめるとともに、高い透過特性を有し、高流量の気体あるいは液体などの流体による多孔質中空糸膜の破断あるいは疲労による破断を抑制しうる多孔質中空糸膜の製造方法を提供することにある。 An object of the present invention is to improve load resistance and fatigue resistance without causing defects such as cracks in the porous hollow fiber membrane obtained even when the spinning speed is increased, and to have high permeation characteristics. Another object of the present invention is to provide a method for producing a porous hollow fiber membrane capable of suppressing breakage of the porous hollow fiber membrane due to a fluid such as a gas or liquid having a high flow rate or breakage due to fatigue.

かかる本発明の目的は、円筒状組紐を二重環状紡糸ノズルの内側ノズル内を通過させ、二重環状紡糸ノズルの内側ノズルを通過した円筒状組紐の外表面に二重環状紡糸ノズルの外側ノズルから吐出させた製膜原液を塗布し、含浸させた後、凝固液中で凝固させ、巻取機への巻取りが行われて製造される繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法において、
円筒状組紐として、編み密度が70/インチ(25.4mm)以上、あるいは糸繊度が360〜500デシテックスでかつフィラメント数が48〜76のものを用いることによって達成される。
An object of the present invention is to allow a cylindrical braid to pass through the inner nozzle of the double annular spinning nozzle and to the outer surface of the cylindrical braid that has passed through the inner nozzle of the double annular spinning nozzle to the outer nozzle of the double annular spinning nozzle. A method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane, which is produced by applying a film-forming stock solution discharged from the sheet, impregnating it, coagulating it in a coagulating solution, and winding it on a winder. In
This is achieved by using a cylindrical braid with a knitting density of 70 / inch (25.4 mm) or more, or a yarn fineness of 360 to 500 decitex and a number of filaments of 48 to 76.

本発明に係る繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法は、円筒状組紐への製膜原液の浸透量の制御が可能となることから、得られる繊維強化多孔質中空糸膜の外径形状が安定化し、膜厚を均一化することができる。その結果、中空糸膜軸方向への割れの起点が形成されず、膜割れをなくすことができるといったすぐれた効果を奏する。 The method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane according to the present invention makes it possible to control the amount of permeation of the membrane-forming stock solution into the cylindrical braid, so that the outer fiber-reinforced porous hollow fiber membrane can be obtained. The diameter shape is stabilized and the film thickness can be made uniform. As a result, the starting point of cracking in the axial direction of the hollow fiber membrane is not formed, and the film cracking can be eliminated, which is an excellent effect.

実施例1で用いられたポリエステルスリーブの側面図であるIt is a side view of the polyester sleeve used in Example 1. 実施例1で得られた繊維強化多孔質中空糸膜の断面を示すSEM写真である3 is an SEM photograph showing a cross section of the fiber-reinforced porous hollow fiber membrane obtained in Example 1. 実施例1で得られた繊維強化多孔質中空糸膜の長軸方向の膜表面を示すSEM写真であるIt is an SEM photograph which shows the membrane surface in the long axis direction of the fiber-reinforced porous hollow fiber membrane obtained in Example 1. 実施例2で用いられたポリエステルスリーブの側面図であるIt is a side view of the polyester sleeve used in Example 2. 実施例2で得られた繊維強化多孔質中空糸膜の断面を示すSEM写真であるIt is an SEM photograph which shows the cross section of the fiber-reinforced porous hollow fiber membrane obtained in Example 2. 実施例2で得られた繊維強化多孔質中空糸膜の長軸方向の膜表面を示すSEM写真であるIt is an SEM photograph which shows the membrane surface in the long axis direction of the fiber-reinforced porous hollow fiber membrane obtained in Example 2. 比較例で用いられたポリエステルスリーブの側面図であるIt is a side view of the polyester sleeve used in the comparative example. 比較例で得られた繊維強化多孔質中空糸膜の断面を示すSEM写真であるIt is an SEM photograph which shows the cross section of the fiber-reinforced porous hollow fiber membrane obtained in the comparative example. 比較例で得られた繊維強化多孔質中空糸膜の長軸方向の膜表面を示すSEM写真であるIt is an SEM photograph which shows the membrane surface in the long axis direction of the fiber-reinforced porous hollow fiber membrane obtained in the comparative example.

本発明に係る繊維強化多孔質中空糸膜の製造方法は、円筒状組紐を二重環状紡糸ノズルの内側ノズル内を通過させ、二重環状紡糸ノズルの内側ノズルを通過した円筒状組紐の外表面に二重環状紡糸ノズルの外側ノズルから吐出させた製膜原液を塗布し、含浸させた後、凝固液中で凝固させ、ボビンへの巻取りが行われることにより製造される繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法において、
円筒状組紐として、編み密度が70/インチ(25.4mm)以上、あるいは糸繊度が360〜500デシテックスでかつフィラメント数が48〜76のものを用いることにより、得られる繊維強化多孔質中空糸膜は、外径形状が安定化し、膜厚を均一化することができ、ひいては中空糸膜軸方向への割れの起点が形成されず、膜割れをなくすことができる。
In the method for producing a fiber-reinforced porous hollow fiber membrane according to the present invention, a cylindrical braid is passed through the inner nozzle of the double annular spinning nozzle, and the outer surface of the cylindrical braid is passed through the inner nozzle of the double annular spinning nozzle. The fiber-reinforced polyvinylidene fluoride produced by applying the film-forming stock solution discharged from the outer nozzle of the double cyclic spinning nozzle, impregnating it, coagulating it in the coagulating solution, and winding it on a bobbin. In the method for producing a porous hollow fiber membrane,
The fiber-reinforced porous hollow fiber membrane obtained by using a cylindrical braid having a knitting density of 70 / inch (25.4 mm) or more, a yarn fineness of 360 to 500 decitex, and a filament number of 48 to 76 can be obtained. The outer diameter shape can be stabilized, the film thickness can be made uniform, and the origin of cracks in the axial direction of the hollow fiber membrane is not formed, so that film cracks can be eliminated.

円筒状組紐としては、編み密度が70/インチ(25.4mm)以上、好ましくは70〜100/インチ(25.4mm)、あるいは糸繊度が360〜500デシテックスでかつフィラメント数が48〜76のマルチフィラメントを、図1、4の如く円筒状となるよう丸打ちしたものが用いられる。繊維基材としては、ポリフェニレンサルファイド、ポリエステル、ポリプロピレン、ポリエチレン、レーヨン、ビニロン、ポリアミド、ポリイミド、アラミドなどの有機繊維基材が挙げられ、好ましくはポリフェニレンサルファイド、ポリエステルが用いられる。編み密度および糸繊度等がこの範囲以外のものを用いると、中空糸膜の外径形状が安定せず、膜厚も均一化されないため中空糸膜軸方向への割れの起点が形成されて、膜割れを生じるおそれがある。 As a cylindrical braid, a multifilament having a knitting density of 70 / inch (25.4 mm) or more, preferably 70 to 100 / inch (25.4 mm) , or a yarn fineness of 360 to 500 decitex and a filament number of 48 to 76 is used. , As shown in FIGS. 1 and 4, rounded ones are used so as to have a cylindrical shape. Examples of the fiber base material include organic fiber base materials such as polyphenylene sulfide, polyester, polypropylene, polyethylene, rayon, vinylon, polyamide, polyimide, and aramid, and polyphenylene sulfide and polyester are preferably used. If the knitting density, yarn fineness, etc. are outside this range, the outer diameter shape of the hollow fiber membrane is not stable and the film thickness is not uniform, so that the starting point of cracking in the axial direction of the hollow fiber membrane is formed. There is a risk of film cracking.

円筒状組紐の外周面には、多孔質中空糸膜形成用製膜原液の付着が行われる。製膜原液の円筒状組紐の外周面への付着は、二重環状紡糸ノズルの内側ノズル内を通過した円筒状組紐外表面に二重環状紡糸ノズルの外側ノズルから吐出させた製膜原液を塗布する方法が用いられる。ここで、円筒状組紐を二重環状紡糸ノズルの内側ノズルを通過させる際には、一般には円筒状組紐に対して4〜50N程度の張力がかけられる。 A film-forming stock solution for forming a porous hollow fiber membrane is adhered to the outer peripheral surface of the cylindrical braid. To adhere the film-forming stock solution to the outer peripheral surface of the cylindrical braid, apply the film-forming stock solution discharged from the outer nozzle of the double annular spinning nozzle to the outer surface of the cylindrical braid that has passed through the inner nozzle of the double annular spinning nozzle. Method is used. Here, when the cylindrical braid is passed through the inner nozzle of the double annular spinning nozzle, a tension of about 4 to 50 N is generally applied to the cylindrical braid.

製膜原液としては、ポリフッ化ビニリデン樹脂の可溶性溶媒にポリフッ化ビニリデンが濃度約16〜27重量%、好ましくは約18〜25重量%となるように溶解した溶液が用いられる。ポリフッ化ビニリデン濃度がこれより低くなると、膜孔径が大きくなりすぎるようになり、一方濃度がこれより高くなるとポリフッ化ビニリデンの溶解が困難になる。ポリフッ化ビニリデン樹脂の可溶性溶媒としては各種アルコールやジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒、リン酸トリエチル等が用いられる。 As the film-forming stock solution, a solution in which polyvinylidene fluoride is dissolved in a soluble solvent of polyvinylidene fluoride resin so as to have a concentration of about 16 to 27% by weight, preferably about 18 to 25% by weight is used. If the concentration of polyvinylidene fluoride is lower than this, the membrane pore size becomes too large, while if the concentration is higher than this, it becomes difficult to dissolve polyvinylidene fluoride. As the soluble solvent of the polyvinylidene fluoride resin, various alcohols, aprotic polar solvents such as dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, triethyl phosphate and the like are used.

多孔質中空糸膜形成用製膜原液が付着された円筒状組紐は、乾湿式紡糸法または湿式紡糸法により、凝固液を用いた凝固が行われ、洗浄、乾燥を経て繊維強化多孔質中空糸膜が形成される。 The cylindrical braid to which the membrane-forming stock solution for forming a porous hollow fiber membrane is attached is coagulated using a coagulating liquid by a dry-wet spinning method or a wet spinning method, and after washing and drying, a fiber-reinforced porous hollow fiber A film is formed.

なお、特許文献3では、糸繊度200〜600デシテックス(dtex)、打数16〜48の円筒状組紐が用いられることが開示されているが、実施例で用いられているポリエステルスリーブ(実施例1)は糸繊度280デシテックス(dtex)、打数24であり、またポリフェニレンサルファイドスリーブ(実施例2)は糸繊度280デシテックス(dtex)、打数24であることから、本発明で規定する円筒状組紐以外の組紐が用いられており、本発明で規定する円筒状組紐を選択的に用いた場合の効果は何ら示されてはいない。 Although Patent Document 3 discloses that a cylindrical braid having a yarn fineness of 200 to 600 decitex (dtex) and a stroke number of 16 to 48 is used, the polyester sleeve used in the examples (Example 1). Has a thread fineness of 280 decitex (dtex) and a number of strokes of 24, and a polyphenylene sulfide sleeve (Example 2) has a thread fineness of 280 decitex (dtex) and a number of strokes of 24. Is used, and no effect is shown when the cylindrical braid specified in the present invention is selectively used.

凝固は、凝固液中に例えば約20〜120秒間、好ましくは約20〜90秒間浸漬されることにより行われる。凝固時間がこれより短い場合には膜が凝固せず異形状となり、凝固時間をこれより長くした場合であっても製造時間が長くなるにとどまり、それ以上の効果が得られることはない。 The coagulation is carried out by immersing in the coagulation liquid for, for example, about 20 to 120 seconds, preferably about 20 to 90 seconds. If the solidification time is shorter than this, the film does not solidify and becomes irregularly shaped, and even if the solidification time is longer than this, the production time is only lengthened, and no further effect can be obtained.

凝固液としては、約10〜90重量%、好ましくは約60〜90重量%、さらに好ましくは約70〜80重量%のリン酸トリエチル水溶液が用いられる。凝固液としてこれ以下の濃度のリン酸トリエチル水溶液が用いられた場合には、多孔質膜を得ることができない。 As the coagulating liquid, an aqueous solution of triethyl phosphate of about 10 to 90% by weight, preferably about 60 to 90% by weight, more preferably about 70 to 80% by weight is used. When an aqueous solution of triethyl phosphate having a concentration lower than this is used as the coagulating liquid, a porous membrane cannot be obtained.

次に、実施例について本発明を説明する。 Next, the present invention will be described with respect to Examples.

実施例1
ポリフッ化ビニリデン樹脂(クレハ製品KF-1550)100gをジメチルスルホキシド400gに溶解させて、製膜原液を調製した。次いで、円筒状組紐であるポリエステルであるテトロンスリーブ(編み密度70〜75/インチ(25.4mm)、糸繊度280デシテックス、フィラメント数24)を、内管径2.0mmの二重環状紡糸ノズルの内側ノズル内を通過させ、二重環状紡糸ノズルの内側ノズルを通過した支持体に対して、その外表面に二重環状紡糸ノズルの外側ノズルからギアポンプを用いて圧送、吐出させた製膜原液を塗布して含浸させ、紡糸速度5m/分で紡糸を行い、80重量%リン酸トリエチル水溶液からなる凝固液中に押し出して24秒間凝固させた。
Example 1
A membrane-forming stock solution was prepared by dissolving 100 g of polyvinylidene fluoride resin (Kureha product KF-1550) in 400 g of dimethyl sulfoxide. Next, a polyester tetron sleeve (knitting density 70 to 75 / inch (25.4 mm) , yarn fineness 280 decitex, number of filaments 24), which is a cylindrical braid, is attached to the inner nozzle of a double annular spinning nozzle with an inner tube diameter of 2.0 mm. To the support that has passed through the inside and passed through the inner nozzle of the double annular spinning nozzle, the film-forming stock solution that has been pumped and discharged from the outer nozzle of the double annular spinning nozzle is applied to the outer surface thereof. The mixture was impregnated with the mixture, spun at a spinning speed of 5 m / min, extruded into a coagulating solution consisting of an 80 wt% triethyl phosphate aqueous solution, and coagulated for 24 seconds.

作製された中空糸膜は、ポリフッ化ビニリデンがテトロンスリーブ内部の50%程度までの浸透となっており、その外径形状は図2に示されるように、特に歪みあるいは凹みのみられない円形状であった。また、洗浄、乾燥後の膜表面をSEMにて観察したところ、図3に示されるように軸方向の割れは確認されなかった。 In the produced hollow fiber membrane, polyvinylidene fluoride penetrates up to about 50% inside the Tetron sleeve, and the outer diameter shape is a circular shape that is not particularly distorted or dented, as shown in FIG. there were. Moreover, when the film surface after washing and drying was observed by SEM, no axial cracking was confirmed as shown in FIG.

実施例2
実施例1において、円筒状組紐としてテトロンスリーブ(編み密度35〜40/インチ(25.4mm)、糸繊度360デシテックス、フィラメント数48)のものが用いられた。得られた中空糸膜は、ポリフッ化ビニリデンがテトロンスリーブ内部の50%程度までの浸透となっており、その外径形状は図5に示されるように、特に歪みあるいは凹みのみられない円形状であった。また、洗浄、乾燥後の膜表面をSEMにて観察したところ、図6に示されるように軸方向の割れは確認されなかった。
Example 2
In Example 1, a Tetron sleeve (knitting density 35-40 / inch (25.4 mm) , yarn fineness 360 decitex, number of filaments 48) was used as the cylindrical braid. In the obtained hollow fiber membrane, polyvinylidene fluoride penetrates up to about 50% inside the Tetron sleeve, and the outer diameter shape is a circular shape with no particular distortion or dent as shown in FIG. there were. Moreover, when the film surface after washing and drying was observed by SEM, no axial cracking was confirmed as shown in FIG.

比較例
実施例1において、円筒状組紐としてテトロンスリーブ(編み密度45〜50/インチ(25.4mm)、糸繊度280デシテックス、フィラメント数24)のものが用いられた。得られた中空糸膜は、ポリフッ化ビニリデンがテトロンスリーブ内部の100%まで浸透しており、図8に示されるようにその外径形状は円形状ではなく、その断面には凹みが確認された。また、洗浄、乾燥後の膜表面をSEMにて観察したところ、図9に示されるように軸方向の割れが確認された。
Comparative Example In Example 1, a Tetron sleeve (knitting density 45 to 50 / inch (25.4 mm) , yarn fineness 280 decitex, number of filaments 24) was used as the cylindrical braid. In the obtained hollow fiber membrane, polyvinylidene fluoride penetrated to 100% inside the Tetron sleeve, and as shown in FIG. 8, the outer diameter shape was not circular, and a dent was confirmed in the cross section. .. Moreover, when the film surface after washing and drying was observed by SEM, cracks in the axial direction were confirmed as shown in FIG.

本発明に係る製造方法により製造された繊維強化ポリフッ化ビニリデン多孔質中空糸膜は、高い透過特性および機械的強度を有することから、排水、浄水などの水処理分野や、燃料電池用加湿膜、除湿膜などとして有効に用いられる。 Since the fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane produced by the production method according to the present invention has high permeation characteristics and mechanical strength, it is used in water treatment fields such as wastewater and water purification, and as a humidifying membrane for fuel cells. It is effectively used as a dehumidifying film.

Claims (3)

円筒状組紐を二重環状紡糸ノズルの内側ノズル内を通過させ、二重環状紡糸ノズルの内側ノズルを通過した円筒状組紐の外表面に二重環状紡糸ノズルの外側ノズルから吐出させた製膜原液を塗布し、含浸させた後、凝固液中で凝固させ、巻取機への巻取りが行われて製造される繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法において、
円筒状組紐として、編み密度が70/インチ(25.4mm)以上、あるいは糸繊度が360〜500デシテックスでかつフィラメント数が48〜76のものを用いることを特徴とする繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法。
A film-forming stock solution in which a cylindrical braid is passed through the inner nozzle of the double annular spinning nozzle and discharged from the outer nozzle of the double annular spinning nozzle to the outer surface of the cylindrical braid that has passed through the inner nozzle of the double annular spinning nozzle. In the method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane, which is produced by coating, impregnating, and then coagulating in a coagulating liquid and winding it on a winder.
As a cylindrical braid, a fiber-reinforced polyvinylidene fluoride porous hollow fiber having a knitting density of 70 / inch (25.4 mm) or more, a yarn fineness of 360 to 500 decitex, and a filament number of 48 to 76 is used. Method of manufacturing a thread film.
円筒状組紐として、ポリエステルスリーブが用いられる請求項1記載の繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法。 The method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane according to claim 1, wherein a polyester sleeve is used as the cylindrical braid. 凝固液としてリン酸トリエチルが用いられる請求項1または2記載の繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法。 The method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane according to claim 1 or 2, wherein triethyl phosphate is used as a coagulating liquid.
JP2016218750A 2016-11-09 2016-11-09 Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane Active JP6888940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016218750A JP6888940B2 (en) 2016-11-09 2016-11-09 Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218750A JP6888940B2 (en) 2016-11-09 2016-11-09 Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane

Publications (3)

Publication Number Publication Date
JP2018075522A JP2018075522A (en) 2018-05-17
JP2018075522A5 JP2018075522A5 (en) 2019-12-05
JP6888940B2 true JP6888940B2 (en) 2021-06-18

Family

ID=62148784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218750A Active JP6888940B2 (en) 2016-11-09 2016-11-09 Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP6888940B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191298A1 (en) * 2021-03-12 2022-09-15 Agc株式会社 Protection sleeve and method for producing protection sleeve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2505488C (en) * 2002-11-12 2008-12-09 Mitsubishi Rayon Co., Ltd. Composite porous membrane and method for producing the same
JP5207220B2 (en) * 2006-11-07 2013-06-12 三菱レイヨン株式会社 HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM
JP5626865B2 (en) * 2010-08-13 2014-11-19 旭化成ケミカルズ株式会社 Composite porous hollow fiber membrane, membrane module, membrane filtration device, water treatment method
JP5666502B2 (en) * 2012-05-25 2015-02-12 三菱レイヨン株式会社 Hollow porous membrane and method for producing the same
JP2016010792A (en) * 2014-06-04 2016-01-21 Nok株式会社 Method for production of porous hollow fiber membrane of fiber-reinforced polyvinylidene fluoride

Also Published As

Publication number Publication date
JP2018075522A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
AU2006321466B2 (en) A braid-reinforced composite hollow fiber membrane
JP4050977B2 (en) Composite hollow fiber membrane reinforced by knitted fabric
CN107596928B (en) Homogeneous fiber reinforced PVDF hollow fiber membrane and preparation method thereof
JP4757311B2 (en) Composite hollow fiber membrane reinforced by knitted fabric
JP5565586B2 (en) Method for producing composite porous membrane
CN105727759A (en) High-performance forward permeable membrane and electrostatic spinning preparation method thereof
CN105797601A (en) Reinforced hollow fiber composite membrane and preparation method thereof
JP2019022893A (en) Hollow porous film and method for producing the same
CN108355499A (en) Double separating layer hollow fiber ultrafiltration membranes of the net containing tubular support and preparation method thereof
TW200408439A (en) Laminated porous membrane and production method thereof
JP2016010792A (en) Method for production of porous hollow fiber membrane of fiber-reinforced polyvinylidene fluoride
US10413869B2 (en) Composite hollow fiber membrane and manufacturing method thereof
JP6888940B2 (en) Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
JP2020015005A (en) Hollow fiber membrane, and manufacturing method of hollow fiber membrane
JP5737318B2 (en) Method for producing fiber-reinforced porous hollow fiber membrane
JP2018075523A (en) Method for producing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
CN112387127A (en) Hollow fiber filter membrane and preparation method thereof
JP2014079709A (en) Method of producing fiber-reinforced porous hollow fiber membrane
US9694327B2 (en) Hollow porous membrane
KR102104426B1 (en) Manufacturing method of composite hollow fiber membrane with excellent impregnation property and composite hollow fiber membrane manufactured using the same
CN113634140B (en) Internal support polyvinylidene fluoride hollow dry film and preparation method thereof
JP6863333B2 (en) Manufacturing method of water treatment membrane element
JP2013248589A (en) Method for producing fiber reinforced porous hollow fiber membrane
JP2012152705A (en) Method for manufacturing fiber reinforced porous hollow fiber membrane
KR102653447B1 (en) Composite hollow fiber membrane with improved durability and usable life-time and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6888940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150