JP5737318B2 - Method for producing fiber-reinforced porous hollow fiber membrane - Google Patents

Method for producing fiber-reinforced porous hollow fiber membrane Download PDF

Info

Publication number
JP5737318B2
JP5737318B2 JP2013090707A JP2013090707A JP5737318B2 JP 5737318 B2 JP5737318 B2 JP 5737318B2 JP 2013090707 A JP2013090707 A JP 2013090707A JP 2013090707 A JP2013090707 A JP 2013090707A JP 5737318 B2 JP5737318 B2 JP 5737318B2
Authority
JP
Japan
Prior art keywords
nozzle
hollow fiber
fiber membrane
spinning
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013090707A
Other languages
Japanese (ja)
Other versions
JP2014213235A (en
Inventor
正崇 近藤
正崇 近藤
波形 和彦
和彦 波形
孝利 佐藤
孝利 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2013090707A priority Critical patent/JP5737318B2/en
Priority to PCT/JP2014/061325 priority patent/WO2014175281A1/en
Publication of JP2014213235A publication Critical patent/JP2014213235A/en
Application granted granted Critical
Publication of JP5737318B2 publication Critical patent/JP5737318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/40Fibre reinforced membranes

Description

本発明は、繊維強化多孔質中空糸膜の製造方法に関する。さらに詳しくは、機械的強度にすぐれた繊維強化多孔質中空糸膜の製造方法に関する。   The present invention relates to a method for producing a fiber-reinforced porous hollow fiber membrane. More specifically, the present invention relates to a method for producing a fiber-reinforced porous hollow fiber membrane having excellent mechanical strength.

多孔質中空糸膜は、膜ロ過による浄水処理、廃水処理、除湿あるいは加湿を行う際などさまざまな分野で用いられている。   Porous hollow fiber membranes are used in various fields such as water purification treatment by membrane filtration, wastewater treatment, dehumidification or humidification.

膜ロ過による浄水処理や廃水処理は、これまでの凝集沈殿のロ過方式と比較し、運転の維持や管理が容易であり、処理水質も良好であることから、近年水処理分野で幅広く用いられている。例えば活性汚泥処理と膜分離処理を組み合わせたメンブレンリアクター法〔MBR〕の膜分離処理に用いられる膜としては、高強度、耐久性、耐薬品性が要求されることから、熱誘起相分離法によって調製されるポリフッ化ビニリデン〔PVDF〕膜が使用されることが多い。   Water purification and wastewater treatment using membrane filtration has been widely used in the water treatment field in recent years because it is easier to maintain and manage operation and has better quality compared to conventional filtration methods for coagulation and precipitation. It has been. For example, the membrane used in the membrane reactor process (MBR), which combines activated sludge treatment and membrane separation treatment, requires high strength, durability, and chemical resistance. A prepared polyvinylidene fluoride [PVDF] membrane is often used.

しかしながら、熱誘起相分離法によって調製されるPVDF膜は、強度が8〜22MPa程度であり、またこのうち実用されているものは11MPa程度のものが多いというように、ある程度の強度は示すものの、非溶媒誘起相分離法で調製された膜と比較して、必ずしも十分な強度を有しているものとはいえない。また、熱誘起相分離法は工程が複雑であり、多くの溶剤を用いた洗浄が必要であることから高コストで環境にやさしいものとはいい難いといった側面を有する。 However, the PVDF membrane prepared by the thermally induced phase separation method has a strength of about 8 to 22 MPa, and among them, many are about 11 MPa in practical use, although some strength is shown, Compared with a membrane prepared by a non-solvent induced phase separation method, it does not necessarily have sufficient strength. In addition, the thermally induced phase separation method has a complicated process and requires cleaning with a large number of solvents, so that it is difficult to say that it is expensive and environmentally friendly.

一方、非溶媒誘起相分離法を用いて調製されるポリスルホンやPVDF等を樹脂ケース内に接着剤を用いて固定した構造の膜モジュール(膜面積約10〜100m2)も廃水処理や浄水処理に多く使用されている。このような膜モジュールには毎分数10L〜数100Lといった量の水が供給されて使用される。その際、定期的に流量回復を目的とした薬品洗浄や搖動洗浄などが施されることから、使用時あるいは洗浄時に中空糸膜が破断する場合がある。 On the other hand, a membrane module (membrane area of about 10 to 100 m 2 ) with a structure in which polysulfone, PVDF, etc. prepared using a non-solvent induced phase separation method are fixed in a resin case with an adhesive is also used for wastewater treatment and water purification treatment. Many are used. Such a membrane module is supplied with water in an amount of several tens of liters to several hundreds of liters per minute. At that time, since the chemical cleaning or the peristaltic cleaning for the purpose of recovering the flow rate is periodically performed, the hollow fiber membrane may be broken at the time of use or cleaning.

また、中空糸膜方式で除湿あるいは加湿を行う方法は、メンテナンスフリーであるばかりではなく、駆動に電源を必要とはしないなど多くの利点を有している。このような除湿膜あるいは加湿膜としては、ポリイミド、ポリスルホン、ポリフェニルスルホンといった膜形成性樹脂材料が用いられている(例えば特許文献1)。これらの材料を用いた除湿膜は、多くの産業分野で用いられているものの、多孔質であるために膜の絶対強度が弱く、用途によっては多量の気体を流して使用されるために使用時に中空糸膜が破断するといったおそれがある。一方、加湿膜についても、近年では燃料電池スタックの隔膜の加湿に多く用いられているが、この場合にも例えば車載用途において4000NL/分程度の多量の空気が流れることから、その機械的強度との関係で中空糸膜切れといったおそれがあるFurther, the method of dehumidifying or humidifying by the hollow fiber membrane method is not only maintenance-free, but also has many advantages such as not requiring a power source for driving. As such a dehumidifying film or humidifying film, a film-forming resin material such as polyimide, polysulfone, or polyphenylsulfone is used ( for example, Patent Document 1) . Dividing wet film using these materials, although used in many industrial fields, for the absolute strength of the membrane to a porous weak, which is used by passing a large amount of gas depending on the application, using there is a possibility such at the hollow fiber membrane is broken. On the other hand, in recent years, humidification membranes are often used to humidify diaphragms of fuel cell stacks, but in this case as well, for example, a large amount of air of about 4000 NL / min flows in in-vehicle applications. Therefore, there is a risk of the hollow fiber membrane being cut.

このような多孔質中空糸膜の中空糸膜切れを防止し、機械的強度を向上させる手段として補強繊維を中空糸膜中に埋没させた多孔質膜が提案されている(特許文献2)。ここで、補強繊維を中空糸膜中に埋没させるに当り、二重環状ノズルの外側ノズルより紡糸原液とともに補強繊維を押し出して多孔質中空糸膜を製造した場合には、ノズルから吐出された紡糸原液が凝固して膜になる過程において、補強繊維が中空糸膜の外側に移動する傾向がみられ、部分的に中空糸膜内に埋没されず補強が不十分な部位が生じることから強度にバラツキを生じ、使用時あるいは洗浄時に糸切れが発生するおそれもある。   A porous membrane in which reinforcing fibers are buried in a hollow fiber membrane has been proposed as a means for preventing the hollow fiber membrane from being broken and improving the mechanical strength (Patent Document 2). Here, when the reinforcing fiber is buried in the hollow fiber membrane and the reinforcing fiber is extruded together with the spinning stock solution from the outer nozzle of the double annular nozzle to produce a porous hollow fiber membrane, the spinning discharged from the nozzle In the process of solidifying the stock solution into a membrane, there is a tendency for the reinforcing fibers to move outside the hollow fiber membrane, resulting in a portion that is not partially buried in the hollow fiber membrane and insufficiently reinforced, resulting in increased strength. Variations may occur and thread breakage may occur during use or cleaning.

特開2004−290751号公報Japanese Patent Application Laid-Open No. 2004-290751 特開2002−166141号公報JP 2002-166141 A

本発明の目的は、補強繊維を中空糸膜中に完全に埋没させた多孔質中空糸膜であって、多孔質中空糸膜本来の機能を損なうことなく機械的強度を向上せしめた繊維強化多孔質中空糸膜の製造方法を提供することにある。   An object of the present invention is a porous hollow fiber membrane in which reinforcing fibers are completely buried in a hollow fiber membrane, and the fiber reinforced porous material has improved mechanical strength without impairing the original function of the porous hollow fiber membrane. Is to provide a method for producing a hollow fiber membrane.

かかる本発明の目的は、内側ノズル、中側ノズルおよび外側ノズルの順に三重の環を構成している三重環状ノズルの内側ノズルに芯液を、中側ノズルに補強繊維および紡糸原液を、さらに外側ノズルに紡糸原液をそれぞれ導入して湿式紡糸または乾湿式紡糸を行い、補強繊維を中空糸膜中に完全に埋没させた繊維強化多孔質中空糸膜を製造する方法によって達成される。 An object of the present invention is to provide a core liquid for the inner nozzle of the triple annular nozzle that constitutes a triple ring in the order of the inner nozzle, the middle nozzle, and the outer nozzle, the reinforcing fiber and the spinning dope for the outer nozzle, and the outer This is achieved by a method of producing a fiber-reinforced porous hollow fiber membrane in which a spinning undiluted solution is introduced into a nozzle and wet spinning or dry wet spinning is performed to completely embed the reinforcing fiber in the hollow fiber membrane .

二重環状ノズルを用いて紡糸した場合には、紡糸原液とともに吐出された補強繊維は中空糸膜状物の外側に移動してしまい、外側ノズルから吐出された紡糸原液が凝固して膜を形成する過程において、補強繊維が部分的に中空糸膜内に埋没されず補強が不十分な部位が生じる場合があるが、本発明方法では三重環状ノズルを用いて、中側ノズルより押し出された補強繊維の外側にさらに外側ノズルより紡糸原液が吐出されることから、多孔質中空糸膜の膜内部に補強繊維を完全に埋め込んだ状態で中空糸膜を製造することができ、高強度の中空糸膜を得ることができるといった効果を奏する。 When spun using a double annular nozzle, the reinforcing fibers discharged together with the spinning dope will be moved outside of the hollow fiber membrane-like material, forming a film spinning solution discharged from the outer nozzle solidifies In the process, the reinforcing fiber is not partially buried in the hollow fiber membrane, and there is a case where the reinforcement is insufficient, but in the method of the present invention, the reinforcement pushed out from the middle nozzle using the triple annular nozzle Since the spinning solution is discharged from the outer nozzle further to the outside of the fiber, the hollow fiber membrane can be manufactured in a state where the reinforcing fiber is completely embedded inside the porous hollow fiber membrane, and the high strength hollow fiber There is an effect that a film can be obtained.

実施例1で得られた補強繊維埋没多孔質中空糸膜の拡大断面写真である2 is an enlarged cross-sectional photograph of a reinforcing fiber-embedded porous hollow fiber membrane obtained in Example 1. 比較例4で得られた補強繊維埋没多孔質中空糸膜の拡大断面写真である4 is an enlarged cross-sectional photograph of a reinforcing fiber-embedded porous hollow fiber membrane obtained in Comparative Example 4.

三重環状ノズルとしては、従来から用いられている公知のもの、すなわち所望の中空糸膜サイズに応じた径を有する内側ノズル、中側ノズルおよび外側ノズルの順に三重の環を構成しているものであれば特に制限なく用いることができる。なお、補強繊維を多孔質中空糸膜の機能層(被処理物接触側)ではない側の中空糸膜表面からみて中空糸膜膜厚の90%を超えない位置に配置させることにより、透過性能、分離性能を高く保ちつつ力学的特性をさらに向上させることができることから、好ましくはかかる中空糸膜を紡糸し得る内径、外径を有する内側ノズル、中側ノズルおよび外側ノズルを有する三重環状ノズルが選択される。   As the triple annular nozzle, a conventionally known one is used, that is, a triple ring in the order of an inner nozzle, a middle nozzle and an outer nozzle having a diameter corresponding to a desired hollow fiber membrane size. It can be used without any particular limitation. Permeation performance is achieved by placing reinforcing fibers at a position that does not exceed 90% of the thickness of the hollow fiber membrane as viewed from the surface of the hollow fiber membrane that is not the functional layer (workpiece contact side) of the porous hollow fiber membrane. Since the mechanical properties can be further improved while keeping the separation performance high, a triple annular nozzle having an inner diameter, an inner nozzle having an outer diameter, an inner nozzle, and an outer nozzle, which can preferably spin such a hollow fiber membrane, is provided. Selected.

繊維強化多孔質中空糸膜は、三重環状ノズルの内側ノズルに芯液を、中側ノズルに補強繊維および紡糸原液を、さらに外側ノズルに紡糸原液をそれぞれ導入して湿式紡糸または乾湿式紡糸を行うことにより製造される。 Fiber-reinforced porous hollow fiber membrane, a core liquid inside the nozzle of the triple annular nozzle, the reinforcing fibers and dope the middle side nozzle, subjected to wet spinning or dry-wet spinning by introducing further spinning solution, respectively to the outer nozzle It is manufactured by.

芯液としては、膜形成性樹脂の非溶媒、例えば水、ポリビニルピロリドン水溶液などが用いられる。紡糸原液のポリマーとしては、公知の中空糸膜形成材料(ポリマー)のいずれも用いることができ、例えば酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、再生セルロースまたはこれらの混合物等のセルロース系材料、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリフッ化ビニリデン系樹脂、ポリアクリロニトリル樹脂、ポリエーテルイミド樹脂、アラミド樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等の疎水性ポリマーが挙げられる。また、膜形成性樹脂の可溶性溶媒としてはアルコールやジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒が好んで用いられる。 As the core liquid, a non-solvent of a film-forming resin, for example, water, an aqueous polyvinylpyrrolidone solution, or the like is used. As the polymer of the spinning dope, any of known hollow fiber membrane-forming materials (polymers) can be used. For example, cellulose materials such as cellulose acetate, cellulose propionate, cellulose butyrate, regenerated cellulose or a mixture thereof, polysulfone Examples thereof include hydrophobic polymers such as resins, polyethersulfone resins, polyvinylidene fluoride resins, polyacrylonitrile resins, polyetherimide resins, aramid resins , polypropylene resins, and polyethylene resins. As a soluble solvent for the film-forming resin, an aprotic polar solvent such as alcohol, dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone is preferably used.

紡糸原液は、中側ノズルおよび外側ノズルの両方に導入されるが、それぞれ用いられる紡糸原液は同種のもの、異種のもののいずれであってもかまわない。   The spinning dope is introduced into both the middle nozzle and the outer nozzle, but the spinning dope used may be the same or different.

中側ノズルに紡糸原液とともに導入される補強繊維としては、従来用いられている補強材として用いられている繊維材料であれば特に制限なく用いることができ、例えばモノフィラメント、マルチフィラメント、紡績糸などが、具体的にはポリプロピレン、ポリエチレン、フッ素樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアクリロニトリル、ポリフェニレンサルファイド、塩化ビニル、セルロース、ポリ乳酸、ポリビニルアルコール、ポリアミド、ポリイミド、アラミドなどを原料とする天然または合成繊維、ステンレス、銅などの金属繊維、ガラス繊維、炭素繊維などの少なくとも一種が挙げられ、好ましくはポリエチレンテレフタレート繊維が用いられる。   The reinforcing fiber introduced into the middle nozzle together with the spinning dope can be used without particular limitation as long as it is a fiber material used as a conventionally used reinforcing material. For example, monofilament, multifilament, spun yarn, etc. Specifically, natural or synthetic fibers made from polypropylene, polyethylene, fluororesin, polyethylene terephthalate, polybutylene terephthalate, polyacrylonitrile, polyphenylene sulfide, vinyl chloride, cellulose, polylactic acid, polyvinyl alcohol, polyamide, polyimide, aramid, etc. And at least one of metal fibers such as stainless steel and copper, glass fibers, and carbon fibers. Polyethylene terephthalate fibers are preferably used.

かかる補強繊維は、紡糸原液とともに中側ノズルに導入される。補強繊維の中側ノズルへの導入は、紡糸原液が供給される箇所より紡糸原液とともに行う方法あるいは三重管状ノズルに、中側ノズル内に補強繊維を導入し得る状態で補強繊維導入パイプを装備したものを用いて行う方法など中側ノズル内に補強繊維を導入し得る方法であれば任意の方法を用いることができる。 Such reinforcing fibers are introduced into the middle nozzle together with the spinning dope. Introduction into the medium side nozzles of the reinforcing fibers, implemented method, or a triple tubular nozzle, the reinforcing fiber inlet pipe in a state capable of introducing the reinforcing fibers in the middle side in the nozzle performed with spinning solution from the area whereto the spinning solution is supplied reinforcing fiber medium side in the nozzle and a method carried out using the what may be any method as long as the method to be introduced.

補強繊維の導入は、好ましくは内側ノズル外周面に沿って行われる。これは、ノズルから吐出された紡糸原液が芯液と接触して芯液の非溶媒と紡糸原液の溶媒が交換されて膜化する過程において紡糸原液中の補強繊維が膜の外周側に押し出される傾向にあり、その影響による補強繊維の膜の外周への露出を抑制することを目的としている。また、補強繊維は、中間ノズルに均一に分散させた状態でも用いられるが、部分的、例えば中間ノズルの一部または対称位置に複数本を挿入するようにしてもよい(図1参照)。 The introduction of the reinforcing fibers is preferably performed along the outer peripheral surface of the inner nozzle. This is because the spinning fiber discharged from the nozzle comes into contact with the core solution and the non-solvent of the core solution and the solvent of the spinning solution are exchanged to form a membrane, so that the reinforcing fibers in the spinning solution are pushed out to the outer peripheral side of the membrane. The purpose is to suppress exposure of the reinforcing fiber to the outer periphery of the membrane. Further, the reinforcing fibers are used evenly dispersed in the intermediate nozzle, but a plurality of reinforcing fibers may be inserted partially, for example, at a part of the intermediate nozzle or at a symmetrical position (see FIG. 1).

紡糸にあたっては、各ノズルから吐出される芯液、紡糸原液の吐出時の圧力は同じ圧力でも構わないが、好ましくは補強繊維が中空糸膜外へ露出することを防止するため外側ノズルに導入された紡糸原液に対する押出圧力が中側ノズルに導入された紡糸原液に対する押出圧力よりも高く設定される。 In spinning, the core liquid discharged from each nozzle and the spinning liquid may be discharged at the same pressure, but are preferably introduced to the outer nozzle to prevent the reinforcing fibers from being exposed outside the hollow fiber membrane. The extrusion pressure for the spinning dope is set higher than the extrusion pressure for the spinning dope introduced into the middle nozzle.

多孔質中空糸膜は、湿式紡糸または乾湿式紡糸法によって紡糸された多孔質中空糸膜状物を凝固液を用いた凝固、洗浄、乾燥を行うことによって製造される。 Porous hollow fiber membrane, solidifying the porous hollow fiber membrane-like material is spun using a coagulating liquid by wet spinning or dry-wet spinning method, washing is produced by performing drying.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例1
内径0.5mm、外径0.7mmの内側ノズル、内径2mmの外側ノズルおよびこれらに挟まれている内径1mm、外径1.125mmの中側ノズルよりなる三重環状ノズルの中側ノズルより、内側ノズルから芯液としての水を流出させながら、補強繊維としてのポリエチレンテレフタレートマルチフィラメント(糸繊度110デシテックス/24フィラメント;破断強度6N)2本および紡糸原液を、紡糸原液の供給速度に対してポリエチレンテレフタレートマルチフィラメントの供給速度が同程度となるような供給割合で、中間ノズルの円周上対称位置となる2箇所に供給し、また外側ノズルからは紡糸原液のみを吐出させ、空走空間を経て、これを水温50℃の水(凝固液)中で凝固させ、乾湿式紡糸により補強繊維埋没中空糸膜状物を得た。
Example 1
Inner nozzle from inner nozzle than inner nozzle of triple ring nozzle consisting of inner nozzle of inner diameter 0.5mm, outer diameter 0.7mm, outer nozzle of inner diameter 2mm and inner diameter 1mm, outer diameter 1.125mm sandwiched between them While flowing out the water as the liquid, two polyethylene terephthalate multifilaments (yarn fineness 110 dtex / 24 filament; breaking strength 6N) as the reinforcing fiber and the spinning stock solution were compared with the feed rate of the spinning stock solution. Supply to two locations that are symmetrically arranged on the circumference of the intermediate nozzle at a supply ratio at which the supply speed is about the same, and only the spinning stock solution is discharged from the outer nozzle. Solidification was performed in water (coagulation liquid) at 50 ° C., and a hollow fiber membrane embedded with reinforcing fibers was obtained by dry and wet spinning.

ここで、紡糸原液としては、ポリフェニルスルホン20重量%、ジメチルホルムアミド65重量%、ポリビニルピロリドン15重量%からなるものが用いられ、また補強繊維の中側ノズルへの導入は、三重管状ノズルに、中側ノズル内に補強繊維を導入し得る状態で補強繊維導入パイプを装備したものを用いて行われた。 Here, as the stock solution for spinning, 20% by weight of polyphenylsulfone, 65% by weight of dimethylformamide, and 15% by weight of polyvinyl pyrrolidone are used. This was carried out using a pipe equipped with a reinforcing fiber introduction pipe in a state where the reinforcing fiber could be introduced into the middle nozzle.

補強繊維埋没中空糸膜状物は121℃、1時間の高圧滅菌処理を行った後、庫内温度40℃の恒温槽内に入れて乾燥処理を行うことにより、補強繊維埋没多孔質ポリフェニルスルホン中空糸膜を得た。得られた補強繊維埋没多孔質中空糸膜の拡大断面写真(×175)は図1に示され、補強繊維が完全に中空糸膜膜厚内に埋没していることが確認された。 Reinforcing fiber embedded hollow fiber membrane material is subjected to high-pressure sterilization treatment at 121 ° C for 1 hour, and then placed in a constant temperature bath at a chamber temperature of 40 ° C for drying treatment, thereby reinforcing fiber embedded porous polyphenylsulfone A hollow fiber membrane was obtained. An enlarged cross-sectional photograph (× 175) of the obtained reinforcing fiber-embedded porous hollow fiber membrane is shown in FIG. 1, and it was confirmed that the reinforcing fiber was completely buried in the hollow fiber membrane film thickness.

得られた多孔質ポリフェニルスルホン中空糸膜は、外径1000μm、内径500μmであり、25℃における水蒸気透過速度は0.28g/cm2/分/MPa、純水透過速度は0ml/cm2/時間/MPa、空気透過速度は0ml/cm2/分/MPaであった。また、標線間距離50mm、試験速度毎分20mmで引張試験を行い破断応力を算出したところ58MPaであった。 The obtained porous polyphenylsulfone hollow fiber membrane has an outer diameter of 1000 μm, an inner diameter of 500 μm, a water vapor transmission rate at 25 ° C. of 0.28 g / cm 2 / min / MPa, and a pure water transmission rate of 0 ml / cm 2 / hour. / MPa, the air permeation rate was 0 ml / cm 2 / min / MPa. Further, a tensile test was conducted at a distance between marked lines of 50 mm and a test speed of 20 mm per minute, and the fracture stress was calculated to be 58 MPa.

実施例2
実施例1において、紡糸原液としてポリフェニルスルホンの代わりにポリスルホンを同量(20重量%)用いて調製されたものが用いられた。得られた多孔質ポリスルホン中空糸膜は、外径1000μm、内径500μmであり、25℃における水蒸気透過速度は0.23g/cm2/分/MPa、純水透過速度は0ml/cm2/時間/MPa、空気透過速度は0ml/cm2/分/MPaであった。また、標線間距離50mm、試験速度毎分20mmで引張試験を行い破断応力を算出したところ57MPaであった。
Example 2
In Example 1, a spinning stock solution prepared by using the same amount (20% by weight) of polysulfone instead of polyphenylsulfone was used. The obtained porous polysulfone hollow fiber membrane has an outer diameter of 1000 μm, an inner diameter of 500 μm, a water vapor transmission rate at 25 ° C. of 0.23 g / cm 2 / min / MPa, and a pure water transmission rate of 0 ml / cm 2 / hour / MPa. The air transmission rate was 0 ml / cm 2 / min / MPa. A tensile test was conducted at a distance between marked lines of 50 mm and a test speed of 20 mm per minute, and the breaking stress was calculated to be 57 MPa.

実施例3
実施例1において、紡糸原液としてポリエーテルイミド20重量%、ジメチルアセトアミド80重量%からなるものが用いられた。得られた多孔質ポリエーテルイミド中空糸膜は、外径1000μm、内径500μmであり、25℃における水蒸気透過速度は0.36g/cm2/分/MPa、純水透過速度は0ml/cm2/時間/MPa、空気透過速度は0ml/cm2/分/MPaであった。また、標線間距離50mm、試験速度毎分20mmで引張試験を行い破断応力を算出したところ57MPaであった。
Example 3
In Example 1, a spinning stock solution comprising 20% by weight of polyetherimide and 80% by weight of dimethylacetamide was used. The obtained porous polyetherimide hollow fiber membrane has an outer diameter of 1000 μm, an inner diameter of 500 μm, a water vapor transmission rate at 25 ° C. of 0.36 g / cm 2 / min / MPa, and a pure water transmission rate of 0 ml / cm 2 / hour. / MPa, the air permeation rate was 0 ml / cm 2 / min / MPa. A tensile test was conducted at a distance between marked lines of 50 mm and a test speed of 20 mm per minute, and the breaking stress was calculated to be 57 MPa.

比較例1
実施例1において、内径0.4mm、外径0.6mmの内側ノズルおよび内径1.15mmの外側ノズルよりなる二重管状ノズルの内側ノズルから芯液としての水を流出させながら、補強繊維を用いることなく紡糸原液を外側ノズルからを吐出させ、空走空間を経て、これを水温50℃の水(凝固液)中で凝固させ、乾湿式紡糸により補強繊維埋没中空糸膜状物を得た。これを乾燥処理して得られた多孔質ポリフェニルスルホン中空糸膜は、外径1000μm、内径700μmであり、25℃における水蒸気透過速度は0.28g/cm2/分/MPa、純水透過速度は0ml/cm2/時間/MPa、空気透過速度は0ml/cm2/分/MPaであった。また、標線間距離50mm、試験速度毎分20mmで引張試験を行い破断応力を算出したところ8.5MPaであった。
Comparative Example 1
In Example 1, spinning is performed without using reinforcing fibers while water as core liquid is discharged from the inner nozzle of a double tubular nozzle comprising an inner nozzle having an inner diameter of 0.4 mm and an outer diameter of 0.6 mm and an outer nozzle having an inner diameter of 1.15 mm. The stock solution was discharged from the outer nozzle, passed through a free running space, solidified in water (coagulating liquid) at a water temperature of 50 ° C., and a hollow fiber membrane embedded with reinforcing fibers was obtained by dry and wet spinning. The porous polyphenylsulfone hollow fiber membrane obtained by drying this has an outer diameter of 1000 μm, an inner diameter of 700 μm, a water vapor transmission rate at 25 ° C. of 0.28 g / cm 2 / min / MPa, and a pure water transmission rate of 0 ml / cm 2 / time / MPa, air permeation rate was 0 ml / cm 2 / min / MPa. A tensile test was performed at a distance between marked lines of 50 mm and a test speed of 20 mm per minute, and the breaking stress was calculated to be 8.5 MPa.

比較例2
比較例1において、紡糸原液として実施例2で用いられた紡糸原液を用いたところ、得られた多孔質ポリスルホン中空糸膜は、外径1000μm、内径700μmであり、25℃における水蒸気透過速度は0.23g/cm2/分/MPa、純水透過速度は0ml/cm2/時間/MPa、空気透過速度は0ml/cm2/分/MPaであった。また、標線間距離50mm、試験速度毎分20mmで引張試験を行い破断応力を算出したところ8.1MPaであった。
Comparative Example 2
In Comparative Example 1, when the spinning stock solution used in Example 2 was used as the spinning stock solution, the obtained porous polysulfone hollow fiber membrane had an outer diameter of 1000 μm and an inner diameter of 700 μm, and the water vapor transmission rate at 25 ° C. was 0.23. g / cm 2 / min / MPa, pure water permeation rate 0 ml / cm 2 / time / MPa, the air permeation rate was 0 ml / cm 2 / min / MPa. A tensile test was conducted at a distance between marked lines of 50 mm and a test speed of 20 mm per minute, and the breaking stress was calculated to be 8.1 MPa.

比較例3
比較例1において、紡糸原液として実施例3で用いられた紡糸原液を用いたところ、得られた多孔質ポリエーテルイミド中空糸膜は、外径1000μm、内径700μmであり、25℃における水蒸気透過速度は0.36g/cm2/分/MPa、純水透過速度は0ml/cm2/時間/MPa、空気透過速度は0ml/cm2/分/MPaであった。また、標線間距離50mm、試験速度毎分20mmで引張試験を行い破断応力を算出したところ8.0MPaであった。
Comparative Example 3
In Comparative Example 1, when the spinning stock solution used in Example 3 was used as the spinning stock solution, the obtained porous polyetherimide hollow fiber membrane had an outer diameter of 1000 μm and an inner diameter of 700 μm, and the water vapor transmission rate at 25 ° C. 0.36 g / cm 2 / min / MPa, pure water permeation rate was 0 ml / cm 2 / hr / MPa, and air permeation rate was 0 ml / cm 2 / min / MPa. A tensile test was performed at a distance between marked lines of 50 mm and a test speed of 20 mm per minute, and the breaking stress was calculated to be 8.0 MPa.

比較例4
実施例3において、内側ノズルおよび外側ノズルよりなる二重環状ノズルの内側ノズルから芯液としての水を流出させながら、補強繊維としてのポリエチレンテレフタレートマルチフィラメント(糸繊度110デシテックス/24フィラメント)および紡糸原液を外側ノズルからを吐出させ、これを水温50℃の水(凝固液)中で凝固させ、乾湿式紡糸により補強繊維埋没中空糸膜状物を得た。これを乾燥して得られた補強繊維埋没多孔質ポリエーテルイミド中空糸膜の拡大断面写真(×175)は図2に示され、補強繊維の一部が中空糸の外側に露出してしまっていることが確認された。
Comparative Example 4
In Example 3, polyethylene terephthalate multifilament (yarn fineness 110 dtex / 24 filament) as a reinforcing fiber and spinning dope while water as core liquid was allowed to flow out from the inner nozzle of a double annular nozzle comprising an inner nozzle and an outer nozzle Was discharged from the outer nozzle, solidified in water (coagulating liquid) at a water temperature of 50 ° C., and a hollow fiber membrane embedded with reinforcing fibers was obtained by dry and wet spinning. An enlarged cross-sectional photograph (× 175) of the reinforcing fiber-embedded porous polyetherimide hollow fiber membrane obtained by drying this is shown in FIG. 2, and a part of the reinforcing fiber is exposed to the outside of the hollow fiber. It was confirmed that

この多孔質ポリエーテルイミド中空糸膜は、外径1000μm、内径700μmであり、25℃における水蒸気透過速度は0.36g/cm2/分/MPa、純水透過速度は0ml/cm2/時間/MPa、空気透過速度は0ml/cm2/分/MPaであった。また、標線間距離50mm、試験速度毎分20mmで引張試験を行い破断応力を算出したところ、8.0〜27.0MPaというように補強なし程度の強度から完全補強時の強度の半分程度まで箇所によりムラがみられた。 This porous polyetherimide hollow fiber membrane has an outer diameter of 1000 μm, an inner diameter of 700 μm, a water vapor transmission rate at 25 ° C. of 0.36 g / cm 2 / min / MPa, and a pure water transmission rate of 0 ml / cm 2 / hour / MPa The air transmission rate was 0 ml / cm 2 / min / MPa. In addition, a tensile test was performed at a distance between marked lines of 50 mm and a test speed of 20 mm per minute, and the breaking stress was calculated. Depending on the location from 8.0 to 27.0 MPa, such as the strength without reinforcement to about half of the strength during full reinforcement. Unevenness was seen.

得られた繊維強化多孔質中空糸膜は、高荷重や長期使用での糸切れを抑制することができることから、膜ロ過による浄水処理、下廃水処理、除湿あるいは加湿を行う際などさまざまな分野で有効に用いられる。   The obtained fiber-reinforced porous hollow fiber membrane can suppress yarn breakage under high load and long-term use, so it can be used in various fields such as water purification treatment by membrane filtration, wastewater treatment, dehumidification or humidification. Can be used effectively.

Claims (3)

内側ノズル、中側ノズルおよび外側ノズルの順に三重の環を構成している三重環状ノズルの内側ノズルに芯液を、中側ノズルに補強繊維および紡糸原液を、さらに外側ノズルに紡糸原液をそれぞれ導入して、湿式紡糸または乾湿式紡糸を行うことを特徴とする、補強繊維を中空糸膜中に完全に埋没させた繊維強化多孔質中空糸膜の製造方法。 The core liquid is introduced into the inner nozzle of the triple ring nozzle that forms a triple ring in the order of the inner nozzle, the inner nozzle, and the outer nozzle, the reinforcing fiber and the spinning dope are introduced into the inner nozzle, and the spinning dope is introduced into the outer nozzle. Then, a method for producing a fiber-reinforced porous hollow fiber membrane in which the reinforcing fiber is completely buried in the hollow fiber membrane , wherein wet spinning or dry wet spinning is performed. 内側ノズル外周面に沿って補強繊維の導入が行われる請求項1記載の繊維強化多孔質中空糸膜の製造方法。   The method for producing a fiber-reinforced porous hollow fiber membrane according to claim 1, wherein the reinforcing fibers are introduced along the outer peripheral surface of the inner nozzle. 外側ノズル中の紡糸原液に対する押出圧力を中側ノズル中の紡糸原液に対する押出圧力よりも高くして、紡糸が行われる請求項1記載の繊維強化多孔質中空糸膜の製造方法。The method for producing a fiber-reinforced porous hollow fiber membrane according to claim 1, wherein spinning is carried out by setting the extrusion pressure for the spinning dope in the outer nozzle higher than the extrusion pressure for the spinning dope in the middle nozzle.
JP2013090707A 2013-04-23 2013-04-23 Method for producing fiber-reinforced porous hollow fiber membrane Active JP5737318B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013090707A JP5737318B2 (en) 2013-04-23 2013-04-23 Method for producing fiber-reinforced porous hollow fiber membrane
PCT/JP2014/061325 WO2014175281A1 (en) 2013-04-23 2014-04-22 Process for manufacturing fiber-reinforced porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013090707A JP5737318B2 (en) 2013-04-23 2013-04-23 Method for producing fiber-reinforced porous hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2014213235A JP2014213235A (en) 2014-11-17
JP5737318B2 true JP5737318B2 (en) 2015-06-17

Family

ID=51791852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013090707A Active JP5737318B2 (en) 2013-04-23 2013-04-23 Method for producing fiber-reinforced porous hollow fiber membrane

Country Status (2)

Country Link
JP (1) JP5737318B2 (en)
WO (1) WO2014175281A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711688B (en) * 2015-04-07 2017-01-25 苏州市晨彩纺织研发有限公司 Fuse wire air tunnel generation sprayer
CN111111462A (en) * 2020-01-06 2020-05-08 浙江长兴求是膜技术有限公司 Fiber-reinforced hollow fiber multi-core membrane and preparation method thereof
CN116116240A (en) * 2021-11-12 2023-05-16 创脉医疗科技(上海)有限公司 Hollow fiber membrane yarn, preparation method thereof and oxygenation membrane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051363B2 (en) * 1977-04-26 1985-11-13 旭化成株式会社 Semipermeable composite membrane
JPH11319519A (en) * 1998-05-20 1999-11-24 Nitto Denko Corp Reinforcing material-imbedded separation membrane and manufacture thereof
JP2003236351A (en) * 2002-02-15 2003-08-26 Mitsubishi Rayon Co Ltd Porous membrane and method for manufacturing the same
JP2003245528A (en) * 2002-02-26 2003-09-02 Mitsubishi Rayon Co Ltd Method for manufacturing fiber reinforced porous hollow fiber membrane
TWI377978B (en) * 2008-05-21 2012-12-01 Mitsubishi Rayon Co Hollow porous film and manufacturing method thereof
JP5745510B2 (en) * 2009-06-26 2015-07-08 ビーエル・テクノロジーズ・インコーポレイテッド Hollow fiber membrane reinforced with non-braided fabric

Also Published As

Publication number Publication date
JP2014213235A (en) 2014-11-17
WO2014175281A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
Huang et al. Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development
Turken et al. Progress on reinforced braided hollow fiber membranes in separation technologies: A review
KR101462939B1 (en) Hydrophilic Polyvinylidene Fluoride Based Hollow Fiber Membrane and Preparing Method Thereof
Moattari et al. Reinforced hollow fiber membranes: A comprehensive review
WO2002024315A1 (en) Porous membrane
JP5798680B2 (en) Pressurized hollow fiber membrane module
JP5737318B2 (en) Method for producing fiber-reinforced porous hollow fiber membrane
JP2018505053A (en) Hollow fiber membrane bundle and method for producing the same
CN113117535A (en) Preparation method of homogeneous continuous fiber reinforced hollow fiber membrane and hollow fiber membrane prepared by same
JP2016010792A (en) Method for production of porous hollow fiber membrane of fiber-reinforced polyvinylidene fluoride
KR20150001513A (en) Hollow Fiber Membrane and Method for Manufacturing The Same
JP5772867B2 (en) Fiber reinforced porous hollow fiber membrane
JP6277097B2 (en) Hollow fiber membrane, method for producing hollow fiber membrane, and liquid treatment method
JP6888940B2 (en) Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
JP2013248589A (en) Method for producing fiber reinforced porous hollow fiber membrane
JP5923657B2 (en) Porous membrane and method for producing the same
JP5737319B2 (en) Method for producing spun yarn reinforced porous hollow fiber membrane
JP2015221400A (en) Manufacturing method of hollow fiber membrane for ultrafiltration membrane
JP2018075523A (en) Method for producing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
KR20160041646A (en) Preparation Method of Hollow Fiber Membrane and Manufacturing System Thereof
JP2015205258A (en) Fiber reinforced porous hollow fiber membrane and production method of the same
CN215506367U (en) Scale inhibition type straight-through hollow fiber membrane filter element for humidifier
CN110917878B (en) Preparation method of hollow fiber reverse osmosis membrane with high flux and high salt rejection rate
JP2012152705A (en) Method for manufacturing fiber reinforced porous hollow fiber membrane
KR101226400B1 (en) Tubular braid and Composite Hollow Fiber Membrane using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5737318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250