JP2018075522A - Method for producing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane - Google Patents

Method for producing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane Download PDF

Info

Publication number
JP2018075522A
JP2018075522A JP2016218750A JP2016218750A JP2018075522A JP 2018075522 A JP2018075522 A JP 2018075522A JP 2016218750 A JP2016218750 A JP 2016218750A JP 2016218750 A JP2016218750 A JP 2016218750A JP 2018075522 A JP2018075522 A JP 2018075522A
Authority
JP
Japan
Prior art keywords
hollow fiber
porous hollow
fiber membrane
polyvinylidene fluoride
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016218750A
Other languages
Japanese (ja)
Other versions
JP6888940B2 (en
JP2018075522A5 (en
Inventor
雄介 井川
Yusuke Igawa
雄介 井川
波形 和彦
Kazuhiko Namigata
和彦 波形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2016218750A priority Critical patent/JP6888940B2/en
Publication of JP2018075522A publication Critical patent/JP2018075522A/en
Publication of JP2018075522A5 publication Critical patent/JP2018075522A5/ja
Application granted granted Critical
Publication of JP6888940B2 publication Critical patent/JP6888940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a porous hollow fiber membrane which, without causing a trouble, such as cracking, in the porous hollow fiber membrane obtained even when a spinning speed is increased, improves load resistance and fatigue resistance, and provides high permeation characteristics, and which can inhibit the breaking of the porous hollow fiber membrane caused by a high flow rate of fluid, such as gas or liquid, or the breaking thereof caused by fatigue.SOLUTION: A method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane comprises: allowing a cylindrical braid to pass through the inside of the inner nozzle of a double annular spinning nozzle; applying a membrane-forming stock solution discharged from the outer nozzle of the double annular spinning nozzle to the outer surface of the cylindrical braid which has passed through the inner nozzle of the double annular spinning nozzle to impregnate it therein, and then coagulating it in a coagulation liquid; and carrying out winding onto a winder, thereby producing the fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane. In the method, as the cylindrical braid, there is used a cylindrical braid having a braid density of 70/inch or more, or having a yarn fineness of 280 decitex or more and 36 or more filaments.SELECTED DRAWING: Figure 2

Description

本発明は、繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法に関する。さらに詳しくは、浄水処理や下廃水処理などの処理膜、燃料電池用加湿膜あるいは除湿膜等として有効に用いられる繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法に関する。   The present invention relates to a method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane. More specifically, the present invention relates to a method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane that is effectively used as a treatment membrane for water purification treatment or sewage wastewater treatment, a humidifying membrane for fuel cells or a dehumidifying membrane.

近年、環境への関心が高まり、排水や浄水などの水処理分野において水質の規制が厳しくなっている中、高分離性、省エネルギーの面から分離膜、中でも中空状多孔質膜の研究開発、実用化が大いに進められている。   In recent years, interest in the environment has increased, and water quality regulations have become stricter in the field of water treatment such as drainage and water purification. From the standpoint of high separability and energy saving, separation membranes, especially hollow porous membranes, have been researched and put to practical use. There is a great deal of progress.

膜ろ過による浄水処理や下廃水処理は、これまでの凝集沈殿のろ過方式と比較し、運転の維持や管理が容易であり、処理水質も良好であることから、膜ろ過は水処理分野で幅広く用いられている。ここで、近年の水資源確保の観点より、高強度で単位容積当りの膜面積が大きい多孔質中空糸膜モジュールが多く用いられている。例えば、廃水処理の場合、一般的には単位容積当りの膜面積が約50〜100m2の多孔質中空糸膜モジュールが用いられ、かかる膜モジュールに毎分数十リットルから数百リットルといった量の水が供給されることとなる。その場合、発生する荷重の影響により、多孔質中空糸膜が破断するおそれがある。また、多孔質中空糸膜モジュールが工業用途に用いられる場合には、通常数年〜10年といった長期間にわたって使用されることから、疲労による多孔質中空糸膜の破断を回避する必要もある。 Membrane filtration is widely used in the water treatment field because water treatment by sewage treatment and sewage wastewater treatment are easier to maintain and manage, and the quality of the treated water is better than conventional flocculation and precipitation filtration methods. It is used. Here, from the viewpoint of securing water resources in recent years, porous hollow fiber membrane modules having a high strength and a large membrane area per unit volume are often used. For example, in the case of wastewater treatment, a porous hollow fiber membrane module having a membrane area of about 50 to 100 m 2 per unit volume is generally used, and the membrane module has an amount of tens to hundreds of liters per minute. Water will be supplied. In that case, the porous hollow fiber membrane may be broken due to the influence of the generated load. Further, when the porous hollow fiber membrane module is used for industrial applications, it is usually used for a long period of several years to 10 years, so that it is also necessary to avoid breakage of the porous hollow fiber membrane due to fatigue.

化学的安定性にすぐれた中空糸膜材料としては、ポリフッ化ビニリデン(PVDF)が用いられている。本出願人は先に、中空糸膜材料としてPVDFを、またその溶媒、凝固浴(および芯液)に添加する溶媒としてリン酸トリエチルを用い、さらに溶媒の置換速度を遅らせることによってスキン層およびボイド層のない均質なPVDF多孔質膜を製造する方法を提案している(特許文献1)。しかしながら、かかる製造方法では凝固速度が遅くなることにより、中空糸状に形成することが容易ではない場合がみられた。   As a hollow fiber membrane material excellent in chemical stability, polyvinylidene fluoride (PVDF) is used. The applicant previously used PVDF as the hollow fiber membrane material, triethyl phosphate as the solvent and the solvent to be added to the coagulation bath (and core liquid), and further slowed the substitution rate of the solvent to reduce the skin layer and void. A method for producing a homogeneous PVDF porous membrane without a layer has been proposed (Patent Document 1). However, in such a production method, there have been cases where it is not easy to form a hollow fiber due to a slow solidification rate.

物理的安定性については、本出願人はまた、円筒状組紐を二重環状紡糸ノズルの内側ノズル内を通過させ、二重環状紡糸ノズルの内側ノズルを通過した円筒状組紐の外表面に二重環状紡糸ノズルの外側ノズルから吐出させた製膜原液を塗布し、含浸させた後、凝固液中で凝固させ、乾燥することにより製造される繊維補強多孔質中空糸膜の製造方法において、
製膜原液としてリン酸トリエチルにポリフッ化ビニリデンが濃度16〜27重量%となるように溶解した溶液を用いるとともに、紡糸後に得られる中空糸状物を10〜90重量%の濃度のリン酸トリエチル水溶液からなる凝固液中で40〜120秒間凝固させる多孔質中空糸膜の製造方法を提案している(特許文献2)。
For physical stability, Applicants have also passed the cylindrical braid through the inner nozzle of the double annular spinning nozzle and doubled it on the outer surface of the cylindrical braid that passed through the inner nozzle of the double annular spinning nozzle. In the method for producing a fiber-reinforced porous hollow fiber membrane produced by applying and impregnating a membrane-forming stock solution discharged from an outer nozzle of an annular spinning nozzle, solidifying in a coagulating solution, and drying.
A solution obtained by dissolving polyvinylidene fluoride in triethyl phosphate so as to have a concentration of 16 to 27% by weight as a film forming stock solution is used, and a hollow fiber-like product obtained after spinning is obtained from an aqueous solution of triethyl phosphate having a concentration of 10 to 90% by weight. A method for producing a porous hollow fiber membrane that is coagulated in a coagulating liquid for 40 to 120 seconds is proposed (Patent Document 2).

かかる製造方法により得られる多孔質中空糸膜モジュールは、膜原液や凝固液の組成により、凝固速度を遅くして均質膜化することにより、高い透過特性を有し、耐荷重性、耐疲労性を向上せしめる一方、高流量の気体あるいは液体などの流体による多孔質中空糸膜の破断あるいは疲労による破断を抑制しうるといったすぐれた効果を奏する。   The porous hollow fiber membrane module obtained by such a manufacturing method has high permeability characteristics by reducing the coagulation rate and forming a homogeneous membrane by the composition of the membrane stock solution and coagulation solution, and has load resistance and fatigue resistance. On the other hand, there is an excellent effect that the breakage of the porous hollow fiber membrane caused by a fluid such as a high flow rate gas or liquid or the breakage due to fatigue can be suppressed.

しかしながら、低コストでかつ生産性向上のために中空糸膜の製造工程において紡糸速度を速くすると、円筒組紐にコーティングした多孔質膜の軸方向に沿った割れの起点が形成され、膜の乾燥収縮などにより、軸方向に割れる現象が発生してしまうようになる。   However, if the spinning speed is increased in the manufacturing process of the hollow fiber membrane at a low cost to improve productivity, the starting point of the crack along the axial direction of the porous membrane coated on the cylindrical braid is formed, and the drying shrinkage of the membrane As a result, a phenomenon of breaking in the axial direction occurs.

軸方向に発生する割れの起点が発生する要因としては、次の2点が考えられる。
(1)中空糸形成において問題となる、樹脂の合流部に形成されるウェルドライン
(2) 凝固速度を遅くすることにより組紐内部へ製膜原液を浸透させ剥離強度向上が図られる一方、製膜原液が浸透しすぎることにより外径形状が安定せず、膜厚が不均一となり、ひいては膜乾燥時の収縮による応力が一部に集中してしまう
The following two points can be considered as factors causing the origin of cracks that occur in the axial direction.
(1) Weld line formed at the joint of resin, which is a problem in hollow fiber formation
(2) By slowing down the coagulation rate, the film-forming stock solution penetrates into the braid and the peel strength is improved.On the other hand, the film-forming stock solution permeates too much, resulting in an unstable outer diameter and non-uniform film thickness. And, as a result, the stress due to shrinkage during drying of the film is concentrated in part.

特許第3,261,761号公報Japanese Patent No. 3,261,761 特開2012−179603号公報JP 2012-179603 A 特開2016−010792号公報JP 2006-010792 A

本発明の目的は、紡糸速度を速くした場合にも得られる多孔質中空糸膜に割れなどの不具合を発生させることなく、耐荷重性、耐疲労性を向上せしめるとともに、高い透過特性を有し、高流量の気体あるいは液体などの流体による多孔質中空糸膜の破断あるいは疲労による破断を抑制しうる多孔質中空糸膜の製造方法を提供することにある。   The object of the present invention is to improve load resistance and fatigue resistance without causing defects such as cracks in the porous hollow fiber membrane obtained even when the spinning speed is increased, and has high permeability characteristics. Another object of the present invention is to provide a method for producing a porous hollow fiber membrane that can suppress breakage of the porous hollow fiber membrane due to a high flow rate gas or liquid or breakage due to fatigue.

かかる本発明の目的は、円筒状組紐を二重環状紡糸ノズルの内側ノズル内を通過させ、二重環状紡糸ノズルの内側ノズルを通過した円筒状組紐の外表面に二重環状紡糸ノズルの外側ノズルから吐出させた製膜原液を塗布し、含浸させた後、凝固液中で凝固させ、巻取機への巻取りが行われて製造される繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法において、
円筒状組紐として、編み密度が70/インチ以上、あるいは糸繊度280デシテックス以上かつ36フィラメント以上のものを用いることによって達成される。
The object of the present invention is to pass the cylindrical braid through the inner nozzle of the double annular spinning nozzle, and on the outer surface of the cylindrical braid that has passed through the inner nozzle of the double annular spinning nozzle, the outer nozzle of the double annular spinning nozzle. A method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane produced by applying and impregnating a membrane-forming stock solution discharged from a coagulating solution, coagulating in a coagulating solution, and winding it on a winder In
This is achieved by using a cylindrical braid having a knitting density of 70 / inch or more, a yarn fineness of 280 dtex or more, and 36 filaments or more.

本発明に係る繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法は、円筒状組紐への製膜原液の浸透量の制御が可能となることから、得られる繊維強化多孔質中空糸膜の外径形状が安定化し、膜厚を均一化することができる。その結果、中空糸膜軸方向への割れの起点が形成されず、膜割れをなくすことができるといったすぐれた効果を奏する。   The method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane according to the present invention enables control of the amount of the membrane-forming stock solution penetrating into the cylindrical braid. The diameter shape is stabilized and the film thickness can be made uniform. As a result, the starting point of the crack in the hollow fiber membrane axial direction is not formed, and an excellent effect is obtained that the membrane crack can be eliminated.

実施例1で用いられたポリエステルスリーブの側面図であるIt is a side view of the polyester sleeve used in Example 1. 実施例1で得られた繊維強化多孔質中空糸膜の断面を示すSEM写真である2 is a SEM photograph showing a cross section of the fiber-reinforced porous hollow fiber membrane obtained in Example 1. FIG. 実施例1で得られた繊維強化多孔質中空糸膜の長軸方向の膜表面を示すSEM写真であるIt is a SEM photograph which shows the film | membrane surface of the major axis direction of the fiber reinforced porous hollow fiber membrane obtained in Example 1. 実施例2で用いられたポリエステルスリーブの側面図であるIt is a side view of the polyester sleeve used in Example 2. 実施例2で得られた繊維強化多孔質中空糸膜の断面を示すSEM写真であるIt is a SEM photograph which shows the cross section of the fiber reinforced porous hollow fiber membrane obtained in Example 2. 実施例2で得られた繊維強化多孔質中空糸膜の長軸方向の膜表面を示すSEM写真であるIt is a SEM photograph which shows the membrane surface of the major axis direction of the fiber reinforced porous hollow fiber membrane obtained in Example 2 比較例で用いられたポリエステルスリーブの側面図であるIt is a side view of the polyester sleeve used by the comparative example. 比較例で得られた繊維強化多孔質中空糸膜の断面を示すSEM写真であるFIG. 3 is an SEM photograph showing a cross section of a fiber-reinforced porous hollow fiber membrane obtained in a comparative example. 比較例で得られた繊維強化多孔質中空糸膜の長軸方向の膜表面を示すSEM写真であるIt is a SEM photograph showing the membrane surface in the major axis direction of the fiber reinforced porous hollow fiber membrane obtained in the comparative example

本発明に係る繊維強化多孔質中空糸膜の製造方法は、円筒状組紐を二重環状紡糸ノズルの内側ノズル内を通過させ、二重環状紡糸ノズルの内側ノズルを通過した円筒状組紐の外表面に二重環状紡糸ノズルの外側ノズルから吐出させた製膜原液を塗布し、含浸させた後、凝固液中で凝固させ、ボビンへの巻取りが行われることにより製造される繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法において、
円筒状組紐として、編み密度が70/インチ以上、あるいは糸繊度280デシテックス以上かつ36フィラメント以上のものを用いることにより、得られる繊維強化多孔質中空糸膜は、外径形状が安定化し、膜厚を均一化することができ、ひいては中空糸膜軸方向への割れの起点が形成されず、膜割れをなくすことができる。
The manufacturing method of the fiber reinforced porous hollow fiber membrane according to the present invention is such that the cylindrical braid is passed through the inner nozzle of the double annular spinning nozzle and the outer surface of the cylindrical braid that has passed through the inner nozzle of the double annular spinning nozzle. A fiber reinforced polyvinylidene fluoride produced by coating and impregnating a film-forming stock solution discharged from the outer nozzle of a double annular spinning nozzle onto a bobbin after coagulating in a coagulating liquid. In the method for producing a porous hollow fiber membrane,
By using a cylindrical braid having a knitting density of 70 / inch or more, or a yarn fineness of 280 dtex or more and 36 filaments or more, the resulting fiber-reinforced porous hollow fiber membrane has a stable outer diameter and a film thickness. Can be made uniform, and as a result, the starting point of the crack in the axial direction of the hollow fiber membrane is not formed, and the membrane crack can be eliminated.

円筒状組紐としては、編み密度が70/インチ以上、好ましくは70〜100/インチ、あるいは糸繊度280デシテックス以上かつ36フィラメント以上、好ましくは360〜500デシテックスでかつ48〜76フィラメントのものであれば、丸編、斜編などの編み方を問わず特に制限なく用いることができる。例えばモノフィラメント、マルチフィラメント、紡績糸などの筒状ネットが用いられ、具体的にはポリフェニレンサルファイド、ポリエステル、ポリプロピレン、ポリエチレン、レーヨン、ビニロン、ポリアミド、ポリイミド、アラミドなどの有機繊維基材が挙げられ、好ましくはポリフェニレンサルファイド、ポリエステルが用いられる。編み密度および糸繊度等がこの範囲以外のものを用いると、中空糸膜の外径形状が安定せず、膜厚も均一化されないため中空糸膜軸方向への割れの起点が形成されて、膜割れを生じるおそれがある。   The cylindrical braid has a knitting density of 70 / inch or more, preferably 70 to 100 / inch, or a yarn fineness of 280 dtex or more and 36 filaments or more, preferably 360 to 500 dtex and 48 to 76 filaments. It can be used without particular limitation regardless of the method of knitting such as circular knitting and oblique knitting. For example, cylindrical nets such as monofilaments, multifilaments, and spun yarns are used, and specific examples include organic fiber base materials such as polyphenylene sulfide, polyester, polypropylene, polyethylene, rayon, vinylon, polyamide, polyimide, and aramid. Polyphenylene sulfide and polyester are used. If the knitting density and yarn fineness are other than these ranges, the outer diameter shape of the hollow fiber membrane is not stable and the film thickness is not uniform, so the starting point of the crack in the axial direction of the hollow fiber membrane is formed, There is a risk of film cracking.

円筒状組紐の外周面には、多孔質中空糸膜形成用製膜原液の付着が行われる。製膜原液の円筒状組紐の外周面への付着は、二重環状紡糸ノズルの内側ノズル内を通過した円筒状組紐外表面に二重環状紡糸ノズルの外側ノズルから吐出させた製膜原液を塗布する方法が用いられる。ここで、円筒状組紐を二重環状紡糸ノズルの内側ノズルを通過させる際には、一般には円筒状組紐に対して4〜50N程度の張力がかけられる。   The membrane-forming stock solution for forming the porous hollow fiber membrane is attached to the outer peripheral surface of the cylindrical braid. The film forming stock solution adheres to the outer circumferential surface of the cylindrical braid by applying the film forming stock solution discharged from the outer nozzle of the double annular spinning nozzle to the outer surface of the cylindrical braid passing through the inner nozzle of the double annular spinning nozzle. Is used. Here, when passing the cylindrical braid through the inner nozzle of the double annular spinning nozzle, generally a tension of about 4 to 50 N is applied to the cylindrical braid.

製膜原液としては、ポリフッ化ビニリデン樹脂の可溶性溶媒にポリフッ化ビニリデンが濃度約16〜27重量%、好ましくは約18〜25重量%となるように溶解した溶液が用いられる。ポリフッ化ビニリデン濃度がこれより低くなると、膜孔径が大きくなりすぎるようになり、一方濃度がこれより高くなるとポリフッ化ビニリデンの溶解が困難になる。ポリフッ化ビニリデン樹脂の可溶性溶媒としては各種アルコールやジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン等の非プロトン性極性溶媒、リン酸トリエチル等が用いられる。   As the film-forming stock solution, a solution in which polyvinylidene fluoride is dissolved in a soluble solvent of polyvinylidene fluoride resin so as to have a concentration of about 16 to 27% by weight, preferably about 18 to 25% by weight is used. If the polyvinylidene fluoride concentration is lower than this, the pore size of the membrane becomes too large. On the other hand, if the concentration is higher than this, it becomes difficult to dissolve the polyvinylidene fluoride. As the soluble solvent for the polyvinylidene fluoride resin, various alcohols, aprotic polar solvents such as dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, dimethylsulfoxide, N-methyl-2-pyrrolidone, triethyl phosphate and the like are used.

多孔質中空糸膜形成用製膜原液が付着された円筒状組紐は、乾湿式紡糸法または湿式紡糸法により、凝固液を用いた凝固が行われ、洗浄、乾燥を経て繊維強化多孔質中空糸膜が形成される。   The cylindrical braid to which the membrane forming raw solution for forming the porous hollow fiber membrane is attached is coagulated with a coagulating liquid by a dry-wet spinning method or a wet spinning method, and after washing and drying, a fiber-reinforced porous hollow fiber A film is formed.

なお、特許文献3では、糸繊度200〜600デシテックス(dtex)、打数16〜48の円筒状組紐が用いられることが開示されているが、実施例で用いられているポリエステルスリーブ(実施例1)は糸繊度280デシテックス(dtex)、打数24であり、またポリフェニレンサルファイドスリーブ(実施例2)は糸繊度280デシテックス(dtex)、打数24であることから、本発明で規定する円筒状組紐以外の組紐が用いられており、本発明で規定する円筒状組紐を選択的に用いた場合の効果は何ら示されてはいない。   Patent Document 3 discloses that a cylindrical braid having a yarn fineness of 200 to 600 dtex and a batting number of 16 to 48 is used, but a polyester sleeve used in the example (Example 1). Has a yarn fineness of 280 dtex (dtex) and a number of strokes of 24, and the polyphenylene sulfide sleeve (Example 2) has a yarn fineness of 280 dtex (dtex) and a number of strokes of 24. No effect is shown when the cylindrical braid defined in the present invention is selectively used.

凝固は、凝固液中に例えば約20〜120秒間、好ましくは約20〜90秒間浸漬されることにより行われる。凝固時間がこれより短い場合には膜が凝固せず異形状となり、凝固時間をこれより長くした場合であっても製造時間が長くなるにとどまり、それ以上の効果が得られることはない。   The coagulation is performed by immersing in the coagulation liquid, for example, for about 20 to 120 seconds, preferably about 20 to 90 seconds. When the coagulation time is shorter than this, the film does not coagulate and becomes irregularly shaped, and even when the coagulation time is longer than this, the manufacturing time is prolonged and no further effect is obtained.

凝固液としては、約10〜90重量%、好ましくは約60〜90重量%、さらに好ましくは約70〜80重量%のリン酸トリエチル水溶液が用いられる。凝固液としてこれ以下の濃度のリン酸トリエチル水溶液が用いられた場合には、多孔質膜を得ることができない。   As the coagulation liquid, an aqueous triethyl phosphate solution of about 10 to 90% by weight, preferably about 60 to 90% by weight, more preferably about 70 to 80% by weight is used. When an aqueous triethyl phosphate solution having a concentration below this is used as the coagulation liquid, a porous film cannot be obtained.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例1
ポリフッ化ビニリデン樹脂(クレハ製品KF-1550)100gをジメチルスルホキシド400gに溶解させて、製膜原液を調製した。次いで、円筒状組紐であるポリエステルであるテトロンスリーブ(編み密度70〜75/インチ、280デシテックス、フィラメント数24)を、内管径2.0mmの二重環状紡糸ノズルの内側ノズル内を通過させ、二重環状紡糸ノズルの内側ノズルを通過した支持体に対して、その外表面に二重環状紡糸ノズルの外側ノズルからギアポンプを用いて圧送、吐出させた製膜原液を塗布して含浸させ、紡糸速度5m/分で紡糸を行い、80重量%リン酸トリエチル水溶液からなる凝固液中に押し出して24秒間凝固させた。
Example 1
A film forming stock solution was prepared by dissolving 100 g of polyvinylidene fluoride resin (Kureha product KF-1550) in 400 g of dimethyl sulfoxide. Next, a tetron sleeve (knitting density: 70 to 75 / inch, 280 dtex, 24 filaments), which is a polyester braided polyester string, is passed through the inner nozzle of a double annular spinning nozzle having an inner tube diameter of 2.0 mm. The substrate passed through the inner nozzle of the double annular spinning nozzle is impregnated by applying the film forming stock solution pumped and discharged from the outer nozzle of the double annular spinning nozzle to the outer surface using a gear pump. Spinning was performed at 5 m / min, and the mixture was extruded into a coagulating liquid composed of 80% by weight triethyl phosphate aqueous solution and coagulated for 24 seconds.

作製された中空糸膜は、ポリフッ化ビニリデンがテトロンスリーブ内部の50%以上までしか浸透しておらず、その外径形状は図2に示されるように、特に歪みあるいは凹みのみられない円形状であった。また、洗浄、乾燥後の膜表面をSEMにて観察したところ、図3に示されるように軸方向の割れは確認されなかった。   The produced hollow fiber membrane penetrates only up to 50% or more of the inside of the Tetron sleeve, and the outer diameter shape thereof is a circular shape that is not particularly distorted or recessed as shown in FIG. there were. Moreover, when the film | membrane surface after washing | cleaning and drying was observed by SEM, the crack of an axial direction was not confirmed as FIG. 3 shows.

実施例2
実施例1において、円筒状組紐としてテトロンスリーブ(編み密度35〜40/インチ、360デシテックス、フィラメント数48)のものが用いられた。得られた中空糸膜は、ポリフッ化ビニリデンがテトロンスリーブ内部の50%以上までしか浸透しておらず、その外径形状は図5に示されるように、特に歪みあるいは凹みのみられない円形状であった。また、洗浄、乾燥後の膜表面をSEMにて観察したところ、図6に示されるように軸方向の割れは確認されなかった。
Example 2
In Example 1, a Tetoron sleeve (knitting density 35-40 / inch, 360 dtex, number of filaments 48) was used as the cylindrical braid. In the hollow fiber membrane obtained, polyvinylidene fluoride penetrates only up to 50% or more of the inside of the Tetron sleeve, and the outer diameter shape thereof is a circular shape that is not particularly distorted or recessed as shown in FIG. there were. Further, when the film surface after washing and drying was observed with an SEM, no axial crack was observed as shown in FIG.

比較例
実施例1において、円筒状組紐としてテトロンスリーブ(編み密度45〜50/インチ、280デシテックス、フィラメント数24)のものが用いられた。得られた中空糸膜は、ポリフッ化ビニリデンがテトロンスリーブ内部の100%まで浸透しており、図8に示されるようにその外径形状は円形状ではなく、その断面には凹みが確認された。また、洗浄、乾燥後の膜表面をSEMにて観察したところ、図9に示されるように軸方向の割れが確認された。
Comparative Example In Example 1, a tetron sleeve (knitting density 45-50 / inch, 280 dtex, 24 filaments) was used as the cylindrical braid. In the obtained hollow fiber membrane, polyvinylidene fluoride penetrated to 100% of the inside of the Tetron sleeve, and as shown in FIG. 8, the outer diameter shape was not circular, and a dent was confirmed in the cross section. . Moreover, when the film | membrane surface after washing | cleaning and drying was observed with SEM, as shown in FIG. 9, the crack of an axial direction was confirmed.

本発明に係る製造方法により製造された繊維強化ポリフッ化ビニリデン多孔質中空糸膜は、高い透過特性および機械的強度を有することから、排水、浄水などの水処理分野や、燃料電池用加湿膜、除湿膜などとして有効に用いられる。   The fiber reinforced polyvinylidene fluoride porous hollow fiber membrane produced by the production method according to the present invention has high permeation characteristics and mechanical strength, so that it can be used in water treatment fields such as drainage and purified water, a humidifying membrane for fuel cells, Effectively used as a dehumidifying film.

Claims (4)

円筒状組紐を二重環状紡糸ノズルの内側ノズル内を通過させ、二重環状紡糸ノズルの内側ノズルを通過した円筒状組紐の外表面に二重環状紡糸ノズルの外側ノズルから吐出させた製膜原液を塗布し、含浸させた後、凝固液中で凝固させ、巻取機への巻取りが行われて製造される繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法において、
円筒状組紐として、編み密度が70/インチ以上、あるいは糸繊度280デシテックス以上かつ36フィラメント以上のものを用いることを特徴とする繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法。
A film forming stock solution in which the cylindrical braid is passed through the inner nozzle of the double annular spinning nozzle and discharged from the outer nozzle of the double annular spinning nozzle to the outer surface of the cylindrical braid passing through the inner nozzle of the double annular spinning nozzle. In the method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane, which is coated and impregnated, then solidified in a coagulating liquid, and wound into a winder.
A method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane, wherein a cylindrical braid having a knitting density of 70 / inch or more, or a yarn fineness of 280 dtex or more and 36 filaments or more is used.
円筒状組紐として、ポリエステルスリーブが用いられる請求項1記載の繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法。   The method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane according to claim 1, wherein a polyester sleeve is used as the cylindrical braid. 凝固液としてリン酸トリエチルが用いられる請求項1または2記載の繊維強化ポリフッ化ビニリデン多孔質中空糸膜の製造方法。   The method for producing a fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane according to claim 1 or 2, wherein triethyl phosphate is used as the coagulating liquid. 請求項1、2または3記載の製造方法により得られる繊維強化ポリフッ化ビニリデン多孔質中空糸膜。   A fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane obtained by the production method according to claim 1, 2 or 3.
JP2016218750A 2016-11-09 2016-11-09 Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane Active JP6888940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016218750A JP6888940B2 (en) 2016-11-09 2016-11-09 Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218750A JP6888940B2 (en) 2016-11-09 2016-11-09 Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane

Publications (3)

Publication Number Publication Date
JP2018075522A true JP2018075522A (en) 2018-05-17
JP2018075522A5 JP2018075522A5 (en) 2019-12-05
JP6888940B2 JP6888940B2 (en) 2021-06-18

Family

ID=62148784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218750A Active JP6888940B2 (en) 2016-11-09 2016-11-09 Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP6888940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191298A1 (en) * 2021-03-12 2022-09-15 Agc株式会社 Protection sleeve and method for producing protection sleeve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043579A1 (en) * 2002-11-12 2004-05-27 Mitsubishi Rayon Co., Ltd. Composite porous membrane and method of manufacturing the membrane
JP2008114181A (en) * 2006-11-07 2008-05-22 Mitsubishi Rayon Co Ltd Support for hollow porous membrane, hollow porous membrane and manufacturing method of them
JP2012040464A (en) * 2010-08-13 2012-03-01 Asahi Kasei Chemicals Corp Composite porous hollow fiber membrane, membrane module, membrane filtering device, and water-treating method
JP2012179603A (en) * 2012-05-25 2012-09-20 Mitsubishi Rayon Co Ltd Hollow porous membrane and method of manufacturing the same
JP2016010792A (en) * 2014-06-04 2016-01-21 Nok株式会社 Method for production of porous hollow fiber membrane of fiber-reinforced polyvinylidene fluoride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043579A1 (en) * 2002-11-12 2004-05-27 Mitsubishi Rayon Co., Ltd. Composite porous membrane and method of manufacturing the membrane
JP2008114181A (en) * 2006-11-07 2008-05-22 Mitsubishi Rayon Co Ltd Support for hollow porous membrane, hollow porous membrane and manufacturing method of them
JP2012040464A (en) * 2010-08-13 2012-03-01 Asahi Kasei Chemicals Corp Composite porous hollow fiber membrane, membrane module, membrane filtering device, and water-treating method
JP2012179603A (en) * 2012-05-25 2012-09-20 Mitsubishi Rayon Co Ltd Hollow porous membrane and method of manufacturing the same
JP2016010792A (en) * 2014-06-04 2016-01-21 Nok株式会社 Method for production of porous hollow fiber membrane of fiber-reinforced polyvinylidene fluoride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191298A1 (en) * 2021-03-12 2022-09-15 Agc株式会社 Protection sleeve and method for producing protection sleeve

Also Published As

Publication number Publication date
JP6888940B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP4050977B2 (en) Composite hollow fiber membrane reinforced by knitted fabric
AU2006321466B2 (en) A braid-reinforced composite hollow fiber membrane
JP6020592B2 (en) Porous hollow fiber membrane and method for producing the same
JP4757311B2 (en) Composite hollow fiber membrane reinforced by knitted fabric
JP5565586B2 (en) Method for producing composite porous membrane
CN108355499A (en) Double separating layer hollow fiber ultrafiltration membranes of the net containing tubular support and preparation method thereof
JP2019022893A (en) Hollow porous film and method for producing the same
JP2016010792A (en) Method for production of porous hollow fiber membrane of fiber-reinforced polyvinylidene fluoride
El-badawy et al. Braid-reinforced PVDF hollow fiber membranes for high-efficiency separation of oily wastewater
KR20050059335A (en) Composite porous membrane and method of manufacturing the membrane
US10413869B2 (en) Composite hollow fiber membrane and manufacturing method thereof
JP5737318B2 (en) Method for producing fiber-reinforced porous hollow fiber membrane
JP6888940B2 (en) Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
JP2018075523A (en) Method for producing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane
US9694327B2 (en) Hollow porous membrane
JP6863333B2 (en) Manufacturing method of water treatment membrane element
JP2013248589A (en) Method for producing fiber reinforced porous hollow fiber membrane
JP2017185428A (en) Method for producing fiber-reinforced poly(vinylidene fluoride) porous hollow fiber membrane
JP2012152705A (en) Method for manufacturing fiber reinforced porous hollow fiber membrane
KR102653447B1 (en) Composite hollow fiber membrane with improved durability and usable life-time and method for manufacturing the same
KR101178653B1 (en) Tubular braid and Composite Hollow Fiber Membrane Using The Same
JP2018075522A5 (en)
KR101175866B1 (en) Tubular Braid and Composite Hollow Fiber Membrane Using The Same
KR101226400B1 (en) Tubular braid and Composite Hollow Fiber Membrane using the same
KR101213851B1 (en) Tubular braid and Composite Hollow Fiber Membrane using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6888940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150