JP5207220B2 - HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM - Google Patents

HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM Download PDF

Info

Publication number
JP5207220B2
JP5207220B2 JP2006301574A JP2006301574A JP5207220B2 JP 5207220 B2 JP5207220 B2 JP 5207220B2 JP 2006301574 A JP2006301574 A JP 2006301574A JP 2006301574 A JP2006301574 A JP 2006301574A JP 5207220 B2 JP5207220 B2 JP 5207220B2
Authority
JP
Japan
Prior art keywords
porous membrane
hollow porous
support
cylindrical braid
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006301574A
Other languages
Japanese (ja)
Other versions
JP2008114181A (en
Inventor
泰夫 広本
敏則 隅
浩之 藤木
正樹 倉科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2006301574A priority Critical patent/JP5207220B2/en
Publication of JP2008114181A publication Critical patent/JP2008114181A/en
Application granted granted Critical
Publication of JP5207220B2 publication Critical patent/JP5207220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、中空状多孔質膜用支持体、中空状多孔質膜およびそれらの製造方法に関する。   The present invention relates to a support for a hollow porous membrane, a hollow porous membrane, and a method for producing them.

近年、環境問題への関心が高まり、また、水質に関する規制が強化されていることから、分離の完全性、コンパクト性等に優れた濾過膜を用いた水処理が注目を集めている。該水処理の濾過膜としては、例えば、中空状多孔質膜が用いられている。該中空状多孔質膜には、優れた分離特性および透過特性のみならず、高い機械特性も必要とされる。機械特性に優れた中空状多孔質膜としては、糸を丸打した円筒状組紐からなる支持体の外周面に多孔質膜層を設けた中空状多孔質膜が開示されている(特許文献1〜4)。該中空状多孔質膜は、支持体を環状ノズルに連続的に通す際に、環状ノズルから製膜原液を吐出し、支持体の外周面に製膜原液を塗布した後、製膜原液が塗布された支持体を凝固浴槽に通し、凝固浴槽内の凝固液で製膜原液を凝固させることにより製造される。   In recent years, interest in environmental issues has increased, and regulations regarding water quality have been strengthened, and therefore, water treatment using a filtration membrane excellent in separation completeness, compactness, etc. has attracted attention. As the water treatment filtration membrane, for example, a hollow porous membrane is used. The hollow porous membrane requires not only excellent separation and permeation properties but also high mechanical properties. As a hollow porous membrane excellent in mechanical properties, a hollow porous membrane is disclosed in which a porous membrane layer is provided on the outer peripheral surface of a support made of a cylindrical braid obtained by rounding yarn (Patent Document 1). ~ 4). When the support is continuously passed through the annular nozzle, the hollow porous membrane is discharged from the annular nozzle, and after the coating solution is applied to the outer peripheral surface of the support, the coating solution is applied. The produced support is passed through a coagulation bath, and the film-forming stock solution is coagulated with the coagulation solution in the coagulation bath.

支持体の円筒状組紐は、通常、製紐機により製造される。製紐機においては、平板上に立設した多数のボビンから各糸を引き出し、各糸を相互に交差させて組むとともに、各ボビンを所定の経路に沿って移動させることにより糸の位置関係を所定のパターンで変化させて組紐が製造される。製紐機によって製造された組紐には、下記問題点がある。   The cylindrical braid of the support is usually manufactured by a string making machine. In a stringing machine, each thread is pulled out from a large number of bobbins erected on a flat plate, each thread is crossed and assembled, and each bobbin is moved along a predetermined path to thereby determine the positional relationship of the threads. A braid is manufactured by changing the pattern in a predetermined pattern. The braid manufactured by the string making machine has the following problems.

組紐は、通常、伸縮性を有しており、張力を付与すると伸びて、その外径は小さくなる。よって、円筒状組紐からなる支持体に製膜原液を塗布する際に、支持体にかかる張力が変動すると、支持体の外径が変化する。その結果、環状ノズルの管路の内周面と支持体との間隙が変化するため、環状ノズルの内径および製膜原液の吐出量が一定の場合、製膜原液を均一な厚さで塗布できない。また、凝固工程において、製膜原液が完全に凝固する前に支持体が伸びた場合、多孔質膜層にピンホール等の膜構造の欠陥が発生するおそれがある。   The braid usually has elasticity, and stretches when applied with tension, and its outer diameter decreases. Therefore, when the film-forming stock solution is applied to a support made of a cylindrical braid, if the tension applied to the support varies, the outer diameter of the support changes. As a result, since the gap between the inner peripheral surface of the pipe line of the annular nozzle and the support changes, the film-forming stock solution cannot be applied with a uniform thickness when the inner diameter of the annular nozzle and the discharge amount of the film-forming stock solution are constant. . In the coagulation step, if the support is stretched before the film-forming stock solution is completely coagulated, defects in the film structure such as pinholes may occur in the porous film layer.

なお、特許文献4には、支持体に張力を付与し、緊張状態(ぴんと張った状態)を維持して中空状多孔質膜を製造する方法が開示されている。該方法であれば、該問題が起こりにくい。しかし、該方法では、凝固工程において、凝固浴槽内のガイドロールに製膜原液を塗布した支持体が押し付けられることによって多孔質膜が押しつぶされ、多孔質膜に変形、ピンホール等の膜構造の欠陥が発生するおそれがある。
特開昭52−81076号公報 特開平5−7746号公報 特開2006−068710号公報 特開2006−150271号公報
Patent Document 4 discloses a method for producing a hollow porous membrane by applying a tension to a support and maintaining a tensioned state (tight state). With this method, the problem is unlikely to occur. However, in this method, in the coagulation step, the porous film is crushed by pressing the support coated with the film-forming stock solution on the guide roll in the coagulation bath, and deformed into a porous film, which has a film structure such as a pinhole. Defects may occur.
Japanese Patent Laid-Open No. 52-81076 JP-A-5-7746 JP 2006-0668710 A JP 2006-150271 A

本発明の目的は、伸縮性(外径変化)が抑制され、かつつぶれにくい中空状多孔質膜用支持体;該支持体を生産性よく製造できる方法;多孔質膜層の膜厚のバラツキが小さく、多孔質膜層に欠陥が少ない中空状多孔質膜;該中空状多孔質膜を製造できる方法を提供することにある。   An object of the present invention is to provide a support for a hollow porous membrane in which stretchability (change in outer diameter) is suppressed and is not easily crushed; a method capable of producing the support with high productivity; and variations in the thickness of the porous membrane layer It is an object of the present invention to provide a hollow porous membrane which is small and has few defects in the porous membrane layer; and a method capable of producing the hollow porous membrane.

本発明者らは、上記課題に鑑みて鋭意検討を行った結果、円筒状組紐を加熱された金型に通して、特定の温度で熱処理を施すことにより、円筒状組紐の伸縮性(外径変化)を抑えることができることを見出した。   As a result of intensive studies in view of the above problems, the inventors have passed the cylindrical braid through a heated mold and subjected to heat treatment at a specific temperature, so that the stretchability of the cylindrical braid (outer diameter) (Change) can be suppressed.

本発明の中空状多孔質膜用支持体の製造方法は、下記工程を有することを特徴とする。
繊度が500〜1200dtexである糸を丸打した、打ち数が8〜50の円筒状組紐を、金型の上流側に設けられた紐供給装置と、金型の下流側に設けられた引取り装置とによって、下記式(1)で表される範囲内の温度t(℃)に加熱された金型の貫通孔に連続的に通して熱処理する工程。
Tm−80℃≦t<Tm ・・・(1)。
式中、Tmは、糸の材料の溶融温度(℃)である。
The manufacturing method of the support body for hollow porous membranes of this invention has the following processes, It is characterized by the above-mentioned.
A string braiding device provided on the upstream side of the die, and a take-up provided on the downstream side of the die, with a round braided yarn having a fineness of 500 to 1200 dtex and a punched number of 8 to 50 The process of heat-treating continuously with the apparatus through the through-hole of the metal mold | die heated to the temperature t (degreeC) in the range represented by following formula (1).
Tm−80 ° C. ≦ t <Tm (1).
In the formula, Tm is the melting temperature (° C.) of the yarn material.

記糸は、フィラメント数が30〜200のマルチフィラメントであることが好ましい。
前記貫通孔の、円筒状組紐の入り口側の内径Dは、前記貫通孔の、円筒状組紐の出口側の内径d以上であることが好ましい。
前記内径dは、熱処理前の円筒状組紐の外径の50〜100%であることが好ましい。
Before Kiito is preferably number of filaments you are multifilament 30 to 200.
It is preferable that the inner diameter D of the through hole on the inlet side of the cylindrical braid is equal to or larger than the inner diameter d of the through hole on the outlet side of the cylindrical braid.
The inner diameter d is preferably 50 to 100% of the outer diameter of the cylindrical braid before heat treatment.

本発明の中空状多孔質膜用支持体は、本発明の中空状多孔質膜用支持体の製造方法で得られたものであることを特徴とする。
本発明の中空状多孔質膜は、本発明の中空状多孔質膜用支持体と、該支持体の外周面に設けられた多孔質膜層とを有することを特徴とする。
本発明の中空状多孔質膜の製造方法は、本発明の中空状多孔質膜用支持体の製造方法で得られた中空状多孔質膜用支持体の外周面に、多孔質膜層の材料および溶剤を含む製膜原液を塗布し、凝固させることによって多孔質膜層を形成することを特徴とする。
The support for a hollow porous membrane of the present invention is obtained by the method for producing a support for a hollow porous membrane of the present invention.
The hollow porous membrane of the present invention is characterized by having the support for the hollow porous membrane of the present invention and a porous membrane layer provided on the outer peripheral surface of the support.
The method for producing a hollow porous membrane of the present invention comprises a material for a porous membrane layer on the outer peripheral surface of the support for hollow porous membrane obtained by the method for producing a support for hollow porous membrane of the present invention. A porous membrane layer is formed by applying a film-forming stock solution containing a solvent and a solvent and solidifying the solution.

本発明の中空状多孔質膜用支持体は、伸縮性(外径変化)が抑制され、かつつぶれにくい。
本発明の中空状多孔質膜用支持体の製造方法によれば、伸縮性(外径変化)が抑制され、かつつぶれにくい中空状多孔質膜用支持体を生産性よく製造できる。
The support for a hollow porous membrane of the present invention is suppressed in stretchability (change in outer diameter) and hardly collapses.
According to the method for producing a support for a hollow porous membrane of the present invention, it is possible to produce a support for a hollow porous membrane that is suppressed in stretchability (change in outer diameter) and is not easily crushed with high productivity.

本発明の中空状多孔質膜は、多孔質膜層の膜厚のバラツキが小さく、多孔質膜層に欠陥が少ない。
本発明の中空状多孔質膜の製造方法によれば、多孔質膜層の膜厚のバラツキが小さく、多孔質膜層に欠陥が少ない中空状多孔質膜を安定して製造できる。
The hollow porous membrane of the present invention has small variations in the thickness of the porous membrane layer, and the porous membrane layer has few defects.
According to the method for producing a hollow porous membrane of the present invention, it is possible to stably produce a hollow porous membrane with small variations in the thickness of the porous membrane layer and few defects in the porous membrane layer.

<中空状多孔質膜用支持体>
図1は、本発明の中空状多孔質膜用支持体(以下、支持体と記す。)の一例を示す側面図である。支持体10は、糸を丸打した円筒状組紐12からなる。
<Hollow porous membrane support>
FIG. 1 is a side view showing an example of a support for a hollow porous membrane (hereinafter referred to as a support) of the present invention. The support 10 is composed of a cylindrical braid 12 formed by rounding a thread.

丸打とは、仮想円柱面上に並行したS字螺旋を描く1群の糸と、同じ仮想円柱面上に並行したZ字螺旋を描く1群の糸とを組み合わせることであり、円筒状組紐12は、複数の糸が左右のねじ状に走って互いに交錯するものである。   Round punching is a combination of a group of threads that draw parallel S-shaped spirals on a virtual cylindrical surface and a group of threads that draw parallel Z-shaped spirals on the same virtual cylindrical surface. Reference numeral 12 denotes a plurality of threads that run in the form of left and right threads and cross each other.

糸の形態としては、マルチフィラメント、モノフィラメント、紡績糸等が挙げられる。
糸の材料としては、合成繊維、半合成繊維、再生繊維、天然繊維等が挙げられる。糸は、複数種類の繊維を組み合わせた合糸であってもよい。また、同じ種類の糸でも、熱収縮性等の性状の異なる糸を合糸したり、種類の異なる糸を合糸したりすることにより、円筒状組紐12の性状を変えてもよい。
Examples of the yarn form include multifilament, monofilament, spun yarn and the like.
Examples of the yarn material include synthetic fiber, semi-synthetic fiber, regenerated fiber, and natural fiber. The yarn may be a combined yarn obtained by combining a plurality of types of fibers. Further, even with the same type of yarn, the properties of the cylindrical braid 12 may be changed by combining yarns having different properties such as heat shrinkability or by combining different types of yarn.

合成繊維としては、ナイロン6、ナイロン66、芳香族ポリアミド等のポリアミド系繊維;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリグリコール酸等のポリエステル系繊維;ポリアクリロニトリル等のアクリル系繊維;ポリエチレン、ポリプロピレン等のポリオレフィン系繊維;ポリビニルアルコール系繊維;ポリ塩化ビニリデン系繊維;ポリ塩化ビニル系繊維:ポリウレタン系繊維;フェノール樹脂系繊維;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系繊維;ポリアルキレンパラオキシベンゾエート系繊維等が挙げられる。   Synthetic fibers include polyamide fibers such as nylon 6, nylon 66 and aromatic polyamide; polyester fibers such as polyethylene terephthalate, polybutylene terephthalate, polylactic acid and polyglycolic acid; acrylic fibers such as polyacrylonitrile; polyethylene and polypropylene Polyolefin fiber such as polyvinyl alcohol fiber; polyvinylidene chloride fiber; polyvinyl chloride fiber: polyurethane fiber; phenol resin fiber; fluorine fiber such as polyvinylidene fluoride and polytetrafluoroethylene; polyalkylene paraoxybenzoate System fibers and the like.

半合成繊維としては、セルロースジアセテート、セルローストリアセテート、キチン、キトサン等を原料としたセルロース誘導体系繊維:プロミックスと呼称される蛋白質系繊維等が挙げられる。
再生繊維としては、ビスコース法、銅−アンモニア法、有機溶剤法等により得られるセルロース系再生繊維(レーヨン、キュプラ、ポリノジック等。)が挙げられる。
天然繊維としては、亜麻、黄麻等が挙げられる。
Examples of the semi-synthetic fibers include cellulose derivative fibers made from cellulose diacetate, cellulose triacetate, chitin, chitosan and the like: protein fibers called promix.
Examples of the regenerated fiber include cellulosic regenerated fibers (rayon, cupra, polynosic, etc.) obtained by a viscose method, a copper-ammonia method, an organic solvent method, or the like.
Examples of natural fibers include flax and jute.

糸の材料としては、耐薬品性に優れる点から、ポリエステル系繊維、アクリル系繊維、ポリビニルアルコール系繊維、ポリアミド系繊維、またはポリオレフィン系繊維が好ましく、ポリエステル系繊維またはアクリル系繊維が特に好ましい。   As the material of the yarn, polyester fiber, acrylic fiber, polyvinyl alcohol fiber, polyamide fiber, or polyolefin fiber is preferable, and polyester fiber or acrylic fiber is particularly preferable because of excellent chemical resistance.

糸としては、後述の(b)工程の熱処理による効果が発揮されやすい点から、合成繊維のマルチフィラメントが好ましい。   As the yarn, a multifilament of synthetic fiber is preferable because the effect of heat treatment in the step (b) described later is easily exhibited.

円筒状組紐12(支持体10)の外径は、中空状多孔質膜の外径によって決まる。中空状多孔質膜の外径は、中空状多孔質膜を束ねた膜モジュールにおける必要濾過面積から、1.5〜6.0mmが好ましく、2.0〜3.5mmがより好ましい。したがって、円筒状組紐12の外径は、1.0〜5.0mmが好ましく、1.8〜3.0mmがより好ましい。
円筒状組紐12(支持体10)の内径は、濾過した水の通水性の低下を抑える点から、1.0mm以上が好ましい。
The outer diameter of the cylindrical braid 12 (support 10) is determined by the outer diameter of the hollow porous membrane. The outer diameter of the hollow porous membrane is preferably 1.5 to 6.0 mm, more preferably 2.0 to 3.5 mm, from the required filtration area in the membrane module in which the hollow porous membranes are bundled. Therefore, the outer diameter of the cylindrical braid 12 is preferably 1.0 to 5.0 mm, and more preferably 1.8 to 3.0 mm.
The inner diameter of the cylindrical braid 12 (support 10) is preferably 1.0 mm or more from the viewpoint of suppressing a decrease in water permeability of the filtered water.

糸の繊度は、中空状多孔質膜の耐久性および、多孔質膜層との接着性を向上させる点から、500〜1200dtexが好ましい。糸の繊度が500dtex以上であれば、中空状多孔質膜のつぶれ圧が向上する。糸の繊度が1200dtex以下であれば、内径縮小化による通水性の低下が抑えられる。   The fineness of the yarn is preferably 500 to 1200 dtex from the viewpoint of improving the durability of the hollow porous membrane and the adhesion to the porous membrane layer. When the fineness of the yarn is 500 dtex or more, the crushing pressure of the hollow porous membrane is improved. If the fineness of the yarn is 1200 dtex or less, a decrease in water permeability due to a reduction in the inner diameter can be suppressed.

円筒状組紐12の打ち数は、8〜50が好ましい。打ち数が8以上であれば、中空状多孔質膜のつぶれ圧が向上する。打ち数が50以下であれば、内径縮小化による通水性の低下が抑えられる。
糸としては、強度および透水性に優れる点から、フィラメント数が30〜200のマルチフィラメントが特に好ましい。フィラメント数が30以上であれば、中空状多孔質膜のつぶれ圧が向上する。フィラメント数が200以下であれば、透水性の低下が抑えられる。
The number of hits of the cylindrical braid 12 is preferably 8-50. When the number of strikes is 8 or more, the crushing pressure of the hollow porous membrane is improved. If the number of hits is 50 or less, a decrease in water permeability due to reduction in the inner diameter can be suppressed.
As the yarn, a multifilament having 30 to 200 filaments is particularly preferred from the viewpoint of excellent strength and water permeability. When the number of filaments is 30 or more, the collapse pressure of the hollow porous membrane is improved. If the number of filaments is 200 or less, a decrease in water permeability can be suppressed.

円筒状組紐12は、下記式(1)で表される範囲内の温度t(℃)で熱処理された組紐である。
Tm−80℃≦t<Tm ・・・(1)。
式中、Tmは、糸の材料の溶融温度(℃)である。糸の材料の溶融温度は、JIS−L−1013の方法で測定する。
The cylindrical braid 12 is a braid that has been heat-treated at a temperature t (° C.) within the range represented by the following formula (1).
Tm−80 ° C. ≦ t <Tm (1).
In the formula, Tm is the melting temperature (° C.) of the yarn material. The melting temperature of the yarn material is measured by the method of JIS-L-1013.

円筒状組紐12が、(Tm−80)以上で熱処理されていることによって、円筒状組紐12が熱収縮を起こして伸縮性が抑制されるとともに、糸と糸の間の隙間が緻密になり、円筒状組紐12がつぶれにくくなる。円筒状組紐12が、Tm未満で熱処理されていることにより、糸と糸の間の隙間がつぶれることが抑えられる。   When the cylindrical braid 12 is heat-treated at (Tm-80) or higher, the cylindrical braid 12 is thermally contracted to suppress stretchability, and the gap between the yarns becomes dense, The cylindrical braid 12 is not easily crushed. Since the cylindrical braid 12 is heat-treated at a temperature lower than Tm, the gap between the yarns can be prevented from being crushed.

<中空状多孔質膜用支持体の製造方法>
支持体10は、下記(a)〜(b)工程を有する製造方法によって製造される。
(a)糸を丸打して円筒状組紐12を組む工程。
(b)前記円筒状組紐12を、下記式(1)で表される範囲内の温度t(℃)で熱処理する工程。
Tm−80℃≦t<Tm ・・・(1)。
式中、Tmは、糸の材料の溶融温度(℃)である。
<Method for producing support for hollow porous membrane>
The support 10 is manufactured by a manufacturing method having the following steps (a) to (b).
(A) A step of rounding the yarn to assemble the cylindrical braid 12.
(B) A step of heat-treating the cylindrical braid 12 at a temperature t (° C.) within a range represented by the following formula (1).
Tm−80 ° C. ≦ t <Tm (1).
In the formula, Tm is the melting temperature (° C.) of the yarn material.

(a)工程:
円筒状組紐12は、公知の製紐機を用いて組まれる。製紐機としては、例えば、実開平6−37384号公報に記載の製紐機が挙げられる。
(A) Process:
The cylindrical braid 12 is assembled using a known string making machine. Examples of the string making machine include the string making machine described in Japanese Utility Model Laid-Open No. 6-37384.

円筒状組紐12は、構成するすべての糸が斜めに組まれ、また、製紐機のボビンが複雑な動きをするため、製紐過程で付加された張力等の残留歪を有する。よって、乾燥炉等を用いて熱処理し、残留歪を除去することが好ましい。該熱処理の温度は、(b)工程における熱処理の温度tよりも低く、通常、100〜130℃である。   The cylindrical braid 12 has residual strain such as tension added during the stringing process because all the yarns constituting the cylindrical braid 12 are assembled diagonally and the bobbin of the stringing machine moves in a complicated manner. Therefore, it is preferable to remove the residual strain by heat treatment using a drying furnace or the like. The temperature of the heat treatment is lower than the temperature t of the heat treatment in the step (b), and is usually 100 to 130 ° C.

(b)工程:
円筒状組紐12は、その構造上、伸縮性を有している。よって、円筒状組紐12に熱処理を施すことによって、円筒状組紐12の伸縮性(外径変化)を抑制する。また、円筒状組紐12に熱処理を施すことによって、円筒状組紐12がつぶれにくくなる。
(B) Process:
The cylindrical braid 12 has elasticity due to its structure. Therefore, by applying heat treatment to the cylindrical braid 12, the stretchability (outer diameter change) of the cylindrical braid 12 is suppressed. Further, by applying heat treatment to the cylindrical braid 12, the cylindrical braid 12 is not easily crushed.

図2は、(b)工程に用いられる支持体製造装置の一例を示す概略構成図である。支持体製造装置20は、ボビン22と、ボビン22から引き出された円筒状組紐12を一定の張力で引っ張る紐供給装置26と、円筒状組紐12を熱処理する金型28と、熱処理された円筒状組紐12を引き取る引取り装置30と、円筒状組紐12を支持体10としてボビンに巻き取る巻取り機32とを具備する。   FIG. 2 is a schematic configuration diagram illustrating an example of a support manufacturing apparatus used in the step (b). The support manufacturing apparatus 20 includes a bobbin 22, a string supply device 26 that pulls the cylindrical braid 12 drawn from the bobbin 22 with a constant tension, a mold 28 that heat-treats the cylindrical braid 12, and a heat-treated cylindrical shape. A take-up device 30 for taking up the braid 12 and a winder 32 for taking up the cylindrical braid 12 as a support 10 on a bobbin are provided.

金型28は、金属製のブロック、プレート等からなる本体と、加熱手段とを有して構成される。加熱手段としては、バンドヒーター、アルミ鋳込みヒーター等が挙げられる。
図3は、金型28の、円筒状組紐12の入り口側端面、側断面、および円筒状組紐12の出口側端面を示す図である。金型28の本体には、貫通孔34が形成されている。
The mold 28 includes a main body made of a metal block, a plate, or the like, and a heating unit. Examples of the heating means include a band heater and an aluminum cast heater.
FIG. 3 is a view showing an entrance side end surface, a side cross-section, and an exit side end surface of the cylindrical braid 12 of the mold 28. A through hole 34 is formed in the main body of the mold 28.

貫通孔34の、円筒状組紐12の入り口側の内径Dは、熱処理前の円筒状組紐12の外径D’と等しいか、若干大きく、円筒状組紐12の出口側の内径dは、熱処理後の円筒状組紐12の外径d’と等しい。
貫通孔34は、円筒状組紐12の出口側に、長さLのストレート部を有する。
The inner diameter D of the through hole 34 on the entrance side of the cylindrical braid 12 is equal to or slightly larger than the outer diameter D ′ of the cylindrical braid 12 before the heat treatment, and the inner diameter d on the outlet side of the cylindrical braid 12 is equal to that after the heat treatment. Is equal to the outer diameter d ′ of the cylindrical braid 12.
The through hole 34 has a straight portion having a length L on the exit side of the cylindrical braid 12.

内径Dは、内径d以上であることが好ましい。すなわち、伸びが少なく、外径が均一な円筒状組紐12を得るためには、円筒状組紐12を均一に加熱する必要がある。したがって、貫通孔34の内周面と円筒状組紐12の表面とが常に接触するように、D≧dとする。   The inner diameter D is preferably greater than or equal to the inner diameter d. That is, in order to obtain the cylindrical braid 12 having a small elongation and a uniform outer diameter, the cylindrical braid 12 needs to be heated uniformly. Therefore, D ≧ d so that the inner peripheral surface of the through hole 34 and the surface of the cylindrical braid 12 are always in contact with each other.

内径dは、外径D’の50〜100%であることが好ましい。外径D’より内径dが極端に小さい場合、外径d’が内径dより大きくなり、円筒状組紐12が金型28内で引っ掛かり、貫通孔34を通過できなくなるおそれがある。   The inner diameter d is preferably 50 to 100% of the outer diameter D ′. When the inner diameter d is extremely smaller than the outer diameter D ′, the outer diameter d ′ becomes larger than the inner diameter d, and the cylindrical braid 12 may be caught in the mold 28 and cannot pass through the through hole 34.

長さLと内径dとの比(L/d)は、円筒状組紐12を均一に加熱する点から、1以上が好ましい。
貫通孔34は、円筒状組紐12の引っ掛かりを回避する点から、ストレート部以外では、内周面がテーパーを有することが好ましい。
金型28は、一体構造であってもよく、上下二分割構造であってもよい。円筒状組紐12を通しやすい点から、上下二分割構造が好ましい。
The ratio (L / d) between the length L and the inner diameter d is preferably 1 or more from the viewpoint of heating the cylindrical braid 12 uniformly.
From the point of avoiding the catch of the cylindrical braid 12, it is preferable that the inner peripheral surface of the through hole 34 has a taper other than the straight portion.
The mold 28 may have an integral structure or a vertically divided structure. From the viewpoint that the cylindrical braid 12 can be easily passed, an upper and lower split structure is preferable.

紐供給装置26および引取り装置30としては、ネルソンロール、ニップロール、カレンダーロール等が挙げられる。ニップロールは円筒状組紐12をつぶすおそれがあるため、ネルソンロールまたはカレンダーロールが好ましい。   Examples of the string supply device 26 and the take-up device 30 include a Nelson roll, a nip roll, and a calendar roll. Since the nip roll may crush the cylindrical braid 12, a Nelson roll or a calendar roll is preferable.

円筒状組紐12は、金型28を通過するとき、(Tm−80℃)以上で熱処理されて熱収縮を起こし、伸縮性が抑制されるとともに、糸と糸の間の隙間が緻密になり、円筒状組紐12がつぶれにくくなる。さらに、出口側のストレート部において円筒状組紐12の外径が規制され、所望の外径d’の円筒状組紐12となる。また、円筒状組紐12は、Tm未満で熱処理されているため、糸と糸の間の隙間がつぶれることが抑えられる。
糸16の材料がポリエステル系繊維の場合、材料のTmにもよるが、温度tは180〜250℃が好ましく、190〜230℃がより好ましい。
When the cylindrical braid 12 passes through the mold 28, it is heat-treated at (Tm−80 ° C.) or more to cause thermal shrinkage, the elasticity is suppressed, and the gap between the threads becomes dense, The cylindrical braid 12 is not easily crushed. Further, the outer diameter of the cylindrical braid 12 is restricted at the straight portion on the outlet side, and the cylindrical braid 12 having a desired outer diameter d ′ is obtained. Moreover, since the cylindrical braid 12 is heat-processed below Tm, it is suppressed that the clearance gap between yarns is crushed.
When the material of the yarn 16 is a polyester fiber, the temperature t is preferably 180 to 250 ° C, more preferably 190 to 230 ° C, although it depends on the Tm of the material.

紐供給装置26の速度V1と引取り装置30の速度V2との比は、糸16の種類、熱処理前の円筒状組紐12の外径、目の大きさによって任意に設定できる。金型28内で熱収縮する糸16の熱収縮率に合わせて、V1>V2の範囲内で、V1とV2との差を設定することで、所望の目の大きさを持った円筒状組紐12を得ることができる。小さい目を所望する場合は、V1とV2との差を大きくして、円筒状組紐12を十分に熱収縮させる。大きい目を所望する場合は、V1とV2との差を小さくして、円筒状組紐12の熱収縮を抑制する。円筒状組紐12の外径が大きく、繊度が高い場合は、V1<V2とし、金型28内で強制的にサイジングしてもよい。   The ratio between the speed V1 of the string supply device 26 and the speed V2 of the take-up device 30 can be arbitrarily set according to the type of the yarn 16, the outer diameter of the cylindrical braid 12 before heat treatment, and the size of the eyes. Cylindrical braid having a desired eye size by setting the difference between V1 and V2 within the range of V1> V2 in accordance with the thermal contraction rate of the yarn 16 that thermally contracts in the mold 28. 12 can be obtained. When a small eye is desired, the difference between V1 and V2 is increased to sufficiently heat-shrink the cylindrical braid 12. When a large eye is desired, the difference between V1 and V2 is reduced to suppress thermal contraction of the cylindrical braid 12. When the outer diameter of the cylindrical braid 12 is large and the fineness is high, V1 <V2 and the sizing may be forcibly performed in the mold 28.

また、円筒状組紐12の熱収縮率が小さい場合、紐供給装置26を設置しなくてもよい。この場合、円筒状組紐12の熱収縮によりボビン22と金型28との間で張力が発生することを抑えるため、円筒状組紐12を弛ませる等により、バッファを持たせるとよい。   Moreover, when the thermal contraction rate of the cylindrical braid 12 is small, the string supply device 26 may not be installed. In this case, in order to suppress the occurrence of tension between the bobbin 22 and the mold 28 due to thermal contraction of the cylindrical braid 12, it is preferable to provide a buffer by loosening the cylindrical braid 12 or the like.

<中空状多孔質膜>
本発明の中空状多孔質膜は、本発明の中空状多孔質膜用支持体と、該支持体の外周面に設けられた多孔質膜層とを有するものである。
<Hollow porous membrane>
The hollow porous membrane of the present invention comprises the support for the hollow porous membrane of the present invention and a porous membrane layer provided on the outer peripheral surface of the support.

多孔質膜層の材料としては、ポリフッ化ビニリデン、ポリスルホン、ポリアクリロニトリル、ポリビニルピロリドン、ポリエチレングリコール等が挙げられ、耐薬品性、耐熱性等の点から、ポリフッ化ビニリデン、またはポリフッ化ビニリデンとポリビニルピロリドンとの組み合わせが好ましい。   Examples of the material of the porous membrane layer include polyvinylidene fluoride, polysulfone, polyacrylonitrile, polyvinyl pyrrolidone, polyethylene glycol and the like. From the viewpoint of chemical resistance, heat resistance, etc., polyvinylidene fluoride, or polyvinylidene fluoride and polyvinyl pyrrolidone. The combination with is preferable.

多孔質膜層は、単層であってもよく、2層以上の複合多孔質膜層であってもよい。
多孔質膜層の膜厚は、100〜350μmが好ましく、150〜300μmがより好ましい。
中空状多孔質膜の外径は、1.5〜6.0mmが好ましく、2.0〜3.5mmがより好ましい。
The porous membrane layer may be a single layer or a composite porous membrane layer of two or more layers.
The thickness of the porous membrane layer is preferably 100 to 350 μm, and more preferably 150 to 300 μm.
The outer diameter of the hollow porous membrane is preferably 1.5 to 6.0 mm, more preferably 2.0 to 3.5 mm.

<中空状多孔質膜の製造方法>
中空状多孔質膜は、多孔質膜層が2層の複合多孔質膜層の場合、下記(i)〜(vii)工程を有する製造方法によって製造される。
<Method for producing hollow porous membrane>
When the porous membrane layer is a composite porous membrane layer having two layers, the hollow porous membrane is produced by a production method having the following steps (i) to (vii).

(i)支持体の外周面に製膜原液を塗布する工程。
(ii)支持体に塗布された製膜原液を凝固させて、第1の多孔質膜層を形成し、中空状多孔質膜前駆体を得る工程。
(iii)中空状多孔質膜前駆体の外周面に製膜原液を塗布する工程。
(iv)中空状多孔質膜前駆体に塗布された製膜原液を凝固させて、第2の多孔質膜層を形成し、中空状多孔質膜を得る工程。
(v)中空状多孔質膜を洗浄する工程。
(vi)中空状多孔質膜を乾燥する工程。
(vii)中空状多孔質膜を巻き取る工程。
(I) The process of apply | coating film forming undiluted solution to the outer peripheral surface of a support body.
(Ii) A step of solidifying the film-forming stock solution applied to the support to form a first porous membrane layer to obtain a hollow porous membrane precursor.
(Iii) A step of applying a film-forming stock solution to the outer peripheral surface of the hollow porous membrane precursor.
(Iv) A step of solidifying a film-forming stock solution applied to the hollow porous membrane precursor to form a second porous membrane layer to obtain a hollow porous membrane.
(V) A step of washing the hollow porous membrane.
(Vi) A step of drying the hollow porous membrane.
(Vii) A step of winding the hollow porous membrane.

図4は、(i)〜(ii)工程に用いられる中空状多孔質膜製造装置の一例を示す概略構成図である。中空状多孔質膜製造装置40は、巻き出し装置(図示略)から連続的に供給された支持体10に、連続的に製膜原液を塗布する環状ノズル42と、環状ノズル42に製膜原液を供給する原液供給装置44と、支持体10に塗布された製膜原液を凝固させる凝固液が入った凝固浴槽46と、製膜原液が塗布された支持体10を凝固浴槽46に連続的に導入するガイドロール48とを具備する。   FIG. 4 is a schematic configuration diagram illustrating an example of a hollow porous membrane manufacturing apparatus used in steps (i) to (ii). The hollow porous membrane manufacturing apparatus 40 includes an annular nozzle 42 for continuously applying a film-forming stock solution to the support 10 continuously supplied from an unwinding device (not shown), and a film-forming stock solution for the annular nozzle 42. The coagulation bath 46 containing a coagulating liquid for coagulating the film-forming stock solution applied to the support 10, and the support 10 applied with the film-forming stock solution to the coagulation bath 46 continuously. And a guide roll 48 to be introduced.

(i)工程:
環状ノズル42の中央には、支持体10が通過する管路が形成されている。管路の途中には、管路の円周方向にスリット状の製膜原液吐出口が上流側および下流側に2箇所形成され、組成の異なる2種類の製膜原液を吐出する構造となっている。
支持体10が管路を通過する際、原液供給装置44から2種類の製膜原液が一定量で供給され、まず支持体10の外周面に製膜原液(2)が塗布され、ついで、製膜原液(2)の上に製膜原液(1)が塗布されて所定の膜厚の塗膜が形成される。
(I) Process:
A pipe line through which the support 10 passes is formed at the center of the annular nozzle 42. In the middle of the pipe, two slit-form film forming solution discharge ports are formed on the upstream side and the downstream side in the circumferential direction of the pipe line, so that two types of film forming solution having different compositions are discharged. Yes.
When the support 10 passes through the pipeline, two types of film-forming stock solutions are supplied from the stock solution supply device 44 in a constant amount. First, the film-forming stock solution (2) is applied to the outer peripheral surface of the support 10, and then The film-forming stock solution (1) is applied onto the film stock solution (2) to form a coating film having a predetermined film thickness.

環状ノズル42の管路の内径は、支持体10の外径より若干大きく、環状ノズル42の管路の内周面と支持体とは一定の間隙を有する。該間隙は、塗膜の厚さ、製膜原液の粘度、支持体の走行速度等によって決まり、通常、0.15〜0.25mmである。   The inner diameter of the pipe line of the annular nozzle 42 is slightly larger than the outer diameter of the support body 10, and the inner peripheral surface of the pipe line of the annular nozzle 42 and the support body have a certain gap. The gap is determined by the thickness of the coating film, the viscosity of the film-forming stock solution, the running speed of the support, and is usually 0.15 to 0.25 mm.

製膜原液は、上述の多孔質膜層の材料と溶剤とを含む液である。溶剤としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド等が挙げられ、形成される多孔質膜層の透水性が高い点から、N,N−ジメチルアセトアミドが好ましい。   The film-forming stock solution is a liquid containing the above-mentioned porous membrane layer material and a solvent. Examples of the solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and the like, and N, N-dimethylacetamide is preferable from the viewpoint of high water permeability of the formed porous membrane layer.

製膜原液(1)(100質量%)中の多孔質膜層の材料の濃度は、12〜25質量%が好ましい。
製膜原液(2)(100質量%)中の多孔質膜層の材料の濃度は、0.1〜12質量%が好ましい。
環状ノズル42の温度は、20〜40℃が好ましい。
As for the density | concentration of the material of the porous membrane layer in film-forming stock solution (1) (100 mass%), 12-25 mass% is preferable.
As for the density | concentration of the material of the porous membrane layer in film-forming stock solution (2) (100 mass%), 0.1-12 mass% is preferable.
The temperature of the annular nozzle 42 is preferably 20 to 40 ° C.

支持体10としては、下記理由から前記熱処理を施した円筒状組紐12を用いる。
支持体10には、ガイドロール48の回転抵抗、(ii)、(iv)工程における凝固液の抵抗、(v)工程における洗浄液の抵抗等によって、少なからず張力(荷重)が加わる。該張力は、通常、0.5〜9.8Nである。
張力が小さすぎると下記問題点がある。
問題点I:
支持体10がガイドロール48等から外れる等のトラブルが発生しやすい。
問題点II:
支持体10の外径が大きくなり、環状ノズル42の管路の内周面と支持体10との間隙が狭くなる。その結果、塗膜の膜厚が薄くなったり、塗布されなかった製膜原液が垂れ落ちたりする。
As the support 10, a cylindrical braid 12 subjected to the heat treatment is used for the following reason.
A tension (load) is applied to the support 10 due to the rotational resistance of the guide roll 48, the resistance of the coagulating liquid in the steps (ii) and (iv), the resistance of the cleaning liquid in the step (v), and the like. The tension is usually 0.5 to 9.8 N.
If the tension is too small, there are the following problems.
Problem I:
Problems such as the support 10 coming off from the guide roll 48 and the like are likely to occur.
Problem II:
The outer diameter of the support 10 is increased, and the gap between the inner peripheral surface of the pipe line of the annular nozzle 42 and the support 10 is reduced. As a result, the film thickness of the coating film becomes thin, or the film-forming stock solution that has not been applied drips down.

しかし、張力が大きすぎると下記問題点がある。
問題点III:
支持体10(円筒状組紐12)の肉厚が薄い場合、ガイドロール48等を通過する際に支持体10の中空部がつぶれやすい。
問題点IV
支持体10が伸びて、支持体10の外径が小さくなる。そのため、環状ノズル42の管路の内周面と支持体10との間隙が広くなる。その結果、塗膜の膜厚が厚くなったり、塗膜が形成されない箇所が発生したりする。
However, if the tension is too large, there are the following problems.
Problem III:
When the thickness of the support 10 (cylindrical braid 12) is thin, the hollow portion of the support 10 is easily crushed when passing through the guide roll 48 or the like.
Problem IV
The support body 10 extends and the outer diameter of the support body 10 becomes smaller. Therefore, the gap between the inner peripheral surface of the pipe line of the annular nozzle 42 and the support 10 is widened. As a result, the film thickness of a coating film becomes thick or the location where a coating film is not formed generate | occur | produces.

問題点V:
(ii)工程において、製膜原液が完全に凝固する途中で、支持体10が伸びてピンホール等の膜構造の欠陥となったり、ガイドロール48に支持体10が押し付けられるため、塗膜が押しつぶされ、変形、ピンホール等の膜構造の欠陥となったりする。
よって、以上の問題点を解決するために、支持体10としては、伸縮性(外径変化)が抑制され、かつつぶれにくい、熱処理を施した円筒状組紐12を用いる。
Problem V:
In the step (ii), the support 10 is stretched during the solidification of the film-forming stock solution, resulting in defects in the film structure such as pinholes, or the support 10 is pressed against the guide roll 48, so that the coating film is formed. It may be crushed and become a defect of the film structure such as deformation and pinhole.
Therefore, in order to solve the above problems, as the support body 10, a heat-treated cylindrical braid 12 is used that is suppressed in elasticity (change in outer diameter) and is not easily crushed.

(ii)工程:
凝固浴槽46内の凝固液と製膜原液の塗膜とを接触させ、製膜原液を凝固させて、第1の多孔質膜層を形成し、中空状多孔質膜前駆体18を得る。
凝固液としては、製膜原液の溶剤と同じ溶剤を含む水溶液が好ましい。製膜原液の溶剤がN,N−ジメチルアセトアミドの場合、溶剤の濃度は、凝固液(100質量%)中、1〜50質量%が好ましい。
(Ii) Process:
The coagulating liquid in the coagulation bath 46 is brought into contact with the coating film of the film-forming stock solution, and the film-forming stock solution is solidified to form the first porous film layer to obtain the hollow porous film precursor 18.
As the coagulation liquid, an aqueous solution containing the same solvent as that of the film-forming stock solution is preferable. When the solvent of the film forming stock solution is N, N-dimethylacetamide, the concentration of the solvent is preferably 1 to 50% by mass in the coagulation liquid (100% by mass).

凝固液の温度は、50〜90℃が好ましい。
(ii)工程と(iii)工程との間でも、後述の(v)〜(vii)工程を行ってもよい。
The temperature of the coagulation liquid is preferably 50 to 90 ° C.
Steps (v) to (vii) described later may be performed between step (ii) and step (iii).

(iii)〜(iv)工程:
(i)〜(ii)工程で用いた装置と同様の装置を用い、(i)〜(ii)工程と同様な条件にて、中空状多孔質膜前駆体18の外周面に第2の多孔質膜層を形成し、中空状多孔質膜を得る。
(iii)工程においては、製膜原液(2)として内部凝固液を用いてもよい。内部凝固液としては、グリセリン、アルコール類、エチレングリコール等が挙げられる。
Steps (iii) to (iv):
A device similar to the device used in steps (i) to (ii) is used, and the second porous material is formed on the outer peripheral surface of the hollow porous membrane precursor 18 under the same conditions as in steps (i) to (ii). A membrane layer is formed to obtain a hollow porous membrane.
In the step (iii), an internal coagulation liquid may be used as the film forming stock solution (2). Examples of the internal coagulation liquid include glycerin, alcohols, ethylene glycol and the like.

(v)工程:
例えば、中空状多孔質膜を60〜100℃の熱水中で洗浄して溶剤を除去し、ついで、次亜塩素酸等の薬液で洗浄し、ついで、60〜100℃の熱水中で洗浄して薬液を除去する。
(V) Process:
For example, the hollow porous membrane is washed in hot water at 60 to 100 ° C. to remove the solvent, then washed with a chemical solution such as hypochlorous acid, and then washed in hot water at 60 to 100 ° C. Then remove the chemical.

(vi)〜(vii)工程:
中空状多孔質膜を、60℃以上100℃未満で、1分以上24時間未満乾燥した後、ボビン、カセ等に巻き取る。
Steps (vi) to (vii):
The hollow porous membrane is dried at 60 ° C. or more and less than 100 ° C. for 1 minute or more and less than 24 hours, and then wound on a bobbin, a cassette or the like.

以上説明した支持体10は、上記式(1)で表される範囲内の温度tで熱処理された円筒状組紐12からなるため、従来の円筒状組紐に比べ、伸縮性(外径変化)が抑制され、かつつぶれにくい。   Since the support 10 described above is composed of the cylindrical braid 12 that has been heat-treated at a temperature t within the range represented by the above formula (1), it has stretchability (change in outer diameter) compared to a conventional cylindrical braid. Suppressed and hard to collapse.

また、以上説明した支持体10の製造方法によれば、上記式(1)で表される範囲内の温度tで熱処理することにより、伸縮性(外径変化)が抑制され、かつつぶれにくい支持体10を生産性よく製造できる。なお、実開平6−37384号公報における熱処理は、組紐の残留歪を除去する処理であり、上記式(1)で表される範囲より温度は低い。また、実開平6−37384号公報に記載のヒートセット装置は、樋状で一面は開放状態であるため、紐の外径を規制、制御することはできない。   Moreover, according to the manufacturing method of the support body 10 demonstrated above, the elasticity (change in an outer diameter) is suppressed by carrying out heat processing at the temperature t in the range represented by the said Formula (1), and a support which is hard to be crushed. The body 10 can be manufactured with high productivity. The heat treatment in Japanese Utility Model Laid-Open No. 6-37384 is a process for removing residual strain of the braid, and the temperature is lower than the range represented by the above formula (1). Moreover, since the heat set apparatus described in Japanese Utility Model Publication No. Hei 6-37384 has a bowl shape and one surface is in an open state, the outer diameter of the string cannot be regulated or controlled.

また、以上説明した中空状多孔質膜は、支持体10が上記式(1)で表される範囲内の温度tで熱処理された円筒状組紐12からなるものであるため、支持体10の外周面に製膜原液を塗布する際に支持体10の外径変化が少なく、製膜原液を均一に塗布でき、また、支持体10がつぶれにくいため、多孔質膜層の膜厚のバラツキが小さく、多孔質膜層に欠陥が少ない。   Moreover, since the hollow porous membrane demonstrated above consists of the cylindrical braid 12 by which the support body 10 was heat-processed by the temperature t in the range represented by said Formula (1), the outer periphery of the support body 10 is shown. When the film-forming stock solution is applied to the surface, the change in the outer diameter of the support 10 is small, the film-forming stock solution can be applied uniformly, and the support 10 is not easily crushed, so the variation in the thickness of the porous film layer is small. There are few defects in the porous membrane layer.

また、以上説明した中空状多孔質膜の製造方法によれば、支持体10として上記式(1)で表される範囲内の温度tで熱処理された円筒状組紐12を用いているため、支持体10の外周面に製膜原液を塗布する際に支持体10の外径変化が少なく、製膜原液を均一に塗布でき、また、支持体10がつぶれにくいため、多孔質膜層の膜厚のバラツキが小さく、多孔質膜層に欠陥が少ない中空状多孔質膜を安定して製造できる。   Moreover, according to the manufacturing method of the hollow porous membrane demonstrated above, since the cylindrical braid 12 heat-processed at the temperature t in the range represented by said Formula (1) is used as the support body 10, support is carried out. When the film-forming solution is applied to the outer peripheral surface of the body 10, there is little change in the outer diameter of the support 10, the film-forming solution can be uniformly applied, and the support 10 is not easily crushed. It is possible to stably produce a hollow porous membrane with a small variation in the number of defects and few defects in the porous membrane layer.

本発明を以下の実施例により具体的に説明する。
(支持体の外径)
支持体の外径は、レーザー外形測定器(キーエンス社製、LS3000)を用いて測定した。サンプル長さは10cmとし、3回測定して平均値を求めた。
The present invention will be specifically described by the following examples.
(Outer diameter of support)
The outer diameter of the support was measured using a laser contour measuring instrument (manufactured by Keyence Corporation, LS3000). The sample length was 10 cm, and the average value was obtained by measuring three times.

(支持体の外径変化)
支持体に、テンシロン型引張試験機(オリエンテック社製、UCT−1T型)により引張荷重を加え、各荷重における支持体の外径をレーザー外形測定器(キーエンス社製、LS3000)を用いて測定した。サンプル長さは5cmとし、各荷重において3回測定して平均値を求めた。
(External diameter change of support)
A tensile load was applied to the support using a Tensilon type tensile tester (Orientec, UCT-1T), and the outer diameter of the support at each load was measured using a laser profile measuring instrument (Keyence, LS3000). did. The sample length was 5 cm, and the average value was obtained by measuring three times at each load.

(支持体の伸度変化)
支持体に、テンシロン型引張試験機(オリエンテック社製、UCT−1T型)により引張荷重を加え、各荷重における支持体の伸度を測定した。サンプル長さは5cmとし、各荷重において3回測定して平均値を求めた。
(Change in elongation of support)
A tensile load was applied to the support with a Tensilon-type tensile tester (Orientec, UCT-1T type), and the elongation of the support at each load was measured. The sample length was 5 cm, and the average value was obtained by measuring three times at each load.

(中空状多孔質膜の外径)
中空状多孔質膜の外径は、以下の方法で測定した。
測定するサンプルを約10cmに切断し、数本を束ねて、全体をポリウレタン樹脂で覆った。ポリウレタン樹脂は支持体の中空部にも入るようにした。
ポリウレタン樹脂硬化後、カミソリ刃を用いて厚さ(膜の長手方向)約0.5mmの薄片をサンプリングした。
次に、サンプリングした中空状多孔質膜の断面を、投影機(ニコン社製、PROFILE PROJECTOR V−12)を用い、対物レンズ100倍にて観察した。
観察している中空状多孔質膜断面のX方向、Y方向の外表面の位置にマーク(ライン)をあわせて外径を読み取った。これを3回測定して外径の平均値を求めた。
(Outer diameter of hollow porous membrane)
The outer diameter of the hollow porous membrane was measured by the following method.
A sample to be measured was cut into approximately 10 cm, several bundles were bundled, and the whole was covered with a polyurethane resin. The polyurethane resin also entered the hollow part of the support.
After the polyurethane resin was cured, a thin piece having a thickness (longitudinal direction of the film) of about 0.5 mm was sampled using a razor blade.
Next, the sampled cross section of the hollow porous membrane was observed with a projector (Nikon Corporation, PROFILE PROJECTOR V-12) at an objective lens of 100 times.
A mark (line) was placed at the position of the outer surface in the X direction and Y direction of the cross section of the hollow porous membrane being observed, and the outer diameter was read. This was measured three times to determine the average value of the outer diameter.

(中空状多孔質膜の内径)
中空状多孔質膜の内径は、以下の方法で測定した。
測定するサンプルは外径を測定したサンプルと同様の方法でサンプリングした。
次に、サンプリングした中空状多孔質膜の断面を、投影機(ニコン社製、PROFILE PROJECTOR V−12)を用い、対物レンズ100倍にて観察した。
観察している中空状多孔質膜断面のX方向、Y方向の支持体内面の位置にマーク(ライン)をあわせて内径を読み取った。これを3回測定して内径の平均値を求めた。
(Inner diameter of hollow porous membrane)
The inner diameter of the hollow porous membrane was measured by the following method.
The sample to be measured was sampled in the same manner as the sample whose outer diameter was measured.
Next, the sampled cross section of the hollow porous membrane was observed with a projector (Nikon Corporation, PROFILE PROJECTOR V-12) at an objective lens of 100 times.
A mark (line) was aligned with the position of the inner surface of the support in the X and Y directions of the cross section of the hollow porous membrane being observed, and the inner diameter was read. This was measured three times to determine the average inner diameter.

(多孔質膜層の膜厚)
多孔質膜層の膜厚は、以下の方法で測定した。
測定するサンプルは外径を測定したサンプルと同様の方法でサンプリングした。
次に、サンプリングした中空状多孔質膜の断面を、投影機(ニコン社製、PROFILE PROJECTOR V−12)を用い、対物レンズ100倍にて観察した。
観察している中空糸膜断面の3時方向位置の膜厚の外表面と内表面の位置にマーク(ライン)をあわせて膜厚を読み取った。同様に、9時方向、12時方向、6時方向の順で膜厚を読み取った。これを3回測定して内径の平均値を求めた。
(Thickness of porous membrane layer)
The film thickness of the porous membrane layer was measured by the following method.
The sample to be measured was sampled in the same manner as the sample whose outer diameter was measured.
Next, the sampled cross section of the hollow porous membrane was observed with a projector (Nikon Corporation, PROFILE PROJECTOR V-12) at an objective lens of 100 times.
The film thickness was read by aligning marks (lines) at the positions of the outer surface and inner surface of the film at the 3 o'clock position on the cross section of the hollow fiber membrane being observed. Similarly, the film thickness was read in the order of 9 o'clock, 12 o'clock, and 6 o'clock. This was measured three times to determine the average inner diameter.

(中空状多孔質膜の透水性能)
中空状多孔質膜の透水性能は、以下の方法で測定した。
測定するサンプルを4cmに切断し、片端面をポリウレタン樹脂で中空部を封した。
次にエタノール中で5分間以上減圧した後、純水中に浸して置換した。
容器に純水(25℃)を入れ、サンプルの他端面とチューブで繋ぎ、容器に200kPaの空気圧をかけてサンプルから出る純水の量を1分間測定した。これを3回測定して平均値を求めた。この数値をサンプルの表面積で割り、透水性能とした。
(Water permeability performance of hollow porous membrane)
The water permeability of the hollow porous membrane was measured by the following method.
The sample to be measured was cut into 4 cm, and one end face was sealed with a polyurethane resin.
Next, the pressure was reduced in ethanol for 5 minutes or more, and then immersed in pure water for replacement.
Pure water (25 ° C.) was placed in the container, connected to the other end of the sample with a tube, and an air pressure of 200 kPa was applied to the container to measure the amount of pure water coming out of the sample for 1 minute. This was measured three times to obtain an average value. This value was divided by the surface area of the sample to determine the water permeability.

〔実施例1〕
(支持体の製造)
図2に示す支持体製造装置20を用いて、円筒状組紐12を熱処理して支持体10を製造した。
円筒状組紐12としては、製紐機を用いてポリエステル繊維(繊度:830dtex、フィラメント数:96、Tm:260℃)を16打ちで組んだ組紐を用意した。紐供給装置26および引取り装置30としては、ネルソンロールを用いた。金型28としては、加熱手段を有するアルミニウム合金製の金型(内径D:3.0mm、内径d:2.0mm、L/d:3)を用いた。
金型28の温度(t)を230℃とし、紐供給装置26の速度V1を1.5m/分とし、引取り装置30の速度V2を1.1m/分とした。
[Example 1]
(Manufacture of support)
The support body 10 was manufactured by heat-treating the cylindrical braid 12 using the support body manufacturing apparatus 20 shown in FIG.
As the cylindrical braid 12, a braid was prepared in which polyester fibers (fineness: 830 dtex, number of filaments: 96, Tm: 260 ° C.) were braided using 16 stringers. As the string supply device 26 and the take-up device 30, a Nelson roll was used. As the mold 28, an aluminum alloy mold having an heating means (inner diameter D: 3.0 mm, inner diameter d: 2.0 mm, L / d: 3) was used.
The temperature (t) of the mold 28 was 230 ° C., the speed V1 of the string supply device 26 was 1.5 m / min, and the speed V2 of the take-up device 30 was 1.1 m / min.

得られた支持体10の外径は、1.98mmであった。支持体10の外径変化および伸度変化を測定した。結果を図5および図6に示す。9.8Nの荷重で張力を付与したところ、外径の変化は−0.05mm、伸度変化は+3.35mmであった。   The outer diameter of the obtained support 10 was 1.98 mm. The outer diameter change and elongation change of the support 10 were measured. The results are shown in FIG. 5 and FIG. When tension was applied with a load of 9.8 N, the change in outer diameter was -0.05 mm, and the change in elongation was +3.35 mm.

(中空状多孔質膜の製造)
ついで、図4に示す中空状多孔質膜製造装置40を用いて中空状多孔質膜を製造した。
ポリフッ化ビニリデンA(アトフィナジャパン社製、商品名:カイナー301F)、ポリフッ化ビニリデンB(アトフィナジャパン社製、商品名:カイナー9000LD)、ポリビニルピロリドン(ISP社製、商品名:K−90)、N,N−ジメチルアセトアミドを、表1に示す質量比となるように混合し、製膜原液(1)および製膜原液(2)を調製した。
(Manufacture of hollow porous membrane)
Subsequently, the hollow porous membrane was manufactured using the hollow porous membrane manufacturing apparatus 40 shown in FIG.
Polyvinylidene fluoride A (manufactured by Atofina Japan, trade name: Kyner 301F), polyvinylidene fluoride B (manufactured by Atofina Japan, trade name: Kyner 9000LD), polyvinylpyrrolidone (manufactured by ISP, trade name: K-90) , N, N-dimethylacetamide were mixed so as to have a mass ratio shown in Table 1 to prepare a film-forming stock solution (1) and a film-forming stock solution (2).

Figure 0005207220
Figure 0005207220

(i)工程:
環状ノズル42(管路の内周面と支持体10との間隙:0.2mm)を30℃に保温し、管路に支持体10を通しながら、上流側の第1の吐出口から製膜原液(2)を吐出して支持体10の外周面に製膜原液(2)を塗布し、さらに下流側の第2の吐出口から製膜原液(1)を吐出して製膜原液(2)上に製膜原液(1)を塗布した。
(I) Process:
The annular nozzle 42 (gap between the inner peripheral surface of the pipe line and the support 10: 0.2 mm) is kept at 30 ° C., and the film is formed from the first discharge port on the upstream side while passing the support 10 through the pipe. The stock solution (2) is discharged to apply the film-forming stock solution (2) to the outer peripheral surface of the support 10, and the film-forming stock solution (1) is further discharged from the second discharge port on the downstream side to form the film-forming stock solution (2 The film-forming stock solution (1) was applied on top.

(ii)工程:
ついで、製膜原液が塗布された支持体10を、凝固浴槽46内にて80℃に保温した凝固液(N,N−ジメチルアセトアミド5質量%および水95質量%)中に通して、第1の多孔質膜層を形成し、中空状多孔質膜前駆体18を得た。
(Ii) Process:
Next, the support 10 coated with the film-forming stock solution is passed through a coagulation liquid (5% by mass of N, N-dimethylacetamide and 95% by mass of water) kept at 80 ° C. in the coagulation bath 46 to obtain the first The porous membrane layer was formed to obtain a hollow porous membrane precursor 18.

(iii)工程:
ついで、30℃に保温した環状ノズル(管路の内周面と第1の多孔質膜層との間隙:0.2mm)に、中空状多孔質膜前駆体18を通しながら、上流側の第1の吐出口から内部凝固液としてグリセリン(和光純薬工業製、一級)を吐出して第1の多孔質膜層上にグリセリンを塗布し、さらに下流側の第2の吐出口から製膜原液(1)を吐出してグリセリン上に製膜原液(1)を塗布した。
(Iii) Process:
Next, while passing the hollow porous membrane precursor 18 through the annular nozzle (gap between the inner peripheral surface of the pipe line and the first porous membrane layer: 0.2 mm) kept at 30 ° C., the upstream first nozzle Glycerin (Wako Pure Chemical Industries, first grade) is discharged as an internal coagulating liquid from one discharge port, glycerin is applied onto the first porous membrane layer, and a film-forming stock solution is further discharged from the second discharge port on the downstream side. (1) was discharged and the film-forming stock solution (1) was applied onto glycerin.

(iv)工程:
ついで、(ii)工程と同様の条件にて、中空状多孔質膜前駆体18の外周面に第2の多孔質膜層を形成し、中空状多孔質膜を得た。
(Iv) Process:
Next, a second porous membrane layer was formed on the outer peripheral surface of the hollow porous membrane precursor 18 under the same conditions as in the step (ii) to obtain a hollow porous membrane.

(v)工程:
ついで、中空状多孔質膜を98℃の熱水中で3分間洗浄して溶剤を除去した後、下記(x)〜(z)の工程を2回繰り返した。
(x)中空状多孔質膜を50000mg/Lの次亜塩素酸ナトリウム水溶液に浸漬する工程。
(y)中空状多孔質膜を90℃のスチーム槽中で2分間加熱する工程。
(z)中空状多孔質膜を90℃の熱水中で3分間洗浄する工程。
(V) Process:
Next, after the hollow porous membrane was washed in hot water at 98 ° C. for 3 minutes to remove the solvent, the following steps (x) to (z) were repeated twice.
(X) A step of immersing the hollow porous membrane in a 50000 mg / L aqueous sodium hypochlorite solution.
(Y) A step of heating the hollow porous membrane in a steam bath at 90 ° C. for 2 minutes.
(Z) A step of washing the hollow porous membrane in hot water at 90 ° C. for 3 minutes.

(vi)〜(vii)工程:
中空状多孔質膜を85℃で10分間乾燥した後、ワインダーに巻き取った。
得られた中空状多孔質膜の外径は、2.8mmであり、内径は1.1mmであり、膜厚は平均850μmであり、透水性能は98m/m/h/MPaであった。また、多孔質膜層の膜厚のバラツキは小さく、多孔質膜層に欠陥は見られなかった。
Steps (vi) to (vii):
The hollow porous membrane was dried at 85 ° C. for 10 minutes, and then wound around a winder.
The obtained hollow porous membrane had an outer diameter of 2.8 mm, an inner diameter of 1.1 mm, an average film thickness of 850 μm, and a water permeability of 98 m 3 / m 2 / h / MPa. . Moreover, the variation in the film thickness of the porous membrane layer was small, and no defect was found in the porous membrane layer.

〔比較例1〕
製紐機を用いて、ポリエステル繊維(繊度:830dtex、フィラメント数:96)を16打ちで組んだ円筒状組紐を用意した。該円筒状組紐を熱処理することなく、円筒状組紐の外径変化および伸度変化を測定した。結果を図7および図8に示す。
[Comparative Example 1]
Using a string making machine, a cylindrical braid in which polyester fibers (fineness: 830 dtex, number of filaments: 96) were braided in 16 strokes was prepared. Without heat-treating the cylindrical braid, changes in the outer diameter and elongation of the cylindrical braid were measured. The results are shown in FIG. 7 and FIG.

図7に示すように、従来の円筒状組紐は、張力(荷重)を付加すると外径が大きく変化する。したがって、中空状多孔質膜を連続的に製造する際、円筒状組紐に加わる張力が大きくなると、外径は小さく、すなわち環状ノズルの管路の内周面と円筒状組紐との間隙が広がり、塗膜の膜厚が厚くなる。さらに、該間隙が広がると、製膜原液の吐出量が不足し、塗膜が形成されない箇所が発生するおそれがある。一方、円筒状組紐に加わる張力が小さくなると、外径が大きく、すなわち該間隙が狭くなり、塗膜の膜厚が薄くなったり、製膜原液が必要以上吐出され、垂れ落ち等の欠陥の原因となったりする。
一方、図5に示すように、実施例1の円筒状組紐は、円筒状組紐に加わる張力が大きくなっても、外径の変化は少なく、上述のような問題および欠陥が起こることなく、均一な塗膜を得ることができ、安定して中空状多孔質膜を製造できる。
As shown in FIG. 7, the outer diameter of the conventional cylindrical braid changes greatly when tension (load) is applied. Therefore, when continuously manufacturing the hollow porous membrane, when the tension applied to the cylindrical braid increases, the outer diameter is small, that is, the gap between the inner peripheral surface of the pipe line of the annular nozzle and the cylindrical braid is widened, The coating film becomes thicker. Further, when the gap is widened, the amount of the film-forming stock solution discharged is insufficient, and there may be a portion where a coating film is not formed. On the other hand, when the tension applied to the cylindrical braid is small, the outer diameter is large, that is, the gap is narrowed, the film thickness of the coating film is thinned, the film forming stock solution is discharged more than necessary, and causes of defects such as dripping It becomes.
On the other hand, as shown in FIG. 5, the cylindrical braid of Example 1 has a small change in outer diameter even when the tension applied to the cylindrical braid increases, and it is uniform without causing the above problems and defects. A coating film can be obtained, and a hollow porous membrane can be produced stably.

また、図8に示すように、従来の円筒状組紐は、張力(荷重)の付加により伸度が大きく変化する。図8から求めた伸び率は約13%である。(ii)工程において、製膜原液が完全に凝固する前に円筒状組紐が伸びると、ピンホール等の膜構造の欠陥となるおそれがある。
一方、図6に示すように、実施例1の円筒状組紐は、円筒状組紐に加わる張力が大きくなっても、伸度の変化は少なく、上述のような問題が起こることはない。
Further, as shown in FIG. 8, the elongation of the conventional cylindrical braid is greatly changed by the application of tension (load). The elongation obtained from FIG. 8 is about 13%. In the step (ii), if the cylindrical braid stretches before the film-forming stock solution is completely solidified, there is a risk of a film structure defect such as a pinhole.
On the other hand, as shown in FIG. 6, the cylindrical braid of Example 1 has little change in elongation even when the tension applied to the cylindrical braid increases, and the above-described problem does not occur.

本発明の支持体は、精密濾過膜、限外濾過膜等の複合多孔質膜の支持体として好適であり、該支持体を用いた中空状多孔質膜は、精密濾過、限外濾過等による水処理に用いる濾過膜として好適である   The support of the present invention is suitable as a support for composite porous membranes such as microfiltration membranes and ultrafiltration membranes, and a hollow porous membrane using the support is obtained by microfiltration, ultrafiltration or the like. Suitable as filtration membrane for water treatment

本発明の中空状多孔質膜用支持体の一例を示す側面図である。It is a side view which shows an example of the support body for hollow porous membranes of this invention. 支持体製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a support body manufacturing apparatus. 金型の一例を示す端面図および側断面図である。It is the end elevation and side sectional view showing an example of a metallic mold. 中空状多孔質膜製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a hollow porous membrane manufacturing apparatus. 実施例1の支持体の、荷重に対する外径変化を示すグラフである。It is a graph which shows the outer diameter change with respect to the load of the support body of Example 1. FIG. 実施例1の支持体の、荷重に対する伸度変化を示すグラフである。It is a graph which shows the elongation change with respect to the load of the support body of Example 1. FIG. 比較例1の円筒状組紐の、荷重に対する外径変化を示すグラフである。It is a graph which shows the outer diameter change with respect to the load of the cylindrical braid of the comparative example 1. 比較例1の円筒状組紐の、荷重に対する伸度変化を示すグラフである。It is a graph which shows the elongation change with respect to the load of the cylindrical braid of the comparative example 1.

符号の説明Explanation of symbols

10 支持体(中空状多孔質膜用支持体)
12 円筒状組紐
26 紐供給装置
28 金型
30 引取り装置
34 貫通孔
10 Support (Hollow Porous Membrane Support)
12 cylindrical braid 26 string supply device 28 mold 30 take-up device 34 through hole

Claims (7)

下記工程を有する、中空状多孔質膜用支持体の製造方法。
繊度が500〜1200dtexである糸を丸打した、打ち数が8〜50の円筒状組紐を、金型の上流側に設けられた紐供給装置と、金型の下流側に設けられた引取り装置とによって、下記式(1)で表される範囲内の温度t(℃)に加熱された金型の貫通孔に連続的に通して熱処理する工程。
Tm−80℃≦t<Tm ・・・(1)。
式中、Tmは、糸の材料の溶融温度(℃)である。
The manufacturing method of the support body for hollow porous membranes which has the following process.
A string braiding device provided on the upstream side of the die, and a take-up provided on the downstream side of the die, with a round braided yarn having a fineness of 500 to 1200 dtex and a punched number of 8 to 50 The process of heat-treating continuously with the apparatus through the through-hole of the metal mold | die heated to the temperature t (degreeC) in the range represented by following formula (1).
Tm−80 ° C. ≦ t <Tm (1).
In the formula, Tm is the melting temperature (° C.) of the yarn material.
前記糸が、フィラメント数が30〜200のマルチフィラメントである、請求項に記載の中空状多孔質膜用支持体の製造方法。 The yarn, the number of filaments is multifilament 30 to 200, the production method of the hollow porous membrane support according to claim 1. 前記貫通孔の、円筒状組紐の入り口側の内径Dが、前記貫通孔の、円筒状組紐の出口側の内径d以上である、請求項1または2に記載の中空状多孔質膜用支持体の製造方法。 The support for a hollow porous membrane according to claim 1 or 2 , wherein an inner diameter D of the through hole in the entrance side of the cylindrical braid is equal to or more than an inner diameter d of the through hole in the exit side of the cylindrical braid. Manufacturing method. 前記内径dが、熱処理前の円筒状組紐の外径の50〜100%である、請求項に記載の中空状多孔質膜用支持体の製造方法。 The manufacturing method of the support body for hollow porous membranes of Claim 3 whose said internal diameter d is 50 to 100% of the outer diameter of the cylindrical braid before heat processing. 請求項1〜のいずれか一項に記載の中空状多孔質膜用支持体の製造方法で得られた、中空状多孔質膜用支持体。 The support body for hollow porous membranes obtained by the manufacturing method of the support body for hollow porous membranes as described in any one of Claims 1-4 . 請求項に記載の中空状多孔質膜用支持体と、
該支持体の外周面に設けられた多孔質膜層と
を有する、中空状多孔質膜。
A support for a hollow porous membrane according to claim 5 ,
A hollow porous membrane having a porous membrane layer provided on the outer peripheral surface of the support.
請求項1〜のいずれか一項に記載の中空状多孔質膜用支持体の製造方法で得られた中空状多孔質膜用支持体の外周面に、多孔質膜層の材料および溶剤を含む製膜原液を塗布し、凝固させることによって多孔質膜層を形成する、中空状多孔質膜の製造方法。 The material and solvent of a porous membrane layer are provided on the outer peripheral surface of the support for a hollow porous membrane obtained by the method for producing a support for a hollow porous membrane according to any one of claims 1 to 4. A method for producing a hollow porous membrane, wherein a porous membrane layer is formed by applying and coagulating a film-forming stock solution containing the solution.
JP2006301574A 2006-11-07 2006-11-07 HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM Expired - Fee Related JP5207220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301574A JP5207220B2 (en) 2006-11-07 2006-11-07 HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301574A JP5207220B2 (en) 2006-11-07 2006-11-07 HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012101162A Division JP5197865B2 (en) 2012-04-26 2012-04-26 HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM

Publications (2)

Publication Number Publication Date
JP2008114181A JP2008114181A (en) 2008-05-22
JP5207220B2 true JP5207220B2 (en) 2013-06-12

Family

ID=39500598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301574A Expired - Fee Related JP5207220B2 (en) 2006-11-07 2006-11-07 HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM

Country Status (1)

Country Link
JP (1) JP5207220B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786489A (en) * 2012-06-29 2018-11-13 三菱化学株式会社 Hollow form perforated membrane

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565621B2 (en) * 2010-07-23 2014-08-06 三菱レイヨン株式会社 Method for producing support for porous membrane and support for porous membrane
JP2012152705A (en) * 2011-01-27 2012-08-16 Nok Corp Method for manufacturing fiber reinforced porous hollow fiber membrane
JP5659940B2 (en) * 2011-04-26 2015-01-28 三菱レイヨン株式会社 Heat treatment mold
JP5903780B2 (en) * 2011-06-09 2016-04-13 三菱レイヨン株式会社 Method and apparatus for producing porous hollow fiber membrane
EP2583745A1 (en) * 2011-10-20 2013-04-24 Gambro Lundia AB Process for continuously washing a hollow fibre membrane for depleting residuals
CN102560881A (en) * 2012-01-10 2012-07-11 苏州汇龙膜技术发展有限公司 Manufacturing method and application of hollow braided rope
JP2015147153A (en) * 2012-12-14 2015-08-20 東レ株式会社 Production method of semi-permeable membrane
EP3085435A4 (en) * 2013-12-16 2017-10-11 Toray Industries, Inc. Semipermeable membrane manufacturing method and semipermeable membrane
CN104815563A (en) * 2015-04-20 2015-08-05 天津工业大学 Reinforced hollow fibrous membrane and preparation method thereof
JP6888940B2 (en) * 2016-11-09 2021-06-18 Nok株式会社 Method for manufacturing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135554B2 (en) * 1972-08-01 1976-10-02
JPS5281076A (en) * 1975-12-29 1977-07-07 Asahi Chem Ind Co Ltd Semipermeable membrane made of hollow yarn
US4756932A (en) * 1987-06-11 1988-07-12 Air Products And Chemicals, Inc. Process for making highly permeable coated composite hollow fiber membranes
JPH057746A (en) * 1991-07-05 1993-01-19 Nok Corp Production of string like porous membrane
TW371284B (en) * 1996-12-04 1999-10-01 Daikin Ind Ltd Filtration material of filter and air cleaning device using the filtration material
JPH11262764A (en) * 1998-03-16 1999-09-28 Mitsubishi Rayon Co Ltd Water purifier
JP4084103B2 (en) * 2002-06-26 2008-04-30 三菱レイヨン株式会社 Method and apparatus for producing porous hollow fiber membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786489A (en) * 2012-06-29 2018-11-13 三菱化学株式会社 Hollow form perforated membrane

Also Published As

Publication number Publication date
JP2008114181A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP5207220B2 (en) HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM
JP2008114180A (en) Support for hollow porous membrane, hollow porous membrane and manufacturing method of them
JP5549768B2 (en) Hollow porous membrane
JP6115592B2 (en) Hollow porous membrane
JP2008126199A (en) Hollow porous film and its manufacturing method
JP2019022893A (en) Hollow porous film and method for producing the same
JP5637176B2 (en) Method for producing support for hollow porous membrane, hollow porous membrane and method for producing the same
JP5197865B2 (en) HOLLOW POROUS MEMBRANE SUPPORT, HOLLOW POROUS MEMBRANE AND METHOD FOR PRODUCING THEM
JP5772959B2 (en) Hollow porous membrane
JP5666502B2 (en) Hollow porous membrane and method for producing the same
JP5796433B2 (en) Thin hollow porous membrane
JP2006239576A (en) Production method of hollow fiber membrane and its production apparatus
JP2013128865A (en) Support for hollow fiber membrane, hollow fiber membrane, and method for producing them
JP5458141B2 (en) Method for producing hollow porous membrane
JP2023049700A (en) Porous composite hollow fiber membrane, production method of the same and production method of core-sheath type composite fiber compact
JP2013198889A (en) Support for hollow fiber membrane, method of manufacturing hollow fiber membrane, and method of manufacturing hollow fiber membrane module
JPH1015366A (en) Manufacture of hollow fiber membrane of selective permeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees