JP6883700B2 - 水中音響欺瞞システムおよび水中音響欺瞞方法 - Google Patents

水中音響欺瞞システムおよび水中音響欺瞞方法 Download PDF

Info

Publication number
JP6883700B2
JP6883700B2 JP2020500263A JP2020500263A JP6883700B2 JP 6883700 B2 JP6883700 B2 JP 6883700B2 JP 2020500263 A JP2020500263 A JP 2020500263A JP 2020500263 A JP2020500263 A JP 2020500263A JP 6883700 B2 JP6883700 B2 JP 6883700B2
Authority
JP
Japan
Prior art keywords
bubbles
underwater acoustic
laser beam
acoustic deception
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020500263A
Other languages
English (en)
Other versions
JPWO2019159422A1 (ja
Inventor
伸吾 西方
伸吾 西方
浩一 濱本
浩一 濱本
敦司 落合
敦司 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2019159422A1 publication Critical patent/JPWO2019159422A1/ja
Application granted granted Critical
Publication of JP6883700B2 publication Critical patent/JP6883700B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G9/00Other offensive or defensive arrangements on vessels against submarines, torpedoes, or mines
    • B63G9/02Means for protecting vessels against torpedo attack
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G13/00Other offensive or defensive arrangements on vessels; Vessels characterised thereby
    • B63G13/02Camouflage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/224Deceiving or protecting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/005Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam
    • F41H13/0056Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam for blinding or dazzling, i.e. by overstimulating the opponent's eyes or the enemy's sensor equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H3/00Camouflage, i.e. means or methods for concealment or disguise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/537Counter-measures or counter-counter-measures, e.g. jamming, anti-jamming
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/1752Masking
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/046Sound-producing devices using optical excitation, e.g. laser bundle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G13/00Other offensive or defensive arrangements on vessels; Vessels characterised thereby
    • B63G13/02Camouflage
    • B63G2013/025Camouflage using means for reducing radiation emission of electromagnetic waves, e.g. infrared, into air or water

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Optics & Photonics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は水中音響欺瞞システムおよび水中音響欺瞞方法に関し、例えば、レーザ光を用いる水中音響欺瞞システムおよび水中音響欺瞞方法に好適に利用できるものである。
現代の水上艦艇にとって、潜水艦は大きな脅威である。現代戦において、潜水艦は重要な役割を担っている。
潜水艦や、その主たる攻撃手段である魚雷は、目標や、周辺の物体および地形などを、音波を用いたソナーにより検知する。その理由として、水中では電波や光の減衰率が高く、遠距離伝搬が困難であることが挙げられる。
このようなソナーには、大別して、アクティブソナーおよびパッシブソナーがある。アクティブソナーは、ピンガーと呼ばれる音波を自ら発し、その反響音を観測する。パッシブソナーは、ピンガーなどの音波を発することなく、周囲の音波を収集する。
ソナーを用いる潜水艦や魚雷などへの対抗手段として、ソナーを欺瞞するための音波を放出するデコイを使用する手法が知られている。このようなデコイには、大別して、他の船舶などの移動手段に曳航されることで移動可能な曳航式デコイ、設置後は移動しない前提の設置式デコイ、自身が移動手段を有する自走式デコイ、などがある。これらのデコイには、それぞれ、設置可能な場所や、稼働時間などに制約があるので、任意の場所および任意のタイミングで、ソナーへの欺瞞を続けることは困難である。
また、水上艦艇や潜水艦などにとっての脅威として、機雷がある。機雷は、水中、水面、海底などに設置される爆雷であり、任意の物体が接触したり、所定の距離まで接近したりすると、爆発して被害を与える。
機雷の起爆方式には、例えば、目標から発せられる音響を探知して起爆する方式や、目標の接近に伴う周囲の水圧の変化を探知して起爆する水圧探知方式などが知られている。その他、目標との物理的な接触を検知して起爆する接触方式や、目標の接近に伴う周囲の磁気の変化を探知して起爆する磁気探知式、などの方式もある。
設置済みの機雷を除去する作業は掃海と呼ばれる。掃海作業は、艦艇などが掃海用の器具を曳航する形で行われる。したがって、除去できる機雷は掃海を行う艦艇より後方に位置するものである。このため、艦艇が自身の航行により前方の機雷を起爆させて被害を受けてしまう可能性が有る。
上記に関連して、特許文献1(米国特許公開公報第2003/0127558号)には、レーザ光による脅威および水中物体の検出と、水中移動体がこの検出に対抗するために用いるシステムが開示されている。このシステムは、レーザ光検出手段と、レーザ光警告受信機と、信号プロセッサとを備える。ここで、レーザ光検出手段は、水中移動体の表面に配置されるように構成され、レーザ光を検出する。レーザ光警告受信機および信号プロセッサは、レーザ光検出手段に接続されており、レーザ光検出手段を制御する。
特許文献1のシステムでは、水中の脅威に対処するために、レーザ光が脅威そのものに向けて照射される。しかしながら、通常のレーザ光は水中では大きく減衰する。したがって、特許文献1のように、レーザ光を水中の魚雷に向けて直接照射してこれを破壊することは、困難である。
また、本願発明者による先願発明(特願2016−218229)には、水中物体破壊システムが開示されている。この水中物体破壊システムは、探知装置と、レーザ発振器と、照射光学系と、制御装置とを具備する。ここで、探知装置は、水中の目標物体を探知する。レーザ発振器は、水中に集光して気泡またはプラズマを発生させるように構成されたレーザ光を生成する。照射光学系は、生成されたレーザ光を所定の集光位置に向けて照射する。制御装置は、探知された目標物体の至近に気泡またはプラズマを発生させるようにレーザ発振器および照射光学系を制御する。先願の水中物体破壊システムは、気泡またはプラズマによる衝撃で目標物体を破壊する。
先願の水中物体破壊システムでは、レーザで水中に気泡などを発生させることで生じる衝撃によって目標を破壊することを目的としている。したがって、気泡などを発生させるために目標より深い位置にレーザを集光する必要がある。また、比較的強力なレーザ光を照射する必要がある。
米国特許公開公報第2003/0127558号
保護対象としての船舶を、水中または水上に存在する脅威から保護するために、脅威に搭載されたセンサを、音響効果により欺瞞する。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
一実施の形態によれば、水中音響欺瞞システムは、制御装置と、レーザ発振器と、照射光学系とを具備する。ここで、制御装置は、所望の位置に所望の規模の気泡を発生させるためにレーザ光を水中に集光する集光位置およびレーザ光の照射パラメータを決定する。レーザ発振器は、制御装置に制御されて、水中に集光して気泡を発生させるように構成されたレーザ光を生成する。照射光学系は、制御装置に制御されて、生成されたレーザ光を集光位置に向けて照射する。気泡が周囲に及ぼす音響効果により、水中に存在する任意のセンサを欺瞞する。
一実施の形態によれば、水中音響欺瞞方法は、所望の位置に所望の規模の気泡を発生させるためにレーザ光を水中に集光する集光位置およびレーザ光の照射パラメータを決定することと、水中に集光して気泡を発生させるように構成されたレーザ光を生成することと、生成されたレーザ光を集光位置に照射することと、気泡が周囲に及ぼす音響効果により、水中に存在する任意のセンサを欺瞞することとを具備する。
前記一実施の形態によれば、レーザ光で水中に気泡を発生させることで得られる音響効果によって、水中に存在するセンサを欺瞞することが出来る。
図1Aは、アクティブソナーの動作例を説明する図である。 図1Bは、パッシブソナーの動作例を説明する図である。 図2は、音響効果によりソナーを欺瞞する方法の例を示す図である。 図3Aは、第1実施形態による水中音響欺瞞システムの一構成例を示すブロック回路図である。 図3Bは、第1実施形態による水中音響欺瞞方法の一構成例を示すフローチャートである。 図4Aは、第1実施形態による水中音響欺瞞システムの状態例を示す図である。 図4Bは、第1実施形態による水中音響欺瞞システムの状態例を示す図である。 図4Cは、第1実施形態による水中音響欺瞞システムの状態例を示す図である。 図4Dは、第1実施形態による水中音響欺瞞システムの状態例を示す図である。 図5は、第2実施形態による水中音響欺瞞システムの一構成例を示すブロック回路図である。 図6は、第3実施形態による水中音響欺瞞システムの第1構成例を示すブロック回路図である。 図7は、第3実施形態による水中音響欺瞞システムの第2構成例を示すブロック回路図である。 図8は、第3実施形態による水中音響欺瞞システムの第3構成例を示すブロック回路図である。 図9は、第3実施形態による水中音響欺瞞システムの第5構成例を示すブロック回路図である。 図10Aは、第4実施形態による水中音響欺瞞システムの構成例を示すブロック回路図である。 図10Bは、第4実施形態による水中音響欺瞞方法の一構成例を示すフローチャートである。 図11Aは、第5実施形態による水中音響欺瞞システムの第1構成例を示す図である。 図11Bは、第5実施形態による水中音響欺瞞システムの第2構成例を示す図である。 図12は、第6実施形態による水中音響欺瞞システムの構成例を示す図である。 図13は、第7実施形態による水中音響欺瞞システムの構成例を示す図である。
添付図面を参照して、本発明による水中音響欺瞞システムおよび水中音響欺瞞方法を実施するための形態を以下に説明する。
(第1実施形態)
まず、図1A、図1Bおよび図2を参照して、各種ソナーを備える潜水艦や魚雷などの動作例について説明する。各種ソナーが、欺瞞したい対象であるセンサに該当する。
図1Aは、アクティブソナーの動作例を説明する図である。図1Aの動作例には、水上を航行する船舶20と、水中を航行する潜水艦30と、潜水艦30から発射された魚雷40とが登場する。魚雷40が内蔵するアクティブソナーは、ピンガー91を発する。発せられたピンガー91は、船舶20に到達すると、その少なくとも一部が反響音92として反射される。反響音92がアクティブソナーに到達すると、魚雷40は船舶20の方角および距離を把握することが出来る。その結果、魚雷40は、船舶20に向けて移動をすることが出来る。
図1Bは、パッシブソナーの動作例を説明する図である。図1Bの動作例には、水上を航行する船舶20と、水中を航行する潜水艦30と、潜水艦30から発射された魚雷40とが登場する。魚雷40が内蔵するパッシブソナーは、図1Aのアクティブソナーとは異なり、ピンガー91を発したりはしない。したがって、ピンガー91が反射されて生じる反響音92をパッシブソナーが受信することも無い。その代わりに、パッシブソナーは、周囲の音波を収集する。図1Bの例では、船舶20が発する航行音93をパッシブソナーが受信することで、魚雷40は船舶20の方角および距離を把握することが出来る。その結果、魚雷40は、船舶20に向けて移動をすることが出来る。
なお、図1Aおよび図1Bの例では、魚雷40がソナーを備える場合について説明したが、潜水艦30がソナーを備えていても良い。その場合、潜水艦30は、船舶20の方角および距離を把握した後、船舶20に向かうように魚雷40を発射しても良い。また、発射された魚雷40は、その後、自身のソナーで船舶20の方角および距離を把握しながら移動しても良い。
図2は、音響効果によりソナーを欺瞞する方法の例を示す図である。船舶20は、魚雷40に攻撃されないように、魚雷40のソナーを欺瞞する場合がある。ソナーを欺瞞する具体的な手法としては、音波を発するデコイを使用しても良い。デコイには、船舶20などによって曳航されて移動する曳航式デコイ21や、船舶20とは独立して移動する自走式デコイ22などが知られている。いずれの場合も、曳航式デコイ21または自走式デコイ22が船舶20であると魚雷40に認識させることで、魚雷40が船舶20に到達する可能性を低くすることが出来る。
本実施形態では、デコイを使用する代わりに、レーザ光による水中音響欺瞞システムを用いる。本実施形態による水中音響欺瞞システムは、レーザ光を水中に集光するように照射する。これにより、レーザ光を集光した領域で、気泡が生じる。この気泡から生じる各種の音響効果を、ソナーの欺瞞に利用する。
図3Aを参照して、本実施形態による水中音響欺瞞システム1の一構成例について説明する。図3Aは、第1実施形態による水中音響欺瞞システム1の一構成例を示すブロック回路図である。
図3Aの水中音響欺瞞システム1の構成要素について説明する。図3Aの水中音響欺瞞システム1は、外部システム12と、制御装置13と、パルスレーザ発振器14Aと、照射光学系18Aとを備えている。外部システム12は、例えば、船舶20に設けられた探知システムであって、潜水艦30や、魚雷40などの水中物体の存在を探知するためのソナーなどを備えていることが望ましい。制御装置13は、信号の送受信を行う入出力インタフェースと、プログラムやデータなどを格納するメモリと、メモリ上のプログラムを実行して信号を生成するCPU(Central Processing Unit:中央演算装置)とを備える計算機であっても良い。パルスレーザ発振器14Aは、制御装置13の制御下で、制御装置13が決定した照射パラメータに従ってパルスレーザを生成出力することが望ましい。照射光学系18Aは、照射方向および焦点距離を調整するために、レンズや反射鏡などの光学装置と、レンズの位置や反射鏡の角度などを調整する駆動装置とを備えることが望ましい。外部システム12と、制御装置13と、パルスレーザ発振器14Aと、照射光学系18Aとは、その全てが図示しない船舶20などに設けられていても良いし、その一部が船舶20に、残りがデコイや航空機など他の場所に設けられていても良い。
図3Aの各構成要素の接続関係について説明する。電気的な接続関係に注目すると、外部システム12の後段には、制御装置13が接続されている。制御装置の後段には、パルスレーザ発振器14Aと、照射光学系18Aとが接続されている。ここで、電気的な接続関係は、有線通信により実現されていても良いし、無線通信により実現されていても良い。光学的な接続関係に注目すると、照射光学系18Aは、パルスレーザ発振器14Aの後段に配置されている。なお、光学的な接続関係は、図示しないミラー、レンズ、ビームスプリッタなどの光学部品を適宜に用いて仲介しても良いことは言うまでもない。
図3Aの水中音響欺瞞システム1の動作、すなわち本実施形態による水中音響欺瞞方法について、図3Bおよび図4A〜図4Dを参照して説明する。図3Bは、第1実施形態による水中音響欺瞞方法の一構成例を示すフローチャートである。図3Bのフローチャートは、第0ステップS100〜第6ステップS106の、合計7の工程を含んでいる。図3Bのフローチャートは、第0ステップS100から開始する。第0ステップS100の次には、第1ステップS101が実行される。
第1ステップS101において、制御装置13が、レーザ光50を集光したい目標位置である集光位置と、レーザ光50の照射パラメータとを決定する。ここでは、一例として、保護対象となる船舶20自身が水中音響欺瞞システム1を搭載しており、かつ、外部システム12などによって脅威となる潜水艦30のおおよその位置を把握出来ている場合を想定して、以降の説明を行う。
より具体的には、外部システム12が、脅威となる潜水艦30の位置を検知した結果を示す検知信号121を生成する。外部システム12は、生成した検知信号121を制御装置13に向けて送信する。制御装置13は、送信された検知信号121を受信する。制御装置13は、受信した検知信号121に基づいて、集光位置および照射パラメータを決定する。
集光位置を決定する方法について説明する。集光位置は、レーザ光50により気泡70が発生する位置に該当する。発生した気泡70は、その後、浮力によって上昇し、また、海流などの水流によってその下流側に流されることが予想される。そこで、集光位置は、気泡70を発生させたい場所よりも下方向や、海流の上流側などに設定することが好ましい。また、気泡70を発生させたい場所は、例えば、保護対象となる船舶20と、その脅威となり得る潜水艦30との間に位置する領域であっても良い。
照射パラメータを決定する方法について説明する。パルスレーザ発振器14Aは、比較的強力なパルスレーザ光51を瞬間的に生成することができる。さらに、パルスレーザ発振器14Aは、ある程度短い間隔で断続的に、言い換えれば連続的に、パルスレーザ光51を生成することもできる。一度に生成するパルスレーザ光51の強度は、そのパルスレーザ光51によって水中に発生する気泡70の大きさに影響する。また、パルスレーザ光51を連続的に生成する場合は、その時間的間隔が、水中に発生する気泡70の総数や密度に影響する。特定の領域に存在する気泡70の総数や密度を、その領域における「気泡70の規模」と呼ぶ。これらの照射パラメータ(パルスレーザ光51の強度、時間的間隔など)が気泡70の規模に与える影響は、さらに、水中の環境、すなわち水温や水圧などによっても変化する。そこで、事前に行った実験データなどから、発生させたい気泡70の規模と、水中環境とによって、どのような照射パラメータを決定すべきかについて、予め算出した結果を記録したテーブルを制御装置13の記憶装置に格納しておくことが好ましい。または、発生させたい気泡70の規模と、水中環境とによって、どのような照射パラメータを決定すべきかについて、算出方法を示したプログラムを制御装置13の記憶装置に格納しておき、制御装置13の演算装置で必要に応じてこのプログラムを実行しても良い。なお、水温、水圧などは、例えば、外部システム12に検知されても良い。
第1ステップS101の次には、第2ステップS102が実行される。
第2ステップS102において、水中音響欺瞞システム1は、決定された照射パラメータに従って、パルスレーザ光51を生成する。
具体的には、まず、制御装置13が、第1ステップS101で決定した照射パラメータに基づいて、パルスレーザの発振を制御するための発振制御信号131Aを生成する。制御装置13は、生成した発振制御信号131Aを、パルスレーザ発振器14Aに向けて送信する。パルスレーザ発振器14Aは、送信された発振制御信号131Aを受信する。
次に、パルスレーザ発振器14Aは、受信した発振制御信号131Aに応じて、パルスレーザを発振し、生成されたパルスレーザ光51を出射する。第2ステップS102の次には、第3ステップS103が実行される。
第3ステップS103において、水中音響欺瞞システム1は、決定された集光位置に向けて、レーザ光50を照射する。
具体的には、まず、制御装置13が、第1ステップS101で決定した集光位置に基づいて、パルスレーザ光51を照射する方向と、照射されたパルスレーザ光51が集光する焦点距離とを制御するための照射方向制御信号134Aを生成する。制御装置13は、生成した照射方向制御信号134Aを、照射光学系18Aに向けて送信する。照射光学系18Aは、送信された照射方向制御信号134Aを受信する。
次に、照射光学系18Aは、受信した照射方向制御信号134Aに応じて、パルスレーザ光51を照射する方向を調整し、かつ、照射したパルスレーザ光51が集光する焦点距離を調整する。照射光学系18Aは、パルスレーザ発振器14Aから出射されたパルスレーザ光51を受光し、受光したパルスレーザ光51を、調整した方向に向けて、かつ、調整した焦点距離で集光するように、照射する。なお、焦点距離は、例えば、パルスレーザ光51を照射する照射光学系18Aの照射口から集光位置までの距離であっても良い。
なお、制御装置13による照射光学系18Aの制御は、実際には、パルスレーザ発振器14Aがパルスレーザ光51を生成するまでに実行されていることが望ましい。例えば、パルスレーザ光51が生成される前に、照射光学系18Aはパルスレーザ光51の照射する方向と焦点距離とを調整することが望ましい。このような意味において、第2ステップS102および第3ステップS103は、その一部が並列に実行されても良い。
第3ステップS103の次には、第4ステップS104が実行される。
第4ステップS104において、照射されたレーザ光50によって水中に気泡70が発生する。より具体的には、照射されたパルスレーザ光51は、調整された位置に集光する。集光したパルスレーザ光51によって、周囲の水が沸騰し、気泡70が発生する。本実施形態による水中音響欺瞞システム1は、例えば、複数のパルスレーザ発振器14Aを備えていても良い。この場合、水中音響欺瞞システム1は、一度に複数のパルスレーザ光51を照射し、かつ、それぞれ異なる位置に集光させて、一度に複数の気泡70を発生させることが可能となる。または、単独のパルスレーザ発振器14Aでパルスレーザ光51を、短い間隔で断続的に照射し、かつ、それぞれ異なる位置に集光させて、連続的に複数の気泡70を発生させても良い。こうすることで、複数の気泡70を、壁または網のように並べて発生させることも可能である。図4Aは、第1実施形態による水中音響欺瞞システム1の状態例を示す図である。第4ステップS104の次には、第5ステップS105が実行される。
第5ステップS105において、水中に発生した気泡70による音響効果で、水中のセンサを、すなわち脅威としての潜水艦30が備えるソナーを、欺瞞する。
一例として、潜水艦30がアクティブソナーを用いて船舶20の位置を検知しようとしている場合について説明する。図4Bは、第1実施形態による水中音響欺瞞システム1の状態例を示す図である。図4Bの例では、脅威としての潜水艦30のアクティブソナーから発信されるピンガー91は、保護対象としての船舶20に到達することなく、両者の間に発生した気泡70において反射する。音波であるピンガー91を気泡70が反射する現象は、気泡70が有する音響効果の1つである。ピンガー91が気泡70で反射することで発生する反響音92を、脅威としての潜水艦30のアクティブソナーが受信する。その結果、脅威としての潜水艦30のアクティブソナーは、気泡70が位置する領域を、保護対象としての船舶20の位置として誤認することが期待される。
別の例として、潜水艦30がパッシブソナーを用いて船舶20の位置を検知しようとしている場合について説明する。図4Cは、第1実施形態による水中音響欺瞞システム1の状態例を示す図である。パッシブソナーは、アクティブソナーと異なり、ピンガー91を発信しない。したがって、気泡70が図4Bのような反響音92を発生させることも無い。その一方で、図4Bの気泡70は、水中または水面で、変形または破裂する際に、破裂音94を発生させる。したがって、脅威としての潜水艦30のパッシブソナーは、この破裂音94を受信して、気泡70が位置する領域を、保護対象としての船舶20の位置として誤認することが期待される。
本実施形態の変形例として、水中音響欺瞞システム1が、船舶20ではなく、外部の航空機24に搭載されている場合について説明する。航空機24は、船舶20と比較して、その移動の自由度が高く、また、脅威となる潜水艦30からの攻撃を受けにくく、さらに、レーザ光50の減衰は水中を伝搬する場合よりも空中を伝搬する場合の方が少ない。このため、航空機24は、水中音響欺瞞システム1を搭載するプラットフォームとして適している。図4Dは、第1実施形態による水中音響欺瞞システム1の状態例を示す図である。
第5ステップS105の次には、第6ステップS106が実行されて、図3Bのフローチャートは終了する。
以上に説明したように、本実施形態の水中音響欺瞞システム1および水中音響欺瞞方法によれば、潜水艦30や、魚雷40などの、脅威となる水中物体が備えるセンサとしてのソナーを欺瞞して、保護対象としての船舶20の位置を誤認させることが可能である。なお、パルスレーザは瞬間的な出力が大きいので、照射してから気泡70が発生するまでのタイムラグがナノ秒オーダーに抑えられる。また、パルスレーザは出力の時間平均が小さいので、水中のセンサを欺瞞するために必要な電力を小さく抑えることが出来る。
(第2実施形態)
図5を参照して、図3Aとは別の構成による水中音響欺瞞システム1について説明する。図5は、第2実施形態による水中音響欺瞞システム1の一構成例を示すブロック回路図である。
図5に示した本実施形態による水中音響欺瞞システム1は、図3Aに示した第1実施形態による水中音響欺瞞システム1と比較して、以下の相違点を有する。すなわち、本実施形態では、第1実施形態で用いたパルスレーザ光51に変わって、連続波レーザ光52を用いる。
具体的には、第1実施形態のパルスレーザ発振器14Aおよび照射光学系18Aを、図5に示した連続波レーザ発振器14Bおよび照射光学系18Bに、それぞれ置き換える。本実施形態による水中音響欺瞞システム1のその他の構成は、第1実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
以降、パルスレーザ光51および連続波レーザ光52を区別しない場合には、これらを単に「レーザ光50」と呼ぶことがある。同様に、パルスレーザ発振器14Aや、連続波レーザ発振器14Bなどを区別しない場合には、これらを単に「レーザ発振器14」と呼ぶことがある。また、照射光学系18A、18Bなどを区別しない場合には、これらを単に「照射光学系18」と呼ぶことがある。
本実施形態で用いる連続波レーザ光52は、第1実施形態のパルスレーザ光51と同様に、水中に集光することによって、気泡70を発生させることが出来る。さらに、連続波レーザ光52は間断なく照射することが可能であり、したがって、気泡70を持続的に発生させることが出来る。ここで、連続波レーザ光52は、持続的に発生させながら集光位置を移動することで、単独の長い気泡70を発生させることが出来る。
本実施形態による水中音響欺瞞システム1の動作方法、すなわち本実施形態による水中音響欺瞞方法は、図3Bのフローチャートで示した第1実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
一般的に、連続波レーザ光52は、パルスレーザ光51と比較して、瞬間的な出力が低い。そのため、連続波レーザ光52を照射してから気泡70が発生するまでに数十ミリ秒乃至数百ミリ秒のオーダーのタイムラグがかかる。その一方で、連続波レーザ光52は、気泡70を持続的に発生させることが可能であるので、パルスレーザ光51で発生できる気泡70より大きい気泡70を展開することが出来る。
水中における気泡70が有する音響効果という視点からは、パルスレーザ光51によって発生する、比較的小さい気泡70は、比較的高い周波数を有する音波をより効果的に反射する。言い換えれば、連続波レーザ光52によって発生する、比較的大きい気泡70は、比較的低い周波数を有する音波をより効果的に反射する。
(第3実施形態)
第3実施形態では、第1実施形態で用いたパルスレーザ光51と、第2実施形態で用いた連続波レーザ光52とを併用することで、第1実施形態および第2実施形態の長所を両立する。ここで、パルスレーザ光51および連続波レーザ光52は、切り替え動作によって片方ずつ照射しても良いし、両方を同時に照射しても良い。図6〜図9を参照して、本実施形態の各構成例について説明する。
(第3実施形態の第1構成例)
パルスレーザ光51および連続波レーザ光52を片方ずつ照射する場合、本実施形態による水中音響欺瞞システム1の第1構成例として、パルスレーザ光51および連続波レーザ光52は、異なる発振器からそれぞれ発振し、かつ、異なる照射光学系18からそれぞれ照射されても良い。図6は、第3実施形態による水中音響欺瞞システム1の第1構成例を示すブロック回路図である。図6の水中音響欺瞞システム1は、制御装置13と、パルスレーザ発振器14Aと、連続波レーザ発振器14Bと、パルスレーザ用の照射光学系18Aと、連続波レーザ用の照射光学系18Bとを備える。
図6に示した第3実施形態の第1構成例は、図3Aに示した第1実施形態の場合と比較して、以下の相違点を有する。すなわち、連続波レーザ発振器14Bおよび連続波レーザ用の照射光学系18Bが追加されている。また、図6に示した第3実施形態の第1構成例は、図5に示した第2実施形態の場合と比較して、以下の相違点を有する。すなわち、パルスレーザ発振器14Aおよびパルスレーザ用の照射光学系18Aが追加されている。
制御装置13、パルスレーザ発振器14Aおよびパルスレーザ用の照射光学系18Aの構成および接続関係については、第1実施形態の場合と同様であるので、さらなる詳細な説明を省略する。制御装置13、連続波レーザ発振器14Bおよび連続波レーザ用の照射光学系18Bの構成および接続関係については、第2実施形態の場合と同様であるので、さらなる詳細な説明を省略する。制御装置13は、図示しない外部システム12から受信する検知信号121に応じて、パルスレーザ光51の発振を制御するための発振制御信号131Aと、連続波レーザ光52の発振を制御するための発振制御信号131Bとを、それぞれ適切なタイミングで生成出力することが望ましい。本実施形態の第1構成例による水中音響欺瞞システム1のその他の動作については、第1実施形態または第2実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
(第3実施形態の第2構成例)
パルスレーザ光51および連続波レーザ光52を片方ずつ照射する場合、本実施形態による水中音響欺瞞システム1の第2構成例として、パルスレーザ光51および連続波レーザ光52は、異なる発振器からそれぞれ発振し、かつ、補助的な光学系などによって同軸化されたのち、共通の照射光学系18から照射されても良い。図7は、第3実施形態による水中音響欺瞞システム1の第2構成例を示すブロック回路図である。図7の水中音響欺瞞システム1は、制御装置13と、パルスレーザ発振器14Aと、連続波レーザ発振器14Bと、補助光学系としての反射鏡15と、切替装置16と、照射光学系18Cとを備える。図7の水中音響欺瞞システム1は、図3Aに示した第1実施形態の場合と比較して、以下の相違点を有する。すなわち、連続波レーザ発振器14Bおよび切替装置16が追加されている。ここで、切替装置16は、2つの受光口と、1つの出射口と、反射鏡15とは別の反射鏡と、この反射鏡の位置または角度を調整するための駆動装置とを備えることが望ましい。
制御装置13およびパルスレーザ発振器14Aの構成および接続関係については、第1実施形態の場合と同様であるので、さらなる詳細な説明を省略する。制御装置13および連続波レーザ発振器14Bの構成および接続関係については、第2実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
図7に示した各構成要素のその他の接続関係のうち、電気的な接続関係に注目すると、切替装置16および照射光学系18Cは、それぞれ、制御装置13に接続されている。また、光学的な接続関係に注目すると、パルスレーザ発振器14Aの後段には切替装置16が配置されており、切替装置16の後段には照射光学系18Cが配置されている。さらに、連続波レーザ発振器14Bの後段にも、反射鏡15を介して、切替装置16が配置されている。なお、反射鏡15は、パルスレーザ発振器14Aおよび切替装置16の間に配置されていても良い。
第3実施形態の第2構成例の各構成要素の、反射鏡15、切替装置16および照射光学系18Cに係る動作について説明する。
制御装置13が発振制御信号131Aを生成してからパルスレーザ発振器14Aがパルスレーザ光51を発振するまでの一連の動作については、第1実施形態の場合と同様である。また、制御装置13が発振制御信号131Bを生成してから連続波レーザ発振器14Bが連続波レーザ光52を発振するまでの一連動作については、第2実施形態の場合と同様である。切替装置16は、第1受光口ではパルスレーザ光51を受光し、第2受光口では連続波レーザ光52を、反射鏡15を介して、受光する。ここで、反射鏡15は、連続波レーザ光52を、連続波レーザ発振器14Bの出射口から、切替装置16の第2受光口へ導く。
制御装置13は、パルスレーザ光51および連続波レーザ光52の切替を制御するための切替制御信号132を生成する。制御装置13は、生成した切替制御信号132を切替装置16に向けて送信する。切替装置16は、送信された切替制御信号132を受信する。切替装置16は、受信した切替制御信号132に応じて、駆動装置によって自身が備える反射鏡の位置や角度などを調整する。こうすることで、切替装置16は、制御装置13の制御下で、第1状態と、第2状態とを切り替えることが出来る。すなわち、第1状態の切替装置16は、第1受光口から受光するパルスレーザ光51を出射口から選択的に出射する。また、第2状態の切替装置16は、第2受光口から受光する連続波レーザ光52を出射口から選択的に出射する。照射光学系18Cは、選択的に出射されたパルスレーザ光51または連続波レーザ光52を受光する。
制御装置13は、照射光学系18Cがレーザ光50を照射する方向を制御し、かつ、レーザ光50が集光する位置を制御するための、照射方向制御信号134Cを生成する。制御装置13は、生成した照射方向制御信号134Cを、照射光学系18Cに向けて送信する。照射光学系18Cは、送信された照射方向制御信号134Cを受信する。照射光学系18Cは、受信した照射方向制御信号134Cに応じて、照射方向および焦点距離を調整する。照射光学系18Cは、調整した照射方向に向けて、かつ、調整した焦点距離に集光するように、受光したパルスレーザ光51または連続波レーザ光52を照射する。
制御装置13は、図示しない外部システム12から受信する検知信号121に応じて、発振制御信号131Aと、発振制御信号131Bと、切替制御信号132とを、それぞれ適切なタイミングで生成出力することが望ましい。本実施形態の第2構成例による水中音響欺瞞システム1のその他の動作については、第1実施形態または第2実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
(第3実施形態、第3構成例)
パルスレーザ光51および連続波レーザ光52を片方ずつ照射する場合、本実施形態による水中音響欺瞞システム1の第3構成例として、パルスレーザ光51および連続波レーザ光52は、同一の発振器から発信され、かつ、同一の照射光学系18から照射されても良い。図8は、第3実施形態による水中音響欺瞞システム1の第3構成例を示すブロック回路図である。図8の水中音響欺瞞システム1は、制御装置13と、パルス/連続波切替可能レーザ発振器14Cと、照射光学系18Cとを備える。
パルス/連続波切替可能レーザ発振器14Cは、制御装置13の制御下で切り替わる、第1状態および第2状態を有する。すなわち、パルス/連続波切替可能レーザ発振器14Cは、第1状態ではパルスレーザ光51を発振し、第2状態では連続波レーザ光52を発振する。
より具体的には、例えば、いわゆる「Qスイッチ」などのパルス化デバイスおよびこれを使用する方法が考えられる。すなわち、第1状態のパルス/連続波切替可能レーザ発振器14Cは、パルス化デバイスが光学的に接続されており、パルスレーザ光51を発振する。第2状態のパルス/連続波切替可能レーザ発振器14Cは、パルス化デバイスが光学的に外されており、連続波レーザ光52を発振する。
図8に示した各構成要素の接続関係について説明する。電気的な接続関係に注目すると、パルス/連続波切替可能レーザ発振器14Cおよび照射光学系18Cは、それぞれ、制御装置13に接続されている。また、光学的な接続関係に注目すると、パルス/連続波切替可能レーザ発振器14Cの後段には、照射光学系18Cが配置されている。
図8に示した水中音響欺瞞システム1の動作について説明する。制御装置13は、パルスレーザ光51または連続波レーザ光52の発振およびその切り替えを制御するための発振制御信号131Cを生成する。制御装置13は、生成した発振制御信号131Cを、パルス/連続波切替可能レーザ発振器14Cに向けて送信する。パルス/連続波切替可能レーザ発振器14Cは、送信された発振制御信号131Cを受信する。パルス/連続波切替可能レーザ発振器14Cは、受信した発振制御信号131Cに応じて、パルスレーザ光51または連続波レーザ光52を選択的に発振する。パルス/連続波切替可能レーザ発振器14Cは、発振したパルスレーザ光51または連続波レーザ光52を、照射光学系18Cに向けて出射する。
制御装置13が照射方向制御信号134Cを生成してから照射光学系18Cがパルスレーザ光51または連続波レーザ光52を照射するまでの動作については、図7に示した第3実施形態の第2構成例の場合と同様であるので、さらなる詳細な説明を省略する。
(第3実施形態、第4構成例)
パルスレーザ光51および連続波レーザ光52を同時に照射する場合、本実施形態による水中音響欺瞞システム1の第4構成例として、パルスレーザ光51および連続波レーザ光52は、異なる発振器からそれぞれ発振し、かつ、異なる照射光学系18からそれぞれ照射されても良い。第3実施形態による水中音響欺瞞システム1の第4構成例を示すブロック回路図は、第3実施形態の第1構成例を示す図6と同一であるので、ここでは省略する。ただし、第1構成例の場合とは異なり、本構成例による水中音響欺瞞システム1は、パルスレーザ光51および連続波レーザ光52を、同時に照射することが可能である。このため、本構成例では、制御装置13が、発振制御信号131Aおよび発振制御信号131Bを、パルスレーザ発振器14Aおよび連続波レーザ発振器14Bに、それぞれ、同時に送信しても良い。
本構成例による水中音響欺瞞システム1のその他の構成および動作は、第1実施形態または第2実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
(第3実施形態、第5構成例)
パルスレーザ光51および連続波レーザ光52を同時に照射する場合、本実施形態による水中音響欺瞞システム1の第5構成例として、パルスレーザ光51および連続波レーザ光52は、異なる発振器からそれぞれ発振し、かつ、同一の照射光学系18から照射されても良い。図9は、第3実施形態による水中音響欺瞞システム1の第5構成例を示すブロック回路図である。図9の水中音響欺瞞システム1は、図7に示した本実施形態の第2構成例と比較して、以下の相違点を有する。すなわち、切替装置16が、同軸化装置17に置き換えられている。ここで、同軸化装置17は、2つの受光口と、1つの出射口とを備えていることが望ましい。同軸化装置17は、2つの受光口でそれぞれ受光する2つのレーザ光を同軸化して出射口から出射する。
制御装置13およびパルスレーザ発振器14Aの構成および接続関係については、第1実施形態の場合と同様であるので、さらなる詳細な説明を省略する。制御装置13および連続波レーザ発振器14Bの構成および接続関係については、第2実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
同軸化装置17に係る各構成要素の接続関係について説明する。電気的な接続関係に注目すると、同軸化装置17は、制御装置13に接続されている。また、光学的な接続関係に注目すると、パルスレーザ発振器14Aの後段には、同軸化装置17の第1受光口が配置されている。連続波レーザ発振器14Bの後段には、反射鏡15を介して、同軸化装置17の第2受光口が配置されている。同軸化装置17の後段には、照射光学系18Cが配置されている。
第3実施形態の第5構成例の各構成要素の、同軸化装置17に係る動作について説明する。
制御装置13が発振制御信号131Aを生成してからパルスレーザ発振器14Aがパルスレーザ光51を発振するまでの一連の動作については、第1実施形態の場合と同様である。パルスレーザ発振器14Aは、発振したパルスレーザ光51を、同軸化装置17の第1受光口に向けて出射する。同軸化装置17は、出射されたパルスレーザ光51を、第1受光口で受光する。
制御装置13が発振制御信号131Bを生成してから連続波レーザ発振器14Bが連続波レーザ光52を発振するまでの一連動作については、第2実施形態の場合と同様である。連続波レーザ発振器14Bは、発振した連続波レーザ光52を、同軸化装置17の第2受光口に向けて出射する。
制御装置13は、パルスレーザ光51および連続波レーザ光52の同軸化を制御するための同軸化制御信号133を生成する。制御装置13は、生成した同軸化制御信号133を、同軸化装置17に向けて送信する。同軸化装置17は、送信された同軸化制御信号133を受信する。また、同軸化装置17は、出射されたパルスレーザ光51を第1受光口で受光する。同軸化装置17は、出射された連続波レーザ光52を第2受光口で受光する。そこで、同軸化装置17は、受信した同軸化制御信号133に応じて、受光したパルスレーザ光51の光軸方向と、受光した連続波レーザ光52の光軸方向とを、それぞれ調整する。この結果、同軸化装置17は、受光したパルスレーザ光51および連続波レーザ光52を同軸化し、光軸方向を調整した出射口から照射する。
制御装置13は、図示しない外部システム12から受信する検知信号121に応じて、発振制御信号131Aと、発振制御信号131Bと、同軸化制御信号133とを生成出力する。第3実施形態の第5構成例による水中音響欺瞞システム1のその他の動作については、第1実施形態または第2実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
以上に説明したように、第3実施形態による水中音響欺瞞システム1および水中音響欺瞞方法は、パルスレーザ光51および連続波レーザ光52を、切り替えて、または、同時に照射することによって、第1実施形態および第2実施形態の長所を両立することを可能とする。
(第4実施形態)
第4実施形態では、第1〜第3実施形態にフィードバック制御を追加する。すなわち、レーザ光50の照射によって気泡70が発生したことを示す音や、反対に不発に終わったことを示す無音状態を、ソナーなどの観測装置によって観測し、その結果をフィードバックして照射光学系18の調整を行う。図10Aおよび図10Bを参照して、本実施形態による水中音響欺瞞システム1および水中音響欺瞞方法について説明する。
図10Aは、第4実施形態による水中音響欺瞞システム1の構成例を示すブロック回路図である。図10Aに示した水中音響欺瞞システム1は、一例として、図8に示した第3実施形態の第3構成例に、ソナー11を追加したものである。ソナー11は、制御装置13に電気的に接続されている。なお、このソナー11は、図示しない外部システム12の一部であっても良い。
本実施形態による水中音響欺瞞システム1の動作、すなわち本実施形態による水中音響欺瞞方法について説明する。図10Bは、第4実施形態による水中音響欺瞞方法の一構成例を示すフローチャートである。図10Bのフローチャートは、第0ステップS200〜第7ステップS207の、合計8の工程を含んでいる。図10Bのフローチャートは、第0ステップS200から開始する。第0ステップS200の次には、第1ステップS201が実行される。
以降、図10Bのフローチャートの各工程を、図3Bのフローチャートの各工程と比較しながら説明する。ただし、図3Bのフローチャートでは図3Aの構成例を前提にしていた一方で、図10Bのフローチャートでは図10Aの構成例を前提としている。そこで、以降の説明では、構成要素の読み替えを行う。すなわち、図3Aの発振制御信号131Aを、図10Aの発振制御信号131Cに読み替える。図3Aのパルスレーザ発振器14Aを、図10Aのパルス/連続波切替可能レーザ発振器14Cに読み替える。図3Aのパルスレーザ光51を、図10Aのパルスレーザ光51および/または連続波レーザ光52に読み替える。図3Aの照射光学系18Aを、図10Aの照射光学系18Cに読み替える。
第1ステップS201において、水中音響欺瞞システム1は、目標の位置を検知する。ここで、目標とは、水中の脅威としての潜水艦30や、魚雷40などを示す。目標を検知する方法としては、ソナー11から所定の条件を満たす音111を検出しても良いし、該当する情報を外部から受信しても良い。ソナー11が音111を検出した場合は、このことを示す観測信号112を生成して制御装置13に送信することが好ましい。外部から情報を受信した場合も、制御装置13がこの情報を受信することが好ましい。第1ステップS201の次には、第2ステップS202が実行される。
第2ステップS202において、水中音響欺瞞システム1は、レーザ光50を集光したい目標位置である集光位置と、レーザ光50の照射パラメータとを決定する。図10Bの第2ステップS202の内容は、図3Bの第1ステップS101と同様であるので、さらなる詳細な説明を省略する。第2ステップS202の次には、第3ステップS203が実行される。
第3ステップS203において、水中音響欺瞞システム1は、決定された照射パラメータに従って、パルスレーザ光51を生成する。図10Bの第3ステップS203の内容は、図3Bの第2ステップS102と同様であるので、さらなる詳細な説明を省略する。第3ステップS203の次には、第4ステップS204が実行される。
第4ステップS204において、水中音響欺瞞システム1は、決定された集光位置に向けて、レーザ光50を照射する。図10Bの第4ステップS204の内容は、図3Bの第3ステップS103と同様であるので、さらなる詳細な説明を省略する。第4ステップS204の次には、第5ステップS205が実行される。
第5ステップS205において、水中音響欺瞞システム1は、レーザ光50を照射した結果を、すなわち水中に気泡70が発生したかどうかを、観測する。この観測は、気泡70が発生した際に生じる音111をソナー11で検出すること、または、気泡70が発生しなかった場合の無音状態を検出すること、などで行われる。いずれの場合も、ソナー11は、観測結果を電気的に変換して観測信号112を生成し、生成した観測信号112を制御装置13に向けて送信する。制御装置13は、送信された観測信号112を受信し、上記の判定を行う。第5ステップS205の次には、第6ステップS206が実行される。
第6ステップS206において、水中音響欺瞞システム1は、気泡70が発生したかどうかを、制御装置13で判定する。気泡70の発生が認められない場合(NO)は、第6ステップS206の次に、第1ステップS201が再度実行され、その次に第2ステップS202が再度実行される。このとき、気泡70がより発生しやすくなるように照射パラメータおよび集光位置が修正されることが好ましい。反対に、気泡70の発生が認められた場合(YES)は、第6ステップS206の次に、第7ステップS207が実行され、図10Bのフローチャートは終了する。
本実施形態によれば、レーザ光50による気泡70がより高い確度で発生することが期待される。また、ソナー11は、気泡70が発生した位置、範囲、破裂音の大きさなどを探知してもよい。例えば、ソナー11は、気泡70の情報から、音響効果が及ぶ範囲の位置情報を決定する。制御装置13は、位置情報に応じて、照射パラメータおよび集光位置を修正する。これにより、音響効果によるセンサの欺瞞をより確実に実現することができる。また、制御装置13は、ソナー11が探知した気泡70の情報から、音響効果が及ぶ範囲の位置情報を決定してもよい。
(第5実施形態)
図11Aおよび図11Bを参照して、気泡70を発生させる場所を効果的に選ぶことで、ソナーを無力化出来ることについて説明する。
図11Aは、第5実施形態による水中音響欺瞞システム1の第1構成例を示す図である。図11Aは、図4Aと比較して、以下の点で異なる。すなわち、レーザ光50によって発生する気泡70の位置が、図4Aでは保護対象としての船舶20および脅威としての潜水艦30の中間領域であったが、図11Aでは潜水艦30の前方の近傍である。
本実施形態では、潜水艦30の前方にそのソナーが搭載されていると仮定し、その近傍に気泡70を発生させることで、ソナーを無力化する。すなわち、気泡70がピンガー91などの音波を反射する音響効果により、アクティブソナーの動作を封じ込めることが出来る。また、気泡70が音波を発生させる音響効果により、パッシブソナーの出力を飽和させることも出来る。
図4Dに関連して前述したとおり、水中音響欺瞞システム1を搭載するプラットフォームは、船舶20よりも移動が自由であることや、脅威となる潜水艦30にとって対処が難しいことなどから、航空機24が望ましい。図11Bは、第5実施形態による水中音響欺瞞システム1の第2構成例を示す図である。本実施形態による水中音響欺瞞システム1を、水上を飛行する航空機24に搭載することによって、図11Aと同様の効果を得ることが可能である。
本実施形態によれば、水中音響欺瞞システム1をより積極的に用いることで、水中の脅威から船舶20をより確実に保護することができる。
(第6実施形態)
図12を参照して、気泡70を発生させる場所を効果的に選ぶことで、保護対象としての船舶20を脅威としての潜水艦30などのソナーから隠すことができることについて説明する。図12は、第6実施形態による水中音響欺瞞システム1の構成例を示す図である。
図12は、図4Aと比較して、以下の点で異なる。すなわち、レーザ光50によって発生する気泡70の位置が、図4Aでは保護対象としての船舶20および脅威としての潜水艦30の中間領域であったが、図12では船舶20の近傍であり、特に船舶20の後部、すなわち船舶20のスクリューの近傍である。また、気泡70の位置は、船舶20の航行音が発生する位置の近傍でもよい。
図12に示したように、船舶20の近傍に気泡70を発生させることで、船舶20の航行音を気泡70によって遮蔽したり、船舶20のスクリューの近傍に気泡70を発生させることで、スクリューから発生する音を気泡70によって遮蔽したりすることができる。その結果、脅威としての潜水艦30や、魚雷40などに搭載されたソナーによって船舶20を検知されにくくする音響効果が期待される。
また、図12に示したように、船舶20の近傍に気泡70を発生させることで、脅威としての潜水艦30や、魚雷40などに搭載されたソナーによって船舶20の存在が検知されたとしても、船舶20の形状を欺瞞できるという音響効果が期待される。
図12に示した本実施形態と、図11Aなどに示した第5実施形態と、図4Aなどに示した第1実施形態とでは、気泡70を発生させる集光位置を変えることによって異なる音響効果を得られる。これらの実施形態は、同時に組み合わせて複合的な音響効果を得ることも可能である。ただし、先に発生した気泡70が後から照射するレーザ光50を妨げないように、例えば、各集光位置へは水中音響欺瞞システム1から遠い順番にレーザ光50を照射することが望ましい。
(第7実施形態)
図13を参照して、気泡70の音響効果を機雷の掃海に応用できることについて説明する。図13は、第7実施形態による水中音響欺瞞システム1の構成例を示す図である。
従来は、前述のとおり、除去できる機雷は掃海を行う艦艇より後方に位置するものであった。これは、設置済みの機雷を除去する掃海作業が、艦艇などが掃海用の器具を曳航する形で行われるからである。その結果、艦艇が自身の航行により前方の機雷を起爆させて被害を受けてしまう可能性が有った。
本実施形態では、機雷の敷設が想定される海域において、水中音響欺瞞システム1は、船舶20の進行方向前方の、船舶20から一定距離の領域に、パルスレーザ光51や高出力の連続波レーザ光52などのレーザ光50を集光して、多数の気泡70を発生させる。こうすることで、一定の割合以上で気泡70が分布する領域を作る。このように分布された気泡70は、変形したり、破裂したりする際に音波を発生させる。さらに、この音波などの音響効果が結果的に周囲の水圧を変動させる。その結果、図13に示すように、機雷に搭載された音響探知センサや、水圧探知センサを誤認させ、船舶20の前方で、かつ、船舶20から十分離れた領域で、機雷を起爆させることが可能となる。
本実施形態によれば、掃海艦艇の前方に敷設された音響機雷や水圧機雷を掃海することが可能となり、かつ、掃海艦艇が機雷によって被害を受ける危険性や、掃海器具の損耗などを抑制することが可能となる。
以上、発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。また、前記実施の形態に説明したそれぞれの特徴は、技術的に矛盾しない範囲で自由に組み合わせることが可能である。例えば、水中音響欺瞞システム1は、外部装置から検知信号121を受信し、水中音響欺瞞システム1の外部システム12を省略してもよい。
本出願は、2018年2月14日に出願された日本国特許出願2018−23980を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (17)

  1. 水中の所望の位置に所望の規模の気泡を発生させるためにレーザ光を水中に集光する集光位置および前記レーザ光の照射パラメータを決定する制御装置と、
    前記制御装置に制御されて、水中に集光して前記気泡を発生させるように構成された前記レーザ光を生成するレーザ発振器と、
    前記制御装置に制御されて、生成された前記レーザ光を前記集光位置に向けて照射する照射光学系と
    を具備し、
    前記気泡が周囲に及ぼす音響効果により、水中に存在する任意のセンサを欺瞞する
    水中音響欺瞞システム。
  2. 請求項1に記載の水中音響欺瞞システムにおいて、
    前記制御装置は、前記センサから発信されるピンガーが保護対象に到達する前に、前記気泡が前記ピンガーを反射して前記センサを欺瞞するように、前記照射パラメータおよび前記集光位置を決定する
    水中音響欺瞞システム。
  3. 請求項1または2に記載の水中音響欺瞞システムにおいて、
    前記制御装置は、前記気泡の変形および破裂により発生する音波によって前記センサを欺瞞するように、前記照射パラメータおよび前記集光位置を決定する
    水中音響欺瞞システム。
  4. 請求項1〜3のいずれか一項に記載の水中音響欺瞞システムにおいて、
    前記制御装置は、前記気泡が周囲の水圧を変動させることによって前記センサを欺瞞するように、前記照射パラメータおよび前記集光位置を決定する
    水中音響欺瞞システム。
  5. 請求項1〜4のいずれか一項に記載の水中音響欺瞞システムにおいて、
    前記制御装置は、前記センサの位置に基づいて、前記センサを無効化するように、前記照射パラメータおよび前記集光位置を決定する
    水中音響欺瞞システム。
  6. 請求項1〜5のいずれか一項に記載の水中音響欺瞞システムにおいて、
    前記レーザ発振器は、
    パルスレーザ光を発振するパルスレーザ発振器
    を具備する
    水中音響欺瞞システム。
  7. 請求項1〜5のいずれか一項に記載の水中音響欺瞞システムにおいて、
    前記レーザ発振器は、
    連続波レーザ光を発振する連続波レーザ発振器
    を具備する
    水中音響欺瞞システム。
  8. 所望の位置に所望の規模の気泡を発生させるためにレーザ光を水中に集光する集光位置および前記レーザ光の照射パラメータを決定する制御装置と、
    前記制御装置に制御されて、水中に集光して前記気泡を発生させるように構成された前記レーザ光を生成するレーザ発振器と、
    前記制御装置に制御されて、生成された前記レーザ光を前記集光位置に向けて照射する照射光学系と
    を具備し、
    前記レーザ発振器は、
    パルスレーザ光を発振するパルスレーザ発振器と、
    連続波レーザ光を発振する連続波レーザ発振器
    を具備し、
    前記気泡が周囲に及ぼす音響効果により、水中に存在する任意のセンサを欺瞞する
    水中音響欺瞞システム。
  9. 所望の位置に所望の規模の気泡を発生させるためにレーザ光を水中に集光する集光位置および前記レーザ光の照射パラメータを決定する制御装置と、
    前記制御装置に制御されて、水中に集光して前記気泡を発生させるように構成された前記レーザ光を生成するレーザ発振器と、
    前記制御装置に制御されて、生成された前記レーザ光を前記集光位置に向けて照射する照射光学系と、
    照射した前記レーザ光に起因する前記気泡の発生の有無を探知するソナー
    を具備し、
    前記制御装置は、前記発生の有無を探知した結果に応じて前記照射パラメータを調整するフィードバック制御を行
    前記気泡が周囲に及ぼす音響効果により、水中に存在する任意のセンサを欺瞞する
    水中音響欺瞞システム。
  10. 請求項9に記載の水中音響欺瞞システムにおいて、
    前記ソナーは、発生した前記気泡に起因する前記音響効果が及ぶ範囲の位置情報をさらに探知し、
    前記制御装置は、探知した前記位置情報に基づいて前記集光位置を調整するフィードバック制御をさらに行う
    水中音響欺瞞システム。
  11. 水中の所望の位置に所望の規模の気泡を発生させるためにレーザ光を水中に集光する集光位置および前記レーザ光の照射パラメータを決定することと、
    水中に集光して前記気泡を発生させるように構成された前記レーザ光を生成することと、
    生成された前記レーザ光を前記集光位置に照射することと、
    前記気泡が周囲に及ぼす音響効果により、水中に存在する任意のセンサを欺瞞することと
    を具備する
    水中音響欺瞞方法。
  12. 請求項11に記載の水中音響欺瞞方法において、
    前記決定することは、
    前記センサから発信されるピンガーが保護対象に到達する前に、前記気泡が前記ピンガーを反射して前記センサを欺瞞するように、前記照射パラメータおよび前記集光位置の決定を行うこと
    を具備する
    水中音響欺瞞方法。
  13. 請求項11または12に記載の水中音響欺瞞方法において、
    前記決定することは、
    前記気泡の変形および破裂により発生する音波によって前記センサを欺瞞するように、前記照射パラメータおよび前記集光位置を決定の決定を行うこと
    を具備する
    水中音響欺瞞方法。
  14. 請求項11〜13のいずれか一項に記載の水中音響欺瞞方法において、
    前記決定することは、
    前記気泡が周囲の水圧を変動させることによって前記センサを欺瞞するように、前記照射パラメータおよび前記集光位置を決定の決定を行うこと
    を具備する
    水中音響欺瞞方法。
  15. 請求項11〜14のいずれか一項に記載の水中音響欺瞞方法において、
    前記決定することは、
    前記センサの位置に基づいて、前記センサを無効化するように、前記照射パラメータおよび前記集光位置の決定を行うこと
    を具備する
    水中音響欺瞞方法。
  16. 所望の位置に所望の規模の気泡を発生させるためにレーザ光を水中に集光する集光位置および前記レーザ光の照射パラメータを決定することと、
    水中に集光して前記気泡を発生させるように構成された前記レーザ光を生成することと、
    生成された前記レーザ光を前記集光位置に照射することと、
    前記気泡が周囲に及ぼす音響効果により、水中に存在する任意のセンサを欺瞞することと、
    照射した前記レーザ光に起因する前記気泡の発生の有無を探知することと、
    前記発生の有無を探知した結果に応じて前記照射パラメータを調整するフィードバック制御を行うことと
    を具備する
    水中音響欺瞞方法。
  17. 請求項16に記載の水中音響欺瞞方法において、
    発生した前記気泡に起因する前記音響効果が及ぶ範囲の位置情報をさらに探知することと、
    前記探知の結果に基づいて前記集光位置を調整するフィードバック制御をさらに行うこと
    をさらに具備する
    水中音響欺瞞方法。
JP2020500263A 2018-02-14 2018-10-01 水中音響欺瞞システムおよび水中音響欺瞞方法 Active JP6883700B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018023980 2018-02-14
JP2018023980 2018-02-14
PCT/JP2018/036692 WO2019159422A1 (ja) 2018-02-14 2018-10-01 水中音響欺瞞システムおよび水中音響欺瞞方法

Publications (2)

Publication Number Publication Date
JPWO2019159422A1 JPWO2019159422A1 (ja) 2020-08-20
JP6883700B2 true JP6883700B2 (ja) 2021-06-09

Family

ID=67619942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020500263A Active JP6883700B2 (ja) 2018-02-14 2018-10-01 水中音響欺瞞システムおよび水中音響欺瞞方法

Country Status (4)

Country Link
US (1) US11225310B2 (ja)
EP (1) EP3657208A4 (ja)
JP (1) JP6883700B2 (ja)
WO (1) WO2019159422A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278281B1 (ko) * 2020-03-30 2021-07-16 엘아이지넥스원 주식회사 어뢰 음향기만장치 및 제어방법
KR102312037B1 (ko) * 2021-04-29 2021-10-14 대한민국 인공지능 기반 수중방사소음 변환 시스템
CN114826433B (zh) * 2022-03-21 2023-09-22 浙江大学 一种激光致声水下通信调制方法及装置、系统、电子设备
CN116299576B (zh) * 2023-05-12 2023-12-12 中国人民解放军国防科技大学 一种组合导航系统的欺骗干扰检测方法与装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305389A (ja) 1988-06-03 1989-12-08 Nec Corp 潜水艦の探知回避方式
JP3182465B2 (ja) 1993-01-07 2001-07-03 三菱プレシジョン株式会社 水中航走体の航跡評価方法及び装置
JP2001221846A (ja) 2000-02-07 2001-08-17 Nippon Avionics Co Ltd 艦被探知回避システム
DE10151597C1 (de) 2001-10-18 2003-05-15 Howaldtswerke Deutsche Werft System und Verfahren zur Erkennung und Abwehr von Laserbedrohungen und Unterwasserobjekten für Unterwasserfahrzeuge
US7260023B2 (en) * 2004-11-02 2007-08-21 United Statesof America As Represented By The Secretary Of The Navy Remote underwater laser acoustic source
KR100979290B1 (ko) 2008-04-02 2010-08-31 엘아이지넥스원 주식회사 항적추적어뢰 기만 장치 및 방법
US20110036991A1 (en) 2008-04-03 2011-02-17 Pixer Technology Ltd. Method for creating, trapping and manipulating a gas bubble in liquid
US9285594B2 (en) * 2010-11-10 2016-03-15 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Underwater laser-guided discharge using lens-initiated optical filaments
JP2015141090A (ja) 2014-01-28 2015-08-03 日本海洋掘削株式会社 加工装置の設置方法および除去対象物の除去方法
JP6230131B2 (ja) 2015-05-19 2017-11-15 国立大学法人信州大学 教育支援システム及び端末装置
US10416292B2 (en) * 2016-05-24 2019-09-17 Veoneer Us, Inc. Direct detection LiDAR system and method with frequency modulation (FM) transmitter and quadrature receiver
JP6778543B2 (ja) 2016-08-08 2020-11-04 日鉄建材株式会社 溝付き金属管の製造装置及び方法
JP6774305B2 (ja) * 2016-11-08 2020-10-21 三菱重工業株式会社 水中物体破壊システムおよび水中物体破壊方法

Also Published As

Publication number Publication date
EP3657208A4 (en) 2020-08-12
EP3657208A1 (en) 2020-05-27
WO2019159422A1 (ja) 2019-08-22
JPWO2019159422A1 (ja) 2020-08-20
US20210147050A1 (en) 2021-05-20
US11225310B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
JP6883700B2 (ja) 水中音響欺瞞システムおよび水中音響欺瞞方法
US8228760B2 (en) Airborne laser-acoustic mine detection system
US9753134B2 (en) Neutralization of a target with an acoustic wave
JP6774305B2 (ja) 水中物体破壊システムおよび水中物体破壊方法
KR102212361B1 (ko) 레이저음향기기를 이용한 수중표적 공격용 양상태 탐지시스템 및 탐지방법
KR20210026033A (ko) 수중 터널의 외부 충돌 모니터링 시스템
KR20130017095A (ko) 수중기만형 어뢰시스템 및 방법
US7206257B1 (en) Acoustic remote caviation as a destruction device
KR101141522B1 (ko) 수중 표적 탐지 시스템 및 그 방법
RU2649675C1 (ru) Гидроакустический способ управления торпедой
KR20210011805A (ko) 소나 시스템 및 소나 시스템을 이용한 탐지 방법
KR102255323B1 (ko) 어뢰 음향 기만기와 어뢰 음향 기만기를 이용한 어뢰 공격 방어 장치, 방법, 컴퓨터 판독 가능한 기록 매체 및 컴퓨터 프로그램
KR101948572B1 (ko) 절개형 전면 감지 장치를 이용한 전면 대응 장치 및 그 방법
KR102107020B1 (ko) 양상태 음향 탐지가 적용된 어뢰 위치 정보 획득 장치 및 방법
JP6579628B2 (ja) 海底突起物判別装置および海底突起物判別方法
RU2492497C1 (ru) Способ определения параметров торпеды
Chen et al. Simulation-based effectiveness analysis of acoustic countermeasure for ship formation
NO321458B1 (no) Antiubatsystem med omdirigering og etablering av fiktivt mal
KR102078710B1 (ko) 폭뢰 기폭 제어 장치, 상기 장치를 포함하는 어뢰 대응 시스템 및 상기 시스템의 설치 및 운용 방법
RU2671801C2 (ru) Способ активной защиты акватории ударно-волновым воздействием на подводный объект
RU2154841C1 (ru) Способ обнаружения подводной цели в охраняемой акватории
KR20230127559A (ko) 자기장 신호 기반의 수중 운동체 기만 제어 방법 및 그를 위한 장치
Mishra Sonar Communication
KR20230081387A (ko) 어뢰 음향 기만 기능을 이용한 어뢰 방어 방법, 시스템 및 어뢰 음향 기만 기능을 갖는 요격 어뢰
RU31474U1 (ru) Устройство гидроакустической маскировки морского подвижного объекта

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6883700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150