JP6880336B2 - 加工面性状評価装置および加工面性状評価方法 - Google Patents

加工面性状評価装置および加工面性状評価方法 Download PDF

Info

Publication number
JP6880336B2
JP6880336B2 JP2020544053A JP2020544053A JP6880336B2 JP 6880336 B2 JP6880336 B2 JP 6880336B2 JP 2020544053 A JP2020544053 A JP 2020544053A JP 2020544053 A JP2020544053 A JP 2020544053A JP 6880336 B2 JP6880336 B2 JP 6880336B2
Authority
JP
Japan
Prior art keywords
machined surface
model
distance field
surface property
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020544053A
Other languages
English (en)
Other versions
JPWO2020184460A1 (ja
Inventor
宮田 亮
宮田  亮
将人 塚本
将人 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020184460A1 publication Critical patent/JPWO2020184460A1/ja
Application granted granted Critical
Publication of JP6880336B2 publication Critical patent/JP6880336B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Description

本発明は、回転工具を使用する切削加工における加工面の面性状をシミュレーションによって評価する加工面性状評価装置および加工面性状評価方法に関する。
回転工具が使用される切削加工では、回転工具が回転軸回りに回転しながら移動経路に沿って移動する過程において切刃が被加工物と交差し被加工物の表面を削ることによって、被加工物が所望の形状へ加工される。被加工物のうち切削加工が施された面である加工面には、カスプ形状を伴う鱗状の微細な凹凸である加工痕が残ることがある。加工後の加工面に残される加工痕の状態は、被加工物の表面の滑らかさといった加工品質を左右することになる。以下の説明では、加工後における加工面の状態を、面性状あるいは加工面性状と称することがある。従来、加工面性状の評価は、目視での観察のほか、接触式または非接触式のプローブを使用して面粗さを計測することによって行われている。
カスプ形状を伴う上記の加工痕は、2つの要因が組み合わされることによって生じる。第1の要因は、移動経路を少しずつ横へずらしながら加工を行うピックフィード動作に関連し、互いに隣り合う移動経路の間に縞目が生じることである。かかる縞目は、ピックフィード方向に並ぶ。第2の要因は、回転工具が有する1または複数の切刃の各々が回転中に被加工物と断続的に交差して被加工物を削り取ることによって縞目が生じることである。かかる縞目は、移動経路の方向すなわち送り方向に並ぶ。回転工具の回転が回転工具の送り速度に比べて速くされた加工条件での加工の場合には、上記第1の要因が支配的となるため、加工面性状の評価において上記第2の要因については考慮されないことが多い。しかし、近年は加工時間の短縮のために送り速度が高速化される傾向にあることと、高い加工品質が要求されるケースが増えていることから、上記第2の要因も考慮して加工面性状を評価することが求められている。
製造現場におけるシステム化の進展により、実加工によらずにシミュレーションによって加工面性状を事前評価することの要望が高まっている。そのため、従来、シミュレーションベースにより加工面性状を評価する種々の方法が提案されている。
特許文献1には、被加工物に対する切刃の絶対刃先位置を被加工物へ転写させることによって被加工物の加工後形状を算出する装置が開示されている。特許文献1にかかる装置は、回転工具の回転中心に対する切刃の相対刃先位置と回転中心の変位量とに基づいて絶対刃先位置を算出する。特許文献1にかかる装置は、加工面性状を表す特性値を定量的に把握可能とする。
特許第5942423号公報
上記特許文献1にかかる装置は、移動経路に沿った点列データによって加工後形状を表現して、加工目標とする形状からの点列データの偏差である上記特性値を求める。点列データによって加工面を表現するためには大量な点列データを稠密に配置する必要がある。このため、上記特許文献1にかかる従来の技術によると、加工面性状の高精度な評価を行うには、必要となるデータサイズが肥大化することとなる。また、上記特許文献1にかかる従来の技術によると、時々刻々の加工に伴って逐次更新される点列データを処理するために、膨大な演算が必要となる。このように、従来の技術によると、加工面性状を高精度にかつ少ない演算負担で評価することが困難であるという問題があった。
本発明は、上記に鑑みてなされたものであって、加工面性状を高精度にかつ少ない演算負担で評価可能とする加工面性状評価装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる加工面性状評価装置は、切刃を有する回転工具の使用により被加工物が切削された際における加工面の面性状をシミュレーションによって評価する。本発明にかかる加工面性状評価装置は、回転工具の回転により切刃が描く3次元形状である包絡形状を表す切刃包絡形状モデルを、被加工物の3次元形状を表すワーク形状モデルに対して移動させるシミュレーションを実行し、シミュレーションにおいてワーク形状モデルのうち切刃包絡形状モデルが通過する領域をワーク形状モデルから差し引く演算を行うシミュレーション実行部と、切刃が被加工物を切削することによって被加工物に形成される加工面形状について、空間上の点からの加工面形状の距離である距離場を表す距離場モデルを切刃の諸元に基づいて生成する距離場モデル生成部と、ワーク形状モデル上の加工面からあらかじめ決定されたオフセット距離だけ離れた位置にあるオフセット曲面を示すオフセット曲面データを生成するオフセット曲面生成部と、距離場モデルに従ってオフセット曲面上の点における距離場の値を算出することによって面性状を評価する評価部と、を備える。
本発明にかかる加工面性状評価装置は、加工面性状を高精度にかつ少ない演算負担で評価することができるという効果を奏する。
本発明の実施の形態1にかかる加工面性状評価装置の機能構成を示すブロック図 図1に示す加工面性状評価装置が有する簡易切削シミュレーション実行部による動作について説明するための第1の図 図1に示す加工面性状評価装置が有する簡易切削シミュレーション実行部による動作について説明するための第2の図 図1に示す加工面性状評価装置が評価の対象とする加工面が有する形状の距離場について説明するための第1の図 図1に示す加工面性状評価装置が評価の対象とする加工面が有する形状の距離場について説明するための第2の図 図1に示す加工面性状評価装置が評価の対象とする加工面が有する形状の距離場について説明するための第3の図 図1に示す加工面性状評価装置が有するオフセット曲面生成部によって生成されるオフセット曲面データについて説明するための第1の図 図1に示す加工面性状評価装置が有するオフセット曲面生成部によって生成されるオフセット曲面データについて説明するための第2の図 図1に示す加工面性状評価装置が有する加工面性状評価部による描画処理の動作について説明するための図 図1に示す加工面性状評価装置が有する距離場モデル生成部による距離場の値の計算について説明するための第1の図 図1に示す加工面性状評価装置が有する距離場モデル生成部による距離場の値の計算について説明するための第2の図 図1に示す加工面性状評価装置が有する距離場モデル生成部による距離場の値の計算について説明するための第3の図 図1に示す加工面性状評価装置が有する距離場モデル生成部によって3次元空間における距離場の値を計算する方法について説明するための図 実施の形態1にかかる加工面性状評価装置の動作手順を示すフローチャート 本発明の実施の形態2にかかる加工面性状評価装置の機能構成を示すブロック図 実施の形態2にかかる加工面性状評価装置の動作手順を示すフローチャート 本発明の実施の形態3にかかる加工面性状評価装置が実行する処理について説明する図 本発明の実施の形態4にかかる加工面性状評価装置が実行する処理について説明する図 本発明の実施の形態1から4にかかる加工面性状評価装置のハードウェア構成を示すブロック図 本発明の実施の形態5にかかる機械学習装置を含む評価システムを示すブロック図 実施の形態5にかかる機械学習装置が学習に使用するニューラルネットワークの構成例を示す図
以下に、本発明の実施の形態にかかる加工面性状評価装置および加工面性状評価方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1にかかる加工面性状評価装置の機能構成を示すブロック図である。加工面性状評価装置100は、NC(Numerical Control)工作機械による切削加工について、加工面の面性状をシミュレーションによって評価する。NC工作機械は、1または複数の切刃を有する回転工具を使用することによって被加工物を切削する。実施の形態1において、回転工具は、ボールエンドミルとする。また、回転工具が有する1または複数の切刃を、切刃部と称することがある。以下の説明において、切刃とは、切刃部を構成する1または複数の切刃の各々を指すものとする。
加工面性状評価装置100は、簡易切削シミュレーション実行部10と、距離場モデル生成部11と、オフセット曲面生成部12と、加工面性状評価部21との各処理部を有する。加工面性状評価部21は、距離場モデル評価部13とワーク形状描画部14とを有する。加工面性状評価部21は、加工面の面性状を評価する評価部として機能する。各処理部の詳細については後述する。
加工面性状評価装置100は、工具モデルデータ格納部15と、工具移動経路データ格納部16と、加工条件データ格納部17と、ワーク形状モデル格納部18と、詳細加工面距離場モデル格納部19と、オフセット曲面データ格納部20との各格納部を有する。上記各処理部は、各格納部に格納されている各データを参照または処理する。各データの詳細については後述する。
加工面性状評価装置100には、表示画面400を有する機器が接続される。表示画面400を有する機器は、被加工物の形状であるワーク形状の描画イメージを表示画面400に表示する外部機器である。図1では、表示画面400を有する機器のうち表示画面400以外の構成についての図示を省略する。また、加工面性状評価装置100は、オペレータが加工面性状評価装置100を操作するための入力デバイスと、外部からのデータ入力のための外部入力手段とを備える。入力デバイスは、キーボードまたはポインティングデバイス等である。加工面性状評価装置100には、外部入力手段へのデータ入力によって、工具移動データ、加工条件データ、ならびにワーク形状モデルの初期形状が設定される。図1では、入力デバイスと外部入力手段との図示を省略する。
工具モデルデータ格納部15は、工具モデルデータである切刃包絡形状モデル15aおよび切刃詳細データ15bを格納する。切刃包絡形状モデル15aは、切刃部の包絡形状を表す切刃モデルである。切刃部の包絡形状は、回転工具の回転により切刃部が描く3次元形状である。ボールエンドミルの場合、切刃部の包絡形状は、円柱の下部先端に半球がつなげられた形状である。包絡形状は、切刃部の外縁がなす包絡線を、回転工具の回転軸を中心に回転させることによって得られる立体形状ともいえる。包絡線は、切刃部の外観を側方から平面視した場合において切刃部の外縁がなす曲線である。
切刃詳細データ15bは、切刃部を構成する切刃に関する詳細な諸元についてのデータである。切刃詳細データ15bには、少なくとも、切刃部を構成する切刃の数、切刃の配置角度、切刃のねじれ角といった、切刃部の構成を決めるパラメータと切刃の詳細な形状を決めるパラメータとが含まれる。
工具移動経路データ格納部16は、回転工具の移動経路データを格納する。移動経路データは、被加工物に対して回転工具を移動させる移動経路のデータである。移動経路データには、加工動作中において被加工物から見た回転工具の位置ならびに姿勢に関するデータが含まれる。
加工条件データ格納部17は、切削加工における加工条件データを格納する。加工条件データには、少なくとも、回転工具の送り速度のデータと、回転工具の回転速度のデータとが含まれる。
ワーク形状モデル格納部18は、被加工物の3次元形状を表すワーク形状モデルを格納する。ワーク形状モデルは、加工の開始から終了までにおける時々刻々の被加工物の形状を3次元形状のモデルによって模擬したデータである。ワーク形状モデルの表現形式には、境界表現(Boundary Representation:B−Rep)モデル、またはボクセルモデルなどを用いることができる。
詳細加工面距離場モデル格納部19は、詳細加工面距離場モデルを格納する。詳細加工面距離場モデルは、加工面形状の距離場を表現したデータである。被加工物において移動経路に沿って回転工具を移動させながら切刃部を回転させる間に、各切刃は被加工物における互いに異なる位置を切削する。詳細加工面距離場モデルは、切刃ごとの切削によって被加工物に現れる微細な加工面形状を表すデータであって、被加工物における加工面全体の中における詳細な形状を表す距離場モデルであるものとする。以下の説明では、かかる微細な加工面形状を、切刃レベルの加工面形状、あるいは詳細形状と称することがある。
オフセット曲面データ格納部20は、オフセット曲面データを格納する。オフセット曲面データは、ワーク形状モデル上の加工面からあらかじめ決定された距離だけ離れた位置にある曲面であるオフセット曲面を示すデータである。
次に、加工面性状評価装置100が有する各処理部の動作について説明する。簡易切削シミュレーション実行部10は、加工面性状評価装置100が有するシミュレーション実行部である。簡易切削シミュレーション実行部10は、切刃包絡形状モデル15aをワーク形状モデルに対して移動させるシミュレーションを実行する。また、簡易切削シミュレーション実行部10は、かかるシミュレーションにおいてワーク形状モデルのうち切刃包絡形状モデル15aが通過する領域をワーク形状モデルから差し引く演算を行う。簡易切削シミュレーション実行部10は、シミュレーションの結果を基にワーク形状モデルを更新する処理を繰り返す。簡易切削シミュレーション実行部10は、シミュレーションに切刃包絡形状モデル15aを使用することによって、上述する切刃レベルよりも大まかでありかつ簡易的なシミュレーションである簡易切削シミュレーションを実行する。
図2は、図1に示す加工面性状評価装置が有する簡易切削シミュレーション実行部による動作について説明するための第1の図である。図3は、図1に示す加工面性状評価装置が有する簡易切削シミュレーション実行部による動作について説明するための第2の図である。簡易切削シミュレーション実行部10は、工具モデルデータ格納部15に格納されている切刃包絡形状モデル15aと、ワーク形状モデル格納部18に格納されているワーク形状モデル18aとを読み出す。図2に示すように、切刃包絡形状モデル15aは、ボールエンドミルが有する切刃部の包絡形状を円柱と半球との組み合わせによって表されている。
簡易切削シミュレーション実行部10は、切刃包絡形状モデル15aを移動経路に沿って移動させることによる切刃包絡形状モデル15aとワーク形状モデル18aとの相対移動を擬似的に行う。簡易切削シミュレーション実行部10は、切刃包絡形状モデル15aが通過した領域とワーク形状モデル18aとが交差した領域を求め、求めた領域をワーク形状モデル18aから差し引く。図2に示すように切刃包絡形状モデル15aを移動させるシミュレーションによって、図3に示すように、図2に示すワーク形状モデル18aの一部が切り欠かれたワーク形状モデル18aが得られる。ワーク形状モデル格納部18は、シミュレーションによって得られたワーク形状モデル18aを格納する。
距離場モデル生成部11は、詳細な距離場モデルである上記の詳細加工面距離場モデルを生成する。距離場モデル生成部11は、回転工具の回転により切刃の各々が被加工物を切削することによって被加工物に形成される加工面形状について、空間上の点である着目点からの加工面形状の距離である距離場を表す詳細加工面距離場モデルを生成する。距離場モデル生成部11は、切刃部の諸元、すなわち工具モデルデータ格納部15から読み出された切刃詳細データ15bに基づいて詳細加工面距離場モデルを生成する。
ここで、距離場とは、対象物が置かれた空間で形成されるスカラー場の一種で、空間の任意の着目点から対象物の表面までの距離によって着目点での場の値が与えられているものを指す。通常は、距離場の値すなわち距離値には、着目点から対象物の表面までのユークリッド最短距離、またはユークリッド最短距離と実質的に等価な距離が用いられる。また、距離値の符号を異ならせることで、着目点が対象物の形状の内部にあるか着目点が対象物の形状の外部にあるかを識別できる。実施の形態1では、距離値の符号は、着目点が対象物の形状の内部にある場合には負、着目点が対象物の形状の外部にある場合には正、という規約に従って決定されるものとする。距離場モデル生成部11は、かかる規約に従って符号が決定された符号付き距離を、距離場モデルの生成において採用する。
数学的には、距離場は、空間上の点Pから符号付き距離dへの一価関数d=f(P)として捉えることができる。このような関数は、距離関数と呼ばれる。工学の観点からは、距離関数には、形状の種類に応じ、点Pから平面または球面までの距離のように数式によって直接的に記述可能なものと、コンピュータプログラムによる計算のための手続として記述されるものとが含まれる。
異なる2つの形状のそれぞれの距離場の間には、形状ブーリアン演算に相当する合成演算を定めることができる。符号の規約を上述のように取り決めた場合、任意の点Pにおける一方の形状「A」の距離場の値をdistA(P)、他方の形状「B」の距離場の値をdistB(P)と表記する場合に、各種の形状ブーリアン演算に相当する合成演算は、以下の式に帰着される。
形状の反転(¬A): −distA(P)
積演算(A∩B): max(distA(P),distB(P))
和演算(A∪B): min(distA(P),distB(P))
差演算(A−B): max(distA(P),−distB(P))
切削加工は材料除去加工の一種であり、加工前のワーク形状から切刃部が通過した領域形状を差し引いた形状が、加工後のワーク形状となる。これは、形状ブーリアンの差演算に相当する。それぞれの形状の距離場を考え、上述の差演算に対応する合成演算を行うと加工後のワーク形状の距離場が得られる。
実施の形態1では、加工面性状評価装置100は、切削によってワーク形状に形成される加工面の詳細形状を面性状の評価の対象とする。そのような加工面の近傍では距離場同士の差演算において切刃が通過した領域形状の距離場が支配的になる。その場合は、ワーク形状の距離場を無視することができることから、加工面性状評価装置100は、上記の差演算であるmax演算の第2項によって表される距離場、すなわち、切刃が通過した領域形状を反転させた形状の距離場だけを考慮することによって面性状を評価することができる。
切刃レベルの加工面形状がなす距離場について、図4から図6に基づいて説明する。図4は、図1に示す加工面性状評価装置が評価の対象とする加工面が有する形状の距離場について説明するための第1の図である。図5は、図1に示す加工面性状評価装置が評価の対象とする加工面が有する形状の距離場について説明するための第2の図である。図6は、図1に示す加工面性状評価装置が評価の対象とする加工面が有する形状の距離場について説明するための第3の図である。
図4には、回転工具の回転軸に垂直な平面における切刃部41と被加工物43とを示している。切刃部41は、回転軸回りに回転しながら移動経路42に沿って移動する。切刃部41の各切刃が被加工物43の表面部分を削り取ることによって、被加工物43には、切刃レベルの加工面形状である詳細形状を有する加工面44が形成される。図4において、詳細形状とは、切刃のうち先端部の軌跡に沿った凹形の曲面形状の各々である。
図5において、点P1と点P2とを任意の点Pとして、点Pから加工面44までの符号付き距離dが一意に定まる。距離d1は、点P1から加工面44までの符号付き距離dである。距離d2は、点P2から加工面44までの符号付き距離dである。このような符号付き距離dが場の値となるような距離場が、加工面44が有する詳細形状の距離場を形成する。
上述したように、距離場は、点Pと符号付き距離dの値との関係を規定する距離関数、例えばd=f(P)により記述される。実施の形態1において、距離場モデル生成部11は、任意に指定される点Pに基づいて詳細形状の距離場を表す距離関数f(P)の値を求めるための手順が記述されたデータを生成する。距離関数f(P)の値を求めるための手順とは、コンピュータプログラムを用いて距離関数f(P)の値を計算するための手順である。このようにして、距離場モデル生成部11は、距離関数f(P)の値を求めるための手順が記述されたデータである詳細加工面距離場モデルを生成する。詳細加工面距離場モデル格納部19は、距離場モデル生成部11によって生成された詳細加工面距離場モデルを格納する。
なお、詳細形状の距離場を表す距離関数f(P)は、図6に示すように、切刃部41の回転と被加工物に対する回転工具の移動との合成運動であるトロコイド運動の下で、領域形状46の距離場を表す距離関数g(P)の符号を反転したもの、すなわち、f(P)=−g(P)により与えられる。領域形状46は、切刃部41の回転軸Cと切刃の先端Bとを結ぶ動径45が通過する領域の形状である。切刃部41が複数の切刃で構成される場合は、切刃ごとの動径について、領域形状46の距離場を表す距離関数を求め、切刃ごとの距離関数のmin演算によって距離関数g(P)が得られる。min演算は、上記の形状ブーリアン演算である和演算に相当する合成演算である。
オフセット曲面生成部12は、オフセット曲面を示すオフセット曲面データを生成する。オフセット曲面は、簡易切削シミュレーション実行部10によって生成された加工後のワーク形状モデル18a上にて指定された加工面から、あらかじめ決定されたオフセット距離だけ離れた位置にある曲面である。
図7は、図1に示す加工面性状評価装置が有するオフセット曲面生成部によって生成されるオフセット曲面データについて説明するための第1の図である。図8は、図1に示す加工面性状評価装置が有するオフセット曲面生成部によって生成されるオフセット曲面データについて説明するための第2の図である。
図7には、回転工具の回転軸に垂直な平面におけるワーク形状モデル18aと切刃包絡形状モデル15aとを示している。図8には、回転工具の回転軸に垂直な平面におけるワーク形状モデル18a上の加工面51とオフセット曲面20aとの幾何学的関係を示している。簡易切削シミュレーション実行部10は、図7に示すように、ワーク形状モデル18aに対して切刃包絡形状モデル15aを移動経路42に沿って移動させるシミュレーションを実行する。かかるシミュレーションによって、ワーク形状モデル18a上に加工面51が生成される。図8に示すように、オフセット曲面20aは、加工面51からオフセット距離hだけ離れた曲面である。オフセット曲面生成部12は、加工面51のデータと、別途計算されたオフセット距離hとを基に、オフセット曲面データを生成する。
オフセット曲面生成部12は、切刃部41の半径、切刃部41が有する切刃の数、回転工具の回転速度および回転工具の送り速度の各値に基づいて、オフセット距離hを算出する。切刃部41の半径とは、各切刃の先端を通る円の半径とする。各切刃の先端を通る円の中心は、回転工具の回転軸である。オフセット曲面生成部12は、工具モデルデータ格納部15から読み出される切刃詳細データ15bから切刃部41の半径および切刃の数の各値を取得する。オフセット曲面生成部12は、加工条件データ格納部17から読み出される加工条件データから回転工具の回転速度および回転工具の送り速度の各値を取得する。
オフセット曲面生成部12は、次の式(1)により、名目上のカスプ高さであるオフセット距離hを算出する。なお、式(1)において、Rは、切刃部41が有する形状の半径を表す。fzは、切刃1つ当たりの切刃部41の送り量を表す。fzは、fz=F/(n×S)の関係により算出される。Fは回転工具の送り速度、nは切刃部41が有する切刃の数、Sは回転工具の回転速度とする。Fの単位はmm/min、Sの単位はrev/minとする。
Figure 0006880336
加工面性状評価部21は、加工面性状の評価結果を表すイメージを生成する。加工面性状評価部21は、ワーク形状描画部14と距離場モデル評価部13との協調動作によって、ワーク形状の描画イメージに、評価結果を表すイメージを重畳させる。
ここで、加工面性状評価部21による具体的な動作について説明する。ワーク形状描画部14は、ワーク形状モデル格納部18から読み出されたワーク形状モデル18aを基に、ワーク形状モデル18aである3次元形状を表す描画イメージを生成する。ワーク形状描画部14は、あらかじめ指定された視線方向と、あらかじめ指定された照光条件と、ワーク形状についてあらかじめ指定された表示色とに基づき、通常のコンピュータグラフィックスの技法を用いて描画イメージを生成する。照光条件とは、光源の方向または光の強度といった条件である。
ワーク形状描画部14は、描画イメージの各画素における色と輝度を決定する過程にて、点Phの位置を計算する。点Phは、描画イメージの各画素に対応する加工面上の点Pから、加工面の法線方向へ上述のオフセット距離hだけ離れた位置の点であって、点Pに対応するオフセット曲面20a上の点である。ワーク形状描画部14は、オフセット曲面データ格納部20から読み出されたオフセット曲面データを基に、点Phの位置を求める。ワーク形状描画部14は、求めた点Phの位置データを距離場モデル評価部13へ出力する。
距離場モデル評価部13は、詳細加工面距離場モデル格納部19から詳細加工面距離場モデルを読み出す。距離場モデル評価部13は、詳細加工面距離場モデルに記述されている手順に従って、点Phにおける距離場の値f(Ph)を計算する。距離場モデル評価部13は、計算によって得られた値f(Ph)をワーク形状描画部14へ出力する。
ワーク形状描画部14は、面性状の評価結果についてあらかじめ指定された表示色について、値f(Ph)に応じた濃淡を決定する。評価結果の表示色は、ワーク形状の表示色とは異なる色相の色とする。ワーク形状描画部14は、値f(Ph)の大きさに基づいて、評価結果についての表示色の濃淡を決定する。値f(Ph)の大きさは、値f(Ph)の符号を加味した大きさであるものとする。これにより、ワーク形状描画部14は、値f(Ph)の大きさに応じた濃淡を有するイメージを生成する。ワーク形状描画部14は、ワーク形状モデル18aの描画イメージに評価結果のイメージを重畳させることによって得られた表示データを、表示画面400へ出力する。
図9は、図1に示す加工面性状評価装置が有する加工面性状評価部による描画処理の動作について説明するための図である。ワーク形状描画部14は、点Pに対応するオフセット曲面20a上の点である点Phの位置を計算する。図9において、点53、点54、点55などのそれぞれは、点Pに対応する対応点である点Phとする。点53、点54、点55を、それぞれ点Ph1、点Ph2、点Ph3とする。加工面51上の点Pは、ワーク形状モデル18aの3次元形状の描画イメージの画素に対応する点である。点Ph1、点Ph2、点Ph3のそれぞれは、点Pに対応する対応点であって、加工面51からオフセット距離hだけ離れたオフセット曲面20a上の点Phである。
距離場モデル評価部13は、詳細加工面距離場モデルに記述されている手順に従って、点Ph1、点Ph2、点Ph3における距離場の値f(Ph1)、値f(Ph2)、値f(Ph3)のそれぞれを計算する。値f(Ph1)、値f(Ph2)、値f(Ph3)のそれぞれは、切刃レベルの詳細形状を有する加工面44までの符号付き距離値を表す。距離場モデル評価部13は、加工面51の投影点である各画素についての符号付き距離値を求める。ワーク形状描画部14は、加工面44についての符号付き距離値の算出結果に基づいて、符号付き距離値に対応する濃淡を有する評価結果のイメージを生成する。このようにして、加工面性状評価部21は、加工面44についての符号付き距離値のデータを得ることによって、加工面44の面性状を評価する。また、加工面性状評価部21は、ワーク形状モデル18aの描画イメージに評価結果のイメージが重畳された表示データを、表示画面400を有する機器へ出力する。これにより、加工面性状評価装置100は、加工面性状の評価結果を、表示画面400を有する機器へ出力する。
表示画面400は、ワーク形状描画部14から入力される表示データに基づいて、ワーク形状モデル18aの描画イメージに評価結果のイメージが重畳された画像を表示する。表示画面400には、ワーク形状のイメージに、微細な凹凸形状を反映した縞状の濃淡模様が表示される。表示画面400は、かかる画像を表示することにより、加工面性状の評価結果をオペレータへ提示する。オペレータは、表示画面400に表示される画像を観察することによって、加工面44における微細な凹凸形状の分布と凹凸の程度とを把握することができる。このように、オペレータは、表示画面400に表示される画像を基に、加工面性状の評価結果を確認することができる。加工面性状評価装置100は、視覚によって容易に把握し得る態様で加工面性状の評価結果を提示させることができる。
ここで、詳細加工面距離場モデルを記述する距離関数f(P)に関し、任意に指定される点Pに対する関数値を計算する具体的な方法について説明する。加工面44の近傍では、上述するように切刃の動径CBの通過領域形状の距離場の距離関数g(P)を符号反転することによりf(P)が得られる。このため、ここではg(P)の関数値を計算する方法を説明する。
図10は、図1に示す加工面性状評価装置が有する距離場モデル生成部による距離場の値の計算について説明するための第1の図である。図11は、図1に示す加工面性状評価装置が有する距離場モデル生成部による距離場の値の計算について説明するための第2の図である。図12は、図1に示す加工面性状評価装置が有する距離場モデル生成部による距離場の値の計算について説明するための第3の図である。
図10に示す座標系71は、被加工物に固定されたワールド座標系Σwとする。図10には、ワールド座標系Σwを定義する3つの座標軸のうちの2つであるXw軸とYw軸とを示している。また、座標系72は、切刃部41に固定された座標軸であって、回転軸回りの回転と切刃部41の移動に連動する切刃固定座標系Σcとする。切刃固定座標系Σcの座標軸は、着目する切刃の動径CBがX軸上に位置するように定められる。図10には、切刃固定座標系Σcを定義する3つの座標軸のうちの2つであるXc軸とYc軸とを表している。
切刃部41は、ワールド座標系ΣwのX軸方向に移動するものとする。点73は、ワールド座標系Σw上に指定された点Pとする。点Pを切刃固定座標系Σcから眺めると、点Pは、図11に示すように、時刻tをパラメータとする渦巻き形の軌跡74を描く。
距離場の値を表す距離関数は、回転工具の回転と被加工物に対する回転工具の移動との合成運動の下で、座標系71により与えられる点Pを、回転工具の回転に連動する座標系72から見た場合において当該点Pが描く軌跡74に基づいて距離場の値を算出するための関数である。以下の説明では、かかる軌跡74を表す曲線を、点Pの逆軌跡曲線Q(t)と称する。
図11において、点Pの逆軌跡曲線Q(t)は、点75である地点A1と、点76である地点A2とにおいて、切刃固定座標系ΣcのX軸を横切っている。地点A1と地点A2とのうち、地点A1では、逆軌跡曲線Q(t)が動径CBを横切っている。このように、逆軌跡曲線Q(t)が動径CBを少なくとも1回以上横切る場合、点Pは、切刃部41のトロコイド運動の下で動径CBが通過する領域形状46の内部に位置する。かかる領域形状46は、図6に示す領域形状46である。逆に、逆軌跡曲線Q(t)が動径CBの延長線上でのみ横切る場合、点Pは動径CBが通過する領域形状46の外側に位置する。
切刃部41の回転速度が、切刃部41の移動速度、すなわち送り速度に比べて十分速い場合には、絶対値|g(P)|は、逆軌跡曲線Q(t)が切刃固定座標系ΣcのX軸を横切る地点である地点Aと切刃の先端Bとの間の距離|A〜B|で近似される。絶対値|g(P)|は、点Pにおける領域形状46の距離場の値の絶対値である。g(P)の符号は、上述する規約に従って、着目点である地点が対象物の形状の内部にあるか否かによって決められる。逆軌跡曲線Q(t)が切刃固定座標系ΣcのX軸を横切る地点が複数ある場合には、複数の地点である地点A1、地点A2、・・・、地点Ak、・・・のそれぞれについての符号付き距離Ak〜Bが求められる。対象物の形状の内部を負と定める符号付き距離の規約の下では、求めた符号付き距離の中の最小値、すなわち−∞に最も近い符号付き距離の符号がg(P)の符号に採用される。
より厳密なg(P)の値が必要な場合、特に、より高速な送り速度が設定された加工の場合には、図12に示す方法によって厳密なg(P)の値を計算することができる。図12において、逆軌跡曲線Q(t)が切刃の先端Bに局所的に最も近接する瞬間における逆軌跡曲線Q(t)の位置を示す点81をQ(tx)とするとき、g(P)の絶対値は、|g(P)|=|Q(tx)〜B|により計算される。g(P)の符号は、逆軌跡曲線Q(t)が動径CBを横切るか否かによって決定される。
以上では、回転工具の回転軸に垂直な平面から眺めた2次元空間における動作原理を説明してきた。図13は、図1に示す加工面性状評価装置が有する距離場モデル生成部によって3次元空間における距離場の値を計算する方法について説明するための図である。3次元空間における距離場を考える場合、ボールエンドミルにおける切刃の先端Bは、図13に示すように、切刃部41の包絡面上の曲線91により表される。このため、逆軌跡曲線Q(t)と切刃の先端Bを表す曲線91とが局所的に最も近接する瞬間における逆軌跡曲線Q(t)の位置であるQ(tx)に基づいて、g(P)の厳密な値が計算される。また、動径CBは、円柱部では回転軸と曲線91とを結ぶ線分92に相当し、底部の半球部では半球中心と曲線91を結ぶ線分93に相当する。
以上により、加工面性状評価装置100は、逆軌跡曲線を用いた統一的な原理に基づき、切刃レベルの微細な凹凸形状を加味した詳細な加工面の距離場の値を簡単に計算することができる。加工面性状評価装置100は、点列データによって加工面を表現することによって加工面性状の特性値を求める場合と比較して、必要となるデータサイズを大幅に縮小させることができる。また、加工面性状評価装置100は、データサイズの大幅な縮小によって、加工面性状の評価のための演算負担を少なくすることができる。
図14は、実施の形態1にかかる加工面性状評価装置の動作手順を示すフローチャートである。ステップS1において、簡易切削シミュレーション実行部10は、切刃包絡形状モデル15aをワーク形状モデル18aに対して移動させるシミュレーションである簡易切削シミュレーションを実行する。ワーク形状モデル格納部18は、ステップS1におけるシミュレーションの結果であるワーク形状モデルを格納する。
ステップS2において、距離場モデル生成部11は、詳細加工面距離場モデルを生成する。距離場モデル生成部11は、空間上の点Pにおける詳細形状の距離場の値を求めるための手順が記述された詳細加工面距離場モデルを生成する。詳細加工面距離場モデル格納部19は、ステップS2において生成された詳細加工面距離場モデルを格納する。
ステップS3において、距離場モデル評価部13は、オフセット曲面20a上の位置における距離場の値を計算する。距離場モデル評価部13は、オフセット曲面20a上の点Phの位置データをワーク形状描画部14から取得する。距離場モデル評価部13は、詳細加工面距離場モデルに記述されている手順に従って、点Phにおける詳細形状の距離場の値を求める。距離場モデル評価部13は、求めた距離場の値をワーク形状描画部14へ出力する。
ワーク形状描画部14は、ワーク形状モデルの描画イメージに評価結果のイメージが重畳された表示データを生成し、生成された表示データを、表示画面400を有する機器へ出力する。ステップS4において、表示画面400を有する機器は、取得された表示データに基づいて、ワーク形状モデルの描画イメージに評価結果のイメージが重畳された画像を表示画面400にて表示する。
実施の形態1によると、加工面性状評価装置100は、少ない計算負荷で実行可能な簡易切削シミュレーションの結果形状を基にして、そのオフセット曲面上で詳細な加工面形状の3次元距離場の値を算出して可視化する。これにより、加工面性状評価装置100は、加工面性状を高精度にかつ少ない演算負担で評価することができるという効果を奏する。
実施の形態2.
図15は、本発明の実施の形態2にかかる加工面性状評価装置の機能構成を示すブロック図である。実施の形態2にかかる加工面性状評価装置100と実施の形態1にかかる加工面性状評価装置100との違いは、図1に示す距離場モデル評価部13とワーク形状描画部14とに代えて、距離場モデル解析部30が設けられている点である。また、実施の形態2にかかる加工面性状評価装置100は、表示データに代えて面性状の特性値を出力する点が、実施の形態1にかかる加工面性状評価装置100とは異なる。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。
実施の形態2において、加工面性状評価装置100は、面性状の特性値のデータを含む面性状特性値ファイル401を外部機器へ出力する。加工面性状評価装置100は、図1に示す表示画面400を有する外部機器へ特性値のデータを出力することによって、表示画面400による表示により特性値をオペレータへ提示することとしても良い。距離場モデル解析部30以外の各処理部の動作と、各格納部に格納される各データの内容とは、実施の形態1と同様である。
次に、距離場モデル解析部30の動作について説明する。距離場モデル解析部30は、距離場モデルに従ってオフセット曲面上の点における距離場の値を算出することによって面性状を評価する評価部として機能する。
距離場モデル解析部30は、オフセット曲面データ格納部20からオフセット曲面データを読み出す。また、距離場モデル解析部30は、詳細加工面距離場モデル格納部19から詳細加工面距離場モデルを読み出す。距離場モデル解析部30は、詳細加工面距離場モデルに記述されているデータであって、距離関数の値を得るための手順が記述されているデータを、オフセット曲面20aのうちの指定された面領域上で解析する。距離場モデル解析部30は、詳細加工面距離場モデルに記述されているデータを解析することによって、距離場の統計指標である加工面性状の特性値を算出する。距離場モデル解析部30は、加工面性状の特性値を算出することによって、加工面性状を評価する。
距離場モデル解析部30によって算出される距離場の統計指標には、オフセット曲面20a上での距離場の値の最大値、最小値、平均値、分散のうちの少なくとも1つが含まれる。距離場モデル解析部30は、詳細加工面距離場モデル、すなわち距離場の距離関数が記述されたデータに基づいて解析的な方法によって距離関数を処理することで、これらの統計指標を算出することができる。任意の関数が与えられたときに上述のような統計指標を計算する方法は数値計算の分野で既に確立されている。実施の形態2では、距離場モデル解析部30は、従来確立されている手法をそのまま利用することによって統計指標を算出することができる。
オフセット曲面20aのうちの指定の面領域上で解析により算出される統計指標は、JIS B0601 2013等の工業規格で定められる各種の面粗さに対応する。特に、距離場の値の最大値と最小値の差は最大高さRzで表記される面粗さに対応し、平均値は算術平均粗さRaで表記される面粗さに対応する。こうした面粗さは、加工現場にて加工面の面性状を評価するための尺度として使われている。実施の形態2にかかる加工面性状評価装置100は、面性状の評価のための特性値を定量的に算出することができる。
図16は、実施の形態2にかかる加工面性状評価装置の動作手順を示すフローチャートである。ステップS1からS3は、図14に示す実施の形態1の場合と同様である。ステップS3に続いて、ステップS11において、距離場モデル解析部30は、加工面性状の特性値を算出する。距離場モデル解析部30は、詳細加工面距離場モデルに記述されているデータを解析することによって、距離場の統計指標である加工面性状の特性値を求める。その後、距離場モデル解析部30は、面性状特性値ファイル401を外部機器へ出力する。
実施の形態2によると、加工面性状評価装置100は、少ない計算負荷で実行可能な簡易切削シミュレーションの結果形状を基にして、そのオフセット曲面上で詳細な加工面形状の3次元距離場を解析する。加工面性状評価装置100は、3次元距離場の解析によって、加工現場にて面粗さの指標として使われる特性値を定量的に算出する。これにより、加工面性状評価装置100は、加工面性状を高精度にかつ少ない演算負担で評価することができるという効果を奏する。
実施の形態3.
上記の実施の形態1および2では、詳細加工面距離場モデルとして、切刃レベルの微細な凹凸を加味した詳細な加工面形状の距離場の距離関数を記述するデータを用いた。実施の形態3では、かかる詳細加工面距離場モデルに代えて、ボクセルモデルを用いて距離場を表現する距離場モデルが使用される。実施の形態3では、上記の実施の形態1および2と同一の構成要素には同一の符号を付し、実施の形態1および2とは異なる構成について主に説明する。実施の形態1および2にかかる加工面性状評価装置100の双方は、実施の形態3のボクセルモデルを使用することができる。
図17は、本発明の実施の形態3にかかる加工面性状評価装置が実行する処理について説明する図である。図17では、ボクセルモデルを模式的に表している。ボクセルモデルは、セルと呼ばれる小さな立方領域の集合体により構成されているモデルである。各セルには、表現対象物の形状に関する情報が格納される。実施の形態3では、表現対象物の形状に関する情報として詳細な加工面形状の距離場の距離関数を記述したデータが各セルに格納される。
各セルには、そのセルに最適化した距離関数の記述データが格納される。具体的には、着目部位に相当するセルによって占められる立体領域内に限定された任意の点Pに対して距離場の値を計算するための手続きが記述されたデータが格納される。加工の開始から終了までの一連の工具移動経路を対象とした場合、被加工物の特定の部位の加工形状には、工具移動経路の特定の区間の工具移動のみが関与する。工具移動経路のうちのどの区間が着目部位の加工形状に関与するかは、簡易切削シミュレーション実行部10での簡易切削シミュレーションの過程で特定することができる。
距離場モデル生成部11は、ボクセルモデルによって表現された距離場モデルが有する各セルに距離関数の記述データを格納する。距離場モデル生成部11は、上述のようにして工具移動経路の区間を特定し、特定された区間に相当するセルによって占められる立方領域内の点に対して距離値を計算するための専用の距離関数の記述データを、各セルに格納する。
実施の形態3によると、加工面性状評価装置100は、ボクセルモデルによって表現された距離場モデルを使用することによって、切刃レベルの微細な凹凸を加味した詳細な加工面形状の距離場の値を効率的に計算することができる。これにより、加工面性状評価装置100は、加工面性状を高精度にかつ少ない演算負担で評価することができるという効果を奏する。
実施の形態4.
実施の形態4では、実施の形態3にて説明するボクセルモデルの変形例について説明する。切刃レベルの微細な凹凸を加味した詳細な加工面形状の距離場を表現するモデルとしてボクセルモデルを用いる形態において、ボクセルモデルの各セルにはそのセルが占める立方領域内の異なる複数の点で詳細加工面形状の距離場の値をサンプリングしたデータを格納することもできる。セル内の任意の点における詳細加工面形状の距離場の値は、サンプリングで得られた距離場の値を補間することによって、近似値として求めることができる。
図18は、本発明の実施の形態4にかかる加工面性状評価装置が実行する処理について説明する図である。実施の形態4では、ボクセルモデルとして、ボクセルモデルの表現構造の一種であるオクトリー型ボクセルモデルを用いる。図18では、オクトリー型ボクセルモデルを模式的に表している。
図18に示すように、オクトリー型ボクセルモデルは、1つのセルをX,Y,Zの各軸に沿って二分した8つのサブセル群に分割するオクト分割を再帰的に繰り返すことで、分割元のセルと分割先のサブセル群を、オクトリーと称される8分木により管理するようにしたものである。
加工面性状評価装置100は、1つのセルに対し、そのセルが占める立方領域内の異なる複数の点を配置し、詳細加工面形状の距離場の値を距離関数で計算しサンプリングする。加工面性状評価装置100は、サンプリングした距離場の値を補間してサンプリング点以外の点に対して求めた補間近似値と元の距離場の値とを比較して精度検定を行い、精度が未達の場合はそのセルを8つのサブセル群にオクト分割し、各サブセルでサンプリングと精度検定を再帰的に繰り返す。加工面性状評価装置100は、精度を満たした段階でサンプリングした距離場の値の列をセルに格納する。
このようにして構築されたオクトリー型のボクセルモデルで表現した距離場モデルを用いれば、加工面性状評価装置100は、任意の指定点が含まれるセルを特定して補間に基づく少ない演算負荷で距離場の値を計算することができる。
実施の形態4によると、加工面性状評価装置100は、オクトリー型のボクセルモデルによって表現された距離場モデルを使用することによって、切刃レベルの微細な凹凸を加味した詳細な加工面形状の距離場の値を効率的に計算することができる。これにより、加工面性状評価装置100は、加工面性状を高精度にかつ少ない演算負担で評価することができるという効果を奏する。
次に、実施の形態1から4にかかる加工面性状評価装置100が有するハードウェア構成について説明する。図1および図15に示す加工面性状評価装置100の各機能部は、加工面性状評価方法を実行するためのプログラムがハードウェアを用いて実行されることによって実現される。
図19は、本発明の実施の形態1から4にかかる加工面性状評価装置のハードウェア構成を示すブロック図である。加工面性状評価装置100は、各種処理を実行するCPU(Central Processing Unit)61と、データ格納領域を含むRAM(Random Access Memory)62と、不揮発性メモリであるROM(Read Only Memory)63と、外部記憶装置64とを有する。また、加工面性状評価装置100は、外部からの情報の入力と外部への情報の出力とのための入出力インタフェース65と、入力操作を受け付ける入力デバイス66とを有する。図19に示す各部は、バス68を介して相互に接続されている。
CPU61は、ROM63および外部記憶装置64に記憶されているプログラムを実行する。図1および図15に示す簡易切削シミュレーション実行部10、距離場モデル生成部11およびオフセット曲面生成部12の各機能は、CPU61を使用して実現される。図1に示す加工面性状評価部21が有する距離場モデル評価部13およびワーク形状描画部14の各機能と、図15に示す距離場モデル解析部30の機能とは、CPU61を使用して実現される。
外部記憶装置64は、HDD(Hard Disk Drive)あるいはSSD(Solid State Drive)である。外部記憶装置64は、プログラムと各種情報とを記憶する。図1および図15に示す工具モデルデータ格納部15と、工具移動経路データ格納部16と、加工条件データ格納部17と、ワーク形状モデル格納部18と、詳細加工面距離場モデル格納部19と、オフセット曲面データ格納部20との各機能は、外部記憶装置64を使用して実現される。
入出力インタフェース65は、外部入力手段として機能する。また、入出力インタフェース65は、図1に示す表示画面400を有する機器へ表示データを出力する機能と、図15に示す面性状特性値ファイル401を外部機器へ出力する機能とを担う。入力デバイス66は、キーボードあるいはポインティングデバイスといった、情報入力のためのデバイスである。
なお、NC工作機械に備えられる回転工具は、切刃を有する回転工具であれば良く、ボールエンドミル以外の回転工具であっても良い。加工面性状評価装置100は、ボールエンドミル以外の回転工具による加工面の面性状を評価する場合においても、ボールエンドミルの場合と同様に、加工面性状を高精度にかつ少ない演算負担で評価することができる。
実施の形態5.
図20は、本発明の実施の形態5にかかる機械学習装置を含む評価システムを示すブロック図である。図20に示す評価システムは、実施の形態5にかかる機械学習装置500と、加工面性状評価装置100とを有する。機械学習装置500は、切刃を有する回転工具の使用により被加工物が切削された際における加工面の面性状をシミュレーションによって評価する加工面性状評価装置100について、面性状の評価対象領域を学習する。実施の形態5では、上記の実施の形態1から4と同一の構成要素には同一の符号を付し、実施の形態1から4とは異なる構成について主に説明する。図20に示す加工面性状評価装置100は、実施の形態1にかかる加工面性状評価装置100である。
図20に示す機械学習装置500は、加工面性状評価装置100の外部に設置されている。機械学習装置500は、無線通信によるネットワークまたは有線通信によるネットワークを介して加工面性状評価装置100に接続される。機械学習装置500は、加工面性状評価装置100の外部の装置に限られず、加工面性状評価装置100に内蔵される装置であっても良い。機械学習装置500は、クラウドサーバ上に存在する装置であっても良い。
機械学習装置500は、状態変数を観測する状態観測部501と、データ取得部502と、評価対象領域を学習する学習部503とを有する。状態変数は、切削加工における加工条件データと、回転工具についての工具モデルデータと、被加工物の3次元形状を表すワーク形状モデルと、加工面形状の距離場を表す距離場モデルと、を含む。距離場は、切刃が被加工物を切削することによって被加工物に形成される加工面形状と空間上の点との距離である。
加工条件データは、加工条件データ格納部17に格納されている。工具モデルデータは、工具モデルデータ格納部15に格納されている。工具モデルデータは、切刃包絡形状モデル15aおよび切刃詳細データ15bである。ワーク形状モデルは、ワーク形状モデル格納部18に格納されている。距離場モデルは、詳細加工面距離場モデルである。詳細加工面距離場モデルは、詳細加工面距離場モデル格納部19に格納されている。
加工面における領域を表す領域データと、当該領域における加工品質の良否を表す品質データとは、機械学習装置500へ入力される。領域データと品質データとは、加工面性状評価装置100を使用するオペレータによる入力デバイス66の操作によって、入力デバイス66から機械学習装置500へ入力される。データ取得部502は、入力デバイス66への操作によって入力された領域データと品質データとを取得する。なお、領域データと品質データとは、加工面性状評価装置100の入力デバイス以外の入力手段によって機械学習装置500へ入力されても良い。
学習部503は、状態変数と領域データと品質データとが互いに関連付けられたデータセットを生成し、生成されたデータセットに従って評価対象領域を学習する。学習部503は、例えば、ニューラルネットワークに従って、いわゆる教師あり学習によって、学習済モデルを生成する。
教師あり学習とは、ある入力と、結果であるラベルとであるデータの組を大量に機械学習装置へ与えることで、データセットが有する特徴を学習し、入力から結果を推定する学習である。学習部503は、最適な評価対象領域を加工条件データと工具モデルデータとワーク形状モデルと距離場モデルとに基づいて推論するための学習済モデルを生成する。学習部503は、学習の結果である学習済モデルを加工面性状評価部21へ出力する。
ニューラルネットワークは、複数のニューロンからなる入力層と、複数のニューロンからなる中間層である隠れ層と、複数のニューロンからなる出力層とで構成される。中間層は、1層、または2層以上でもよい。
図21は、実施の形態5にかかる機械学習装置が学習に使用するニューラルネットワークの構成例を示す図である。図21に示すニューラルネットワークは、3層のニューラルネットワークである。入力層は、ニューロンX1,X2,X3を含む。中間層は、ニューロンY1,Y2を含む。出力層は、ニューロンZ1,Z2,Z3を含む。なお、各層のニューロンの数は任意とする。入力層へ入力された複数の値は、重みW1であるw11,w12,w13,w14,w15,w16が乗算されて、中間層へ入力される。中間層へ入力された複数の値は、重みW2であるw21,w22,w23,w24,w25,w26が乗算されて、出力層から出力される。出力層から出力される出力結果は、重みW1,W2の値に従って変化する。
実施の形態5において、ニューラルネットワークは、データセットに従って、いわゆる教師あり学習によって、面性状の評価対象領域を学習する。すなわち、ニューラルネットワークは、加工条件データと工具モデルデータとワーク形状モデルと距離場モデルとが入力層へ入力されることによって出力層から出力される結果が、領域データおよび品質データである教師データに近づくように重みW1,W2を調整することによって、面性状の評価対象領域を学習する。
ニューラルネットワークは、いわゆる教師なし学習によって、面性状の評価対象領域を学習しても良い。教師なし学習とは、対応する教師出力データを与えずに、入力データを学習部503へ大量に与えることによって、入力データがどのような分布をしているかを学習部503に学習させるモデルである。教師なし学習の手法の1つに、入力データの類似性に基づいて入力データをグループ化するクラスタリングがある。学習部503は、クラスタリングの結果を使って、何らかの基準を最適にするように出力の割り当てを行うことによって、出力の予測モデルを生成する。
学習部503は、教師なし学習と教師あり学習とが組み合わせられたモデルである半教師あり学習によって、面性状の評価対象領域を学習しても良い。入力データのうちの一部について教師出力データが与えられる一方、その他の入力データには教師出力データが与えられない場合の学習が、半教師あり学習に該当する。
学習部503は、複数の加工面性状評価装置100に対して作成されるデータセットに従って、面性状の評価対象領域を学習しても良い。学習部503は、同一の現場で使用される複数の加工面性状評価装置100からデータセットを取得しても良く、あるいは、互いに異なる現場で使用される複数の加工面性状評価装置100からデータセットを取得しても良い。学習部503がデータセットの取得を開始した後に、データセットが取得される対象に新たな加工面性状評価装置100が追加されても良い。また、複数の加工面性状評価装置100からのデータセットの取得を開始した後に、データセットが取得される対象から、複数の加工面性状評価装置100のうちの一部が除外されても良い。
ある1つの加工面性状評価装置100についての学習を行った機械学習装置500は、当該加工面性状評価装置100以外の加工面性状評価装置100についての学習を行っても良い。この場合、機械学習装置500は、当該他の加工面性状評価装置100についての再学習によって、学習済モデルを更新することができる。
学習部503が使用する学習アルゴリズムには、特徴量の抽出を学習する深層学習(Deep Learning)を用いることができる。学習部503は、深層学習以外の公知の方法、例えば、遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を行っても良い。
加工面性状評価部21は、学習済モデルを利用して得られる領域データと品質データとを推論する。加工面性状評価部21は、加工条件データと工具モデルデータとワーク形状モデルと距離場モデルとを学習済モデルへ入力することによって、入力されたデータから推論される領域データと品質データとを取得する。加工面性状評価部21は、取得された領域データと品質データとに基づいて、面性状の評価対象領域を決定する。加工面性状評価部21は、決定された評価対象領域について、面性状を評価する。
加工面性状評価装置100は、機械学習装置500による学習結果に基づいて、加工条件、回転工具、ワーク形状または加工面形状などに基づいて、詳細な評価が求められる領域に限定して面性状を評価することができる。これにより、加工面性状評価装置100は、加工面性状の評価における演算負担を低減することができる。演算負担の低減により、加工面性状評価装置100における処理時間の短縮が可能となることによって、オペレータの作業効率向上が可能となる。
機械学習装置500の機能は、パーソナルコンピュータまたは汎用コンピュータといったコンピュータシステムがプログラムを実行することによって実現される。学習部503の機能は、プロセッサおよびソフトウェアの組み合わせによって実現される。学習部503の機能は、プロセッサおよびファームウェアの組み合わせによって実現されても良く、プロセッサ、ソフトウェアおよびファームウェアの組み合わせによって実現されても良い。ソフトウェアまたはファームウェアは、プログラムとして記述されて機械学習装置500の記憶装置に格納される。記憶装置の図示は省略する。状態観測部501およびデータ取得部502の各機能は、入出力インタフェースを使用することによって実現される。
機械学習装置500は、実施の形態1の加工面性状評価装置100について面性状の評価対象領域を学習するものに限られない。機械学習装置500は、実施の形態2,3または4の加工面性状評価装置100について面性状の評価対象領域を学習するものであっても良い。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
10 簡易切削シミュレーション実行部、11 距離場モデル生成部、12 オフセット曲面生成部、13 距離場モデル評価部、14 ワーク形状描画部、15 工具モデルデータ格納部、15a 切刃包絡形状モデル、15b 切刃詳細データ、16 工具移動経路データ格納部、17 加工条件データ格納部、18 ワーク形状モデル格納部、18a ワーク形状モデル、19 詳細加工面距離場モデル格納部、20 オフセット曲面データ格納部、20a オフセット曲面、21 加工面性状評価部、30 距離場モデル解析部、41 切刃部、42 移動経路、43 被加工物、44,51 加工面、45 動径、46 領域形状、53,54,55,73,75,76,81 点、61 CPU、62 RAM、63 ROM、64 外部記憶装置、65 入出力インタフェース、66 入力デバイス、68 バス、71,72 座標系、74 軌跡、91 曲線、92,93 線分、100 加工面性状評価装置、400 表示画面、401 面性状特性値ファイル、500 機械学習装置、501 状態観測部、502 データ取得部、503 学習部。

Claims (13)

  1. 切刃を有する回転工具の使用により被加工物が切削された際における加工面の面性状をシミュレーションによって評価する加工面性状評価装置であって、
    前記回転工具の回転により前記切刃が描く3次元形状である包絡形状を表す切刃包絡形状モデルを、前記被加工物の3次元形状を表すワーク形状モデルに対して移動させるシミュレーションを実行し、前記シミュレーションにおいて前記ワーク形状モデルのうち前記切刃包絡形状モデルが通過する領域を前記ワーク形状モデルから差し引く演算を行うシミュレーション実行部と、
    前記切刃が前記被加工物を切削することによって前記被加工物に形成される加工面形状について、空間上の点からの前記加工面形状の距離である距離場を表す距離場モデルを前記切刃の諸元に基づいて生成する距離場モデル生成部と、
    前記ワーク形状モデル上の加工面からあらかじめ決定されたオフセット距離だけ離れた位置にあるオフセット曲面を示すオフセット曲面データを生成するオフセット曲面生成部と、
    前記距離場モデルに従って前記オフセット曲面上の点における前記距離場の値を算出することによって前記面性状を評価する評価部と、
    を備えることを特徴とする加工面性状評価装置。
  2. 前記評価部は、加工後における前記ワーク形状モデルの描画イメージを生成する描画イメージ生成部を備え、
    前記描画イメージ生成部は、前記距離場の値の大きさに対応する濃淡を有するイメージを前記描画イメージに重畳させることを特徴とする請求項1に記載の加工面性状評価装置。
  3. 前記評価部は、前記面性状の特性値を算出することによって前記面性状を評価する加工面性状解析部であって、
    前記加工面性状解析部は、前記オフセット曲面上での前記距離場モデルの解析によって、前記距離場の統計指標である前記特性値を算出することを特徴とする請求項1に記載の加工面性状評価装置。
  4. 前記オフセット距離は、前記回転工具に備えられた1つまたは複数の前記切刃である切刃部の半径と、前記切刃1つ当たりの前記切刃部の送り量とに基づいて決定されることを特徴とする請求項1から3のいずれか1つに記載の加工面性状評価装置。
  5. 前記距離場モデルは、空間上の任意の点に対して前記距離場の値を計算するための距離関数が記述されたデータであることを特徴とする請求項1に記載の加工面性状評価装置。
  6. 前記距離場モデルは、セルの集合体であるボクセルモデルであって、
    前記集合体を構成する各セルには、当該セルによって占められる立体領域内に限定された任意の点に対して前記距離場の値を計算するための距離関数が記述されたデータが格納されることを特徴とする請求項1に記載の加工面性状評価装置。
  7. 前記ボクセルモデルは、オクトリー型のボクセルモデルであることを特徴とする請求項6に記載の加工面性状評価装置。
  8. 前記距離関数は、前記回転工具の回転と前記被加工物に対する前記回転工具の移動との合成運動の下で、前記被加工物に固定された座標系により与えられる点を、前記回転工具の回転に連動する座標系から見た場合において当該点が描く軌跡に基づいて前記距離場の値を算出するための関数であることを特徴とする請求項5から7のいずれか1つに記載の加工面性状評価装置。
  9. 記面性状の評価対象領域を学習する機械学習装置を備え
    前記機械学習装置は、
    切削加工における加工条件データと、前記回転工具についての工具モデルデータと、前記ワーク形状モデルと、前記距離場モデルと、を含む状態変数を観測する状態観測部と、
    前記加工面における領域を表す領域データと、前記加工面における領域における加工品質の良否を表す品質データと、を取得するデータ取得部と、
    前記状態変数と前記領域データと前記品質データとが互いに関連付けられたデータセットに従って前記評価対象領域を学習する学習部と、
    を備えることを特徴とする請求項1に記載の加工面性状評価装置。
  10. 前記工具モデルデータは、前記切刃包絡形状モデルと、前記切刃の諸元についてのデータとを含むことを特徴とする請求項に記載の加工面性状評価装置。
  11. 切刃を有する回転工具の使用により被加工物が切削された際における加工面の面性状をシミュレーションによって評価する加工面性状評価方法であって、
    前記回転工具の回転により前記切刃が描く3次元形状である包絡形状を表す切刃包絡形状モデルを、前記被加工物の3次元形状を表すワーク形状モデルに対して移動させるシミュレーションを実行し、前記シミュレーションにおいて前記ワーク形状モデルのうち前記切刃包絡形状モデルが通過する領域を前記ワーク形状モデルから差し引く演算を行う工程と、
    前記切刃が前記被加工物を切削することによって前記被加工物に形成される加工面形状について、空間上の点からの前記加工面形状の距離である距離場を表す距離場モデルを前記切刃の諸元に基づいて生成する工程と、
    前記ワーク形状モデル上の加工面からあらかじめ決定されたオフセット距離だけ離れた位置にあるオフセット曲面を示すオフセット曲面データを生成する工程と、
    前記距離場モデルに従って前記オフセット曲面上の点における前記距離場の値を算出することによって前記面性状を評価する工程と、
    を含むことを特徴とする加工面性状評価方法。
  12. 加工後における前記ワーク形状モデルの描画イメージに、前記距離場の値の大きさに対応する濃淡を有するイメージを重畳させた画像を表示する工程を含むことを特徴とする請求項11に記載の加工面性状評価方法。
  13. 前記面性状の特性値を算出する工程を含み、
    前記特性値は、前記オフセット曲面上での前記距離場モデルの解析によって算出される前記距離場の統計指標であることを特徴とする請求項11に記載の加工面性状評価方法。
JP2020544053A 2019-03-11 2020-03-06 加工面性状評価装置および加工面性状評価方法 Active JP6880336B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/009748 WO2020183579A1 (ja) 2019-03-11 2019-03-11 加工面性状評価装置および加工面性状評価方法
JPPCT/JP2019/009748 2019-03-11
PCT/JP2020/009775 WO2020184460A1 (ja) 2019-03-11 2020-03-06 加工面性状評価装置、加工面性状評価方法および機械学習装置

Publications (2)

Publication Number Publication Date
JPWO2020184460A1 JPWO2020184460A1 (ja) 2021-03-18
JP6880336B2 true JP6880336B2 (ja) 2021-06-02

Family

ID=72427007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020544053A Active JP6880336B2 (ja) 2019-03-11 2020-03-06 加工面性状評価装置および加工面性状評価方法

Country Status (4)

Country Link
JP (1) JP6880336B2 (ja)
CN (1) CN113557484B (ja)
DE (1) DE112020001157T5 (ja)
WO (2) WO2020183579A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406053B1 (ja) 2023-07-25 2023-12-26 ファナック株式会社 形状復元装置およびコンピュータ読み取り可能な記憶媒体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077941A (en) * 1990-05-15 1992-01-07 Space Time Analyses, Ltd. Automatic grinding method and system
JPH08292808A (ja) * 1995-04-24 1996-11-05 Makino Milling Mach Co Ltd ボールエンドミルによる切削加工方法および装置
JP2001142515A (ja) * 1999-11-18 2001-05-25 Tomikazu Kamiya 切削シミュレーション方法
JP2009145155A (ja) * 2007-12-13 2009-07-02 Frank Mueller Watchland Sa 時計用オンデマンド表示装置
WO2009145155A1 (ja) * 2008-05-29 2009-12-03 三菱電機株式会社 切削加工シミュレーション表示装置、切削加工シミュレーション表示方法、および切削加工シミュレーション表示プログラム
US8265909B2 (en) * 2009-05-19 2012-09-11 Mitsubishi Electric Research Laboratories, Inc. Method for reconstructing a distance field of a swept volume at a sample point
JP2011039609A (ja) * 2009-08-06 2011-02-24 Okuma Corp 数値制御工作機械用の加工シミュレーション装置
JP5610883B2 (ja) * 2010-07-06 2014-10-22 三菱電機株式会社 加工シミュレーション装置及び方法
DE112012002680T5 (de) * 2011-06-29 2014-04-03 Mitsubishi Electric Corp. Bearbeitungssimulationsvorrichtung und -verfahren
JP5942423B2 (ja) 2011-12-27 2016-06-29 株式会社ジェイテクト 加工面性状算出装置、加工面性状算出方法、加工条件決定装置および加工条件決定方法
KR20140115371A (ko) * 2012-03-30 2014-09-30 마키노 밀링 머신 주식회사 워크 가공면 표시방법, 워크 가공면 표시장치, 공구경로 생성장치 및 워크 가공면 표시 프로그램
US10018989B2 (en) * 2013-03-29 2018-07-10 Makino Milling Machine Co., Ltd. Method of evaluating a machined surface of a workpiece, a controlling apparatus and a machine tool
JP2016162102A (ja) * 2015-02-27 2016-09-05 国立大学法人広島大学 加工評価システム、加工評価方法及び加工評価プログラム
JP6623902B2 (ja) * 2016-03-30 2019-12-25 ブラザー工業株式会社 加工経路演算装置、加工経路演算方法及びコンピュータプログラム
JP6560707B2 (ja) * 2017-04-20 2019-08-14 ファナック株式会社 加工面品位評価装置
JP6743760B2 (ja) * 2017-05-23 2020-08-19 トヨタ自動車株式会社 3次元曲面上の凹凸形状測定方法

Also Published As

Publication number Publication date
WO2020184460A1 (ja) 2020-09-17
WO2020183579A1 (ja) 2020-09-17
CN113557484B (zh) 2024-03-01
JPWO2020184460A1 (ja) 2021-03-18
CN113557484A (zh) 2021-10-26
DE112020001157T5 (de) 2021-11-25

Similar Documents

Publication Publication Date Title
CN108510577B (zh) 基于已有动作数据的真实感动作迁移和生成方法及系统
KR20120089707A (ko) 기계가공 시뮬레이션과 그 시뮬레이션을 시각적으로 제공하기 위한 방법, 컴퓨터 시스템, 그리고 컴퓨터 프로그램 제품
KR20160082481A (ko) 워크피스의 가공의 시뮬레이팅
Matos et al. Many-objective optimization of build part orientation in additive manufacturing
JP5666013B2 (ja) 物体のモデルの表面の欠陥を判断するための方法およびシステム
CN111581776B (zh) 一种基于几何重建模型的等几何分析方法
JP2022036918A (ja) 人工知能の使用による3dオブジェクトへのuvマッピング
JPH04219862A (ja) 多次元情報表示方法および装置
Choi et al. Visualisation of rapid prototyping
US20100082146A1 (en) Simulation or modeling method of cutting, program of that method, and medium recording that program
Kazmi et al. A survey of sketch based modeling systems
JP6880336B2 (ja) 加工面性状評価装置および加工面性状評価方法
EP1627282B1 (en) Rig baking
Gospodnetic et al. Flexible surface inspection planning pipeline
Willis et al. Rapid prototyping 3D objects from scanned measurement data
Kersting et al. Optimizing NC-tool paths for simultaneous five-axis milling based on multi-population multi-objective evolutionary algorithms
JP2010142817A (ja) 管体の3次元曲げ加工シミュレーションシステム
JP2004318825A (ja) 複数のポリゴンから構成される3次元モデルを2次元平面に投影する際の陰線を消去する陰線処理方法
Levinski et al. Interactive function-based artistic shape modeling
JP4949953B2 (ja) 曲面形状と基準面との距離算出方法
Nicolau et al. Exploring and Selecting Supershapes in Virtual Reality with Line, Quad, and Cube Shaped Widgets
Nie Efficient cutter-workpiece engagement determination in multi-axis milling by voxel modeling
CN109147035A (zh) 三维模型的显示方法及系统
CN106600677B (zh) Vr系统中对传统模型的处理方法
Mocanu et al. Mesh deformation with hard constraints

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210430

R150 Certificate of patent or registration of utility model

Ref document number: 6880336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250