JP6879968B2 - Copper alloy plate, electronic parts for energization, electronic parts for heat dissipation - Google Patents
Copper alloy plate, electronic parts for energization, electronic parts for heat dissipation Download PDFInfo
- Publication number
- JP6879968B2 JP6879968B2 JP2018049993A JP2018049993A JP6879968B2 JP 6879968 B2 JP6879968 B2 JP 6879968B2 JP 2018049993 A JP2018049993 A JP 2018049993A JP 2018049993 A JP2018049993 A JP 2018049993A JP 6879968 B2 JP6879968 B2 JP 6879968B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- alloy plate
- less
- electronic parts
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 50
- 230000017525 heat dissipation Effects 0.000 title claims description 9
- 238000005096 rolling process Methods 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 230000035882 stress Effects 0.000 description 37
- 238000005452 bending Methods 0.000 description 23
- 238000005098 hot rolling Methods 0.000 description 16
- 238000005097 cold rolling Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 230000032683 aging Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 239000000956 alloy Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910017813 Cu—Cr Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017985 Cu—Zr Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Landscapes
- Conductive Materials (AREA)
Description
本発明は電子材料などの電子部品の製造に好適に使用可能な銅合金板及び通電用又は放熱用電子部品に関し、特に、電機・電子機器、自動車等に搭載される端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板等の電子部品の素材として使用される銅合金板、及び該銅合金板を用いた電子部品に関する。中でも、電気自動車、ハイブリッド自動車等で用いられるコネクタや端子等の通電用電子部品の用途、又はスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に好適な銅合金板及び該銅合金板を用いた電子部品に関するものである。 The present invention relates to a copper alloy plate that can be suitably used for manufacturing electronic components such as electronic materials and electronic components for energization or heat dissipation, and in particular, terminals, connectors, relays, and switches mounted on electric / electronic devices, automobiles, and the like. , A copper alloy plate used as a material for electronic parts such as sockets, bus bars, lead frames, and heat sinks, and electronic parts using the copper alloy plate. Among them, copper alloy plates and copper suitable for applications of energizing electronic parts such as connectors and terminals used in electric vehicles and hybrid vehicles, or applications of heat dissipation electronic parts such as liquid crystal frames used in smartphones and tablet PCs. It relates to an electronic component using an alloy plate.
電子機器の端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム、放熱板等の電気又は熱を伝えるための材料として、強度と導電率に優れた銅合金条が広く用いられている。ここで、電気伝導性と熱伝導性は比例関係にある。ところで、近年、電子機器のコネクタにおいて高電流化が進んでおり、良好な曲げ性を有し、75%IACS以上の導電率、550MPa以上の耐力を有することが必要と考えられている。 Copper alloy strips with excellent strength and conductivity are widely used as materials for transmitting electricity or heat such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, and heat sinks of electronic devices. Here, electrical conductivity and thermal conductivity are in a proportional relationship. By the way, in recent years, the current has been increased in connectors of electronic devices, and it is considered necessary to have good bendability, a conductivity of 75% IACS or more, and a proof stress of 550 MPa or more.
一方、例えばスマートフォンやタブレットPCの液晶には液晶フレームと呼ばれる放熱部品が用いられている。このような放熱用途の銅合金板においても、高熱伝導率化が進んでおり、良好な曲げ性を有し、高強度を有することが必要と考えられている。このため、放熱用途の銅合金板においても、75%IACS以上の導電率、550MPa以上の耐力を有することが必要と考えられている。また、これらの特性に加えて、曲げ部の曲げ肌も良好である必要がある。その理由として、例えば、曲げ肌が良好でない場合、コネクタなどでは曲げ部分の接触面積減少につながり、通電性が悪化することなどが挙げられる。ここで、曲げ肌とは、曲げ試験後の表面のしわの深さをいい、その評価方法の詳細は後述する。 On the other hand, for example, a heat radiating component called a liquid crystal frame is used for the liquid crystal of a smartphone or a tablet PC. It is considered necessary for such copper alloy plates for heat dissipation to have high thermal conductivity, good bendability, and high strength. Therefore, it is considered necessary for a copper alloy plate for heat dissipation to have a conductivity of 75% IACS or more and a proof stress of 550 MPa or more. In addition to these characteristics, the bent surface of the bent portion needs to be good. The reason for this is that, for example, when the bent surface is not good, the contact area of the bent portion is reduced in a connector or the like, and the electrical conductivity is deteriorated. Here, the bent skin means the depth of wrinkles on the surface after the bending test, and the details of the evaluation method will be described later.
しかしながら、75%IACS以上の導電率をコルソン合金系銅合金で達成することは難しいため、Cu−Cr系やCu−Zr系の銅合金の開発が進められてきた。例えば、溶解鋳造、均質化熱処理、熱間圧延、冷間圧延、再結晶熱処理、冷間圧延、時効熱処理を行うことで、特に耐応力緩和特性に優れ、中程度の強度と高導電性を有するCu−Cr系を中心とした銅合金材料を得られることが開示されている(特許文献1)。また、Cu−Cr−Zr−Ti系銅合金として、I(200)を高くすることで、曲げ加工性に優れた銅合金が開示されている(特許文献2)。 However, since it is difficult to achieve a conductivity of 75% IACS or higher with a Corson alloy-based copper alloy, the development of Cu-Cr-based and Cu-Zr-based copper alloys has been promoted. For example, by performing melt casting, homogenization heat treatment, hot rolling, cold rolling, recrystallization heat treatment, cold rolling, and aging heat treatment, it is particularly excellent in stress relaxation resistance, and has moderate strength and high conductivity. It is disclosed that a copper alloy material centered on a Cu—Cr system can be obtained (Patent Document 1). Further, as a Cu-Cr-Zr-Ti-based copper alloy, a copper alloy having excellent bending workability by increasing I (200) is disclosed (Patent Document 2).
しかしながら、Cu−Cr−Zr−Ti系銅合金は、比較的良好な応力緩和特性を有するとはいうものの、その応力緩和特性のレベルは大電流を通電する部品又は大熱量を放散する部品の用途として必ずしも十分とはいえない場合があった。また、75%IACS以上の高導電率と良好な曲げ加工性を確保しつつ耐力を高めることには限界があり、コネクタとして用いられる場合に必ずしも十分な接圧を確保できない場合があった。さらに、特許文献1及び2は、曲げ加工性をクラックの有無で判断しているが、クラックがない場合であっても、曲げ肌が悪いことはあり得るので、これらの技術では必ずしも良好な曲げ肌を得られるとは限らない。 However, although the Cu-Cr-Zr-Ti copper alloy has relatively good stress relaxation characteristics, the level of the stress relaxation characteristics is used for parts that carry a large current or dissipate a large amount of heat. In some cases, it was not always sufficient. Further, there is a limit in increasing the yield strength while ensuring high conductivity of 75% IACS or more and good bending workability, and there is a case where sufficient contact pressure cannot always be secured when used as a connector. Further, in Patent Documents 1 and 2, the bending workability is determined by the presence or absence of cracks, but even if there are no cracks, the bending surface may be poor, so that these techniques are not always good for bending. You don't always get skin.
そこで、本発明は、高強度、高導電性を兼ね備えた銅合金板において、良好な曲げ肌を有するCu−Cr−Zr−Ti系銅合金板を提供することを課題とする。さらには、本発明は、当該銅合金板を用いた、通電用途又は放熱用途に好適な電子部品を提供することをも目的とする。 Therefore, an object of the present invention is to provide a Cu-Cr-Zr-Ti-based copper alloy plate having a good bending surface in a copper alloy plate having both high strength and high conductivity. Furthermore, it is also an object of the present invention to provide an electronic component suitable for energization use or heat dissipation use using the copper alloy plate.
本発明に係る銅合金板は一側面において、Crを0.1〜0.6質量%、ZrおよびTiのうちの一種または二種を合計で0.01〜0.30質量%含有し、残部が銅及び不可避的不純物からなり、XRD測定から得られる圧延直角方向(TD)の逆極点図における集積強度のピーク方位に対して、TDと平行方向に引張の応力が負荷された際のシュミットファクターが0.40以上である銅合金板が提供される。 The copper alloy plate according to the present invention contains 0.1 to 0.6% by mass of Cr and 0.01 to 0.30% by mass of one or two of Zr and Ti in total on one side, and the balance. Is composed of copper and unavoidable impurities, and is a Schmid factor when a tensile stress is applied in the direction parallel to the TD with respect to the peak direction of the accumulated strength in the reverse pole diagram of the rolling orthogonal direction (TD) obtained from the XRD measurement. A copper alloy plate having a value of 0.40 or more is provided.
本発明に係る銅合金板は別の一実施態様において、銅合金板の0.2%耐力(MPa)/引張強度(MPa)の値が0.95以上である。 In another embodiment, the copper alloy plate according to the present invention has a 0.2% proof stress (MPa) / tensile strength (MPa) value of 0.95 or more.
本発明に係る銅合金板は更に別の一実施態様において、銅合金板の引張強度が550MPa以上であり、導電率が75%IACS以上であり、応力緩和率が15%以下である。 In still another embodiment, the copper alloy plate according to the present invention has a tensile strength of 550 MPa or more, a conductivity of 75% IACS or more, and a stress relaxation rate of 15% or less.
本発明に係る銅合金板は更に別の一実施態様において、銅合金板はAg、Fe、Co、Ni、Mn、Zn、Mg、Si、P、Sn、Al、Ca、Y、Nb、Mo、Hf、W、Pt、Au及びBからなる群から選ばれる少なくとも1種を合計で1.0質量%以下含有する。 In still another embodiment, the copper alloy plate according to the present invention comprises Ag, Fe, Co, Ni, Mn, Zn, Mg, Si, P, Sn, Al, Ca, Y, Nb, Mo, At least one selected from the group consisting of Hf, W, Pt, Au and B is contained in a total of 1.0% by mass or less.
本発明は別の一側面において、上記銅合金板を用いた通電用電子部品である。 In another aspect, the present invention is an electronic component for energization using the copper alloy plate.
本発明は更に別の一側面において、上記銅合金板を用いた放熱用電子部品である。 In yet another aspect, the present invention is an electronic component for heat dissipation using the copper alloy plate.
本発明によれば、導電率や強度を維持しつつ、かつ、良好な曲げ肌を有するCu−Cr−Zr−Ti系銅合金板、並びに通電用途又は放熱用途に好適な電子部品を提供することが可能である。この銅合金板は、端子、コネクタ、スイッチ、ソケット、リレー、バスバー、リードフレーム等の電子部品の素材として好適に使用することができ、特に大電流を通電する電子部品の素材又は大熱量を放散する電子部品の素材として有用である。 According to the present invention, a Cu-Cr-Zr-Ti copper alloy plate having a good bending surface while maintaining conductivity and strength, and an electronic component suitable for energization or heat dissipation are provided. Is possible. This copper alloy plate can be suitably used as a material for electronic parts such as terminals, connectors, switches, sockets, relays, bus bars, lead frames, etc., and particularly dissipates a large amount of heat or a material for electronic parts that carry a large current. It is useful as a material for electronic components.
以下、本発明の実施形態に係る銅合金板(Cu−Cr−Zr−Ti系合金板)について説明する。なお、本発明において「%」とは、特に断らない限り、質量%を示すものとする。 Hereinafter, the copper alloy plate (Cu-Cr-Zr-Ti alloy plate) according to the embodiment of the present invention will be described. In the present invention, "%" means mass% unless otherwise specified.
(成分濃度)
本発明の実施の形態に係る銅合金板は、Crを0.1〜0.6%、Zr及びTiのうちの一種又は二種を合計で0.01〜0.30%含み、残部が銅及び不可避的不純物からなる。一実施態様においては、Crを0.15〜0.3%含み、Zr及びTiのうちの一種又は二種を合計で0.05〜0.20%含有することが好ましい。Crが0.6%を超えると曲げ加工性が低下し、0.1%未満になると550MPa以上の0.2%耐力を得ることが難しくなる。Zr及びTiのうちの一種又は二種の合計が0.30%を超えると曲げ加工性が低下し、0.01%未満になると、550MPa以上の0.2%耐力を得ることが難しくなる。
なお、本明細書において「Cu−Cr−Zr−Ti系銅合金板」と称する場合、Cu、Cr、Zr及びTiをすべて含むことを意味せず、上記Crを0.1〜0.6%、Zr及びTiのうちの一種又は二種を合計で0.01〜0.30%含む銅合金板を総称する意味である。
(Component concentration)
The copper alloy plate according to the embodiment of the present invention contains 0.1 to 0.6% of Cr, 0.01 to 0.30% in total of one or two of Zr and Ti, and the balance is copper. And consists of unavoidable impurities. In one embodiment, it is preferable that Cr is contained in an amount of 0.15 to 0.3%, and one or two of Zr and Ti are contained in a total amount of 0.05 to 0.20%. If Cr exceeds 0.6%, the bending workability is lowered, and if it is less than 0.1%, it becomes difficult to obtain a 0.2% proof stress of 550 MPa or more. If the total of one or two of Zr and Ti exceeds 0.30%, the bending workability is lowered, and if it is less than 0.01%, it becomes difficult to obtain a 0.2% proof stress of 550 MPa or more.
In addition, when it is referred to as "Cu-Cr-Zr-Ti copper alloy plate" in this specification, it does not mean that it contains all Cu, Cr, Zr and Ti, and the above Cr is 0.1 to 0.6%. , Zr and Ti are collectively referred to as a copper alloy plate containing 0.01 to 0.30% in total.
さらに、本発明の実施の形態に係る銅合金板は、Ag、Fe、Co、Ni、Mn、Zn、Mg、Si、P、Sn、Al、Ca、Y、Nb、Mo、Hf、W、Pt、Au及びBからなる群から選ばれる少なくとも1種を合計で1.0%以下含有することが好ましい。これら元素は固溶強化や析出強化等により強度上昇に寄与する。これら元素の合計量が1.0%を超えると導電率が低下する、或いは、熱間圧延で割れる場合がある。 Further, the copper alloy plate according to the embodiment of the present invention includes Ag, Fe, Co, Ni, Mn, Zn, Mg, Si, P, Sn, Al, Ca, Y, Nb, Mo, Hf, W and Pt. , Au and B, preferably at least 1.0% or less in total. These elements contribute to the increase in strength by strengthening solid solution and strengthening precipitation. If the total amount of these elements exceeds 1.0%, the conductivity may decrease or the elements may be cracked by hot rolling.
なお、高強度および高導電性を有する銅合金板において、添加する添加元素の組み合わせによって個々の添加量が変更されることは当業者によって理解可能なものである。典型的な一実施態様においては、例えば、Agは1.0%以下、Feは0.1%以下、Coは0.1%以下、Niは0.2%以下、Mnは0.1%以下、Znは0.5%以下、Mgは0.1%以下、Siは0.1%以下、Pは0.05%以下、Snは0.1%以下、Alは0.1%以下、Caは0.1%以下、Yは0.1%以下、Nbは0.1%以下、Moは0.1%以下、Hfは0.1%以下、Wは0.1%以下、Ptは0.1%以下、Auは0.1%以下、Bは0.05%以下添加することができるが、導電率が75%IACSを下回らない添加元素の組み合わせおよび添加量であれば、本発明の銅合金板は必ずしもこれらの上限値に限定されるものではない。 It should be understood by those skilled in the art that in a copper alloy plate having high strength and high conductivity, the individual addition amount is changed depending on the combination of the additive elements to be added. In one typical embodiment, for example, Ag is 1.0% or less, Fe is 0.1% or less, Co is 0.1% or less, Ni is 0.2% or less, and Mn is 0.1% or less. , Zn is 0.5% or less, Mg is 0.1% or less, Si is 0.1% or less, P is 0.05% or less, Sn is 0.1% or less, Al is 0.1% or less, Ca Is 0.1% or less, Y is 0.1% or less, Nb is 0.1% or less, Mo is 0.1% or less, Hf is 0.1% or less, W is 0.1% or less, Pt is 0. .1% or less, Au can be added 0.1% or less, B can be added 0.05% or less, but if the combination and amount of added elements whose conductivity is not less than 75% IACS, the present invention can be added. The copper alloy plate is not necessarily limited to these upper limits.
本発明の実施の形態に係る銅合金板の厚みは特に限定されないが、例えば0.03〜0.6mmとすることができる。 The thickness of the copper alloy plate according to the embodiment of the present invention is not particularly limited, but may be, for example, 0.03 to 0.6 mm.
(シュミットファクター)
本発明者は、良好な曲げ肌を作り込むことが困難な場合の多い、B.W.:Bad Way(曲げ軸が圧延方向と同一方向)の曲げ肌を改善することが重要であると考えた。
圧延垂直方向に対して引張の応力が負荷された場合のシュミットファクターの値を高くしたところ、良好な曲げ肌が得られることが分かった。この要因としてはシュミットファクターの値が大きいほどすべり面がすべりやすいことから(なお、シュミットファクターの最大値は0.5である)、上記方向のシュミットファクターを高くすることで、B.W.に曲げ負荷がかかった際にすべり変形が生じやすくなったためと推測される。
(Schmidt factor)
It is often difficult for the present inventor to create a good bent skin, B.I. W. : It was considered important to improve the bending surface of Bad Way (the bending axis is in the same direction as the rolling direction).
It was found that when the value of the Schmidt factor was increased when a tensile stress was applied in the vertical direction of rolling, a good bending surface was obtained. The reason for this is that the larger the value of the Schmidt factor, the easier it is for the slip surface to slip (note that the maximum value of the Schmidt factor is 0.5). Therefore, by increasing the Schmidt factor in the above direction, B.I. W. It is presumed that this is because slip deformation is likely to occur when a bending load is applied to the surface.
図3は、単結晶の引張り分解せん断応力を簡易的に説明するモデルを示す。
具体的に、図3は、シュミットファクターについて簡易的に説明するためのモデル図であり、単結晶の塑性変形を模式的に示した図である。すなわち、断面積Aの単結晶丸棒10を、単軸荷重Fで引っ張った場合、単結晶丸棒10の結晶粒内のすべり面20、すべり方向25に分解せん断応力が生じる。この分解せん断応力τがその材料特有の臨界せん断応力τcに達するとすべり変形(塑性変形)が生じる。分解せん断応力τは、軸応力をσ、負荷軸とすべり面の法線とのなす角をφ、負荷軸とすべり方向とのなす角をλとすると、τ=(F/A)・cosλ・cosφ=σ・cosλ・cosφで表される。これがシュミットの法則であり、cosλ・cosφがシュミットファクターである。シュミットファクターは、λ=φ=45°の時に最大値になる(なお、シュミットファクターについては、塑性加工技術シリーズ2「材料」日本塑性加工学会編,コロナ社,p.12を参照)。
FIG. 3 shows a model for simply explaining the tensile decomposition shear stress of a single crystal.
Specifically, FIG. 3 is a model diagram for simply explaining the Schmid factor, and is a diagram schematically showing the plastic deformation of a single crystal. That is, when the single crystal round bar 10 having the cross-sectional area A is pulled by the uniaxial load F, decomposition shear stress is generated on the slip surface 20 and the slip direction 25 in the crystal grains of the single crystal round bar 10. When this decomposition shear stress τ reaches the critical shear stress τc peculiar to the material, slip deformation (plastic deformation) occurs. The decomposition shear stress τ is τ = (F / A) · cosλ ·, where σ is the axial stress, φ is the angle between the load axis and the normal of the slip surface, and λ is the angle between the load axis and the slip direction. It is represented by cosφ = σ ・ cosλ ・ cosφ. This is Schmidt's law, and cosλ · cosφ is the Schmidt factor. The Schmidt factor reaches its maximum value when λ = φ = 45 ° (for the Schmidt factor, refer to Plastic Machining Technology Series 2 “Materials”, edited by the Japan Society for Plastic Machining, Corona Publishing Co., Ltd., p. 12).
上記のシュミットファクターは、圧延直角方向(TD)の逆極点図における集積強度のピーク方位に対して、TDと平行方向に引張の応力が負荷された場合の値を算出した。逆極点図はXRD(X−ray diffraction)測定から求めた。本方法で求められたシュミットファクターが0.40以上の値を示した場合に良好な曲げ肌が得られた。シュミットファクターが0.40以上となることで、銅合金板に曲げ負荷がかかった際に転位運動が比較的容易となる。転位の運動によりすべり変形が生じることで連続的な変形が可能となり、材料表面において大きなくぼみ等が発生しにくくなることが要因であると推測される。
なお、シュミットファクターは以下の式を用いて算出した。
(シュミットファクター)=cosλ・cosφ
cosλ=t・n/|t||n|
cosφ=t・s/|t||s|
ただし、
φ:負荷軸とすべり面の法線とのなす角
λ:負荷軸とすべり方向とのなす角
t:引張荷重負荷方向に平行な単位ベクトル
n:すべり面の法線ベクトルに平行な単位ベクトル
s:すべり方向に平行な単位ベクトル
The above-mentioned Schmid factor was calculated as a value when a tensile stress was applied in a direction parallel to the TD with respect to the peak direction of the accumulated strength in the reverse pole figure in the direction perpendicular to rolling (TD). The reverse pole figure was obtained from XRD (X-ray division) measurement. Good bent skin was obtained when the Schmidt factor obtained by this method showed a value of 0.40 or more. When the Schmid factor is 0.40 or more, the dislocation motion becomes relatively easy when a bending load is applied to the copper alloy plate. It is presumed that the cause is that slip deformation occurs due to the movement of dislocations, which enables continuous deformation and makes it difficult for large dents and the like to occur on the surface of the material.
The Schmidt factor was calculated using the following formula.
(Schmidt factor) = cosλ ・ cosφ
cosλ = t · n / | t || n |
cosφ = t · s / | t || s |
However,
φ: Angle formed by the load axis and the normal of the sliding surface λ: Angle formed by the load axis and the sliding direction t: Unit vector parallel to the tensile load load direction n: Unit vector parallel to the normal vector of the sliding surface s : Unit vector parallel to the sliding direction
(曲げ肌)
曲げ肌の評価には曲げ部の表面粗さRaを用いる。Raの値が低いほど試料表面の凹凸は少なくなり、コネクタ等で用いる際に接触面積は大きくなるので、良好な通電性が確保される。本発明ではRaを2.0μm以下、望ましくは1.5μm以下とする。
(Bent skin)
The surface roughness Ra of the bent portion is used for the evaluation of the bent skin. The lower the Ra value, the smaller the unevenness of the sample surface, and the larger the contact area when used in a connector or the like, so that good electrical conductivity is ensured. In the present invention, Ra is set to 2.0 μm or less, preferably 1.5 μm or less.
(0.2%耐力/引張強度)
本発明の一実施形態において、0.2%耐力(YS)と引張強度(TS)との比の値が0.95以上であることが好ましい。0.2%耐力/引張強度の値が0.95以上であれば、十分に圧延集合組織が形成されることになりピークの集積強度が大きくなる。ピークの集積強度が高いほど、ピークを示す方位のシュミットファクターが曲げ肌に与える影響が高くなるという利点がある。
(0.2% proof stress / tensile strength)
In one embodiment of the present invention, the value of the ratio of 0.2% proof stress (YS) to tensile strength (TS) is preferably 0.95 or more. When the value of 0.2% proof stress / tensile strength is 0.95 or more, the rolled texture is sufficiently formed and the accumulated strength of the peak becomes large. The higher the accumulation intensity of the peak, the higher the influence of the Schmid factor in the direction indicating the peak on the bent skin.
(用途)
本発明の実施の形態に係る銅合金板は、端子、コネクタ、リレー、スイッチ、ソケット、バスバー、リードフレーム、放熱板などの電子部品の用途に好適に使用することができ、特に、電気自動車、ハイブリッド自動車等で用いられるコネクタや端子等の通電用途、またはスマートフォンやタブレットPCで用いられる液晶フレーム等の放熱用電子部品の用途に有用である。
(Use)
The copper alloy plate according to the embodiment of the present invention can be suitably used for applications of electronic components such as terminals, connectors, relays, switches, sockets, bus bars, lead frames, and heat sinks, and in particular, electric vehicles. It is useful for energizing connectors and terminals used in hybrid vehicles and the like, or for heat-dissipating electronic components such as liquid crystal frames used in smartphones and tablet PCs.
(製造方法)
本発明の実施の形態に係る銅合金板は以下の製造工程により製造することができる。まず、純銅原料として電気銅等を溶解し、カーボン脱酸等により酸素濃度を低減した後、Crと、Zr及びTiのうちの一種又は二種と、必要に応じて他の合金元素を添加し、厚み30〜300mm程度のインゴットに鋳造する。このインゴットを例えば800〜1000℃の熱間圧延により厚み3〜30mm程度の板とした後、第1の冷間圧延、溶体化処理、第2の冷間圧延、時効処理をこの順で行う。
(Production method)
The copper alloy plate according to the embodiment of the present invention can be manufactured by the following manufacturing process. First, electrolytic copper or the like is dissolved as a pure copper raw material, the oxygen concentration is reduced by carbon deoxidation or the like, and then Cr, one or two of Zr and Ti, and other alloying elements are added as necessary. , Cast into an ingot with a thickness of about 30 to 300 mm. After the ingot is hot-rolled at 800 to 1000 ° C. to form a plate having a thickness of about 3 to 30 mm, the first cold rolling, solution treatment, second cold rolling, and aging treatment are performed in this order.
熱間圧延において、その合計の加工度を80%以上とし、最終パスのひずみ速度を1.0/s-1以上にする。上記条件により熱間圧延を行うことで、十分に動的再結晶を発現させ、その結果として圧延直角方向(TD)の逆極点図における集積強度のピーク方位に対して、TDと平行方向に引張の応力が負荷された場合のシュミットファクターが0.40以上の値を有する合金とすることができる。
合計の加工度は、(熱間圧延前の厚み−熱間圧延後の厚み)/熱間圧延前の厚み×100%により計算される。
最終パスのひずみ速度は、以下の式を用いて計算することができる。
dε/dt=(2πn/60r1/2)・(R/H)1/2・ln(1/(1−r))
ここで、
dε/dt:最終パスのひずみ速度
n:ロールの回転数(rpm)
r:加工度(%)/100
R:ロール半径(mm)
H:最終パス前の板厚(mm)
を意味する。
In hot rolling, the total workability is set to 80% or more, and the strain rate of the final pass is set to 1.0 / s -1 or more. By performing hot rolling under the above conditions, dynamic recrystallization is sufficiently developed, and as a result, tension is applied in the direction parallel to TD with respect to the peak direction of the accumulated strength in the reverse pole diagram in the direction perpendicular to rolling (TD). It is possible to obtain an alloy having a Schmid factor of 0.40 or more when the stress of is applied.
The total workability is calculated by (thickness before hot rolling-thickness after hot rolling) / thickness before hot rolling x 100%.
The strain rate of the final pass can be calculated using the following equation.
dε / dt = (2πn / 60r 1/2 ) ・ (R / H) 1/2・ln (1 / (1-r))
here,
dε / dt: Strain rate of the final pass n: Roll rotation speed (rpm)
r: Degree of processing (%) / 100
R: Roll radius (mm)
H: Plate thickness (mm) before the final pass
Means.
熱間圧延後、第1の冷間圧延を行う。第1の冷間圧延では厚みを0.15〜5mmとし、好ましくは0.25〜1.0mmとする。 After hot rolling, the first cold rolling is performed. In the first cold rolling, the thickness is 0.15 to 5 mm, preferably 0.25 to 1.0 mm.
溶体化処理は、800〜1000℃で保持後、水冷することで行う。 The solution treatment is carried out by holding at 800 to 1000 ° C. and then cooling with water.
溶体化処理後の第2の冷間圧延において、合計の加工度を75%以上とすることが好ましい。これにより最終時効後の0.2%耐力(MPa)/引張強度(MPa)の値を0.95以上とし、十分に圧延集合組織を形成させることができる。 In the second cold rolling after the solution treatment, the total workability is preferably 75% or more. As a result, the value of 0.2% proof stress (MPa) / tensile strength (MPa) after the final aging can be set to 0.95 or more, and a rolled texture can be sufficiently formed.
時効処理は、300〜500℃で5〜30h行うことが好ましい。 The aging treatment is preferably carried out at 300 to 500 ° C. for 5 to 30 hours.
以上より、本発明に係る銅合金板の製造方法は、Crを0.1〜0.6質量%、ZrおよびTiのうちの一種または二種を合計で0.01〜0.30質量%含有し、残部が銅及び不可避的不純物からなる銅合金インゴットを熱間圧延した後、第1の冷間圧延工程、溶体化処理工程、第2の冷間圧延工程、時効処理工程を含む銅合金板の製造方法であって、
前記熱間圧延工程における合計加工度を80%以上とし、最終パスのひずみ速度を1.0/s-1以上とすることを特徴とする銅合金板の製造方法である。
Based on the above, the method for producing a copper alloy plate according to the present invention contains 0.1 to 0.6% by mass of Cr and 0.01 to 0.30% by mass of one or two of Zr and Ti in total. After hot rolling a copper alloy ingot whose balance is copper and unavoidable impurities, a copper alloy plate including a first cold rolling step, a solution treatment step, a second cold rolling step, and an aging treatment step. It is a manufacturing method of
A method for producing a copper alloy plate, characterized in that the total workability in the hot rolling step is 80% or more and the strain rate of the final pass is 1.0 / s -1 or more.
上記製造方法により、曲げ肌が良好であるとともに、引張強度が550MPa以上であり、導電率が75%IACSであり、応力緩和率が15%以下である銅合金板を製造することができる。 By the above manufacturing method, it is possible to manufacture a copper alloy plate having a good bending surface, a tensile strength of 550 MPa or more, a conductivity of 75% IACS, and a stress relaxation rate of 15% or less.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.
溶銅に合金元素を添加した後、厚みが200mmのインゴットに鋳造した。インゴットを950℃で3時間加熱し、表1に示す加工度の熱間圧延を行った。熱間圧延における最終パスのひずみ速度は表1に示したとおりである。次いで、熱間圧延板表面の酸化スケールをグラインダーで研削、除去した後、冷間圧延で0.25〜1.0mmの厚みの板とした。更に900℃で溶体化処理を行った後、表1に示す加工度の冷間圧延を行い、板厚を0.1mmとした。その後の時効処理は500℃で10h実施した。 After adding an alloying element to the molten copper, it was cast into an ingot having a thickness of 200 mm. The ingot was heated at 950 ° C. for 3 hours, and hot rolling with the degree of processing shown in Table 1 was performed. The strain rates of the final pass in hot rolling are as shown in Table 1. Next, the oxide scale on the surface of the hot-rolled plate was ground and removed with a grinding machine, and then cold-rolled to obtain a plate having a thickness of 0.25 to 1.0 mm. Further, the solution treatment was performed at 900 ° C., and then cold rolling with the degree of processing shown in Table 1 was performed to obtain a plate thickness of 0.1 mm. Subsequent aging treatment was carried out at 500 ° C. for 10 hours.
<引張強度(TS)>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における引張強度(TS)を測定した。
<Tensile strength (TS)>
The tensile strength (TS) in the direction parallel to the rolling direction was measured by a tensile tester according to JIS-Z2241.
<0.2%耐力(YS)>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における0.2%耐力(YS)を測定した。0.2%耐力(YS)を降伏強度とした。
<0.2% proof stress (YS)>
The 0.2% proof stress (YS) in the direction parallel to the rolling direction was measured by a tensile tester according to JIS-Z2241. The yield strength was defined as 0.2% proof stress (YS).
<導電率(EC、単位:%IACS)>
試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS−H0505に準拠し四端子法により20℃での導電率を測定した。
<Conductivity (EC, unit:% IACS)>
The test piece was sampled so that the longitudinal direction of the test piece was parallel to the rolling direction, and the conductivity at 20 ° C. was measured by the four-terminal method in accordance with JIS-H0505.
<応力緩和率>
幅10mm、長さ100mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行になるように採取した。図1のように、l=50mmの位置を作用点として、試験片にy0のたわみを与え、圧延方向の0.2%耐力(JIS−Z2241に準拠して測定)の80%に相当する応力(s)を負荷した。y0は次式により求めた。
y0=(2/3)・l 2 ・s/(E・t)
ここで、Eは圧延方向のヤング率であり、tは試料の厚みである。150℃にて1000時間加熱後に除荷し、図2のように永久変形量(高さ)yを測定し、応力緩和率{[y(mm)/y0(mm)]×100(%)}を算出した。
<Stress relaxation rate>
A strip-shaped test piece having a width of 10 mm and a length of 100 mm was collected so that the longitudinal direction of the test piece was parallel to the rolling direction. As shown in FIG. 1, with the position of l = 50 mm as the point of action, the test piece is given a deflection of y 0 , which corresponds to 80% of the 0.2% proof stress in the rolling direction (measured according to JIS-Z2241). The stress (s) was applied. y 0 was calculated by the following equation.
y 0 = (2/3) ・l 2 ・ s / (E ・ t)
Here, E is Young's modulus in the rolling direction, and t is the thickness of the sample. After heating at 150 ° C. for 1000 hours, the load is unloaded, the amount of permanent deformation (height) y is measured as shown in FIG. 2, and the stress relaxation rate {[y (mm) / y 0 (mm)] × 100 (%). } Was calculated.
<曲げ肌>
曲げ肌の評価では、幅1mm、長さ20mmに切り出した試料を曲げ試験片として用いた。JIS−H3130に従ってB.W.(曲げ軸が圧延方向と同一方向)のW曲げ試験を行い、曲げ部の表面を共焦点レーザー顕微鏡で解析し、JIS−B0601(2013)に定められたRa(μm)を算出した。曲げ肌はRaが1.5μm以下であれば◎、1.5μmより大きく2.0μm以下であれば○、2.0μmより大きく3.0μm以下であれば△、3.0μmより大きければ×と表記した。
<Bent skin>
In the evaluation of the bent skin, a sample cut out to a width of 1 mm and a length of 20 mm was used as a bending test piece. According to JIS-H3130, B.I. W. A W bending test (the bending axis is in the same direction as the rolling direction) was performed, the surface of the bent portion was analyzed with a confocal laser scanning microscope, and Ra (μm) defined in JIS-B0601 (2013) was calculated. Bent skin is ⊚ if Ra is 1.5 μm or less, ○ if it is larger than 1.5 μm and 2.0 μm or less, Δ if it is larger than 2.0 μm and 3.0 μm or less, and × if it is larger than 3.0 μm. Notated.
<逆極点図>
逆極点図はXRD測定を用いて求めた。XRD測定には株式会社リガク社製RINT−TTRを用いて、銅合金板表面の厚み方向のX線回折を測定した。さらに、微粉末銅のX線回折を測定した。ここでX線はKα線、管電圧30KV、管電流100mAとした。銅合金板の各方位における集積強度を微粉末銅の集積強度で除することで、規格化された圧延直角方向(TD)の逆極点図を作成した。求めた逆極点図から集積強度がピークを示す方位を決定した。
<Reverse pole diagram>
The reverse pole figure was obtained using XRD measurement. For the XRD measurement, RINT-TTR manufactured by Rigaku Co., Ltd. was used to measure the X-ray diffraction in the thickness direction of the surface of the copper alloy plate. Furthermore, the X-ray diffraction of fine powdered copper was measured. Here, the X-ray was Kα ray, the tube voltage was 30 KV, and the tube current was 100 mA. By dividing the accumulation strength of the copper alloy plate in each direction by the accumulation strength of the fine powder copper, a normalized rolling orthogonal direction (TD) reverse pole point diagram was created. From the obtained reverse pole figure, the direction in which the accumulated intensity peaks was determined.
<シュミットファクター>
当成分の銅合金は面心立方構造(FCC)を有するため、その主すべり系は{111}<110>である。シュミットファクターはTDから見たときの集積強度がピークを示す方位に対して、圧延直角方向(TD)に平行に引張荷重を負荷した場合の主すべり系における値を算出した。
上記の通り具体的には以下の式を用いて、シュミットファクターを求めることができる。
(シュミットファクター)=cosλ・cosφ
cosλ=t・n/|t||n|
cosφ=t・s/|t||s|
ただし、
φ:負荷軸とすべり面の法線とのなす角
λ:負荷軸とすべり方向とのなす角
t:引張荷重負荷方向に平行な単位ベクトル
n:すべり面の法線ベクトルに平行な単位ベクトル
s:すべり方向に平行な単位ベクトル
主すべり系の中でも実際に活動するすべり系はシュミットファクターが最大値を取るものであるため、n、sは上式で規定されるシュミットファクターが最大値を取るような組み合わせを選択する必要がある。
<Schmidt Factor>
Since the copper alloy of this component has a face-centered cubic structure (FCC), its main slip system is {111} <110>. The Schmidt factor was calculated as a value in the main slip system when a tensile load was applied parallel to the direction perpendicular to rolling (TD) with respect to the direction in which the accumulated strength when viewed from TD showed a peak .
The upper SL as specifically for using the following equation can be obtained Schmidt factor.
(Schmidt factor) = cosλ ・ cosφ
cosλ = t · n / | t || n |
cosφ = t · s / | t || s |
However,
φ: Angle formed by the load axis and the normal of the sliding surface λ: Angle formed by the load axis and the sliding direction t: Unit vector parallel to the tensile load load direction n: Unit vector parallel to the normal vector of the sliding surface s : unit parallel to the sliding direction vector
Among the main slip systems, the slip system that is actually active has the maximum value of the Schmid factor, so it is necessary to select a combination of n and s that has the maximum value of the Schmid factor specified by the above equation. ..
各試験片の組成と製造条件及び各実施例及び比較例に対して得られた結果を表1に示す。なお、比較例については、表1に記載の製造条件以外は実施例と同様の条件で製造した。 Table 1 shows the composition and production conditions of each test piece and the results obtained for each Example and Comparative Example. The comparative example was manufactured under the same conditions as in the examples except for the manufacturing conditions shown in Table 1.
表1から明らかなように、本発明の組成とするとともに熱間圧延の合計加工度を80%以上とし、最終パスのひずみ速度を1.0/s-1以上にすることによって、引張強度が550MPa以上、導電率が75%IACS以上、応力緩和率が15%以下、曲げ肌が◎又は〇と、良好な特性を得ることができた。 As is clear from Table 1, the tensile strength is increased by setting the composition of the present invention, setting the total workability of hot rolling to 80% or more, and setting the strain rate of the final pass to 1.0 / s -1 or more. Good characteristics were obtained, such as 550 MPa or more, conductivity of 75% IACS or more, stress relaxation rate of 15% or less, and bending surface of ⊚ or 〇.
実施例19では、第2の冷間圧延の加工度が好ましい範囲内になく、0.2%耐力/引張強度の値が低かったため、若干曲げ肌は悪化したが、十分に満足のいくレベルであった。 In Example 19, the degree of workability of the second cold rolling was not within the preferable range, and the value of 0.2% proof stress / tensile strength was low, so that the bending surface was slightly deteriorated, but at a sufficiently satisfactory level. there were.
一方、Cr、Zrの成分濃度が高い比較例1、2の場合は、導電率及び曲げ肌が劣った。Cr、Zr又はTiの成分濃度が低い比較例3、4、5の場合、引張強度及び応力緩和率が劣った。 On the other hand, in the cases of Comparative Examples 1 and 2 in which the component concentrations of Cr and Zr were high, the conductivity and the bent surface were inferior. In the cases of Comparative Examples 3, 4, and 5 in which the component concentrations of Cr, Zr, and Ti were low, the tensile strength and stress relaxation rate were inferior.
添加元素の濃度が高い比較例6、7は、熱間圧延で割れが生じた。 In Comparative Examples 6 and 7 having a high concentration of additive elements, cracks were generated by hot rolling.
熱間圧延の加工度が低い比較例8では、シュミットファクターが低くなり、曲げ肌が劣った。 In Comparative Example 8 in which the degree of hot rolling was low, the Schmidt factor was low and the bending surface was inferior.
熱間圧延の最終パスのひずみ速度が低い比較例9では、シュミットファクターが低くなり、曲げ肌が劣った。 In Comparative Example 9 in which the strain rate of the final pass of hot rolling was low, the Schmidt factor was low and the bending surface was inferior.
比較例10では、熱間圧延の最終パスのひずみ速度が低く、シュミットファクターが低い。また、第2の冷間圧延の加工度も低いので、0.2%耐力/引張強度の値が低い。これらの原因で曲げ肌も劣った。 In Comparative Example 10, the strain rate of the final pass of hot rolling is low, and the Schmidt factor is low. Further, since the workability of the second cold rolling is also low, the value of 0.2% proof stress / tensile strength is low. Bent skin was also inferior due to these causes.
10 単結晶丸棒
20 単結晶丸棒の結晶粒内のすべり面
25 単結晶丸棒のすべり方向
30 すべり面の法線
10 Single crystal round bar 20 Sliding surface in the crystal grain of the single crystal round bar 25 Sliding direction of the single crystal round bar 30 Normal of the sliding surface
Claims (5)
0.2%耐力が550MPa以上であり、導電率が75%IACS以上であり、応力緩和率が15%以下である銅合金板。 Cr is 0.1 to 0.6% by mass, one or two of Zr and Ti are contained in a total of 0.01 to 0.30% by mass, and the balance is composed of copper and unavoidable impurities. relative peak direction of the integrated intensity in the inverse pole figure of the obtained perpendicular to the rolling direction (TD), Ri der Schmidt factor 0.40 or more when the stress of the tensile TD direction parallel-loaded,
A copper alloy plate having a 0.2% proof stress of 550 MPa or more, a conductivity of 75% IACS or more, and a stress relaxation rate of 15% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018049993A JP6879968B2 (en) | 2018-03-16 | 2018-03-16 | Copper alloy plate, electronic parts for energization, electronic parts for heat dissipation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018049993A JP6879968B2 (en) | 2018-03-16 | 2018-03-16 | Copper alloy plate, electronic parts for energization, electronic parts for heat dissipation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019157258A JP2019157258A (en) | 2019-09-19 |
JP6879968B2 true JP6879968B2 (en) | 2021-06-02 |
Family
ID=67995755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018049993A Active JP6879968B2 (en) | 2018-03-16 | 2018-03-16 | Copper alloy plate, electronic parts for energization, electronic parts for heat dissipation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6879968B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202035722A (en) * | 2019-03-25 | 2020-10-01 | 日商Jx金屬股份有限公司 | Copper alloy plate, electronic component for passage of electricity, and electronic component for heat dissipation |
TW202035723A (en) * | 2019-03-25 | 2020-10-01 | 日商Jx金屬股份有限公司 | Copper alloy plate, electronic component for passage of electricity, and electronic component for heat dissipation |
CN113604701A (en) * | 2021-07-16 | 2021-11-05 | 江西理工大学 | Y-containing high-temperature softening resistant copper alloy material |
CN114752807A (en) * | 2022-02-28 | 2022-07-15 | 昆明冶金研究院有限公司北京分公司 | Cu-Cr-Nb-Zr alloy and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4563495B1 (en) * | 2009-04-27 | 2010-10-13 | Dowaメタルテック株式会社 | Copper alloy sheet and manufacturing method thereof |
TWI539013B (en) * | 2010-08-27 | 2016-06-21 | Furukawa Electric Co Ltd | Copper alloy sheet and method of manufacturing the same |
JP5834528B2 (en) * | 2011-06-22 | 2015-12-24 | 三菱マテリアル株式会社 | Copper alloy for electrical and electronic equipment |
JP6749121B2 (en) * | 2016-03-30 | 2020-09-02 | Jx金属株式会社 | Copper alloy plate with excellent strength and conductivity |
JP6749122B2 (en) * | 2016-03-30 | 2020-09-02 | Jx金属株式会社 | Copper alloy plate with excellent strength and conductivity |
-
2018
- 2018-03-16 JP JP2018049993A patent/JP6879968B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019157258A (en) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6879968B2 (en) | Copper alloy plate, electronic parts for energization, electronic parts for heat dissipation | |
JP5506806B2 (en) | Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same | |
JP2011214088A (en) | Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME | |
JP5451674B2 (en) | Cu-Si-Co based copper alloy for electronic materials and method for producing the same | |
JP5380621B1 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP6128976B2 (en) | Copper alloy and high current connector terminal material | |
JP6749121B2 (en) | Copper alloy plate with excellent strength and conductivity | |
JP5632063B1 (en) | Copper alloy plate, high-current electronic component and heat dissipation electronic component including the same | |
JP6835638B2 (en) | Copper alloy plate with excellent strength and conductivity | |
JP5470483B1 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP6328380B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP6835636B2 (en) | Copper alloy plate with excellent strength and conductivity | |
JP2017155340A (en) | Copper alloy sheet excellent in conductivity and stress relaxation characteristic | |
JP6207539B2 (en) | Copper alloy strip, and electronic component for high current and heat dissipation provided with the same | |
WO2020195218A1 (en) | Copper alloy plate, electronic component for passage of electricity, and electronic component for heat dissipation | |
WO2020195219A1 (en) | Copper alloy plate, electronic component for passage of electricity, and electronic component for heat dissipation | |
JP6749122B2 (en) | Copper alloy plate with excellent strength and conductivity | |
JP5449595B1 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP7133327B2 (en) | Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation | |
JP5620025B2 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP2014074223A (en) | Copper alloy sheet excellent in conductivity and stress relaxation property | |
JP7133326B2 (en) | Copper alloy plates with excellent strength and conductivity, electrical parts, electronic parts for heat dissipation | |
JP2020143377A (en) | Copper alloy sheet excellent in strength and conductivity | |
JP2014055347A (en) | Copper alloy sheet excellent in conductivity and stress relief properties | |
JP2020143376A (en) | Copper alloy sheet excellent in strength and conductivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191101 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210430 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6879968 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |