JP6878019B2 - Liquid level measurement method - Google Patents

Liquid level measurement method Download PDF

Info

Publication number
JP6878019B2
JP6878019B2 JP2017012637A JP2017012637A JP6878019B2 JP 6878019 B2 JP6878019 B2 JP 6878019B2 JP 2017012637 A JP2017012637 A JP 2017012637A JP 2017012637 A JP2017012637 A JP 2017012637A JP 6878019 B2 JP6878019 B2 JP 6878019B2
Authority
JP
Japan
Prior art keywords
light
voltage
value
liquid level
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017012637A
Other languages
Japanese (ja)
Other versions
JP2018119896A (en
Inventor
洋輔 松島
洋輔 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2017012637A priority Critical patent/JP6878019B2/en
Publication of JP2018119896A publication Critical patent/JP2018119896A/en
Application granted granted Critical
Publication of JP6878019B2 publication Critical patent/JP6878019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液面測定方法に関し、詳しくは、光ファイバを利用した液面計を使用して液面を測定する方法に関する。 The present invention relates to a liquid level measuring method, and more particularly to a method of measuring a liquid level using a liquid level gauge using an optical fiber.

光ファイバを利用した液面計は、液面感知部となる部分を屈曲させた光ファイバの一端に発光部を、他端に受光部をそれぞれ配置し、液面感知部に接する気相の屈折率と液相の屈折率との違いによって生じる光の強度の変化を受光部で測定し、液面感知部に接しているのが気相か液相かを判断することにより、液面を検出するようにしている(例えば、特許文献1参照。)。 A liquid level gauge using an optical fiber has a light emitting portion at one end and a light receiving portion at the other end of an optical fiber in which a portion to be a liquid level sensing portion is bent, and a refractive index of a gas phase in contact with the liquid level sensing portion is provided. The liquid level is detected by measuring the change in light intensity caused by the difference between the rate and the refractive index of the liquid phase at the light receiving part and determining whether the liquid phase is in contact with the liquid level sensing part. (See, for example, Patent Document 1).

特開2007−71863号公報Japanese Unexamined Patent Publication No. 2007-71863

このような液面計において、発光部や受光部に半導体素子を使用すると、環境温度の変化によって発光強度や受光強度が大きく変化し、液面を確実に検知できないことがあった。このため、液面計を設置した環境温度を一定温度に保持するための空調機器を使用することが行われているが、空調機器の設置コスト及び運転コストが必要になるという問題がある。 In such a liquid level gauge, when a semiconductor element is used for the light emitting part and the light receiving part, the light emitting intensity and the light receiving intensity change greatly due to a change in the environmental temperature, and the liquid level may not be detected reliably. For this reason, an air conditioner for maintaining the environmental temperature in which the liquid level gauge is installed is used, but there is a problem that the installation cost and the operation cost of the air conditioner are required.

また、空調が困難な使用環境では、発光部及び受光部を恒温槽内に収納したり、ヒータや冷却器を使用して発光部及び受光部を一定温度になるように調整したりすることが行われている。しかし、この場合も、恒温槽やヒータ、冷却器などの設置コスト及び運転コストが必要になるだけでなく、発光部及び受光部の周辺が複雑化し、液面計自体が大型化してしまうという問題もあった。 In a usage environment where air conditioning is difficult, the light emitting part and the light receiving part may be housed in a constant temperature bath, or the light emitting part and the light receiving part may be adjusted to a constant temperature by using a heater or a cooler. It is done. However, in this case as well, not only the installation cost and operating cost of the constant temperature bath, the heater, the cooler, etc. are required, but also the periphery of the light emitting part and the light receiving part becomes complicated, and the liquid level gauge itself becomes large. There was also.

一方、発光部を持たずに受光部のみを使用した光センサの一部では、受光部の温度を測定して受光強度を補正することも行われているが、液面計の場合は、環境温度によって発光部の発光強度と受光部の受光強度とが相互に関連して変化するため、受光部の温度だけでは正確な液面検知を行うことができない。 On the other hand, in some optical sensors that use only the light receiving part without having a light emitting part, the temperature of the light receiving part is measured to correct the light receiving intensity, but in the case of a liquid level gauge, the environment Since the light emitting intensity of the light emitting unit and the light receiving intensity of the light receiving unit change depending on the temperature, accurate liquid level detection cannot be performed only by the temperature of the light receiving unit.

そこで本発明は、環境温度によって発光部や受光部の温度が変化しても精度よく液面を検出することができる液面測定方法を提供することを目的としている。 Therefore, an object of the present invention is to provide a liquid level measuring method capable of accurately detecting the liquid level even if the temperature of the light emitting portion or the light receiving portion changes depending on the environmental temperature.

上記目的を達成するため、本発明の液面測定方法は、屈曲させることにより液面感知部を形成した光ファイバと、該光ファイバの一端から光ファイバ内に測定光を導入する半導体素子製の発光部と、前記光ファイバの他端から導出する測定光の強度を測定する半導体素子製の受光部とを備え、該受光部で受光した測定光の強度に基づいて液面を検出する液面計を使用した液面測定方法において、前記発光部及び前記受光部を共に収納した筐体内の温度を測定した温度測定値と、前記発光部に測定光照射用として印加した電圧を測定した印加電圧測定値(Vout)と、前記受光部が受光した測定光の強度を受光電圧として測定した受光電圧測定値(Vmeas)とをそれぞれ求め、前記受光電圧測定値(Vmeas)と、あらかじめ求めた基準温度における受光電圧基準値(Vsta)と、前記印加電圧測定値(Vout)とを用いて正規化した受光電圧正規化値(Vnom)を下記式(1)にて求め、

Figure 0006878019
式(1)によって正規化した受光電圧正規化値(Vnom)を、下記式(2)を用いて近似し、前記温度測定値と前記基準温度との差(t)から、回帰式係数(α、β)を決定し、
Figure 0006878019
式(2)と、前記受光電圧測定値(Vmeas)と前記印加電圧測定値(Vout)とに基づいて、前記受光電圧測定値(Vmeas)を前記基準温度における受光電圧に補正した受光電圧補正値(Vrev)を求めるための下記式(3)
Figure 0006878019
からなる式を補正式としてあらかじめ設定し、
前記印加電圧測定値(Vout)、前記受光電圧測定値(Vmeas)及び前記温度測定値と前記基準温度との差(t)を、式(3)に導入し、前記温度測定値によって補正した受光電圧補正値(Vrev)を求め、求めた受光電圧補正値(Vrev)を、あらかじめ基準温度において設定された受光電圧閾値と比較し、受光電圧補正値(Vrev)が受光電圧閾値未満のときに液面感知部が液相内にあると判定し、受光電圧補正値(Vrev)が受光電圧閾値以上のときに液面感知部が気相内にあると判定することを特徴とする液面測定方法。
In order to achieve the above object, the liquid level measuring method of the present invention is made of an optical fiber in which a liquid level sensing portion is formed by bending and a semiconductor element that introduces measurement light into the optical fiber from one end of the optical fiber. A liquid level that includes a light emitting unit and a light receiving unit made of a semiconductor element that measures the intensity of measurement light derived from the other end of the optical fiber, and detects the liquid level based on the intensity of the measurement light received by the light receiving unit. In the liquid level measurement method using a meter, the temperature measurement value obtained by measuring the temperature inside the housing containing both the light emitting part and the light receiving part and the applied voltage obtained by measuring the voltage applied to the light emitting part for measurement light irradiation. The measured value (Vout) and the measured value of the received voltage (Vmeas) measured by using the intensity of the measured light received by the light receiving unit as the received voltage are obtained, respectively, and the measured value of the received voltage (Vmeas) and the reference temperature obtained in advance are obtained. The received voltage normalized value (Vnom) normalized by using the received voltage reference value (Vsta) in the above and the applied voltage measured value (Vout) was obtained by the following equation (1).
Figure 0006878019
The received voltage normalized value (Vnom) normalized by the equation (1) is approximated by the following equation (2), and the regression equation coefficient (α) is obtained from the difference (t) between the measured temperature value and the reference temperature. , Β)
Figure 0006878019
A received voltage correction value obtained by correcting the received voltage measured value (Vmeas) to the received voltage at the reference temperature based on the equation (2), the received voltage measured value (Vmeas), and the applied voltage measured value (Vout). The following equation (3) for obtaining (Vrev)
Figure 0006878019
The formula consisting of is set in advance as a correction formula,
The applied voltage measured value (Vout), the received voltage measured value (Vmeas), and the difference (t) between the temperature measured value and the reference temperature are introduced into the equation (3) and the received light is corrected by the temperature measured value. The voltage correction value (Vrev) is obtained, the obtained light-receiving voltage correction value (Vrev) is compared with the light-receiving voltage threshold set in advance at the reference temperature, and when the light-receiving voltage correction value (Vrev) is less than the light-receiving voltage threshold, the liquid is liquid. A liquid level measuring method characterized in that the surface sensing unit is determined to be in the liquid phase and the liquid level sensing unit is determined to be in the gas phase when the received voltage correction value (Vrev) is equal to or higher than the received voltage threshold. ..

本発明の液面測定方法によれば、発光部及び受光部を共に収納した筐体内の温度に基づいて受光電圧測定値を補正することにより、温度変化による液面計の誤作動を防止して液面を精度よく測定することができる。 According to the liquid level measuring method of the present invention, the light receiving voltage measurement value is corrected based on the temperature inside the housing in which both the light emitting part and the light receiving part are housed, thereby preventing the liquid level gauge from malfunctioning due to a temperature change. The liquid level can be measured accurately.

本発明の液面測定方法を適用可能な液面計の一例を示す説明図である。It is explanatory drawing which shows an example of the liquid level gauge to which the liquid level measurement method of this invention can be applied. 発光部及び受光部を収納した筐体内の温度(発光部及び受光部を構成するトランジスタ温度)と受光部での受光電圧との関係を示す図である。It is a figure which shows the relationship between the temperature (transistor temperature which constitutes a light emitting part and a light receiving part) in the housing which housed a light emitting part and a light receiving part, and the light receiving voltage in a light receiving part. トランジスタ温度と正規化後の受光電圧との関係を示す図である。It is a figure which shows the relationship between the transistor temperature and the received voltage after normalization. トランジスタ温度と補正した受光電圧との関係を示す図である。It is a figure which shows the relationship between a transistor temperature and a corrected light-receiving voltage.

図1は、本発明の液面測定方法を適用可能な液面計の一例を示す説明図である。この液面計11は、液体容器12内の液面Sの位置を、100%、75%、50%の三段階で検出するもので、100%用ユニット21,75%用ユニット31及び50%用ユニット41の3組の液面検知ユニットを備えている。 FIG. 1 is an explanatory diagram showing an example of a liquid level gauge to which the liquid level measuring method of the present invention can be applied. The liquid level gauge 11 detects the position of the liquid level S in the liquid container 12 in three stages of 100%, 75%, and 50%, and the 100% unit 21, 75% unit 31 and 50%. It is provided with three sets of liquid level detection units of the unit 41.

各ユニット21,31,41は、屈曲させることにより液面感知部22,32,42を形成した光ファイバ23,33,43と、各光ファイバ23,33,43の一端から各光ファイバ内に測定光をそれぞれ導入する半導体素子製、例えばトランジスタ製の発光部24,34,44と、各光ファイバ23,33,43の他端から導出する測定光の強度をそれぞれ測定する半導体素子製、例えばトランジスタ製の受光部25,35,45とを備えている。 Each unit 21, 31, 41 is bent into the optical fibers 23, 33, 43 forming the liquid level sensing portions 22, 32, 42, and from one end of each optical fiber 23, 33, 43 into each optical fiber. A semiconductor device that measures the intensity of the light emitting units 24, 34, 44 made of a transistor, for example, and the intensity of the measurement light derived from the other ends of the optical fibers 23, 33, 43, respectively, for example. It includes light receiving units 25, 35, and 45 made of transistors.

前記発光部24,34,44及び受光部25,35,45は、一つの筐体13内に収納されており、さらに、この筐体13内には、該筐体13内の温度を測定するサーミスタなどの温度計14と、各種演算処理を行うための処理装置15と、各種情報を記憶するための記憶手段16とが収納されている。また、筐体13の外部には、各種情報を表示するための表示部(図示せず)が必要に応じて設けられている。 The light emitting units 24, 34, 44 and the light receiving units 25, 35, 45 are housed in one housing 13, and further, the temperature inside the housing 13 is measured in the housing 13. A thermometer 14 such as a thermistor, a processing device 15 for performing various arithmetic processes, and a storage means 16 for storing various information are housed. Further, a display unit (not shown) for displaying various information is provided on the outside of the housing 13 as needed.

発光部24,34,44は、あらかじめ設定された波長の測定光を発生させるもので、例えば、市販のLED光源などが用いられている。また、受光部25,35,45は、発光部24,34,44から光ファイバ23,33,43の一端に導入され、光ファイバ23,33,43の各光路内を伝播して他端から導出される測定光の強度(光量)を測定するもので、発光部24,34,44で発生させた波長の測定光の光量を測定して電圧に変換できる適宜な半導体素子を用いることができる。 The light emitting units 24, 34, and 44 generate measurement light having a preset wavelength, and for example, a commercially available LED light source or the like is used. Further, the light receiving units 25, 35, 45 are introduced from the light emitting units 24, 34, 44 to one end of the optical fibers 23, 33, 43, propagate in each optical path of the optical fibers 23, 33, 43, and propagate from the other end. It measures the intensity (light intensity) of the derived measurement light, and an appropriate semiconductor element that can measure the light intensity of the measurement light of the wavelength generated by the light emitting units 24, 34, 44 and convert it into a voltage can be used. ..

光ファイバ23,33,43は、前記測定光を透過するのに適したものを使用すればよく、直径は1mm程度であればよい。液面感知部22,32,42となる屈曲部は、接する流体の屈折率に対応して光量が変化するように形成されていればよく、光ファイバ外周のクラッドは、一部を除去したものであってもよい。 As the optical fibers 23, 33, 43, those suitable for transmitting the measurement light may be used, and the diameter may be about 1 mm. The bent portions to be the liquid level sensing portions 22, 32, 42 need only be formed so that the amount of light changes according to the refractive index of the fluid in contact with the liquid level sensing portions, and the clad on the outer periphery of the optical fiber is partially removed. It may be.

処理装置15は、発光部24,34,44を発光させるための電圧,電流を印加する機能と、受光部25,35,45が受光した測定光の強度を電圧,電流として測定する機能と、温度計14によって筐体13内の温度を測定する機能と、液面感知部22,32,42が気相中にあるか液相中にあるかを判定する機能とを有している。 The processing device 15 has a function of applying a voltage and a current for causing the light emitting units 24, 34 and 44 to emit light, and a function of measuring the intensity of the measurement light received by the light receiving units 25, 35 and 45 as a voltage and a current. It has a function of measuring the temperature inside the housing 13 with a thermometer 14 and a function of determining whether the liquid level sensing units 22, 32, and 42 are in the gas phase or the liquid phase.

記憶手段16は、発光部24,34,44に印加した電圧,電流、受光部25,35,45が受光した電圧,電流、温度計14で測定した温度などの各種測定値を記憶する機能と、処理装置15での判定に必要な補正式や閾値などのあらかじめ設定された式やデータを記憶しておく機能などを有している。 The storage means 16 has a function of storing various measured values such as the voltage and current applied to the light emitting units 24, 34 and 44, the voltage and current received by the light receiving units 25, 35 and 45, and the temperature measured by the thermometer 14. It has a function of storing preset formulas and data such as correction formulas and thresholds necessary for determination by the processing device 15.

処理装置15における判定部では、筐体13内の温度を温度計14によって測定した温度測定値と、発光部24,34,44に測定光照射用として印加した電圧をそれぞれ測定した印加電圧測定値と、受光部25,35,45が受光した測定光の強度を受光電圧としてそれぞれ測定した受光電圧測定値と、あらかじめ設定された補正式と、あらかじめ設定された受光電圧閾値とに基づいて液面感知部22,32,42の状態をそれぞれ判定することにより、液体容器12内の液面の位置を測定する。 In the determination unit of the processing device 15, the temperature measurement value obtained by measuring the temperature inside the housing 13 with the thermometer 14 and the applied voltage measurement value obtained by measuring the voltage applied to the light emitting units 24, 34, and 44 for measurement light irradiation, respectively. The liquid level is based on the measured light-receiving voltage values measured by the light-receiving units 25, 35, and 45 as the light-receiving voltage, the preset correction formula, and the preset light-receiving voltage threshold. The position of the liquid level in the liquid container 12 is measured by determining the states of the sensing units 22, 32, and 42, respectively.

すなわち、前記温度測定値、前記印加電圧測定値及び前記受光電圧測定値を、あらかじめ設定された補正式に導入して前記温度測定値によって補正した受光電圧補正値を求め、求めた受光電圧補正値を、あらかじめ設定された受光電圧閾値と比較し、受光電圧補正値が受光電圧閾値未満のときに液面感知部が液相内にあると判定し、受光電圧補正値が受光電圧閾値以上のときに前記液面感知部が気相内にあると判定する。 That is, the temperature measurement value, the applied voltage measurement value, and the light reception voltage measurement value are introduced into a preset correction formula to obtain a light reception voltage correction value corrected by the temperature measurement value, and the obtained light reception voltage correction value is obtained. Is compared with a preset light receiving voltage threshold, and when the light receiving voltage correction value is less than the light receiving voltage threshold, it is determined that the liquid level sensing unit is in the liquid phase, and when the light receiving voltage correction value is equal to or higher than the light receiving voltage threshold. It is determined that the liquid level sensing unit is in the gas phase.

例えば、100%用ユニット21の液面感知部22が気相内にあると判定され、75%用ユニット31の液面感知部32及び50%用ユニット41の液面感知部42が共に液相内にあると判定された場合、液体容器12内の液面の測定位置は75%以上、100%未満となる。 For example, it is determined that the liquid level sensing unit 22 of the 100% unit 21 is in the gas phase, and both the liquid level sensing unit 32 of the 75% unit 31 and the liquid level sensing unit 42 of the 50% unit 41 are in the liquid phase. If it is determined to be inside, the measurement position of the liquid level in the liquid container 12 is 75% or more and less than 100%.

ここで、前記補正式を導き出す手順を説明する。まず、100%用ユニット21における発光部24、受光部25及び光ファイバ23の組み合わせ(以下、サンプル1とする)と、75%用ユニット31における発光部34、受光部35及び光ファイバ33の組み合わせ(以下、サンプル2とする)と、50%用ユニット41における発光部44、受光部45及び光ファイバ43の組み合わせ(以下、サンプル3とする)との三組において、各発光部24,34,44への注入電流(印加電圧)を一定とし、各液面感知部を気相内に配置した状態で、筐体13内の温度を変化させたときの各受光部25,35,45で受光した光量に対する受光電圧をそれぞれ測定する実験をそれぞれ行った。この結果を図2に示す。 Here, the procedure for deriving the correction formula will be described. First, the combination of the light emitting unit 24, the light receiving unit 25, and the optical fiber 23 in the 100% unit 21 (hereinafter referred to as sample 1) and the combination of the light emitting unit 34, the light receiving unit 35, and the optical fiber 33 in the 75% unit 31. (Hereinafter referred to as sample 2) and the combination of the light emitting unit 44, the light receiving unit 45 and the optical fiber 43 (hereinafter referred to as sample 3) in the 50% unit 41, the light emitting units 24 and 34, respectively. With the injection current (applied voltage) to 44 constant and each liquid level sensing unit arranged in the gas phase, the light receiving units 25, 35, and 45 receive light when the temperature inside the housing 13 is changed. Experiments were conducted to measure the received voltage with respect to the amount of light. The result is shown in FIG.

図2に示す結果から、受光電圧は、温度依存性が大きく、温度上昇に伴い受光電圧も上昇しており、例えば、液面を判定するための受光電圧の閾値を2.0Vに設定した場合、各サンプルにおいて、温度が高いときにはいずれも液面感知部が気相内にあると判定されてしまい、温度が低いときにはいずれも液面感知部が液相内にあると判定されてしまう。このため、温度変化によって液面位置を正確に測定することができなくなる。さらに、図2に示す各サンプルを比較すると、受光電圧上昇の傾向も各サンプルによって異なっており、単純な傾きの補正では対応できないことがわかる。 From the results shown in FIG. 2, the light-receiving voltage has a large temperature dependence, and the light-receiving voltage also rises as the temperature rises. For example, when the threshold value of the light-receiving voltage for determining the liquid level is set to 2.0 V. In each sample, when the temperature is high, it is determined that the liquid level sensing unit is in the gas phase, and when the temperature is low, it is determined that the liquid level sensing unit is in the liquid phase. Therefore, the liquid level position cannot be accurately measured due to the temperature change. Further, when each sample shown in FIG. 2 is compared, it can be seen that the tendency of the received light voltage rise is also different for each sample, and it cannot be dealt with by a simple inclination correction.

そこで、各サンプルにおける温度と受光電圧との関係を正規化する。この正規化に際しては、最初に筐体内の基準温度を、例えば、室温程度として25℃を基準温度に設定し、発光部及び受光部の温度(トランジスタ温度)を基準温度に設定したときの受光電圧を受光電圧基準値(Vsta)としてあらかじめ求めておく。そして、各実験において各受光部でそれぞれ測定した受光電圧を受光電圧測定値(Vmeas)とし、各発光部への印加電圧を印加電圧測定値(Vout)とし、受光電圧測定値(Vmeas)と印加電圧測定値(Vout)と受光電圧基準値(Vsta)とを用いた下記式(1)により、受光電圧を正規化した受光電圧正規化値(Vnom)を求める。

Figure 0006878019
Therefore, the relationship between the temperature and the received voltage in each sample is normalized. In this normalization, the light receiving voltage when the reference temperature inside the housing is first set to 25 ° C. as the reference temperature, for example, about room temperature, and the temperature of the light emitting part and the light receiving part (transistor temperature) is set to the reference temperature. Is obtained in advance as the received voltage reference value (Vsta). Then, in each experiment, the received voltage measured by each light receiving unit is defined as the received voltage measured value (Vmeas), the applied voltage to each light emitting unit is defined as the applied voltage measured value (Vout), and the received voltage measured value (Vmeas) is applied. The received voltage normalized value (Vnom) obtained by normalizing the received voltage is obtained by the following equation (1) using the measured voltage value (Vout) and the received voltage reference value (Vsta).
Figure 0006878019

これにより、図3で示すように、正規化した受光電圧正規化値(Vnom)と筐体内温度(トランジスタ温度)との関係が得られ、受光電圧上昇の傾向が異なっていた各サンプルの受光電圧を一致させることができる。これにより、図3に示す受光電圧正規化値(Vnom)と筐体内温度との関係を単一の式でカーブフィットすることが可能となり、正規化した受光電圧正規化値(Vnom)を下記式(2)を用いて近似し、筐体内の温度測定値と前記前記基準温度との差(t)から、任意に決定される回帰式係数(α、β)を決定することができる。

Figure 0006878019
As a result, as shown in FIG. 3, the relationship between the normalized light-receiving voltage normalized value (Vnom) and the temperature inside the housing (transistor temperature) can be obtained, and the light-receiving voltage of each sample having a different tendency for the light-receiving voltage to rise. Can be matched. This makes it possible to curve-fit the relationship between the received voltage normalized value (Vnom) shown in FIG. 3 and the temperature inside the housing with a single equation, and the normalized received voltage normalized value (Vnom) is expressed by the following equation. Approximate using (2), the regression equation coefficients (α, β) arbitrarily determined can be determined from the difference (t) between the temperature measurement value in the housing and the reference temperature.
Figure 0006878019

例えば、図3に示す関係のときには、
Vnom=f(t)=0.00048×t+0.05442×t
という2次式で表すことができる。
For example, in the case of the relationship shown in FIG.
Vnom = f (t) = 0.00048 × t 2 + 0.05442 × t
It can be expressed by the quadratic expression.

決定された式(2)における数式(f(t))と、受光電圧測定値(Vmeas)と印加電圧測定値(Vout)とに基づいて、受光電圧測定値(Vmeas)を前記基準温度における受光電圧に補正した受光電圧補正値(Vrev)を求めるための前記補正式を、下記式(3)として導き出すことができる。

Figure 0006878019
Based on the mathematical expression (f (t)) in the determined equation (2), the received voltage measured value (Vmeas), and the applied voltage measured value (Vout), the received voltage measured value (Vmeas) is received at the reference temperature. The correction formula for obtaining the received voltage correction value (Vrev) corrected to the voltage can be derived as the following formula (3).
Figure 0006878019

このようにして導き出した補正式に、液面測定時に測定した前記温度測定値、前記印加電圧測定値及び前記受光電圧測定値を代入して受光電圧補正値(Vrev)をそれぞれ求めることにより、図4に示すように、測定した筐体内温度(トランジスタ温度)と基準温度に補正した受光電圧(受光電圧補正値)との関係を各サンプルについてそれぞれ得ることができる。 The light-receiving voltage correction value (Vrev) is obtained by substituting the temperature measurement value, the applied voltage measurement value, and the light-receiving voltage measurement value measured at the time of liquid level measurement into the correction formula derived in this manner. As shown in 4, the relationship between the measured housing temperature (transistor temperature) and the received voltage corrected to the reference temperature (received voltage corrected value) can be obtained for each sample.

図4から明らかなように、各サンプルにおける温度依存性を解消した受光電圧補正値が得られるので、各サンプルに対して適切な受光電圧閾値をそれぞれ設定し、設定した受光電圧閾値と受光電圧補正値とを比較することにより、液面感知部が液相内にあるか、気相内にあるかをそれぞれ判定することができる。 As is clear from FIG. 4, since the light-receiving voltage correction value that eliminates the temperature dependence in each sample can be obtained, an appropriate light-receiving voltage threshold value is set for each sample, and the set light-receiving voltage threshold value and light-receiving voltage correction are obtained. By comparing with the value, it is possible to determine whether the liquid level sensing unit is in the liquid phase or in the gas phase.

図4に示す結果に基づいて、例えば、サンプル1では受光電圧閾値を2.0Vに設定することにより、筐体内温度(トランジスタ温度)に関係なく、受光電圧補正値が2.0V以上のときには液面感知部が気相内にあり、受光電圧補正値が2.0Vを下回ったときに液面感知部が液相内にあると判定できる。したがって、サンプル1として用いた100%用ユニット21においては、液体容器12内への液体注入作業中に、受光電圧補正値が2.0Vを下回ったときに液体容器12内の液面が100%以上になったと判定することができ、液体注入作業を終了することができる。 Based on the results shown in FIG. 4, for example, in Sample 1, by setting the light-receiving voltage threshold value to 2.0 V, the liquid is liquid when the light-received voltage correction value is 2.0 V or more regardless of the temperature inside the housing (transistor temperature). When the surface sensing unit is in the gas phase and the received voltage correction value is less than 2.0V, it can be determined that the liquid level sensing unit is in the liquid phase. Therefore, in the 100% unit 21 used as the sample 1, the liquid level in the liquid container 12 is 100% when the received voltage correction value falls below 2.0 V during the liquid injection work into the liquid container 12. It can be determined that the above is achieved, and the liquid injection work can be completed.

同様に、サンプル2では受光電圧閾値を1.5Vに、サンプル3では受光電圧閾値を1.0Vに、それぞれ設定することにより、液体容器12内の液面を、筐体内温度に関係なく、正確に測定することができる。これにより、液体容器12内への液体注入作業を確実に開始することができる。 Similarly, by setting the light-receiving voltage threshold value to 1.5 V in sample 2 and the light-receiving voltage threshold value to 1.0 V in sample 3, the liquid level in the liquid container 12 can be accurately adjusted regardless of the temperature inside the housing. Can be measured. As a result, the liquid injection operation into the liquid container 12 can be reliably started.

したがって、発光部、受光部及び光ファイバの組み合わせに対して、前記補正式を導き出し、該補正式と受光電圧閾値とを記憶手段にそれぞれ記憶させておくことにより、液面測定時に温度計で測定した筐体内の温度(トランジスタ温度)と、発光部に印加した電圧と、受光部で測定した受光電圧とから、液体容器内の液面を正確に求めることができる。 Therefore, the correction formula is derived for the combination of the light emitting unit, the light receiving unit, and the optical fiber, and the correction formula and the light receiving voltage threshold are stored in the storage means, respectively, so that the liquid level can be measured with a thermometer. The liquid level in the liquid container can be accurately obtained from the temperature inside the housing (transistor temperature), the voltage applied to the light emitting unit, and the light receiving voltage measured by the light receiving unit.

11…液面計、12…液体容器、13…筐体、14…温度計、15…処理装置、16…記憶手段、21…100%用ユニット、22…液面感知部、23…光ファイバ、24…発光部、25…受光部、31…75%用ユニット、32…液面感知部、33…光ファイバ、34…発光部、35…受光部、41…50%用ユニット、42…液面感知部、43…光ファイバ、44…発光部、45…受光部、S…液面 11 ... Liquid level gauge, 12 ... Liquid container, 13 ... Housing, 14 ... Thermometer, 15 ... Processing device, 16 ... Storage means, 21 ... 100% unit, 22 ... Liquid level sensing unit, 23 ... Optical fiber, 24 ... light emitting unit, 25 ... light receiving unit, 31 ... 75% unit, 32 ... liquid level sensing unit, 33 ... optical fiber, 34 ... light emitting unit, 35 ... light receiving unit, 41 ... 50% unit, 42 ... liquid level Sensing unit, 43 ... Optical fiber, 44 ... Light emitting unit, 45 ... Light receiving unit, S ... Liquid level

Claims (1)

屈曲させることにより液面感知部を形成した光ファイバと、該光ファイバの一端から光ファイバ内に測定光を導入する半導体素子製の発光部と、前記光ファイバの他端から導出する測定光の強度を測定する半導体素子製の受光部とを備え、該受光部で受光した測定光の強度に基づいて液面を検出する液面計を使用した液面測定方法において、前記発光部及び前記受光部を共に収納した筐体内の温度を測定した温度測定値と、前記発光部に測定光照射用として印加した電圧を測定した印加電圧測定値(Vout)と、前記受光部が受光した測定光の強度を受光電圧として測定した受光電圧測定値(Vmeas)とをそれぞれ求め、前記受光電圧測定値(Vmeas)と、あらかじめ求めた基準温度における受光電圧基準値(Vsta)と、前記印加電圧測定値(Vout)とを用いて正規化した受光電圧正規化値(Vnom)を下記式(1)にて求め、
Figure 0006878019
式(1)によって正規化した受光電圧正規化値(Vnom)を、下記式(2)を用いて近似し、前記温度測定値と前記基準温度との差(t)から、回帰式係数(α、β)を決定し、
Figure 0006878019
式(2)と、前記受光電圧測定値(Vmeas)と前記印加電圧測定値(Vout)とに基づいて、前記受光電圧測定値(Vmeas)を前記基準温度における受光電圧に補正した受光電圧補正値(Vrev)を求めるための下記式(3)
Figure 0006878019
からなる式を補正式としてあらかじめ設定し、
前記印加電圧測定値(Vout)、前記受光電圧測定値(Vmeas)及び前記温度測定値と前記基準温度との差(t)を、式(3)に導入し、前記温度測定値によって補正した受光電圧補正値(Vrev)を求め、求めた受光電圧補正値(Vrev)を、あらかじめ基準温度において設定された受光電圧閾値と比較し、受光電圧補正値(Vrev)が受光電圧閾値未満のときに液面感知部が液相内にあると判定し、受光電圧補正値(Vrev)が受光電圧閾値以上のときに液面感知部が気相内にあると判定することを特徴とする液面測定方法。
An optical fiber having a liquid level sensing portion formed by bending, a light emitting portion made of a semiconductor element that introduces measurement light into the optical fiber from one end of the optical fiber, and a measurement light derived from the other end of the optical fiber. In a liquid level measuring method using a liquid level gauge which includes a light receiving unit made of a semiconductor element for measuring the intensity and detects the liquid level based on the intensity of the measured light received by the light receiving unit, the light emitting unit and the light receiving portion. A temperature measurement value that measures the temperature inside the housing in which the unit is housed, an applied voltage measurement value (Vout) that measures the voltage applied to the light emitting unit for measurement light irradiation, and a measurement light received by the light receiving unit. The light-receiving voltage measurement value (Vmeas) measured with the intensity as the light-receiving voltage is obtained, and the light-receiving voltage measurement value (Vmeas), the light-receiving voltage reference value (Vsta) at the reference temperature obtained in advance, and the applied voltage measurement value ( The received voltage normalized value (Vnom) normalized using Vout) is obtained by the following equation (1).
Figure 0006878019
The received voltage normalized value (Vnom) normalized by the equation (1) is approximated by the following equation (2), and the regression equation coefficient (α) is obtained from the difference (t) between the measured temperature value and the reference temperature. , Β)
Figure 0006878019
A received voltage correction value obtained by correcting the received voltage measured value (Vmeas) to the received voltage at the reference temperature based on the equation (2), the received voltage measured value (Vmeas), and the applied voltage measured value (Vout). The following equation (3) for obtaining (Vrev)
Figure 0006878019
The formula consisting of is set in advance as a correction formula,
The applied voltage measured value (Vout), the received voltage measured value (Vmeas), and the difference (t) between the temperature measured value and the reference temperature are introduced into the equation (3) and the received light is corrected by the temperature measured value. The voltage correction value (Vrev) is obtained, the obtained light-receiving voltage correction value (Vrev) is compared with the light-receiving voltage threshold set in advance at the reference temperature, and when the light-receiving voltage correction value (Vrev) is less than the light-receiving voltage threshold, the liquid is liquid. A liquid level measuring method characterized in that the surface sensing unit is determined to be in the liquid phase and the liquid level sensing unit is determined to be in the gas phase when the received voltage correction value (Vrev) is equal to or higher than the received voltage threshold. ..
JP2017012637A 2017-01-27 2017-01-27 Liquid level measurement method Active JP6878019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012637A JP6878019B2 (en) 2017-01-27 2017-01-27 Liquid level measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012637A JP6878019B2 (en) 2017-01-27 2017-01-27 Liquid level measurement method

Publications (2)

Publication Number Publication Date
JP2018119896A JP2018119896A (en) 2018-08-02
JP6878019B2 true JP6878019B2 (en) 2021-05-26

Family

ID=63044281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012637A Active JP6878019B2 (en) 2017-01-27 2017-01-27 Liquid level measurement method

Country Status (1)

Country Link
JP (1) JP6878019B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249033A (en) * 1986-04-22 1987-10-30 Toyota Motor Corp Detecting device for smoke density of internal combustion engine
JPH01207647A (en) * 1988-02-16 1989-08-21 Ngk Spark Plug Co Ltd Detecting device for liquid mixing ratio of gasoline and alcohol or the like
JPS63215945A (en) * 1987-03-04 1988-09-08 Ngk Spark Plug Co Ltd Mixing ratio detector for fluid such as gasoline-alcohol
US5452076A (en) * 1993-09-29 1995-09-19 Optiguard, Inc. Fluid detection system
JP3443686B2 (en) * 2000-10-17 2003-09-08 東京特殊電線株式会社 How to measure the refractive index
JP2002214021A (en) * 2001-01-24 2002-07-31 Yazaki Corp Liquid level detection sensor
JP2007071863A (en) * 2005-08-10 2007-03-22 Yokohama National Univ Optical sensor and fluid measuring method
GB2520518A (en) * 2013-11-22 2015-05-27 Fluke Electronics Corp Optical flow measuring device and method of operation
JP6622049B2 (en) * 2015-06-30 2019-12-18 旭化成エレクトロニクス株式会社 Gas concentration measuring device

Also Published As

Publication number Publication date
JP2018119896A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
US7731418B2 (en) Thermometer calibration
US8928874B2 (en) Method for identifying abnormal spectral profiles measured by a chromatic confocal range sensor
TWI384209B (en) Temperature sensor, and temperature measurement method
US20070268952A1 (en) Thermometer calibration by immersion in non-electrically conductive liquid
US20210367397A1 (en) Deterioration diagnosis device and method for diagnosing deterioration of optical transceiver
JP5221868B2 (en) Light measuring method and apparatus
JP2008249515A (en) Temperature distribution measuring system and temperature distribution measuring method
JP6116692B2 (en) Method and apparatus for determining sample application
JP6878019B2 (en) Liquid level measurement method
WO2013045897A1 (en) Estimating ambient temperature from internal temperature sensor, in particular for blood glucose measurement
WO2017144667A1 (en) Methods and systems for correcting for nonlinear twist response in optical shape sensing with spun multicore fibers
JP4944005B2 (en) Temperature sensor and temperature measurement method
US11467144B2 (en) Light emitting and receiving apparatus and method of diagnosing deterioration
Hurll Understanding measurement uncertainty: an introduction
JP6484125B2 (en) Temperature measuring apparatus and temperature measuring method
US10571391B2 (en) Method for adjusting a measuring device
IT202100009143A1 (en) SYSTEM AND METHOD FOR TESTING A PRESSURE SENSOR
JP3656877B2 (en) Radiation thermometer
US20200158809A1 (en) Process for the calibration of an object under test
RU2491510C1 (en) Method to control metrological operability of intelligent measurement facility
JP2016080608A (en) Temperature measurement device and method
JP2005069969A (en) Method and apparatus for measuring concentration of antiseptic solution
Zaharov et al. Evaluation of expanded uncertainty at glass thermometer calibration
CN117367620A (en) Temperature measuring device and temperature measuring method
JP2021162478A (en) Temperature measuring device, temperature measuring method, and temperature measuring program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6878019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150