JP2018119896A - Liquid level measuring method - Google Patents

Liquid level measuring method Download PDF

Info

Publication number
JP2018119896A
JP2018119896A JP2017012637A JP2017012637A JP2018119896A JP 2018119896 A JP2018119896 A JP 2018119896A JP 2017012637 A JP2017012637 A JP 2017012637A JP 2017012637 A JP2017012637 A JP 2017012637A JP 2018119896 A JP2018119896 A JP 2018119896A
Authority
JP
Japan
Prior art keywords
light
liquid level
voltage
value
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017012637A
Other languages
Japanese (ja)
Other versions
JP6878019B2 (en
Inventor
洋輔 松島
Yosuke Matsushima
洋輔 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2017012637A priority Critical patent/JP6878019B2/en
Publication of JP2018119896A publication Critical patent/JP2018119896A/en
Application granted granted Critical
Publication of JP6878019B2 publication Critical patent/JP6878019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a liquid level measuring method for detecting a liquid level accurately even when an environmental temperature changes.SOLUTION: A liquid level gauge includes an optical fiber forming a liquid level sensing part, a light-emitting unit which introduces measurement light from one end of the optical fiber, and a light-receiving unit which measures intensity of the measurement light derived from the other end, to detect a liquid level with the intensity of the measurement light received by the light-receiving unit. A liquid level measuring method using the liquid level gauge includes: determining a measurement temperature value obtained by measuring a temperature in a housing storing the light-emitting unit and the light-receiving unit, a measurement applied voltage value obtained by measuring a voltage applied to the light-emitting unit, and a measurement light-receiving voltage value obtained by measuring intensity of the measurement light received by the light-receiving unit as a light-receiving voltage; determining a light-receiving voltage correction value obtained by introducing the measurement temperature value, measurement applied voltage value, and measurement light-receiving voltage value in a correction expression, to be corrected with the measurement temperature value; comparing the determined light-receiving voltage correction value with a light-receiving voltage threshold; and determining that the liquid level sensing part is located in a liquid phase when the light-receiving voltage correction value is less than the light-receiving voltage threshold, or determines that the liquid level sensing part is located in a gas phase when the value is equal to or larger than the light-receiving voltage threshold.SELECTED DRAWING: Figure 1

Description

本発明は、液面測定方法に関し、詳しくは、光ファイバを利用した液面計を使用して液面を測定する方法に関する。   The present invention relates to a liquid level measurement method, and more particularly, to a method for measuring a liquid level using a liquid level gauge using an optical fiber.

光ファイバを利用した液面計は、液面感知部となる部分を屈曲させた光ファイバの一端に発光部を、他端に受光部をそれぞれ配置し、液面感知部に接する気相の屈折率と液相の屈折率との違いによって生じる光の強度の変化を受光部で測定し、液面感知部に接しているのが気相か液相かを判断することにより、液面を検出するようにしている(例えば、特許文献1参照。)。   A liquid level meter using an optical fiber has a light emitting part at one end of an optical fiber bent at a part that becomes a liquid level sensing part, and a light receiving part at the other end, so that the gas phase refraction is in contact with the liquid level sensing part. The liquid level is detected by measuring the change in light intensity caused by the difference between the refractive index and the refractive index of the liquid phase at the light receiving unit, and determining whether the liquid level sensor is in contact with the gas phase or the liquid phase. (For example, refer to Patent Document 1).

特開2007−71863号公報JP 2007-71863 A

このような液面計において、発光部や受光部に半導体素子を使用すると、環境温度の変化によって発光強度や受光強度が大きく変化し、液面を確実に検知できないことがあった。このため、液面計を設置した環境温度を一定温度に保持するための空調機器を使用することが行われているが、空調機器の設置コスト及び運転コストが必要になるという問題がある。   In such a liquid level gauge, when a semiconductor element is used for the light emitting part and the light receiving part, the light emission intensity and the light receiving intensity greatly change due to the change in the environmental temperature, and the liquid level may not be detected reliably. For this reason, although air-conditioning equipment for keeping the environmental temperature at which the liquid level gauge is installed at a constant temperature is used, there is a problem that installation cost and operating cost of the air-conditioning equipment are required.

また、空調が困難な使用環境では、発光部及び受光部を恒温槽内に収納したり、ヒータや冷却器を使用して発光部及び受光部を一定温度になるように調整したりすることが行われている。しかし、この場合も、恒温槽やヒータ、冷却器などの設置コスト及び運転コストが必要になるだけでなく、発光部及び受光部の周辺が複雑化し、液面計自体が大型化してしまうという問題もあった。   In use environments where air conditioning is difficult, the light emitting unit and the light receiving unit may be housed in a thermostatic bath, or the light emitting unit and the light receiving unit may be adjusted to a constant temperature using a heater or a cooler. Has been done. However, in this case as well, not only the installation cost and operation cost of a thermostat, heater, cooler, etc. are required, but also the problem that the periphery of the light emitting unit and the light receiving unit becomes complicated and the liquid level meter itself becomes large. There was also.

一方、発光部を持たずに受光部のみを使用した光センサの一部では、受光部の温度を測定して受光強度を補正することも行われているが、液面計の場合は、環境温度によって発光部の発光強度と受光部の受光強度とが相互に関連して変化するため、受光部の温度だけでは正確な液面検知を行うことができない。   On the other hand, in some optical sensors that do not have a light emitting part and use only the light receiving part, the temperature of the light receiving part is measured to correct the received light intensity. Since the light emission intensity of the light emitting part and the light reception intensity of the light receiving part change in relation to each other, accurate liquid level detection cannot be performed only by the temperature of the light receiving part.

そこで本発明は、環境温度によって発光部や受光部の温度が変化しても精度よく液面を検出することができる液面測定方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a liquid level measurement method capable of detecting a liquid level with high accuracy even if the temperature of a light emitting unit or a light receiving unit changes depending on the environmental temperature.

上記目的を達成するため、本発明の液面測定方法は、屈曲させることにより液面感知部を形成した光ファイバと、該光ファイバの一端から光ファイバ内に測定光を導入する半導体素子製の発光部と、前記光ファイバの他端から導出する測定光の強度を測定する半導体素子製の受光部とを備え、該受光部で受光した測定光の強度に基づいて液面を検出する液面計を使用した液面測定方法において、前記発光部及び前記受光部を共に収納した筐体内の温度を測定した温度測定値と、前記発光部に測定光照射用として印加した電圧を測定した印加電圧測定値と、前記受光部が受光した測定光の強度を受光電圧として測定した受光電圧測定値とをそれぞれ求め、前記温度測定値、前記印加電圧測定値及び前記受光電圧測定値を、あらかじめ設定された補正式に導入し、前記温度測定値によって補正した受光電圧補正値を求め、求めた受光電圧補正値を、あらかじめ設定された受光電圧閾値と比較し、受光電圧補正値が受光電圧閾値未満のときに液面感知部が液相内にあると判定し、受光電圧補正値が受光電圧閾値以上のときに液面感知部が気相内にあると判定することを特徴としている。   In order to achieve the above object, the liquid level measuring method of the present invention includes an optical fiber in which a liquid level sensing unit is formed by bending, and a semiconductor element that introduces measurement light into the optical fiber from one end of the optical fiber. A liquid level that includes a light emitting unit and a light receiving unit made of a semiconductor element that measures the intensity of measurement light derived from the other end of the optical fiber, and detects a liquid level based on the intensity of the measurement light received by the light receiving unit In the liquid level measurement method using a meter, a temperature measurement value obtained by measuring the temperature in a housing that houses both the light emitting unit and the light receiving unit, and an applied voltage obtained by measuring a voltage applied to the light emitting unit for measurement light irradiation A measured value and a received voltage measurement value obtained by measuring the intensity of the measurement light received by the light receiving unit as a received voltage are obtained, and the temperature measured value, the applied voltage measured value, and the received voltage measured value are set in advance. The When the received light voltage correction value is less than the received light voltage threshold value, the received light voltage correction value corrected by the temperature measurement value is obtained, and the obtained received light voltage correction value is compared with the preset received light voltage threshold value. It is characterized in that it is determined that the liquid level sensing unit is in the liquid phase, and that the liquid level sensing unit is in the gas phase when the light reception voltage correction value is equal to or greater than the light reception voltage threshold value.

さらに、本発明の液面測定方法は、前記受光電圧測定値(Vmeas)と、あらかじめ求めた基準温度における受光電圧基準値(Vsta)と、前記印加電圧測定値(Vout)とを用いて正規化した前記受光電圧正規化値(Vnom)を下記式(1)にて求め、

Figure 2018119896
式1によって正規化した受光電圧正規化値(Vnom)を、前記温度測定値と前記基準温度との差(t)と、回帰式係数(α、β)とを使用して数式化することにより下記式(2)を決定し、
Figure 2018119896
式2における数式(f(t))と、前記受光電圧測定値(Vmeas)と前記印加電圧測定値(Vout)とに基づいて、前記受光電圧測定値(Vmeas)を前記基準温度における受光電圧に補正した受光電圧補正値(Vrev)を求めるための前記補正式となる下記式(3)
Figure 2018119896
からなる前記補正式を導き出すことを特徴としている。 Furthermore, the liquid level measuring method of the present invention is normalized using the light reception voltage measurement value (Vmeas), the light reception voltage reference value (Vsta) at a reference temperature determined in advance, and the applied voltage measurement value (Vout). The received light voltage normalized value (Vnom) is obtained by the following formula (1),
Figure 2018119896
By formulating the light reception voltage normalized value (Vnom) normalized by Equation 1 using the difference (t) between the measured temperature value and the reference temperature and the regression equation coefficients (α, β). Determine the following formula (2),
Figure 2018119896
Based on the equation (f (t)) in Equation 2, the light reception voltage measurement value (Vmeas), and the applied voltage measurement value (Vout), the light reception voltage measurement value (Vmeas) is converted into the light reception voltage at the reference temperature. The following formula (3) which is the correction formula for obtaining the corrected received light voltage correction value (Vrev)
Figure 2018119896
It is characterized by deriving the correction formula consisting of:

本発明の液面測定方法によれば、発光部及び受光部を共に収納した筐体内の温度に基づいて受光電圧測定値を補正することにより、温度変化による液面計の誤作動を防止して液面を精度よく測定することができる。   According to the liquid level measurement method of the present invention, by correcting the light reception voltage measurement value based on the temperature in the housing that houses both the light emitting unit and the light receiving unit, malfunction of the liquid level gauge due to temperature change can be prevented. The liquid level can be accurately measured.

本発明の液面測定方法を適用可能な液面計の一例を示す説明図である。It is explanatory drawing which shows an example of the liquid level meter which can apply the liquid level measuring method of this invention. 発光部及び受光部を収納した筐体内の温度(発光部及び受光部を構成するトランジスタ温度)と受光部での受光電圧との関係を示す図である。It is a figure which shows the relationship between the temperature (transistor temperature which comprises a light emission part and a light-receiving part) in the housing | casing which accommodated the light emission part and the light-receiving part, and the light reception voltage in a light reception part. トランジスタ温度と正規化後の受光電圧との関係を示す図である。It is a figure which shows the relationship between transistor temperature and the received light voltage after normalization. トランジスタ温度と補正した受光電圧との関係を示す図である。It is a figure which shows the relationship between transistor temperature and the correct | amended received light voltage.

図1は、本発明の液面測定方法を適用可能な液面計の一例を示す説明図である。この液面計11は、液体容器12内の液面Sの位置を、100%、75%、50%の三段階で検出するもので、100%用ユニット21,75%用ユニット31及び50%用ユニット41の3組の液面検知ユニットを備えている。   FIG. 1 is an explanatory diagram showing an example of a liquid level gauge to which the liquid level measuring method of the present invention can be applied. The liquid level gauge 11 detects the position of the liquid level S in the liquid container 12 in three stages of 100%, 75%, and 50%. The 100% unit 21, 75% unit 31 and 50% 3 units of the liquid level detection unit of the unit 41 are provided.

各ユニット21,31,41は、屈曲させることにより液面感知部22,32,42を形成した光ファイバ23,33,43と、各光ファイバ23,33,43の一端から各光ファイバ内に測定光をそれぞれ導入する半導体素子製、例えばトランジスタ製の発光部24,34,44と、各光ファイバ23,33,43の他端から導出する測定光の強度をそれぞれ測定する半導体素子製、例えばトランジスタ製の受光部25,35,45とを備えている。   Each unit 21, 31, 41 is bent into an optical fiber 23, 33, 43 in which the liquid level sensing units 22, 32, 42 are formed, and from one end of each optical fiber 23, 33, 43 into each optical fiber. For example, a semiconductor element made of a semiconductor element that introduces measurement light, for example, a light emitting section 24, 34, 44 made of a transistor, and a semiconductor element that measures the intensity of the measurement light derived from the other end of each optical fiber 23, 33, 43, for example And light receiving portions 25, 35, 45 made of transistors.

前記発光部24,34,44及び受光部25,35,45は、一つの筐体13内に収納されており、さらに、この筐体13内には、該筐体13内の温度を測定するサーミスタなどの温度計14と、各種演算処理を行うための処理装置15と、各種情報を記憶するための記憶手段16とが収納されている。また、筐体13の外部には、各種情報を表示するための表示部(図示せず)が必要に応じて設けられている。   The light emitting units 24, 34, 44 and the light receiving units 25, 35, 45 are housed in one housing 13, and the temperature inside the housing 13 is measured in the housing 13. A thermometer 14 such as a thermistor, a processing device 15 for performing various arithmetic processes, and a storage means 16 for storing various information are housed. In addition, a display unit (not shown) for displaying various types of information is provided outside the housing 13 as necessary.

発光部24,34,44は、あらかじめ設定された波長の測定光を発生させるもので、例えば、市販のLED光源などが用いられている。また、受光部25,35,45は、発光部24,34,44から光ファイバ23,33,43の一端に導入され、光ファイバ23,33,43の各光路内を伝播して他端から導出される測定光の強度(光量)を測定するもので、発光部24,34,44で発生させた波長の測定光の光量を測定して電圧に変換できる適宜な半導体素子を用いることができる。   The light emitting units 24, 34, and 44 generate measurement light having a preset wavelength. For example, a commercially available LED light source is used. The light receiving parts 25, 35, 45 are introduced from the light emitting parts 24, 34, 44 to one end of the optical fibers 23, 33, 43, propagated through the respective optical paths of the optical fibers 23, 33, 43 and from the other end. An intensity of the derived measurement light (light quantity) is measured, and an appropriate semiconductor element capable of measuring the light quantity of the measurement light having the wavelength generated by the light emitting units 24, 34, and 44 and converting it into a voltage can be used. .

光ファイバ23,33,43は、前記測定光を透過するのに適したものを使用すればよく、直径は1mm程度であればよい。液面感知部22,32,42となる屈曲部は、接する流体の屈折率に対応して光量が変化するように形成されていればよく、光ファイバ外周のクラッドは、一部を除去したものであってもよい。   As the optical fibers 23, 33, and 43, those suitable for transmitting the measurement light may be used, and the diameter may be about 1 mm. The bent portions that become the liquid level sensing portions 22, 32, and 42 need only be formed so that the amount of light changes according to the refractive index of the fluid in contact therewith, and the cladding around the optical fiber is partially removed. It may be.

処理装置15は、発光部24,34,44を発光させるための電圧,電流を印加する機能と、受光部25,35,45が受光した測定光の強度を電圧,電流として測定する機能と、温度計14によって筐体13内の温度を測定する機能と、液面感知部22,32,42が気相中にあるか液相中にあるかを判定する機能とを有している。   The processing device 15 has a function of applying voltage and current for causing the light emitting units 24, 34, and 44 to emit light, a function of measuring the intensity of measurement light received by the light receiving units 25, 35, and 45 as voltage and current, The thermometer 14 has a function of measuring the temperature in the housing 13 and a function of determining whether the liquid level sensing units 22, 32, and 42 are in a gas phase or a liquid phase.

記憶手段16は、発光部24,34,44に印加した電圧,電流、受光部25,35,45が受光した電圧,電流、温度計14で測定した温度などの各種測定値を記憶する機能と、処理装置15での判定に必要な補正式や閾値などのあらかじめ設定された式やデータを記憶しておく機能などを有している。   The storage unit 16 has a function of storing various measurement values such as voltage and current applied to the light emitting units 24, 34 and 44, voltage and current received by the light receiving units 25, 35 and 45, and temperature measured by the thermometer 14. , A function for storing preset formulas and data such as correction formulas and thresholds necessary for determination by the processing device 15.

処理装置15における判定部では、筐体13内の温度を温度計14によって測定した温度測定値と、発光部24,34,44に測定光照射用として印加した電圧をそれぞれ測定した印加電圧測定値と、受光部25,35,45が受光した測定光の強度を受光電圧としてそれぞれ測定した受光電圧測定値と、あらかじめ設定された補正式と、あらかじめ設定された受光電圧閾値とに基づいて液面感知部22,32,42の状態をそれぞれ判定することにより、液体容器12内の液面の位置を測定する。   In the determination unit in the processing device 15, a temperature measurement value obtained by measuring the temperature in the housing 13 with the thermometer 14, and an applied voltage measurement value obtained by measuring the voltage applied to the light emitting units 24, 34, 44 for measuring light irradiation, respectively. And the received light voltage measurement value measured by using the intensity of the measurement light received by the light receiving sections 25, 35, and 45 as the received light voltage, the preset correction equation, and the preset received light voltage threshold value, respectively. The position of the liquid level in the liquid container 12 is measured by determining the states of the sensing units 22, 32, and 42, respectively.

すなわち、前記温度測定値、前記印加電圧測定値及び前記受光電圧測定値を、あらかじめ設定された補正式に導入して前記温度測定値によって補正した受光電圧補正値を求め、求めた受光電圧補正値を、あらかじめ設定された受光電圧閾値と比較し、受光電圧補正値が受光電圧閾値未満のときに液面感知部が液相内にあると判定し、受光電圧補正値が受光電圧閾値以上のときに前記液面感知部が気相内にあると判定する。   That is, the received light voltage correction value obtained by introducing the measured temperature value, the applied voltage measured value, and the received light voltage measured value into a correction equation set in advance and corrected by the measured temperature value is obtained. Is compared with a preset light reception voltage threshold, and when the light reception voltage correction value is less than the light reception voltage threshold, it is determined that the liquid level sensor is in the liquid phase, and the light reception voltage correction value is greater than or equal to the light reception voltage threshold. It is determined that the liquid level sensor is in the gas phase.

例えば、100%用ユニット21の液面感知部22が気相内にあると判定され、75%用ユニット31の液面感知部32及び50%用ユニット41の液面感知部42が共に液相内にあると判定された場合、液体容器12内の液面の測定位置は75%以上、100%未満となる。   For example, it is determined that the liquid level sensing unit 22 of the 100% unit 21 is in the gas phase, and the liquid level sensing unit 32 of the 75% unit 31 and the liquid level sensing unit 42 of the 50% unit 41 are both in the liquid phase. If it is determined that the liquid level is in the liquid container 12, the measurement position of the liquid level in the liquid container 12 is 75% or more and less than 100%.

ここで、前記補正式を導き出す手順を説明する。まず、100%用ユニット21における発光部24、受光部25及び光ファイバ23の組み合わせ(以下、サンプル1とする)と、75%用ユニット31における発光部34、受光部35及び光ファイバ33の組み合わせ(以下、サンプル2とする)と、50%用ユニット41における発光部44、受光部45及び光ファイバ43の組み合わせ(以下、サンプル3とする)との三組において、各発光部24,34,44への注入電流(印加電圧)を一定とし、各液面感知部を気相内に配置した状態で、筐体13内の温度を変化させたときの各受光部25,35,45で受光した光量に対する受光電圧をそれぞれ測定する実験をそれぞれ行った。この結果を図2に示す。   Here, a procedure for deriving the correction formula will be described. First, a combination of the light emitting unit 24, the light receiving unit 25, and the optical fiber 23 in the 100% unit 21 (hereinafter referred to as sample 1), and a combination of the light emitting unit 34, the light receiving unit 35, and the optical fiber 33 in the 75% unit 31. (Hereinafter referred to as sample 2) and three combinations of the light emitting part 44, the light receiving part 45 and the optical fiber 43 (hereinafter referred to as sample 3) in the unit 41 for 50%, each light emitting part 24, 34, The light receiving portions 25, 35, and 45 receive light when the temperature in the casing 13 is changed with the injection current (applied voltage) to 44 constant and the liquid level sensing portions arranged in the gas phase. Each experiment was conducted to measure the received light voltage with respect to the light quantity. The result is shown in FIG.

図2に示す結果から、受光電圧は、温度依存性が大きく、温度上昇に伴い受光電圧も上昇しており、例えば、液面を判定するための受光電圧の閾値を2.0Vに設定した場合、各サンプルにおいて、温度が高いときにはいずれも液面感知部が気相内にあると判定されてしまい、温度が低いときにはいずれも液面感知部が液相内にあると判定されてしまう。このため、温度変化によって液面位置を正確に測定することができなくなる。さらに、図2に示す各サンプルを比較すると、受光電圧上昇の傾向も各サンプルによって異なっており、単純な傾きの補正では対応できないことがわかる。   From the results shown in FIG. 2, the light reception voltage has a large temperature dependency, and the light reception voltage increases as the temperature rises. For example, when the threshold value of the light reception voltage for determining the liquid level is set to 2.0V In each sample, when the temperature is high, it is determined that the liquid level sensor is in the gas phase, and when the temperature is low, it is determined that the liquid level sensor is in the liquid phase. For this reason, it becomes impossible to accurately measure the liquid surface position due to a temperature change. Furthermore, when the samples shown in FIG. 2 are compared, it can be seen that the tendency of the received light voltage to rise is different for each sample and cannot be handled by simple inclination correction.

そこで、各サンプルにおける温度と受光電圧との関係を正規化する。この正規化に際しては、最初に筐体内の基準温度を、例えば、室温程度として25℃を基準温度に設定し、発光部及び受光部の温度(トランジスタ温度)を基準温度に設定したときの受光電圧を受光電圧基準値(Vsta)としてあらかじめ求めておく。そして、各実験において各受光部でそれぞれ測定した受光電圧を受光電圧測定値(Vmeas)とし、各発光部への印加電圧を印加電圧測定値(Vout)とし、受光電圧測定値(Vmeas)と印加電圧測定値(Vout)と受光電圧基準値(Vsta)とを用いた下記式(1)により、受光電圧を正規化した受光電圧正規化値(Vnom)を求める。

Figure 2018119896
Therefore, the relationship between the temperature and the received light voltage in each sample is normalized. At the time of normalization, first, the reference temperature in the housing is set to, for example, about 25 ° C. as the reference temperature, and the light receiving voltage when the temperature of the light emitting unit and the light receiving unit (transistor temperature) is set to the reference temperature. Is previously obtained as a light reception voltage reference value (Vsta). In each experiment, the received light voltage measured at each light receiving part is defined as a received light voltage measured value (Vmeas), the applied voltage to each light emitting part is defined as an applied voltage measured value (Vout), and the received light voltage measured value (Vmeas) and applied. The light reception voltage normalized value (Vnom) obtained by normalizing the light reception voltage is obtained by the following equation (1) using the voltage measurement value (Vout) and the light reception voltage reference value (Vsta).
Figure 2018119896

これにより、図3で示すように、正規化した受光電圧正規化値(Vnom)と筐体内温度(トランジスタ温度)との関係が得られ、受光電圧上昇の傾向が異なっていた各サンプルの受光電圧を一致させることができる。これにより、図3に示す受光電圧正規化値(Vnom)と筐体内温度との関係を単一の式でカーブフィットすることが可能となり、筐体内の温度測定値と前記前記基準温度との差(t)と、任意に決定される回帰式係数(α、β)とを使用して数式化することにより、下記式(2)を決定することができる。

Figure 2018119896
As a result, as shown in FIG. 3, the relationship between the normalized received light voltage normalization value (Vnom) and the temperature in the housing (transistor temperature) is obtained, and the received light voltage of each sample having a different tendency to increase the received light voltage. Can be matched. This makes it possible to curve-fit the relationship between the light reception voltage normalized value (Vnom) shown in FIG. 3 and the temperature in the housing by a single equation, and the difference between the temperature measurement value in the housing and the reference temperature. The following formula (2) can be determined by formulating using (t) and arbitrarily determined regression equation coefficients (α, β).
Figure 2018119896

例えば、図3に示す関係のときには、
Vnom=f(t)=0.00048×t+0.05442×t
という2次式で表すことができる。
For example, when the relationship shown in FIG.
Vnom = f (t) = 0.00048 × t 2 + 0.05442 × t
It can be expressed by the following quadratic expression.

決定された式(2)における数式(f(t))と、受光電圧測定値(Vmeas)と印加電圧測定値(Vout)とに基づいて、受光電圧測定値(Vmeas)を前記基準温度における受光電圧に補正した受光電圧補正値(Vrev)を求めるための前記補正式を、下記式(3)として導き出すことができる。

Figure 2018119896
Based on the determined equation (f (t)) in equation (2), the light reception voltage measurement value (Vmeas), and the applied voltage measurement value (Vout), the light reception voltage measurement value (Vmeas) is received at the reference temperature. The correction equation for obtaining the received light voltage correction value (Vrev) corrected to the voltage can be derived as the following equation (3).
Figure 2018119896

このようにして導き出した補正式に、液面測定時に測定した前記温度測定値、前記印加電圧測定値及び前記受光電圧測定値を代入して受光電圧補正値(Vrev)をそれぞれ求めることにより、図4に示すように、測定した筐体内温度(トランジスタ温度)と基準温度に補正した受光電圧(受光電圧補正値)との関係を各サンプルについてそれぞれ得ることができる。   By substituting the measured temperature value, the applied voltage measured value, and the received light voltage measured value measured during the liquid level measurement into the correction formula derived in this way, the received light voltage correction value (Vrev) is obtained, respectively. As shown in FIG. 4, the relationship between the measured temperature in the casing (transistor temperature) and the received light voltage (received voltage correction value) corrected to the reference temperature can be obtained for each sample.

図4から明らかなように、各サンプルにおける温度依存性を解消した受光電圧補正値が得られるので、各サンプルに対して適切な受光電圧閾値をそれぞれ設定し、設定した受光電圧閾値と受光電圧補正値とを比較することにより、液面感知部が液相内にあるか、気相内にあるかをそれぞれ判定することができる。   As can be seen from FIG. 4, a light reception voltage correction value that eliminates the temperature dependence of each sample can be obtained. Therefore, an appropriate light reception voltage threshold value is set for each sample, and the set light reception voltage threshold value and light reception voltage correction are set. By comparing the values, it can be determined whether the liquid level sensing unit is in the liquid phase or in the gas phase.

図4に示す結果に基づいて、例えば、サンプル1では受光電圧閾値を2.0Vに設定することにより、筐体内温度(トランジスタ温度)に関係なく、受光電圧補正値が2.0V以上のときには液面感知部が気相内にあり、受光電圧補正値が2.0Vを下回ったときに液面感知部が液相内にあると判定できる。したがって、サンプル1として用いた100%用ユニット21においては、液体容器12内への液体注入作業中に、受光電圧補正値が2.0Vを下回ったときに液体容器12内の液面が100%以上になったと判定することができ、液体注入作業を終了することができる。   Based on the results shown in FIG. 4, for example, in sample 1, the light reception voltage threshold value is set to 2.0 V, so that the light reception voltage correction value is 2.0 V or more regardless of the temperature in the housing (transistor temperature). When the surface sensing unit is in the gas phase and the light-receiving voltage correction value is below 2.0 V, it can be determined that the liquid level sensing unit is in the liquid phase. Therefore, in the unit for 100% used as the sample 1, the liquid level in the liquid container 12 is 100% when the light receiving voltage correction value is less than 2.0V during the liquid injection operation into the liquid container 12. It can be determined that the above has been reached, and the liquid injection operation can be completed.

同様に、サンプル2では受光電圧閾値を1.5Vに、サンプル3では受光電圧閾値を1.0Vに、それぞれ設定することにより、液体容器12内の液面を、筐体内温度に関係なく、正確に測定することができる。これにより、液体容器12内への液体注入作業を確実に開始することができる。   Similarly, by setting the light reception voltage threshold value to 1.5 V in sample 2 and to 1.0 V in sample 3, the liquid level in the liquid container 12 can be accurately adjusted regardless of the temperature in the housing. Can be measured. Thereby, the liquid injection | pouring operation | work in the liquid container 12 can be started reliably.

したがって、発光部、受光部及び光ファイバの組み合わせに対して、前記補正式を導き出し、該補正式と受光電圧閾値とを記憶手段にそれぞれ記憶させておくことにより、液面測定時に温度計で測定した筐体内の温度(トランジスタ温度)と、発光部に印加した電圧と、受光部で測定した受光電圧とから、液体容器内の液面を正確に求めることができる。   Therefore, the correction equation is derived for the combination of the light emitting unit, the light receiving unit, and the optical fiber, and the correction equation and the light receiving voltage threshold value are stored in the storage means, respectively, so that measurement is performed with a thermometer at the time of liquid level measurement. The liquid level in the liquid container can be accurately obtained from the temperature in the casing (transistor temperature), the voltage applied to the light emitting unit, and the received light voltage measured by the light receiving unit.

11…液面計、12…液体容器、13…筐体、14…温度計、15…処理装置、16…記憶手段、21…100%用ユニット、22…液面感知部、23…光ファイバ、24…発光部、25…受光部、31…75%用ユニット、32…液面感知部、33…光ファイバ、34…発光部、35…受光部、41…50%用ユニット、42…液面感知部、43…光ファイバ、44…発光部、45…受光部、S…液面   DESCRIPTION OF SYMBOLS 11 ... Liquid level meter, 12 ... Liquid container, 13 ... Housing, 14 ... Thermometer, 15 ... Processing device, 16 ... Memory | storage means, 21 ... Unit for 100%, 22 ... Liquid level sensing part, 23 ... Optical fiber, 24 ... Light emitting part, 25 ... Light receiving part, 31 ... 75% unit, 32 ... Liquid level sensing part, 33 ... Optical fiber, 34 ... Light emitting part, 35 ... Light receiving part, 41 ... Unit for 50%, 42 ... Liquid level Sensing part 43 ... Optical fiber 44 ... Light emitting part 45 ... Light receiving part S ... Liquid level

Claims (2)

屈曲させることにより液面感知部を形成した光ファイバと、該光ファイバの一端から光ファイバ内に測定光を導入する半導体素子製の発光部と、前記光ファイバの他端から導出する測定光の強度を測定する半導体素子製の受光部とを備え、該受光部で受光した測定光の強度に基づいて液面を検出する液面計を使用した液面測定方法において、前記発光部及び前記受光部を共に収納した筐体内の温度を測定した温度測定値と、前記発光部に測定光照射用として印加した電圧を測定した印加電圧測定値と、前記受光部が受光した測定光の強度を受光電圧として測定した受光電圧測定値とをそれぞれ求め、前記温度測定値、前記印加電圧測定値及び前記受光電圧測定値を、あらかじめ設定された補正式に導入し、前記温度測定値によって補正した受光電圧補正値を求め、求めた受光電圧補正値を、あらかじめ設定された受光電圧閾値と比較し、受光電圧補正値が受光電圧閾値未満のときに液面感知部が液相内にあると判定し、受光電圧補正値が受光電圧閾値以上のときに液面感知部が気相内にあると判定することを特徴とする液面測定方法。   An optical fiber in which a liquid level sensing part is formed by bending, a light emitting part made of a semiconductor element for introducing measuring light into the optical fiber from one end of the optical fiber, and a measuring light derived from the other end of the optical fiber. A light receiving unit made of a semiconductor element for measuring the intensity, and in a liquid level measuring method using a liquid level meter that detects a liquid level based on the intensity of measurement light received by the light receiving unit, the light emitting unit and the light receiving unit A temperature measurement value obtained by measuring the temperature in the housing housing the part together, an applied voltage measurement value obtained by measuring a voltage applied to the light emitting part for measurement light irradiation, and an intensity of the measurement light received by the light receiving part. A received light voltage measurement value measured as a voltage is obtained, and the temperature measured value, the applied voltage measured value, and the received light voltage measured value are introduced into a preset correction equation and corrected by the temperature measured value. A voltage correction value is obtained, and the obtained light reception voltage correction value is compared with a preset light reception voltage threshold value.When the light reception voltage correction value is less than the light reception voltage threshold value, it is determined that the liquid level sensor is in the liquid phase. A liquid level measurement method comprising: determining that the liquid level sensing unit is in a gas phase when the light reception voltage correction value is equal to or greater than a light reception voltage threshold value. 前記受光電圧測定値(Vmeas)と、あらかじめ求めた基準温度における受光電圧基準値(Vsta)と、前記印加電圧測定値(Vout)とを用いて正規化した受光電圧正規化値(Vnom)を下記式(1)にて求め、
Figure 2018119896
式(1)によって正規化した受光電圧正規化値(Vnom)を、前記温度測定値と前記基準温度との差(t)と、回帰式係数(α、β)とを使用して数式化することにより下記式(2)を決定し、
Figure 2018119896
式(2)における数式(f(t))と、前記受光電圧測定値(Vmeas)と前記印加電圧測定値(Vout)とに基づいて、前記受光電圧測定値(Vmeas)を前記基準温度における受光電圧に補正した受光電圧補正値(Vrev)を求めるための下記式(3)
Figure 2018119896
からなる前記補正式を導き出すことを特徴とする請求項1記載の液面測定方法。
The light reception voltage normalized value (Vnom) normalized using the light reception voltage measurement value (Vmeas), the light reception voltage reference value (Vsta) at the reference temperature obtained in advance, and the applied voltage measurement value (Vout) is as follows: Obtained by equation (1),
Figure 2018119896
The received light voltage normalized value (Vnom) normalized by the equation (1) is formulated using the difference (t) between the temperature measurement value and the reference temperature and the regression equation coefficients (α, β). The following formula (2) is determined by
Figure 2018119896
Based on the equation (f (t)) in equation (2), the light reception voltage measurement value (Vmeas), and the applied voltage measurement value (Vout), the light reception voltage measurement value (Vmeas) is received at the reference temperature. The following equation (3) for obtaining the received light voltage correction value (Vrev) corrected to the voltage
Figure 2018119896
The liquid level measurement method according to claim 1, wherein the correction formula is derived.
JP2017012637A 2017-01-27 2017-01-27 Liquid level measurement method Active JP6878019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017012637A JP6878019B2 (en) 2017-01-27 2017-01-27 Liquid level measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012637A JP6878019B2 (en) 2017-01-27 2017-01-27 Liquid level measurement method

Publications (2)

Publication Number Publication Date
JP2018119896A true JP2018119896A (en) 2018-08-02
JP6878019B2 JP6878019B2 (en) 2021-05-26

Family

ID=63044281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012637A Active JP6878019B2 (en) 2017-01-27 2017-01-27 Liquid level measurement method

Country Status (1)

Country Link
JP (1) JP6878019B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249033A (en) * 1986-04-22 1987-10-30 Toyota Motor Corp Detecting device for smoke density of internal combustion engine
JPS63215945A (en) * 1987-03-04 1988-09-08 Ngk Spark Plug Co Ltd Mixing ratio detector for fluid such as gasoline-alcohol
JPH01207647A (en) * 1988-02-16 1989-08-21 Ngk Spark Plug Co Ltd Detecting device for liquid mixing ratio of gasoline and alcohol or the like
US5452076A (en) * 1993-09-29 1995-09-19 Optiguard, Inc. Fluid detection system
JP2001159607A (en) * 2000-10-17 2001-06-12 Totoku Electric Co Ltd Method for measuring refractive index
JP2002214021A (en) * 2001-01-24 2002-07-31 Yazaki Corp Liquid level detection sensor
JP2007071863A (en) * 2005-08-10 2007-03-22 Yokohama National Univ Optical sensor and fluid measuring method
US20150149099A1 (en) * 2013-11-22 2015-05-28 Fluke Electronics Corporation Optical flow measuring device and method of operation
JP2017015679A (en) * 2015-06-30 2017-01-19 旭化成エレクトロニクス株式会社 Gas concentration measurement device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249033A (en) * 1986-04-22 1987-10-30 Toyota Motor Corp Detecting device for smoke density of internal combustion engine
JPS63215945A (en) * 1987-03-04 1988-09-08 Ngk Spark Plug Co Ltd Mixing ratio detector for fluid such as gasoline-alcohol
JPH01207647A (en) * 1988-02-16 1989-08-21 Ngk Spark Plug Co Ltd Detecting device for liquid mixing ratio of gasoline and alcohol or the like
US5452076A (en) * 1993-09-29 1995-09-19 Optiguard, Inc. Fluid detection system
JP2001159607A (en) * 2000-10-17 2001-06-12 Totoku Electric Co Ltd Method for measuring refractive index
JP2002214021A (en) * 2001-01-24 2002-07-31 Yazaki Corp Liquid level detection sensor
JP2007071863A (en) * 2005-08-10 2007-03-22 Yokohama National Univ Optical sensor and fluid measuring method
US20150149099A1 (en) * 2013-11-22 2015-05-28 Fluke Electronics Corporation Optical flow measuring device and method of operation
JP2017015679A (en) * 2015-06-30 2017-01-19 旭化成エレクトロニクス株式会社 Gas concentration measurement device

Also Published As

Publication number Publication date
JP6878019B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
US7507019B2 (en) Thermometer calibration
TWI384209B (en) Temperature sensor, and temperature measurement method
EP2336741A1 (en) Self-calibration circuit and method for junction temperature estimation
US8928874B2 (en) Method for identifying abnormal spectral profiles measured by a chromatic confocal range sensor
Possetti et al. Metrological evaluation of optical fiber grating-based sensors: an approach towards the standardization
US20070268952A1 (en) Thermometer calibration by immersion in non-electrically conductive liquid
Jones et al. Calibration of distributed temperature sensors using commercially available SMF-28 optical fiber from 22° C to 1000° C
JP2008249515A (en) Temperature distribution measuring system and temperature distribution measuring method
WO2013045897A1 (en) Estimating ambient temperature from internal temperature sensor, in particular for blood glucose measurement
JP6878019B2 (en) Liquid level measurement method
JP4944005B2 (en) Temperature sensor and temperature measurement method
CN110646134A (en) Calibration method and calibration device for air pressure sensor
CN107478632B (en) Method for detecting pH value through fluorescence of pH test paper
JP2010261895A (en) Method and apparatus for measuring concentration of trace constituent in solution
JP2011117823A (en) Device for measuring pipe wall thickness
CN109580028A (en) Heat up measurement method inside display screen
JP5182638B2 (en) Heat loss evaluation system and evaluation method
JP2007085857A (en) Data calibration method in surface plasmon resonance spectrum measuring device
Hurll Understanding measurement uncertainty: an introduction
US20230314320A1 (en) Control apparatus, measuring instrument, and method of preventing condensation
Mangum Stability of small industrial platinum resistance thermometers
Volosnikov et al. RTD error correction in the diagnostics of its parameters state
JP2006071532A (en) Optical fiber temperature distribution sensor
Sârbu Evaluation of the measurement uncertainty in thermoresistances calibration
Zaharov et al. Evaluation of expanded uncertainty at glass thermometer calibration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6878019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150