JP2006071532A - Optical fiber temperature distribution sensor - Google Patents

Optical fiber temperature distribution sensor Download PDF

Info

Publication number
JP2006071532A
JP2006071532A JP2004256790A JP2004256790A JP2006071532A JP 2006071532 A JP2006071532 A JP 2006071532A JP 2004256790 A JP2004256790 A JP 2004256790A JP 2004256790 A JP2004256790 A JP 2004256790A JP 2006071532 A JP2006071532 A JP 2006071532A
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
measured
temperature distribution
thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004256790A
Other languages
Japanese (ja)
Inventor
Satoru Yamamoto
哲 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004256790A priority Critical patent/JP2006071532A/en
Publication of JP2006071532A publication Critical patent/JP2006071532A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber temperature distribution sensor for accurately measuring temperature distribution even when a temperature difference in the entire length of an optical fiber (especially, a temperature difference between a measuring instrument installation environment and a measuring object position) is great. <P>SOLUTION: This optical fiber temperature distribution sensor is used for measuring temperature distribution along the optical fiber 1 based on an intensity ratio Ia/Is between stokes light and antistokes light generated in the optical fiber 1. Two reference temperatures are measured with thermometers 11 and 12 different from the relevant sensor. A reading value of temperature based on the intensity ratio Ia/Is is corrected so that the temperatures found from the intensity ratio Ia/Is agree with the two reference temperatures, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ラマン後方散乱光を利用した光ファイバ温度分布センサに係り、光ファイバ全長における温度差(とりわけ測定装置設置環境と測定対象箇所の温度差)が大きいときでも精度良く温度分布が測定できる光ファイバ温度分布センサに関する。   The present invention relates to an optical fiber temperature distribution sensor using Raman backscattered light, and can accurately measure the temperature distribution even when the temperature difference in the entire length of the optical fiber (especially the temperature difference between the measurement device installation environment and the measurement target location) is large. The present invention relates to an optical fiber temperature distribution sensor.

光ファイバを用い、その光ファイバに沿った温度分布を測定する光ファイバ温度分布センサとして特許文献1に記載されたものがある。   An optical fiber temperature distribution sensor that uses an optical fiber and measures a temperature distribution along the optical fiber is described in Patent Document 1.

図3に示されるように、光ファイバ温度分布センサは、センサ用光ファイバ(以下、中継用光ファイバも含め単に光ファイバという)1の一端を測定装置2に接続してなる。光ファイバ1の図示しない他端は測定対象の場所へ巡らされている。測定装置2は、所定の方式で変調をかけた光を出射する光源4と、その光を光ファイバ1に導くと共に光ファイバ1から戻ってきた後方散乱光を分離する光分波器5と、その分離された後方散乱光のうちストークス光を受光するO/E変換器6sと、アンチストークス光を受光するO/E変換器6aと、それぞれの受光信号を光源4における変調に同期させて平均する平均化回路7s,7aと、その同期をとるための同期回路8と、それぞれの平均出力をもとに温度分布を演算する温度分布演算部13とを備える。   As shown in FIG. 3, the optical fiber temperature distribution sensor is formed by connecting one end of a sensor optical fiber (hereinafter simply referred to as an optical fiber including a relay optical fiber) 1 to a measuring device 2. The other end (not shown) of the optical fiber 1 is routed to the location to be measured. The measuring apparatus 2 includes a light source 4 that emits light modulated by a predetermined method, an optical demultiplexer 5 that guides the light to the optical fiber 1 and separates backscattered light returned from the optical fiber 1, Of the separated backscattered light, an O / E converter 6s that receives Stokes light, an O / E converter 6a that receives anti-Stokes light, and the average of the received light signals in synchronization with the modulation in the light source 4 Averaging circuits 7s and 7a, a synchronizing circuit 8 for synchronizing them, and a temperature distribution calculating unit 13 for calculating the temperature distribution based on the respective average outputs.

光源4から出射された波長λ0の光は、中継用光ファイバ81、光分波器5を経由して光ファイバ1に入射する。光ファイバ1内の各所で波長λ0の入射光によりラマン散乱光(波長λsのストークス光及び波長λaのアンチストークス光)が発生する。発生したラマン散乱光のうち入射側に戻ってくる後方散乱光が光分波器5で波長λsのストークス光と波長λaのアンチストークス光とに分波され、それぞれの光が中継用光ファイバ82,83によりO/E変換器6s,6aに導かれる。各O/E変換器6s,6aで変換及び増幅された電気信号は図4、図5のような時間波形を示す。   The light of wavelength λ0 emitted from the light source 4 enters the optical fiber 1 via the relay optical fiber 81 and the optical demultiplexer 5. Raman scattered light (Stokes light of wavelength λs and anti-Stokes light of wavelength λa) is generated by incident light having a wavelength λ0 at various locations in the optical fiber 1. Of the generated Raman scattered light, the back scattered light returning to the incident side is demultiplexed into Stokes light of wavelength λs and anti-Stokes light of wavelength λa by the optical demultiplexer 5, and the respective lights are relayed optical fiber 82. , 83 are led to O / E converters 6s, 6a. The electric signals converted and amplified by the respective O / E converters 6s and 6a have time waveforms as shown in FIGS.

図4、図5は、横軸を光源における発光タイミングを基準にした時間軸とし、縦軸をO/E変換器6s,6aの出力強度、すなわちストークス光及びアンチストークス光の信号強度としたものである。実際は、ストークス光及びアンチストークス光の信号強度は非常に微弱であるため、1回の測定では図4、図5に示すようなS/Nの良い波形は得られず、後段の平均化回路7s,7aで複数回の測定について同期を取って平均化処理を行うことで図4、図5の波形を得る。   4 and 5, the horizontal axis is a time axis based on the light emission timing of the light source, and the vertical axis is the output intensity of the O / E converters 6 s and 6 a, that is, the signal intensity of Stokes light and anti-Stokes light. It is. Actually, the signal strengths of the Stokes light and the anti-Stokes light are very weak, so that a waveform having a good S / N as shown in FIGS. 4 and 5 cannot be obtained in one measurement, and the averaging circuit 7s in the subsequent stage is not obtained. 7a, the waveforms shown in FIGS. 4 and 5 are obtained by performing the averaging process in synchronization with a plurality of measurements.

図4、図5の波形は、O/E変換器6s,6aで受光されるストークス光及びアンチストークス光の信号強度を光源4における発光タイミングを基準にした時間の関数として表したものであるが、光ファイバ1中の光速が既知であるので、光源4を基準にした光ファイバ1に沿った距離の関数に置き換えることができる。従って、図4、図5は、横軸を距離とし、光ファイバの各距離地点で発生したストークス光及びアンチストークス光の強度、つまり距離分布とすることができる。   4 and 5 represent the signal intensities of the Stokes light and the anti-Stokes light received by the O / E converters 6s and 6a as a function of time with reference to the light emission timing of the light source 4. Since the speed of light in the optical fiber 1 is known, it can be replaced with a function of the distance along the optical fiber 1 with respect to the light source 4. Therefore, in FIGS. 4 and 5, the horizontal axis is distance, and the intensity of Stokes light and anti-Stokes light generated at each distance point of the optical fiber, that is, distance distribution can be obtained.

一方、ストークス光強度Iaとアンチストークス光強度Isはいずれも光ファイバ1の温度に依存し、さらに、両光の強度比Ia/Isも式(1)に示すように光ファイバ1の温度に依存する。   On the other hand, the Stokes light intensity Ia and the anti-Stokes light intensity Is both depend on the temperature of the optical fiber 1, and the intensity ratio Ia / Is of both lights also depends on the temperature of the optical fiber 1 as shown in the equation (1). To do.

Figure 2006071532
Figure 2006071532

式(1)中の係数K0,n0,nkは、光ファイバの組成、光源の中心波長、波長分布、O/E変換器の変換効率など、光ファイバや測定装置構成部品の性状によって決まるものであるため、強度比Ia/Isが分かればラマン散乱光が発生した箇所の温度を知ることができる。   The coefficients K0, n0, and nk in Equation (1) are determined by the properties of the optical fiber and measurement device components, such as the composition of the optical fiber, the center wavelength of the light source, the wavelength distribution, and the conversion efficiency of the O / E converter. Therefore, if the intensity ratio Ia / Is is known, the temperature at the location where the Raman scattered light is generated can be known.

式(1)は距離xを除外してあるが、強度比Ia/Isは距離の関数Ia(x)/Is(x)であるから、この強度比Ia(x)/Is(x)から光ファイバ1に沿った温度分布T(x)を求めることができる。   Although the expression (1) excludes the distance x, since the intensity ratio Ia / Is is a function of distance Ia (x) / Is (x), light from this intensity ratio Ia (x) / Is (x) A temperature distribution T (x) along the fiber 1 can be determined.

図6に、図4、図5の波形に対応した温度分布T(x)を示す。図示のように、ストークス光及びアンチストークス光の強度分布に見られた高いピーク及び低いピークに対応して温度分布にも高いピーク及び低いピークが表れている。なお、実際にはストークス光とアンチストークス光が光ファイバを伝搬する際の損失が若干異なるため、この損失に対する補正を行ってある。   FIG. 6 shows a temperature distribution T (x) corresponding to the waveforms of FIGS. As shown, high and low peaks appear in the temperature distribution corresponding to the high and low peaks found in the intensity distributions of the Stokes light and the anti-Stokes light. Actually, since the loss when Stokes light and anti-Stokes light propagate through the optical fiber is slightly different, the loss is corrected.

特許第2136071号公報(特公平8−23512号公報)Japanese Patent No. 2136071 (Japanese Patent Publication No. 8-23512) 特許第2977373号公報Japanese Patent No. 2977373

前述した光ファイバ温度分布センサには、光ファイバや測定装置が置かれている環境や構成部品の経時変化によって変化する特性もあるため、この変化による温度測定誤差を補正することが必要になる。   The above-described optical fiber temperature distribution sensor also has characteristics that change with time in the environment in which the optical fiber and the measuring device are placed and the components, so it is necessary to correct temperature measurement errors due to this change.

図3の例では、測定装置2内に基準温度部10を設け、温度分布測定のたびにこの基準温度部10の温度を光ファイバとは違う方式の別に設けた温度計11で測定し、強度比Ia/Isから求めた基準温度部10の温度が別に設けた温度計11で測定した温度(基準温度という)に一致するよう式(1)中の係数を決め、光ファイバ1中の他の箇所における温度計算にもその係数を適用して温度分布を求めている。   In the example of FIG. 3, the reference temperature unit 10 is provided in the measuring device 2, and the temperature of the reference temperature unit 10 is measured by a thermometer 11 provided separately by a method different from the optical fiber every time the temperature distribution is measured. The coefficient in the equation (1) is determined so that the temperature of the reference temperature unit 10 obtained from the ratio Ia / Is matches the temperature (referred to as the reference temperature) measured by the thermometer 11 provided separately, and other coefficients in the optical fiber 1 are determined. The temperature distribution is obtained by applying the coefficient to the temperature calculation at the location.

具体的には、図7に示されるように、強度比Ia/Isは温度の関数となるが、その関数を表す曲線の傾きは、式(1)中の係数K0,n0,nkによって変わるものである。これらの係数は、光ファイバの組成、光源の中心波長、波長分布、O/E変換器の変換効率など、光ファイバや測定装置構成部品の性状によって決まるものであるため、光ファイバ1と測定装置2の特性が決まれば一義的に決まるものである。これらの係数の中には周囲温度によって変化するものもあるため、前述のように測定装置2内に基準温度部10を設けて補正を行えるようにしている。   Specifically, as shown in FIG. 7, the intensity ratio Ia / Is is a function of temperature, and the slope of the curve representing the function varies depending on the coefficients K0, n0, and nk in Equation (1). It is. These coefficients are determined by the properties of the optical fiber and measurement device components such as the composition of the optical fiber, the center wavelength of the light source, the wavelength distribution, and the conversion efficiency of the O / E converter. If the characteristics of 2 are determined, they are uniquely determined. Since some of these coefficients change depending on the ambient temperature, the reference temperature unit 10 is provided in the measuring apparatus 2 as described above so that correction can be performed.

しかしながら、前述の方法で式(1)中の係数を決めた場合でも、その係数は真値に対してある程度誤差をもってしまう。このような係数の設定誤差により、式(1)で求める温度の精度が低下することが分かった。図7には、係数が真値であった場合に式(1)に温度を代入して得られる強度比Ia/Isの特性を実線で示し、係数に設定誤差がある場合に式(1)に温度を代入して得られる強度比Ia/Isの特性2つを破線で示してある。図から分かるように、係数に設定誤差がある場合、基準温度の近傍においてはいずれの特性でも強度比Ia/Isは真値によるそれに近い。しかし、基準温度から離れた温度においては強度比Ia/Isは真値によるそれに対して大きく離れている。   However, even when the coefficient in the equation (1) is determined by the above-described method, the coefficient has some error with respect to the true value. It has been found that the accuracy of the temperature obtained by the equation (1) is reduced by such a coefficient setting error. In FIG. 7, the characteristic of the intensity ratio Ia / Is obtained by substituting the temperature into the equation (1) when the coefficient is a true value is indicated by a solid line, and when the coefficient has a setting error, the equation (1) Two characteristics of the intensity ratio Ia / Is obtained by substituting the temperature for are indicated by broken lines. As can be seen from the figure, when there is a setting error in the coefficient, the intensity ratio Ia / Is is close to that of the true value in any characteristic in the vicinity of the reference temperature. However, at a temperature away from the reference temperature, the intensity ratio Ia / Is is far away from that of the true value.

このことは、逆に光の測定によって得られる強度比Ia/Isを式(1)に代入して温度を求めた場合でも、実温度に対して係数の設定誤差に基づく誤差があるということである。つまり、基準温度の近傍の温度は正確に近くても基準温度から離れた高温あるいは低温の測定には大きな誤差が伴うということである。   Conversely, even when the temperature is obtained by substituting the intensity ratio Ia / Is obtained by light measurement into the equation (1), there is an error based on the coefficient setting error with respect to the actual temperature. is there. In other words, even if the temperature in the vicinity of the reference temperature is close to the reference temperature, measurement at a high or low temperature far from the reference temperature is accompanied by a large error.

この種の光ファイバ温度分布センサの応用用途として、高温になる製造設備の温度分布を測定すること、路面の凍結を調べるために道路の温度分布を測定することなどがある。しかし、一般に測定装置2の設置環境(光ファイバ1の一端もここへ含まれる)は常温程度であるのに対し、上記のような応用においては測定対象箇所の温度は高温であったり、低温であったりする。つまり、従来のように測定装置の設置環境で基準温度を与えている方式では肝心の測定対象箇所の温度が不正確になるという欠点がある。   Applications of this type of optical fiber temperature distribution sensor include measuring the temperature distribution of a manufacturing facility that is at a high temperature, and measuring the temperature distribution of a road in order to investigate freezing of the road surface. However, in general, the installation environment of the measuring device 2 (one end of the optical fiber 1 is also included here) is about room temperature, whereas in the above-described application, the temperature of the measurement target location is high or low. There is. That is, the conventional method in which the reference temperature is given in the installation environment of the measuring apparatus has a drawback that the temperature at the important measurement target portion becomes inaccurate.

そこで、本発明の目的は、上記課題を解決し、光ファイバ全長における温度差(とりわけ測定装置設置環境と測定対象箇所の温度差)が大きいときでも精度良く温度分布が測定できる光ファイバ温度分布センサを提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems, and an optical fiber temperature distribution sensor capable of measuring a temperature distribution with high accuracy even when a temperature difference in the entire length of the optical fiber (especially a temperature difference between a measuring device installation environment and a measurement target location) is large. Is to provide.

上記目的を達成するために本発明は、光ファイバ中に発生するストークス光とアンチストークス光の強度比Ia/Isに基づいてその光ファイバに沿った温度分布を測定する光ファイバ温度分布センサにおいて、当該センサとは別の温度計で2つの基準温度を測定し、これら2つの基準温度について強度比Ia/Isから求めた温度がそれぞれ一致するよう強度比Ia/Isによる温度の読み値を補正するようにしたものである。   To achieve the above object, the present invention provides an optical fiber temperature distribution sensor for measuring a temperature distribution along an optical fiber based on an intensity ratio Ia / Is of Stokes light and anti-Stokes light generated in the optical fiber. Two reference temperatures are measured by a thermometer different from the sensor, and the temperature readings based on the intensity ratio Ia / Is are corrected so that the temperatures obtained from the intensity ratios Ia / Is match with each other. It is what I did.

2つの基準温度はそれぞれ別の温度計で測定してもよい。   The two reference temperatures may be measured by separate thermometers.

上記両光の強度を測定する測定装置に接続される上記光ファイバの端部近傍あるいは上記光ファイバと直列に接続される測定装置内の光ファイバに第一の基準温度を測定する第一の温度計を設置し、上記光ファイバの延長上に第二の基準温度を測定する第二の温度計を設置してもよい。   A first temperature at which a first reference temperature is measured in the vicinity of the end of the optical fiber connected to the measuring device for measuring the intensity of both lights or in an optical fiber in the measuring device connected in series with the optical fiber. A second thermometer that measures the second reference temperature may be installed on the extension of the optical fiber.

少なくとも1つの基準温度は測定しようとする温度範囲の内にあってもよい。   The at least one reference temperature may be within a temperature range to be measured.

少なくとも1つの温度計は測定対象箇所に設置してもよい。   At least one thermometer may be installed at a measurement target location.

強度比Ia/Isと温度との関係式について第一の温度計の設置箇所における計算値が第一の温度計で測定される第一の基準温度Tr1に一致するよう係数を定め、この関係式で計算される第二の温度計の設置箇所における温度Tr2と第一の基準温度Tr1との差(Tr2−Tr1)に対する第二の温度計で測定される第二の基準温度T0r2と第一の基準温度Tr1との差(T0r2−Tr1)の比を上記関係式で計算される任意の箇所における温度T1と第一の基準温度Tr1との差にかけて、これに第一の基準温度Tr1を加えることにより、補正された温度T1’を得てもよい。   Regarding the relational expression between the intensity ratio Ia / Is and the temperature, a coefficient is determined so that the calculated value at the location where the first thermometer is installed matches the first reference temperature Tr1 measured by the first thermometer. The second reference temperature T0r2 and the first reference temperature T0r2 measured by the second thermometer with respect to the difference (Tr2-Tr1) between the temperature Tr2 and the first reference temperature Tr1 at the location where the second thermometer is calculated The ratio of the difference (T0r2-Tr1) from the reference temperature Tr1 is applied to the difference between the temperature T1 and the first reference temperature Tr1 at an arbitrary position calculated by the above relational expression, and the first reference temperature Tr1 is added thereto. Thus, the corrected temperature T1 ′ may be obtained.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)光ファイバ全長における温度差が大きいときでも精度良く温度分布が測定できる。   (1) The temperature distribution can be accurately measured even when the temperature difference in the entire length of the optical fiber is large.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

まず、光ファイバ温度分布センサの装置構成を詳しく説明する。   First, the configuration of the optical fiber temperature distribution sensor will be described in detail.

図2に示されるように、本発明に係る光ファイバ温度分布センサは、光ファイバ1の一端を測定装置2に接続すると共に光ファイバ1の途中に温度参照部3を設けてなる。測定装置2は、所定の方式で変調をかけた光を出射する光源4と、その光を光ファイバ1に導くと共に光ファイバ1から戻ってきた後方散乱光を分離する光分波器5と、その分離された後方散乱光のうちストークス光を受光するO/E変換器6sと、アンチストークス光を受光するO/E変換器6aと、それぞれの受光信号を光源4における変調に同期させて平均する平均化回路7s,7aと、その同期をとるための同期回路8と、それぞれの平均出力をもとに温度分布を演算する温度分布演算部9と、測定装置2の近傍における光ファイバ1の温度を測定する基準温度部10とを備える。   As shown in FIG. 2, the optical fiber temperature distribution sensor according to the present invention includes one end of an optical fiber 1 connected to a measuring device 2 and a temperature reference unit 3 provided in the middle of the optical fiber 1. The measuring apparatus 2 includes a light source 4 that emits light modulated by a predetermined method, an optical demultiplexer 5 that guides the light to the optical fiber 1 and separates backscattered light returned from the optical fiber 1, Of the separated backscattered light, an O / E converter 6s that receives Stokes light, an O / E converter 6a that receives anti-Stokes light, and the average of the received light signals in synchronization with the modulation in the light source 4 Averaging circuits 7s and 7a, a synchronizing circuit 8 for synchronizing the averaging circuits, a temperature distribution calculating unit 9 for calculating the temperature distribution based on the respective average outputs, and the optical fiber 1 in the vicinity of the measuring device 2 And a reference temperature unit 10 for measuring temperature.

図3と比較して分かるように、本発明の特徴は温度参照部3を設けたことである。温度参照部3は基準温度部10とほぼ同じ構造のものであり、光ファイバ1とは違う方式の別に設けた温度計で当該環境の温度(光ファイバの温度)を測定するものである。基準温度部10の温度計は第一の基準温度を測定する第一の温度計11、温度参照部3の温度計は第二の基準温度を測定する第二の温度計12である。   As can be seen from comparison with FIG. 3, the feature of the present invention is that a temperature reference unit 3 is provided. The temperature reference unit 3 has substantially the same structure as the reference temperature unit 10, and measures the temperature of the environment (temperature of the optical fiber) with a thermometer provided separately from the optical fiber 1. The thermometer of the reference temperature unit 10 is a first thermometer 11 that measures a first reference temperature, and the thermometer of the temperature reference unit 3 is a second thermometer 12 that measures a second reference temperature.

ここで温度参照部3の詳細を説明すると、温度計12となる温度センサには白金抵抗体、サーミスタ、熱電対などの公知の温度センサを所望とする測定精度や使用環境に合わせて使用することができる。温度参照部3は温度センサを図示しない容器、箱などの閉じた空間に収容したものであり、この温度参照部3に光ファイバ1を通してある。温度参照部3の内部に入れる光ファイバ1の長さはラマン後方散乱光による温度測定の距離応答性(距離分解能)を考慮して、距離応答性以上の長さ、好ましくは距離応答性の5倍程度とする。このとき、温度参照部3内に温度分布(ここでは温度差の意)が生じにくいように、温度参照部3の寸法を小さくする必要がある。これには光ファイバ1をループ状に巻いて収納するとよい。   Here, the temperature reference unit 3 will be described in detail. A known temperature sensor such as a platinum resistor, thermistor, thermocouple, or the like is used as the temperature sensor serving as the thermometer 12 in accordance with the desired measurement accuracy and usage environment. Can do. The temperature reference unit 3 accommodates a temperature sensor in a closed space such as a container or a box (not shown), and the optical fiber 1 is passed through the temperature reference unit 3. The length of the optical fiber 1 inserted into the temperature reference unit 3 is longer than the distance responsiveness, preferably 5 having a distance responsiveness, in consideration of the distance responsiveness (distance resolution) of temperature measurement by Raman backscattered light. Double it. At this time, it is necessary to reduce the size of the temperature reference portion 3 so that a temperature distribution (in this case, meaning a temperature difference) does not easily occur in the temperature reference portion 3. For this purpose, the optical fiber 1 is preferably housed in a loop.

また、光ファイバ1の温度と温度センサの温度が同じになるよう温度センサは光ファイバ1の直近に置くが、両者の間には熱抵抗が存在するので、温度参照部3の周囲温度の変化が影響して温度参照部3の内部に温度変化が生じると、上記熱抵抗により光ファイバ1と温度センサ間に温度差が表れてしまう。そこで、温度参照部3は外部に対して内部が断熱される構造とするのが好ましい。   Further, the temperature sensor is placed in the immediate vicinity of the optical fiber 1 so that the temperature of the optical fiber 1 and the temperature of the temperature sensor become the same, but since there is a thermal resistance between them, the change in the ambient temperature of the temperature reference unit 3 If a temperature change occurs inside the temperature reference unit 3 due to the above, a temperature difference appears between the optical fiber 1 and the temperature sensor due to the thermal resistance. Therefore, it is preferable that the temperature reference unit 3 has a structure in which the inside is thermally insulated from the outside.

図2中の他の部材は図3に示したものと同じであるので説明は省く。ただし温度分布演算部9は、図3の温度分布演算部13とは異なり、式(1)で得られた読み値T1に対して式(2)を適用して補正された温度T1’を得るようになっている。   The other members in FIG. 2 are the same as those shown in FIG. However, unlike the temperature distribution calculation unit 13 in FIG. 3, the temperature distribution calculation unit 9 obtains a temperature T1 ′ corrected by applying the formula (2) to the reading value T1 obtained by the formula (1). It is like that.

次に、温度分布演算の手順について図1を用いて説明する。   Next, the temperature distribution calculation procedure will be described with reference to FIG.

図1は、横軸に実温度、縦軸に強度比Ia/Isから求めた温度(測定結果)を取って実温度に対する測定結果の特性を示したものである。破線が補正前の読み値、つまり本発明を適用する前の特性であり、実線が真値(実温度に一致する測定値)、つまり本発明を適用して得られる特性である。図中、第一の基準温度Tr1は、これまで背景技術として説明してきた測定装置内の基準温度部において当該センサとは別の温度計で測定した基準温度と同じである。第一の基準温度Tr1に対する読み値がTr1になるように係数が設定されるので、縦軸を見ると同じTr1が示されている。   FIG. 1 shows the characteristic of the measurement result with respect to the actual temperature by taking the actual temperature on the horizontal axis and the temperature (measurement result) obtained from the intensity ratio Ia / Is on the vertical axis. A broken line is a reading value before correction, that is, a characteristic before the present invention is applied, and a solid line is a true value (measured value that matches the actual temperature), that is, a characteristic obtained by applying the present invention. In the drawing, the first reference temperature Tr1 is the same as the reference temperature measured by a thermometer different from the sensor in the reference temperature section in the measuring apparatus described so far as the background art. Since the coefficient is set so that the reading with respect to the first reference temperature Tr1 is Tr1, the same Tr1 is shown on the vertical axis.

この図の破線の特性を使用して従来技術(本発明において読み値を補正する以前の状態)を説明すると、強度比Ia/Isから求めた温度は第一の基準温度Tr1の近くでは真値に近い。しかし、第一の基準温度Tr1から高温側あるいは低温側に離れていくと、真値との誤差が大きくなる。   The prior art (state before the reading is corrected in the present invention) will be described using the characteristics of the broken line in this figure. The temperature obtained from the intensity ratio Ia / Is is a true value near the first reference temperature Tr1. Close to. However, the error from the true value increases as the distance from the first reference temperature Tr1 increases to the high temperature side or the low temperature side.

そこで、本発明では第一の基準温度Tr1に加えて第二の基準温度Tr2を用いる。これら2つの基準温度について強度比Ia/Isから求めた温度がそれぞれ一致するよう強度比Ia/Isによる温度の読み値を補正するのである。   Therefore, in the present invention, the second reference temperature Tr2 is used in addition to the first reference temperature Tr1. The temperature readings based on the intensity ratio Ia / Is are corrected so that the temperatures obtained from the intensity ratios Ia / Is match with respect to these two reference temperatures.

このように本発明は、2つの基準温度を光ファイバ以外の手段で測定することに特徴がある。この原理によると、2つの基準温度が分かればよく、これらの基準温度を測定する場所には関係しない。しかし、実際にはどこかの場所に温度計を設置して基準温度を測定することになる。2つの基準温度は同じ箇所で別の時間に測定することはできるが、同じ箇所で同時に測定することは不可能である。一方、別々の箇所にそれぞれ温度計を設置しておけば2つの基準温度を同時に測定することができる。よって、図2のように、別々の箇所に設置した温度計でそれぞれ基準温度を測定するとよい。   As described above, the present invention is characterized in that the two reference temperatures are measured by means other than the optical fiber. According to this principle, it is only necessary to know two reference temperatures, and it does not matter where these reference temperatures are measured. However, in practice, a thermometer is installed somewhere to measure the reference temperature. The two reference temperatures can be measured at the same location at different times, but cannot be measured simultaneously at the same location. On the other hand, two reference temperatures can be measured simultaneously by installing thermometers at different locations. Therefore, as shown in FIG. 2, the reference temperatures may be measured by thermometers installed at different locations.

具体的な補正は次のように行う。まず、従来同様に、強度比Ia/Isと温度との関係式(1)について第一の温度計の設置箇所における強度比Ia/Isが第一の温度計で測定される第一の基準温度Tr1に一致するよう係数を定める。次に、この関係式(1)で計算される第二の温度計の設置箇所における温度Tr2と第一の基準温度Tr1との差(Tr2−Tr1)を求める。同時に、第二の温度計で測定される第二の基準温度T0r2と第一の基準温度Tr1との差(T0r2−Tr1)を求める。これら2つの差の比(前者を分母とする)を関係式(1)で計算される任意の箇所xにおける温度T1と第一の基準温度Tr1との差にかけて、これに第一の基準温度Tr1を加えることにより、補正された温度T1’を得る。この手順を数式で表すと、次式(2)のようになる。   The specific correction is performed as follows. First, as in the prior art, the first reference temperature at which the intensity ratio Ia / Is at the location where the first thermometer is installed is measured with the first thermometer in relation to the relational expression (1) between the intensity ratio Ia / Is and the temperature. A coefficient is determined so as to coincide with Tr1. Next, the difference (Tr2-Tr1) between the temperature Tr2 and the first reference temperature Tr1 at the installation location of the second thermometer calculated by the relational expression (1) is obtained. At the same time, the difference (T0r2-Tr1) between the second reference temperature T0r2 measured by the second thermometer and the first reference temperature Tr1 is obtained. The ratio of these two differences (with the former as the denominator) is multiplied by the difference between the temperature T1 and the first reference temperature Tr1 at an arbitrary location x calculated by the relational expression (1), and this is added to the first reference temperature Tr1. Is added to obtain a corrected temperature T1 ′. This procedure is expressed by the following equation (2).

Figure 2006071532
Figure 2006071532

このようにして、実温度がTAであるような箇所xの測定値は最初の読み値T1から補正値T1’に補正され、この測定値T1’は実温度TAに等しいか限りなく近い。図1を見れば明らかなように、従来技術にあった誤差が解消されている。   In this way, the measured value at the point x where the actual temperature is TA is corrected from the first reading value T1 to the correction value T1 ', and this measured value T1' is as close as possible to the actual temperature TA. As can be seen from FIG. 1, the error in the prior art is eliminated.

なお、温度参照部3における温度Tr2は、温度参照部3内にある光ファイバ1の温度を強度比Ia/Isから計算した読み値である。この際、距離分解能による測定範囲が温度参照部3外を含むと周囲温度の影響が出てしまうので、温度参照部3内の光ファイバ長の中央付近の温度を読む。また、そのとき中央付近の1箇所のみの温度を読んで使用することも可能であるが、中央付近の複数箇所の読み値を平均したほうが測定誤差を回避して測定精度を高めることができる。   The temperature Tr2 in the temperature reference unit 3 is a reading obtained by calculating the temperature of the optical fiber 1 in the temperature reference unit 3 from the intensity ratio Ia / Is. At this time, if the measurement range based on the distance resolution includes the outside of the temperature reference unit 3, the influence of the ambient temperature comes out, so the temperature near the center of the optical fiber length in the temperature reference unit 3 is read. Further, at that time, it is possible to read and use the temperature at only one place near the center. However, averaging the readings at a plurality of places near the center can avoid the measurement error and increase the measurement accuracy.

距離xを含めた計算式(3)は次のようになる。   The calculation formula (3) including the distance x is as follows.

Figure 2006071532
Figure 2006071532

温度分布を求めるには、まず、複数の距離xの箇所について、強度比Ia/Isから計算した読み値を得る。これは、補正前の温度分布となる。この温度分布に対して式(3)を適用すれば、補正された温度分布が得られる。   In order to obtain the temperature distribution, first, readings calculated from the intensity ratio Ia / Is are obtained for a plurality of locations of distance x. This is the temperature distribution before correction. If equation (3) is applied to this temperature distribution, a corrected temperature distribution is obtained.

第一及び第二の基準温度は、互いに異なる温度であればそれぞれ任意に測定することができるが、これまで説明したように第一の基準温度は測定装置2の設置環境の温度(多くの場合、常温)とし、第二の基準温度は測定対象箇所の温度(高温あるいは低温)とするのが好適である。その際、第二の基準温度は、被測定温度範囲内にあるとよい。すなわち、図1で説明すると、実温度TA以下の温度範囲を測定しようとするとき、第二の基準温度T0r2は実温度TAよりも低い。   The first and second reference temperatures can be arbitrarily measured as long as they are different from each other. However, as described above, the first reference temperature is the temperature of the installation environment of the measuring device 2 (in many cases). It is preferable that the second reference temperature is the temperature (high temperature or low temperature) of the measurement target location. At that time, the second reference temperature may be within the temperature range to be measured. That is, referring to FIG. 1, when trying to measure a temperature range below the actual temperature TA, the second reference temperature T0r2 is lower than the actual temperature TA.

ここで、強度比Ia/Isの温度依存性は絶対温度0°Kから数百°Kの範囲では図8のようになる。つまり本発明で主として光ファイバ温度分布センサを適用しようとしている低温領域や高温領域では直線性が悪くなっている。従って、式(2)での補正をより精度よく行うためには、第二の基準温度を被測定温度範囲内に設けると有利である。ただし、他の制約条件がある場合には、必ずしも第二の基準温度が被測定温度範囲内になくてもよい。   Here, the temperature dependence of the intensity ratio Ia / Is is as shown in FIG. 8 in the range of the absolute temperature from 0 ° K to several hundred ° K. That is, the linearity is poor in a low temperature region and a high temperature region in which the optical fiber temperature distribution sensor is mainly applied in the present invention. Therefore, it is advantageous to provide the second reference temperature within the temperature range to be measured in order to perform the correction with the equation (2) with higher accuracy. However, when there are other constraints, the second reference temperature does not necessarily have to be within the measured temperature range.

また、第二の基準温度を被測定温度範囲内に設けた場合、実際に測定対象箇所から測定される温度を第二の基準温度とできるので、被測定温度範囲外の第二の基準温度を別途に提供するための恒温槽等を準備しなくてもよい。   In addition, when the second reference temperature is provided within the measured temperature range, the temperature actually measured from the measurement target location can be set as the second reference temperature, so the second reference temperature outside the measured temperature range can be There is no need to prepare a thermostat or the like for providing separately.

さらに、第二の基準温度を被測定温度範囲内に設けると、被測定温度範囲が時間によって変わる場合(例えば、初期は100〜200℃となり、その後は200〜300℃となる場合)、第二の基準温度が自動的に被測定温度範囲内に入るので好都合である。   Furthermore, when the second reference temperature is provided within the measured temperature range, the measured temperature range changes with time (for example, the initial temperature is 100 to 200 ° C., and the subsequent temperature is 200 to 300 ° C.). This is convenient because the reference temperature automatically falls within the temperature range to be measured.

温度分布を求める手順は、複数箇所の温度を全て計算して補正前温度分布を求めてから第二の基準温度を用いて補正前温度分布を補正しても良いし、1箇所の温度を計算して補正前温度を求めたらすぐ第二の基準温度を用いて温度を補正し、これを複数箇所について行うことで温度分布を得るようにしても良い。   The procedure for obtaining the temperature distribution may be to calculate the temperature distribution before correction by calculating all the temperatures at a plurality of locations, and then correct the temperature distribution before correction using the second reference temperature, or calculate the temperature at one location. Then, as soon as the pre-correction temperature is obtained, the temperature may be corrected using the second reference temperature, and the temperature distribution may be obtained by performing this at a plurality of locations.

本発明は、背景技術として引用した特許文献の技術と同様に、1周期の測定周期の間に光源から1つのパルス光を出力して測定する方式を採用できる。さらに、本発明は、上記方式とは異なる方式、例えば、光源を連続波形で連続的に発光させて測定する方式を採用してもよい。本発明は、光ファイバを用いた光ファイバ温度分布センサの全ての方式に適用することができる。   The present invention can employ a method of outputting and measuring one pulsed light from a light source during one measurement period, as in the technique of the patent document cited as the background art. Furthermore, the present invention may employ a method different from the above method, for example, a method in which a light source is continuously emitted in a continuous waveform for measurement. The present invention can be applied to all types of optical fiber temperature distribution sensors using optical fibers.

センサ用光ファイバには、マルチモード光ファイバ、シングルモード光ファイバのいずれであっても使用可能である。   As the sensor optical fiber, either a multimode optical fiber or a single mode optical fiber can be used.

本発明は、光ファイバ全長における温度差が大きく測定装置の設置環境に比べて測定対象箇所の温度が高温あるいは低温になる場合において特に効果がある。その一例として、路面の凍結を検知するための道路温度分布測定に関して説明する。道路温度分布測定では、光ファイバを道路の広い範囲にわたって路面に近い地中に埋設して、広範囲に路面の温度分布を測定する。その際、凍結が発生しやすい0℃付近の温度を高精度で測定することが重要となる。そこで、温度参照部3を測定対象である道路の中でも特定温度(0℃)が測定されることが期待される箇所に設置する。これにより温度参照部3で測定される第二の基準温度が0℃付近になる。なお、気温の高い季節には、温度参照部3で測定される第二の基準温度も0℃より高い温度になるが、この時期には路面凍結の発生する恐れがないので何ら不都合にはならない。   The present invention is particularly effective in the case where the temperature difference in the entire length of the optical fiber is large and the temperature of the measurement target portion is higher or lower than that in the installation environment of the measurement apparatus. As an example, a description will be given of road temperature distribution measurement for detecting freezing of a road surface. In road temperature distribution measurement, an optical fiber is buried in the ground near the road surface over a wide area of the road, and the temperature distribution of the road surface is measured over a wide range. At that time, it is important to measure with high accuracy a temperature around 0 ° C. at which freezing is likely to occur. Therefore, the temperature reference unit 3 is installed at a location where a specific temperature (0 ° C.) is expected to be measured on the road to be measured. As a result, the second reference temperature measured by the temperature reference unit 3 is about 0 ° C. In addition, in the season when the temperature is high, the second reference temperature measured by the temperature reference unit 3 is also higher than 0 ° C. However, there is no possibility of freezing of the road surface at this time, so there is no inconvenience. .

本発明の原理を表す実温度対温度測定値特性図である。FIG. 3 is a characteristic diagram of actual temperature versus temperature measurement value representing the principle of the present invention. 本発明の一実施形態を示す光ファイバ温度分布センサの装置構成図である。It is an apparatus block diagram of the optical fiber temperature distribution sensor which shows one Embodiment of this invention. 背景技術の光ファイバ温度分布センサの装置構成図である。It is an apparatus block diagram of the optical fiber temperature distribution sensor of background art. ストークス光強度の時間及び距離特性図である。It is a time and distance characteristic view of Stokes light intensity. アンチストークス光強度の時間及び距離特性図である。It is a time and distance characteristic view of anti-Stokes light intensity. 図4、図5のデータから得られる温度分布図である。FIG. 6 is a temperature distribution diagram obtained from the data of FIGS. 4 and 5. 背景技術の光ファイバ温度分布センサにおける温度対強度比Ia/Isの特性図である。It is a characteristic view of temperature to intensity ratio Ia / Is in the optical fiber temperature distribution sensor of the background art. 温度対強度比Ia/Isの絶対温度に対する特性図である。It is a characteristic view with respect to absolute temperature of temperature to intensity ratio Ia / Is.

符号の説明Explanation of symbols

1 光ファイバ
2 測定装置
3 温度参照部
10 基準温度部
11 別の温度計(第一の温度計)
12 別の温度計(第二の温度計)
DESCRIPTION OF SYMBOLS 1 Optical fiber 2 Measuring apparatus 3 Temperature reference part 10 Standard temperature part 11 Another thermometer (1st thermometer)
12 Another thermometer (second thermometer)

Claims (6)

光ファイバ中に発生するストークス光とアンチストークス光の強度比Ia/Isに基づいてその光ファイバに沿った温度分布を測定する光ファイバ温度分布センサにおいて、当該センサとは別の温度計で2つの基準温度を測定し、これら2つの基準温度について強度比Ia/Isから求めた温度がそれぞれ一致するよう強度比Ia/Isによる温度の読み値を補正するようにしたことを特徴とする光ファイバ温度分布センサ。   An optical fiber temperature distribution sensor that measures a temperature distribution along an optical fiber based on an intensity ratio Ia / Is of Stokes light and anti-Stokes light generated in the optical fiber. An optical fiber temperature characterized in that a reference temperature is measured and a temperature reading based on the intensity ratio Ia / Is is corrected so that the temperatures obtained from the intensity ratios Ia / Is match each other for these two reference temperatures. Distribution sensor. 2つの基準温度はそれぞれ別の温度計で測定することを特徴とする請求項1記載の光ファイバ温度分布センサ。   The optical fiber temperature distribution sensor according to claim 1, wherein the two reference temperatures are measured by different thermometers. 上記両光の強度を測定する測定装置に接続される上記光ファイバの端部近傍あるいは上記光ファイバと直列に接続される測定装置内の光ファイバに第一の基準温度を測定する第一の温度計を設置し、上記光ファイバの延長上に第二の基準温度を測定する第二の温度計を設置することを特徴とする請求項1又は2記載の光ファイバ温度分布センサ。   A first temperature at which a first reference temperature is measured in the vicinity of the end of the optical fiber connected to the measuring device for measuring the intensity of both lights or in an optical fiber in the measuring device connected in series with the optical fiber. The optical fiber temperature distribution sensor according to claim 1 or 2, wherein a second thermometer for measuring a second reference temperature is installed on an extension of the optical fiber. 少なくとも1つの基準温度は測定しようとする温度範囲の内にあることを特徴とする請求項1〜3いずれか記載の光ファイバ温度分布センサ。   4. The optical fiber temperature distribution sensor according to claim 1, wherein at least one reference temperature is within a temperature range to be measured. 少なくとも1つの温度計は測定対象箇所に設置することを特徴とする請求項1〜4いずれか記載の光ファイバ温度分布センサ。   The optical fiber temperature distribution sensor according to any one of claims 1 to 4, wherein at least one thermometer is installed at a location to be measured. 強度比Ia/Isと温度との関係式について第一の温度計の設置箇所における計算値が第一の温度計で測定される第一の基準温度Tr1に一致するよう係数を定め、この関係式で計算される第二の温度計の設置箇所における温度Tr2と第一の基準温度Tr1との差(Tr2−Tr1)に対する第二の温度計で測定される第二の基準温度T0r2と第一の基準温度Tr1との差(T0r2−Tr1)の比を上記関係式で計算される任意の箇所における温度T1と第一の基準温度Tr1との差にかけて、これに第一の基準温度Tr1を加えることにより、補正された温度T1’を得ることを特徴とする請求項1〜5いずれか記載の光ファイバ温度分布センサ。
Regarding the relational expression between the intensity ratio Ia / Is and the temperature, a coefficient is determined so that the calculated value at the location where the first thermometer is installed matches the first reference temperature Tr1 measured by the first thermometer. The second reference temperature T0r2 and the first reference temperature T0r2 measured by the second thermometer with respect to the difference (Tr2-Tr1) between the temperature Tr2 and the first reference temperature Tr1 at the location where the second thermometer is calculated The ratio of the difference (T0r2-Tr1) with respect to the reference temperature Tr1 is applied to the difference between the temperature T1 and the first reference temperature Tr1 at an arbitrary position calculated by the above relational expression, and the first reference temperature Tr1 is added thereto. The corrected temperature T1 ′ is obtained by the optical fiber temperature distribution sensor according to claim 1.
JP2004256790A 2004-09-03 2004-09-03 Optical fiber temperature distribution sensor Pending JP2006071532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256790A JP2006071532A (en) 2004-09-03 2004-09-03 Optical fiber temperature distribution sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256790A JP2006071532A (en) 2004-09-03 2004-09-03 Optical fiber temperature distribution sensor

Publications (1)

Publication Number Publication Date
JP2006071532A true JP2006071532A (en) 2006-03-16

Family

ID=36152316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256790A Pending JP2006071532A (en) 2004-09-03 2004-09-03 Optical fiber temperature distribution sensor

Country Status (1)

Country Link
JP (1) JP2006071532A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027001A (en) * 2010-06-22 2012-02-09 Yokogawa Electric Corp Optical fiber temperature distribution measuring apparatus
JP2012242124A (en) * 2011-05-16 2012-12-10 Yokogawa Electric Corp Optical fiber temperature distribution measuring apparatus
CN104535223A (en) * 2014-12-16 2015-04-22 武汉理工光科股份有限公司 Temperature curve self-correcting algorithm and system for distributed optical fiber temperature sensing system
JP2015114227A (en) * 2013-12-12 2015-06-22 横河電機株式会社 Optical fiber temperature distribution measurement device
CN113654683A (en) * 2021-08-16 2021-11-16 许昌许继软件技术有限公司 Calibration method and device for distributed optical fiber temperature measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218353A (en) * 1994-02-04 1995-08-18 Nkk Corp Temperature distribution measurement method and device by otdr
JP2004028748A (en) * 2002-06-25 2004-01-29 Hitachi Cable Ltd Method and instrument for measuring temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218353A (en) * 1994-02-04 1995-08-18 Nkk Corp Temperature distribution measurement method and device by otdr
JP2004028748A (en) * 2002-06-25 2004-01-29 Hitachi Cable Ltd Method and instrument for measuring temperature

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027001A (en) * 2010-06-22 2012-02-09 Yokogawa Electric Corp Optical fiber temperature distribution measuring apparatus
EP2400284A3 (en) * 2010-06-22 2014-04-30 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
US8858069B2 (en) 2010-06-22 2014-10-14 Yokogawa Electric Corporation Optical fiber temperature distribution measuring device
JP2012242124A (en) * 2011-05-16 2012-12-10 Yokogawa Electric Corp Optical fiber temperature distribution measuring apparatus
JP2015114227A (en) * 2013-12-12 2015-06-22 横河電機株式会社 Optical fiber temperature distribution measurement device
CN104535223A (en) * 2014-12-16 2015-04-22 武汉理工光科股份有限公司 Temperature curve self-correcting algorithm and system for distributed optical fiber temperature sensing system
CN113654683A (en) * 2021-08-16 2021-11-16 许昌许继软件技术有限公司 Calibration method and device for distributed optical fiber temperature measurement system
CN113654683B (en) * 2021-08-16 2023-12-05 许昌许继软件技术有限公司 Calibration method and device for distributed optical fiber temperature measurement system

Similar Documents

Publication Publication Date Title
US8858069B2 (en) Optical fiber temperature distribution measuring device
US7997792B2 (en) Optical fiber temperature sensor
CA2589377C (en) Thermometer calibration
EP2587238B1 (en) Optical fibre temperature distribution measurement apparatus
US7529434B2 (en) Brillouin distributed temperature sensing calibrated in-situ with Raman distributed temperature sensing
US5028146A (en) Apparatus and method for measuring temperatures by using optical fiber
US10018517B2 (en) Optical fiber temperature distribution measuring device
CN108458814B (en) Self calibration detection device and temperature demodulation method towards fiber Raman temperature-sensing system
JP5975064B2 (en) Optical fiber temperature distribution measuring device
WO2007112937A3 (en) Method and measuring device for the spatially distributed and/or remote measurement of physical variables
US9980336B2 (en) Light receiving device, light emitting device and light receiving/emitting device
JP2006071532A (en) Optical fiber temperature distribution sensor
JP2004028748A (en) Method and instrument for measuring temperature
CN116086645B (en) Temperature measurement method applied to optical fiber Raman distributed system
US10788378B2 (en) Device and method for reliably and precisely determining the temperature of a medium
JP2003070750A (en) Temperature compensator for ear thermometer
JP5382364B2 (en) Optical fiber temperature distribution measuring device
JP5467522B2 (en) Temperature distribution measuring instrument
JP2009174987A (en) Distributed optical fiber temperature sensor
JP6314678B2 (en) Optical fiber temperature distribution measuring device
JP6201709B2 (en) Optical fiber temperature distribution measuring device
Saunders Absorption and emission effects on radiation thermometry measurements in reformer furnaces
JP3656877B2 (en) Radiation thermometer
UA96929C2 (en) Method and measuring device for local determination of expenses for heating
JP3932680B2 (en) Radiation thermometer with optical loss compensation function and its temperature measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817