JP6873194B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6873194B2
JP6873194B2 JP2019132377A JP2019132377A JP6873194B2 JP 6873194 B2 JP6873194 B2 JP 6873194B2 JP 2019132377 A JP2019132377 A JP 2019132377A JP 2019132377 A JP2019132377 A JP 2019132377A JP 6873194 B2 JP6873194 B2 JP 6873194B2
Authority
JP
Japan
Prior art keywords
air
heat
group
air conditioner
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019132377A
Other languages
Japanese (ja)
Other versions
JP2021017999A (en
Inventor
木村 恵一
恵一 木村
貴之 石田
貴之 石田
英数 佐藤
英数 佐藤
後藤 和也
和也 後藤
Original Assignee
木村工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木村工機株式会社 filed Critical 木村工機株式会社
Priority to JP2019132377A priority Critical patent/JP6873194B2/en
Priority to EP20164673.4A priority patent/EP3726153A1/en
Priority to AU2020202072A priority patent/AU2020202072B2/en
Priority to CN202010218592.XA priority patent/CN111750461B/en
Priority to CN202020395508.7U priority patent/CN211739391U/en
Publication of JP2021017999A publication Critical patent/JP2021017999A/en
Application granted granted Critical
Publication of JP6873194B2 publication Critical patent/JP6873194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Duct Arrangements (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は空気調和装置に関するものである。 The present invention relates to an air conditioner .

従来、ビルの空気調和システムは、屋外の冷温水熱源機と屋内の冷温水式空調機とを水配管で接続し、冷温水式空調機から空調用空気をダクトを使って室内に供給すると共に、室内の二酸化炭素が基準値を超えないように外気を導入する構成となっている。あるいは、冷温水を使わずに、ヒートポンプ式の室外機と室内機を冷媒配管で接続した構成となっている。 Conventionally, the air conditioning system of a building connects an outdoor cold / hot water heat source unit and an indoor cold / hot water air conditioner with a water pipe, and supplies air conditioning air from the cold / hot water air conditioner to the room using a duct. , The configuration is such that outside air is introduced so that the carbon dioxide in the room does not exceed the standard value. Alternatively, the heat pump type outdoor unit and the indoor unit are connected by a refrigerant pipe without using cold / hot water.

特開2016−217561号公報Japanese Unexamined Patent Publication No. 2016-217561 特開2000−274777号公報Japanese Unexamined Patent Publication No. 2000-274777 特開2001−280859号公報Japanese Unexamined Patent Publication No. 2001-280859

冷温水式の場合、前記空調機は床面設置のため、空調機専用の機械室がビルに必要でレンタブル比が低下する問題がある。さらに、冷温水式空調機で冷房運転と暖房運転を同時にするには、4管式と呼ばれる冷水と温水を同時に冷温水式空調機へ送る水熱源設備が必要で、設備コスト及び運転コストが高くなる。一方、2管式と呼ばれる冷水と温水を切換えて冷温水式空調機へ送る水熱源設備では、冷房運転と暖房運転を同時にすることができず快適性が損なわれる問題がある。 In the case of the cold / hot water type, since the air conditioner is installed on the floor, a machine room dedicated to the air conditioner is required in the building, and there is a problem that the rentable ratio is lowered. Furthermore, in order to simultaneously perform cooling operation and heating operation with a cold / hot water type air conditioner, a water heat source facility called a 4-tube type that simultaneously sends cold water and hot water to the cold / hot water type air conditioner is required, and the equipment cost and operating cost are high. Become. On the other hand, in a water heat source facility that switches between cold water and hot water and sends them to a cold / hot water type air conditioner, which is called a two-tube type, there is a problem that the cooling operation and the heating operation cannot be performed at the same time, and the comfort is impaired.

また、空調機は、空調用空気と熱交換用水との間で熱交換させる熱交換器を備え、熱交換用水の流量を増減することで熱交換量を調整し、空調用空気を冷却又は加熱する能力を制御している。この熱交換器の伝熱管群を2つのグループに等分することで熱交換用水の下限流量を減らして、熱交換コイルの下限能力制御範囲を広げている。しかしながら、伝熱管群を等分しているため熱交換用水の下限流量に限度があり、僅少な熱交換量(貫流熱量)で足りる低空調負荷域では、能力過多となって冷やし過ぎや温め過ぎが生じ、熱交換器の熱交換で生じる熱交換用水の温度差が一定にならない問題があった。 In addition, the air conditioner is equipped with a heat exchanger that exchanges heat between the air for air conditioning and the water for heat exchange, adjusts the amount of heat exchange by increasing or decreasing the flow rate of the water for heat exchange, and cools or heats the air for air conditioning. Controls the ability to do. By dividing the heat transfer tube group of this heat exchanger into two groups equally, the lower limit flow rate of the heat exchange water is reduced and the lower limit capacity control range of the heat exchange coil is expanded. However, since the heat transfer tube group is divided equally, there is a limit to the lower limit flow rate of heat exchange water, and in the low air conditioning load range where a small amount of heat exchange (through heat amount) is sufficient, the capacity becomes excessive and it is overcooled or overheated. There is a problem that the temperature difference of the heat exchange water generated by the heat exchange of the heat exchanger is not constant.

また、複数のテナントが入居しているビル等の建物では、チラー等の熱源機を共用して空調を行っており、各テナント毎に空調料金を按分して課金する必要がある。そのための課金システムとして、空調機に設けられた熱交換器の水量制御バルブの開度と稼働時間の積から空調料金を算出して按分するものがあった。このような課金システムでは、熱交換コイルの通水量は算出できるが、実際に熱交換に使用されたエネルギー消費量が不明なため、空調料金算出の正確性に欠ける問題があった。 Further, in a building such as a building in which a plurality of tenants are occupying, a heat source device such as a chiller is shared to perform air conditioning, and it is necessary to prorate and charge the air conditioning fee for each tenant. As a billing system for that purpose, there is a system in which the air conditioning charge is calculated and apportioned from the product of the opening degree of the water amount control valve of the heat exchanger provided in the air conditioner and the operating time. In such a billing system, the amount of water flowing through the heat exchange coil can be calculated, but since the amount of energy actually used for heat exchange is unknown, there is a problem that the calculation of the air conditioning charge is not accurate.

本発明は上記課題を解決するため、熱交換用水である冷水又は温水を選択的に流通させる熱交換器を有する空調機と、制御装置と、を備え、前記熱交換器は、前記熱交換用水が流通する伝熱管群を複数のグループに分配しかつ前記分配の割合を相違させて成る分流回路を、備え、前記制御装置は、低空調負荷の場合に前記分流回路の単独かつ最少分配割合の第1のグループで前記熱交換用水の流量を増減させて前記熱交換器の熱交換で生じる前記熱交換用水の温度差を一定に制御する温度補償部を、備え、前記空調機の前記熱交換器を通る空気の気流方向から見たときに、前記分流回路の前記第1グループを除いた第2の前記グループに、前記第1グループと重ならない不重複ゾーンが、形成されると共に、前記第1グループが前記不重複ゾーンで挟まれるように前記分流回路を構成したことを最も主要な特徴とする。 In order to solve the above problems, the present invention includes an air conditioner having a heat exchanger for selectively flowing cold water or hot water as heat exchange water, and a control device, and the heat exchanger is the heat exchange water. The heat transfer tube group in which the heat transfer tubes are distributed is provided in a plurality of groups and the distribution ratio is different, and the control device is provided with a single and minimum distribution ratio of the distribution circuit in the case of a low air conditioning load. In the first group, the heat exchange of the air conditioner is provided with a temperature compensating unit for controlling the temperature difference of the heat exchange water generated by heat exchange of the heat exchanger by increasing or decreasing the flow rate of the heat exchange water. When viewed from the direction of the flow of air passing through the vessel, a non-overlapping zone that does not overlap with the first group is formed in the second group excluding the first group of the diversion circuit, and the first group is formed. The most important feature is that the diversion circuit is configured so that one group is sandwiched between the non-overlapping zones.

請求項1の発明によれば、低空調負荷の場合に熱交換器の分流回路の第1グループで熱交換用水の流量を増減させて下限流量をさらに最少化できる。そのため、熱交換器の下限能力制御範囲が広がって低空調負荷の場合でも能力過多とならず、エネルギー浪費及び冷やし過ぎや温め過ぎが無くなって省エネ性と快適性が向上する。 According to the invention of claim 1 , in the case of a low air conditioning load, the lower limit flow rate can be further minimized by increasing or decreasing the flow rate of the heat exchange water in the first group of the shunt circuit of the heat exchanger. Therefore, the lower limit capacity control range of the heat exchanger is widened, and even in the case of a low air-conditioning load, the capacity is not excessive, energy wasting, overcooling and overheating are eliminated, and energy saving and comfort are improved.

冷房時に熱交換用水を熱交換器の分流回路の第1グループに流通させて第2グループに流通させないようにし、第1グループを通過して過冷却除湿した空気を、不重複ゾーンを通過した前記過冷却除湿空気よりも高温のバイパス空気で再熱し、不快な冷感がないドライエアーを得ることができる。このとき、前記過冷却除湿空気が逃げないように前記バイパス空気で挟むので混合が促進されて確実に再熱することができる。そのため、湿度が高くてジメジメする中間期でも、コールドドラフトのないカラッとした気流で空調ができ快適性が向上する。しかも、バイパスダンパ等の機器が不要でコストダウンとコンパクト化を図れる。 During cooling, the heat exchange water is circulated to the first group of the heat exchanger's diversion circuit so that it is not circulated to the second group, and the supercooled and dehumidified air that has passed through the first group has passed through the non-overlapping zone. By reheating with bypass air that is hotter than supercooled dehumidified air, it is possible to obtain dry air without an unpleasant feeling of coldness. At this time, since the supercooled dehumidified air is sandwiched between the bypass airs so as not to escape, mixing is promoted and reheating can be reliably performed. Therefore, even in the middle period when the humidity is high and it gets damp, air conditioning can be performed with a crisp air flow without cold draft, and comfort is improved. Moreover, equipment such as a bypass damper is not required, and cost reduction and compactness can be achieved.

請求項2の発明によれば、低空調負荷の場合でも熱交換器の熱交換用水の温度差を一定に制御するので空調機の少水量大温度差運転ができ、少水量化による配管や空調設備の簡略化と、大温度差化による熱源機の省エネ化を図れる。熱交換器の熱交換用水の温度差を一定に制御し、熱交換用水の温度差と、熱交換用水の流量と、に基づいて被空調空間のエネルギー消費量を算出できる。そのため、各被空調空間のエネルギー消費量を比較することで空調料金を正確に算出して按分できる。 According to the invention of claim 2, since the temperature difference of the heat exchange water of the heat exchanger is controlled to be constant even under a low air conditioning load, the air conditioner can be operated with a small amount of water and a large temperature difference, and piping and air conditioning by reducing the amount of water. It is possible to simplify the equipment and save energy in the heat source machine by increasing the temperature difference. The temperature difference of the heat exchange water of the heat exchanger can be controlled to be constant, and the energy consumption of the air-conditioned space can be calculated based on the temperature difference of the heat exchange water and the flow rate of the heat exchange water. Therefore, the air-conditioning charge can be accurately calculated and apportioned by comparing the energy consumption of each air-conditioned space.

熱交換器の熱交換用水の流量と温度を計測するだけでよく、空調機の運転とエネルギー消費量の出力を一つの制御装置で行えるので設備や施工を簡略化でき、コスト低減を図れる。 Since it is only necessary to measure the flow rate and temperature of the heat exchange water of the heat exchanger, and the operation of the air conditioner and the output of the energy consumption can be performed with one control device, the equipment and construction can be simplified and the cost can be reduced.

請求項3の発明によれば、空調機のエネルギー消費量の増減に応じて熱源機の運転台数を増減させるので熱源機のエネルギー浪費を抑えることができ省エネとなる。 According to the invention of claim 3, since the number of operating heat source units is increased or decreased according to the increase or decrease in the energy consumption of the air conditioner, the energy waste of the heat source unit can be suppressed and energy saving can be achieved.

請求項4の発明によれば、熱交換器の伝熱管群の死水領域が減少し、伝熱管群の通風抵抗が小さくて省エネとなり、空調用空気との接触面積(貫流熱量)が増して熱交換効率が向上する。そのため、熱交換器の伝熱面積を増加(大型化)させずに少水量大温度差運転ができる。 According to the invention of claim 4, the dead water region of the heat transfer tube group of the heat exchanger is reduced, the ventilation resistance of the heat transfer tube group is small to save energy, and the contact area (through heat amount) with the air conditioning air is increased to generate heat. Exchange efficiency is improved. Therefore, it is possible to operate with a small amount of water and a large temperature difference without increasing (increasing the size) the heat transfer area of the heat exchanger.

本発明の空気調和装置の簡略平面図である。It is a simplified plan view of the air conditioner of this invention. 図1の簡略側面図である。It is a simplified side view of FIG. 空調機器の簡略説明図である。It is a simplified explanatory drawing of an air conditioner. 熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger. 図4のA矢視の簡略説明図である。It is a simplified explanatory view of the arrow A view of FIG. 図4のB矢視の簡略説明図である。It is a simplified explanatory view of the arrow B view of FIG. 外調機の側面断面図である。It is a side sectional view of the external air conditioner. 誘引放射ユニットの斜視図である。It is a perspective view of the attraction radiation unit. 誘引放射ユニットの断面図である。It is sectional drawing of the attract radiation unit. 空調運転の一例を示すフローチャートである。It is a flowchart which shows an example of the air-conditioning operation.

図1から図3は本発明の空気調和装置の一実施例で、この空気調和装置は、空調機器1、水熱源設備2及び制御装置3を備えており、ビルなどの建物に設置する。空調機器1は、建物内の1又は複数の被空調空間Sの天井に2組以上設置する。被空調空間Sは、建物の各階層を天井、床及び壁等で区画して成る。空調機器1は、外調機4、空調機5及び誘引放射ユニット6を備えている。各図の太い点線の矢印は空気の気流方向を示す。 1 to 3 are an embodiment of the air conditioner of the present invention. The air conditioner includes an air conditioner 1, a water heat source equipment 2, and a control device 3, and is installed in a building such as a building. Two or more sets of air-conditioning equipment 1 are installed on the ceiling of one or a plurality of air-conditioned spaces S in the building. The air-conditioned space S is formed by partitioning each floor of the building by a ceiling, a floor, a wall, or the like. The air conditioner 1 includes an external air conditioner 4, an air conditioner 5, and an attractive radiation unit 6. The thick dotted arrow in each figure indicates the direction of air flow.

外調機4は、冷房運転と暖房運転を切換できるヒートポンプ50を有し、被空調空間Sの還気を熱源空気として使用する。このヒートポンプ50の熱交換用冷媒で外気(OA)を熱交換(冷却又は加熱)して給気(SA)する。空調機5は、熱交換用水である冷水又は温水を選択的に流通させる水用の熱交換器20を有している。この熱交換器20の熱交換用水で、外調機4から給気された外気と被空調空間Sの還気(RA)とを熱交換(冷却又は加熱)して空調用空気として給気(SA)する。あるいは、外気のみ又は外気と還気の混合空気を、熱交換器20の熱交換用水で熱交換せずに空調用空気として給気する。 The external air conditioner 4 has a heat pump 50 capable of switching between cooling operation and heating operation, and uses the return air of the air-conditioned space S as heat source air. The outside air (OA) is heat-exchanged (cooled or heated) with the heat exchange refrigerant of the heat pump 50 to supply air (SA). The air conditioner 5 has a heat exchanger 20 for water that selectively circulates cold water or hot water as heat exchange water. With the heat exchange water of the heat exchanger 20, the outside air supplied from the external air conditioner 4 and the return air (RA) of the air-conditioned space S are heat-exchanged (cooled or heated) and supplied as air-conditioning air (cooling or heating). SA). Alternatively, only the outside air or the mixed air of the outside air and the return air is supplied as air conditioning air without heat exchange with the heat exchange water of the heat exchanger 20.

誘引放射ユニット6は、空調機5から給気された空調用空気で被空調空間Sの還気を誘引して混合し、この混合空気を被空調空間Sに出しつつ混合空気の熱を放射する。誘引放射ユニット6、空調機5、外調機4及び屋外との間で空気が流通するようにダクト7を介して相互に接続する。ダクト7は図1と図2では太い実線で簡略化して示す。図例では、被空調空間Sを天井板8で仕切って設けた天井懐に空調機器1を設置している。天井懐は天井チャンバ―として利用し、天井板8に設けた空気取入口9から被空調空間Sの還気を天井懐に取入れる。 The attracting radiation unit 6 attracts and mixes the return air of the air-conditioned space S with the air-conditioning air supplied from the air conditioner 5, and radiates the heat of the mixed air while discharging the mixed air to the air-conditioned space S. .. They are connected to each other via a duct 7 so that air can flow between the attraction radiation unit 6, the air conditioner 5, the external air conditioner 4, and the outdoors. The duct 7 is shown simply by a thick solid line in FIGS. 1 and 2. In the illustrated example, the air conditioner 1 is installed in the ceiling pocket provided by partitioning the air-conditioned space S by the ceiling plate 8. The ceiling pocket is used as a ceiling chamber, and the return air of the air-conditioned space S is taken into the ceiling pocket from the air intake 9 provided in the ceiling plate 8.

水熱源設備2は2管式で、熱源機10及び循環機器11を備えている。熱源機10は、空調機5の熱交換器20に供される熱交換用水を冷却又は加熱して、熱交換に適した冷水又は温水となるように水温調整する。熱源機10は複数台設け、1台毎個別に運転・停止できかつ冷水と温水を切換できるように構成する。循環機器11は、熱交換用水を熱源機10と空調機5との間で循環させる。循環機器11は、熱交換用水を熱源機10から空調機5へ送る往配管12と、空調機5から熱源機10へ還す還配管13と、熱交換用水を搬送するポンプ14と、を備えている。 The water heat source equipment 2 is a two-tube type and includes a heat source machine 10 and a circulation device 11. The heat source machine 10 cools or heats the heat exchange water provided in the heat exchanger 20 of the air conditioner 5, and adjusts the water temperature so that the water becomes cold water or hot water suitable for heat exchange. A plurality of heat source machines 10 are provided so that each unit can be individually started and stopped and can switch between cold water and hot water. The circulation device 11 circulates heat exchange water between the heat source machine 10 and the air conditioner 5. The circulation device 11 includes an forward pipe 12 for sending heat exchange water from the heat source machine 10 to the air conditioner 5, a return pipe 13 for returning the heat exchange water from the air conditioner 5 to the heat source machine 10, and a pump 14 for transporting the heat exchange water. There is.

空調機5は、熱交換器20と、熱交換器20に流れる熱交換用水の流量を調整するバルブ33と、熱交換器20を通過した空気を加湿する加湿器21と、給気用ファン22と、ファン22の回転数を無段階又は段階制御して給気風量を調整する回転制御器23と、熱交換器20と加湿器21とファン22とを内装するケーシング24と、空気を分流させる分岐チャンバ部25と、を備えている。 The air conditioner 5 includes a heat exchanger 20, a valve 33 that adjusts the flow rate of heat exchange water flowing through the heat exchanger 20, a humidifier 21 that humidifies the air that has passed through the heat exchanger 20, and an air supply fan 22. Air is separated from the rotation controller 23 that adjusts the air supply air volume by steplessly or stepwise controlling the rotation speed of the fan 22, the casing 24 that houses the heat exchanger 20, the humidifier 21, and the fan 22. A branch chamber portion 25 is provided.

分岐チャンバ部25は複数の誘引放射ユニット6にダクト7を介して接続する。ケーシング24には還気口26を設ける。ファン22は、外調機4から給気された外気と、被空調空間Sから空気取入口9及び還気口26を介して取込んだ還気を、熱交換器20及び加湿器21に通過させて分岐チャンバ部25からダクト7を介して誘引放射ユニット6に送風する。 The branch chamber portion 25 is connected to a plurality of attractive radiation units 6 via a duct 7. The casing 24 is provided with a return air port 26. The fan 22 passes the outside air supplied from the external air conditioner 4 and the return air taken in from the air-conditioned space S through the air intake port 9 and the return air port 26 to the heat exchanger 20 and the humidifier 21. Then, air is blown from the branch chamber portion 25 to the attracting radiation unit 6 through the duct 7.

図4から図6に示すように、熱交換器20は、フィン群27と分流回路28とを備えている。フィン群27は、空調用空気が通る隙間をあけて配置した多数のプレートフィン29から成る。分流回路28は、熱交換用水が流通する伝熱管群30を複数のグループGに分配しかつ分配の割合を相違させて成る。これにより、一部又は全てのグループGの伝熱面積(熱交換量)を異ならせる。たとえば、図5の太い一点鎖線で示す単独かつ最少分配割合の第1のグループG(G1)と、第1グループ(G1)を除いた図5の細い一点鎖線で示す分配割合の多い第2のグループG(G2)と、に分ける。伝熱管群30は空調用空気の気流方向を横切るように蛇行させてフィン群27に接続する。伝熱管群30の直管部は楕円管にて構成するのが望ましいが円形管としてもよい。 As shown in FIGS. 4 to 6, the heat exchanger 20 includes a fin group 27 and a flow dividing circuit 28. The fin group 27 is composed of a large number of plate fins 29 arranged so as to allow air for air conditioning to pass through. The shunt circuit 28 distributes the heat transfer tube group 30 through which the heat exchange water flows to a plurality of groups G and has different distribution ratios. As a result, the heat transfer area (heat exchange amount) of some or all of the group G is made different. For example, the first group G (G1) having a single and minimum distribution ratio shown by the thick alternate long and short dash line in FIG. 5 and the second group G (G1) having a large distribution ratio shown by the thin alternate long and short dash line in FIG. 5 excluding the first group (G1). Divide into group G (G2). The heat transfer tube group 30 meanders across the air flow direction of the air conditioning air and is connected to the fin group 27. The straight tube portion of the heat transfer tube group 30 is preferably formed of an elliptical tube, but may be a circular tube.

第1グループG1の熱交換用水入口は第1の分岐ヘッダ31に接続し、第2グループG2の熱交換用水入口は第2の分岐ヘッダ31に接続する。第1グループG1と第2グループG2の熱交換用水出口は両方とも合流ヘッダ32に接続する。分岐ヘッダ31はバルブ33を介して往配管12に接続し、合流ヘッダ32は還配管13に接続する。バルブ33は流量(弁開度)を無段階に調整することができる比例制御弁とし、分流回路28の各グループGに設けて別個に流量を調整する。空調機5の冷却能力と加熱能力の増減は、分流回路28を流れる熱交換用水の流量制御と、ファン22の給気風量制御と、を組合わせて調整する。分流回路28は、伝熱管群30が熱交換器20を通る空気の気流方向を横切るように蛇行しつつ前記気流方向に向かって延伸し、かつ、前記気流方向から見たときに、第2グループG2と第1グループG1が重ならず第2グループG2のみが含まれる不重複ゾーンFと、第2グループG2と第1グループG1が重なる重複ゾーンと、が積層状に形成され、かつ、前記重複ゾーンが不重複ゾーンFで挟まれるように構成する。制御装置3は、たとえば冷房時に冷水を熱交換器20の分流回路28の第1グループG1に流通させて第2グループG2に流通させないようにバルブ33を制御する。 The heat exchange water inlet of the first group G1 is connected to the first branch header 31, and the heat exchange water inlet of the second group G2 is connected to the second branch header 31. Both the heat exchange water outlets of the first group G1 and the second group G2 are connected to the merging header 32. The branch header 31 is connected to the outgoing pipe 12 via the valve 33, and the merging header 32 is connected to the return pipe 13. Valve 33 is a proportional control valve that can adjust the flow rate (valve opening degree) steplessly, you adjust the separate flow provided to each group G of the shunt circuit 28. The increase / decrease in the cooling capacity and the heating capacity of the air conditioner 5 is adjusted by combining the flow rate control of the heat exchange water flowing through the shunt circuit 28 and the air supply air volume control of the fan 22. The shunt circuit 28 extends toward the airflow direction while the heat transfer tube group 30 meanders across the airflow direction of the air passing through the heat exchanger 20, and when viewed from the airflow direction, the second group A non-overlapping zone F in which G2 and the first group G1 do not overlap and only the second group G2 is included, and an overlapping zone in which the second group G2 and the first group G1 overlap are formed in a laminated manner, and the overlap is described. The zones are configured to be sandwiched between non-overlapping zones F. The control device 3 controls the valve 33 so that, for example, during cooling, cold water is circulated to the first group G1 of the shunt circuit 28 of the heat exchanger 20 and not to the second group G2.

図3と図7に示すように、外調機4は、ヒートポンプ50と、外気を加湿する加湿器40と、外気(OA)を外調機4から空調機5に給気する外気用給気ファン41と、還気(RA)を屋外に排気(EA)する熱源空気用排気ファン42と、外気用給気ファン41と熱源空気用排気ファン42の回転数を無段階又は段階制御して給気風量と排気風量を調整する回転制御器43と、これらを内装するケーシング45と、ケーシング45の底部からヒートポンプ50を出し入れするためのスライド機構46と、を備えている。ケーシング45には還気口54を設ける As shown in FIGS. 3 and 7, the external air conditioner 4 includes a heat pump 50, a humidifier 40 that humidifies the outside air, and an outside air supply that supplies the outside air (OA) from the outside air conditioner 4 to the air conditioner 5. The fan 41, the heat source air exhaust fan 42 that exhausts the return air (RA) to the outside (EA), the outside air air supply fan 41, and the heat source air exhaust fan 42 are supplied by steplessly or stepwise controlling the rotation speed. It is provided with a rotation controller 43 for adjusting the air air volume and the exhaust air volume, a casing 45 for incorporating them, and a slide mechanism 46 for moving the heat pump 50 in and out from the bottom of the casing 45. The casing 45 is provided with a return air port 54.

スライド機構46は、ヒートポンプ50を取り付けたフレーム47と、フレーム47を上下移動させるダンパー48と、を備える。ダンパー48は、ケーシング45とフレーム47に跨って設ける。外調機4の保守点検は、天井板8に設けた点検口44を開き、ケーシング45の底面の開口部を閉じている外装板49を外し、スライド機構46を用いてフレーム47と共にヒートポンプ50を降ろして行う。ダンパー48は、ガスやオイルの圧力で伸縮して作業者の身体的負担を軽減する。 The slide mechanism 46 includes a frame 47 to which the heat pump 50 is attached and a damper 48 for moving the frame 47 up and down. The damper 48 is provided so as to straddle the casing 45 and the frame 47. For maintenance and inspection of the external air conditioner 4, the inspection port 44 provided on the ceiling plate 8 is opened, the exterior plate 49 closing the opening on the bottom surface of the casing 45 is removed, and the heat pump 50 is installed together with the frame 47 using the slide mechanism 46. Take it down. The damper 48 expands and contracts due to the pressure of gas or oil to reduce the physical burden on the operator.

図3に示すように、ヒートポンプ50は、外気用熱交換器51と熱源空気用熱交換器52と圧縮機53とを有する冷媒配管工事が不要な一体形とする。外気用給気ファン41は、屋外からダクト7を介して外気を取込んで外気用熱交換器51を通過させ、外調機4からダクト7を介して空調機5に送風して供給する。熱源空気用排気ファン42は、被空調空間Sから空気取入口9及び還気口54を介して還気を取込んで熱源空気用熱交換器52を通過させ、外調機4からダクト7を介して屋外に排気する。 As shown in FIG. 3, the heat pump 50 is an integrated type having a heat exchanger 51 for outside air, a heat exchanger 52 for heat source air, and a compressor 53, which does not require refrigerant piping work. The outside air supply fan 41 takes in outside air from the outside through the duct 7, passes it through the outside air heat exchanger 51, and blows air from the external air conditioner 4 to the air conditioner 5 via the duct 7 to supply the air. The heat source air exhaust fan 42 takes in return air from the air-conditioned space S through the air intake port 9 and the return air port 54, passes it through the heat source air heat exchanger 52, and passes the duct 7 from the external air conditioner 4. Exhaust to the outside through.

ヒートポンプ50は、冷媒に対して圧縮・凝縮・膨張・蒸発の工程順を繰返し、この冷媒と熱交換する空気に対して冷媒蒸発工程で吸熱を冷媒凝縮工程で放熱を各々行うものである。ヒートポンプ50は、冷媒の蒸発工程と凝縮工程であって互いに異なる工程を担う外気用熱交換器51及び熱源空気用熱交換器52と、冷媒を圧縮して搬送する圧縮機53と、冷媒を膨張させる膨張弁等の減圧機構55と、外気用熱交換器51及び熱源空気用熱交換器52の蒸発工程と凝縮工程を切換えるバルブ等の切換機構56と、を少なくとも備え、これらを冷媒が循環するように配管接続して成る。 The heat pump 50 repeats the steps of compression, condensation, expansion, and evaporation of the refrigerant, and absorbs heat in the refrigerant evaporation step and dissipates heat in the refrigerant condensation step for the air that exchanges heat with the refrigerant. The heat pump 50 expands the refrigerant, the outside air heat exchanger 51 and the heat source air heat exchanger 52, which are the refrigerant evaporation process and the refrigerant condensation process, and the compressor 53 that compresses and conveys the refrigerant. It is provided with at least a pressure reducing mechanism 55 such as an expansion valve for causing the refrigerant to be operated, and a switching mechanism 56 such as a valve for switching between the evaporation process and the condensation process of the heat exchanger 51 for outside air and the heat exchanger 52 for heat source air, and the refrigerant circulates therein. It consists of connecting pipes like this.

外気用熱交換器51と熱源空気用熱交換器52は、空調機5の熱交換器20と同様に、熱交換用冷媒が流通する伝熱管群を、空気が通過するフィン群に接続した構造で、熱交換用冷媒と通過空気が、伝熱管群及びフィン群を介して熱交換する(図示省略)。伝熱管群は楕円管にて構成するのが望ましいが円形管としてもよい。外調機4の冷却能力と加熱能力の増減は、外気用熱交換器51の外気冷却又は加熱能力制御と、外気用給気ファン41の給気風量制御と、を組合わせて調整する。 Similar to the heat exchanger 20 of the air conditioner 5, the heat exchanger 51 for outside air and the heat exchanger 52 for heat source air have a structure in which a heat transfer tube group through which a heat exchange refrigerant flows is connected to a fin group through which air passes. Then, the heat exchange refrigerant and the passing air exchange heat via the heat transfer tube group and the fin group (not shown). The heat transfer tube group is preferably formed of an elliptical tube, but may be a circular tube. The increase / decrease in the cooling capacity and the heating capacity of the external air conditioner 4 is adjusted by combining the outside air cooling or heating capacity control of the outside air heat exchanger 51 and the supply air volume control of the outside air supply fan 41.

図8と図9に示すように、誘引放射ユニット6は、空気供給部60、空気誘引部61及び空気混合部62を備え、天井板8の開口部から空気混合部62の底面を被空調空間Sに向けた状態で設置する。空気供給部60は空調機5の供給空気を噴流し、空気誘引部61は噴流空気の誘引作用にて被空調空間Sの還気を引き込む。空気混合部62は、混合空気の熱を蓄熱するプレート63と貫孔64の群を備え、貫孔64を介してプレート63から熱を被空調空間Sへ放射しつつ混合空気を被空調空間Sへ放出する。 As shown in FIGS. 8 and 9, the attraction radiation unit 6 includes an air supply unit 60, an air attraction unit 61, and an air mixing unit 62, and an air-conditioned space is provided on the bottom surface of the air mixing unit 62 from the opening of the ceiling plate 8. Install in a state facing S. The air supply unit 60 jets the supply air of the air conditioner 5, and the air attraction unit 61 draws the return air of the air-conditioned space S by the action of attracting the jet air. The air mixing unit 62 includes a plate 63 for storing the heat of the mixed air and a group of through holes 64, and radiates heat from the plate 63 to the air-conditioned space S through the through holes 64 while radiating the mixed air to the air-conditioned space S. Release to.

図2と図5に示すように、制御装置3は、被空調空間Sの温度及び湿度と熱交換用水の温度差を設定する設定部70と、空気状態検出部71と、水状態検出部72と、空調制御部73、温度補償部74と、エネルギー消費監視部75と、熱源制御部76と、を備えており、これらはマイクロプロセッサ、各種センサー、スイッチ、その他の制御機器にて構成する。 As shown in FIGS. 2 and 5, the control device 3 includes a setting unit 70 for setting the temperature and humidity of the air-conditioned space S and a temperature difference between the heat exchange water, an air condition detection unit 71, and a water condition detection unit 72. The air conditioning control unit 73, the temperature compensation unit 74, the energy consumption monitoring unit 75, and the heat source control unit 76 are provided, and these are composed of a microprocessor, various sensors, switches, and other control devices.

空気状態検出部71は、被空調空間Sの空気(還気)の温度及び湿度を検出する還気センサー77を備える。水状態検出部72は、各被空調空間Sの熱交換用水の流量を検出する流量計78と、熱交換器20の熱交換用水の入口水温と出口水温を検出する水温計79と、を備える。流量計78は各被空調空間Sの往配管12又は還配管13に設け、水温計79は各空調機5の熱交換器20に接続する往配管12と還配管13に設ける。なお、水状態検出部72は、流量計78と水温計79を一体にした熱量計としてもよい。 The air condition detection unit 71 includes a return air sensor 77 that detects the temperature and humidity of the air (return air) in the air-conditioned space S. The water state detection unit 72 includes a flow meter 78 that detects the flow rate of the heat exchange water in each air-conditioned space S, and a water temperature meter 79 that detects the inlet water temperature and the outlet water temperature of the heat exchange water of the heat exchanger 20. .. The flow meter 78 is provided in the forward pipe 12 or the return pipe 13 of each air-conditioned space S, and the water temperature gauge 79 is provided in the forward pipe 12 and the return pipe 13 connected to the heat exchanger 20 of each air conditioner 5. The water state detection unit 72 may be a calorimeter in which a flow meter 78 and a water temperature gauge 79 are integrated.

空調制御部73は、空気用検出部46で検出した被空調空間Sの空気の温度及び湿度が設定部70で設定した被空調空間Sの温度及び湿度になるように、空調機器1の冷却能力と加熱能力を制御し、空調機器1の加湿器21、40の加湿量を制御する。さらに、空調制御部73は、空調機器1の運転と停止を組単位で行う第1の運転パターンと、外調機4の単体運転と外調機4及び空調機5の同時運転とを切換える第2の運転パターンと、運転中の空調機器1と停止中の空調機器1を交替させる第3の運転パターンと、外調機4と空調機5の一方又は両方の空調能力を増減させる第4の運転パターンと、を有しており、第1から第4の運転パターンを切換え又は組合せて被空調空間Sを空調する。 The air conditioning control unit 73 has a cooling capacity of the air conditioning device 1 so that the temperature and humidity of the air in the air-conditioned space S detected by the air detection unit 46 becomes the temperature and humidity of the air-conditioned space S set by the setting unit 70. And control the heating capacity, and control the amount of humidification of the humidifiers 21 and 40 of the air conditioner 1. Further, the air conditioning control unit 73 switches between a first operation pattern in which the air conditioning device 1 is operated and stopped in groups, and a single operation of the external air conditioner 4 and simultaneous operation of the external air conditioner 4 and the air conditioner 5. The second operation pattern, the third operation pattern in which the operating air-conditioning device 1 and the stopped air-conditioning device 1 are replaced, and the fourth operation pattern in which the air conditioning capacity of one or both of the external air conditioner 4 and the air conditioner 5 is increased or decreased. It has an operation pattern, and air-conditions the air-conditioned space S by switching or combining the first to fourth operation patterns.

たとえば、被空調空間Sの空気の温度及び湿度と、予め設定した温度及び湿度と、の差(空調負荷)が減少するにしたがって、空調機器1の運転パターンを第1、第2の順番に切換えて空調能力を減少させる。第1と第2と第4の運転パターンを組合せた場合は、被空調空間Sの温度及び湿度の制御範囲が拡がり、よりきめ細かな空調が行える。これらの運転パターンに、第3の運転パターンを追加で組合せた場合は、特定の空調機器1だけに運転が偏らなくなる。 For example, as the difference between the temperature and humidity of the air in the air-conditioned space S and the preset temperature and humidity (air-conditioning load) decreases, the operation pattern of the air-conditioning device 1 is switched in the order of first and second. To reduce the air conditioning capacity. When the first, second, and fourth operation patterns are combined, the control range of the temperature and humidity of the air-conditioned space S is expanded, and more detailed air conditioning can be performed. When the third operation pattern is additionally combined with these operation patterns, the operation is not biased only to the specific air conditioner 1.

上述の運転パターンにおいて、外調機4の運転は、ヒートポンプ50の圧縮機53と、外気用給気ファン41と、熱源空気用排気ファン42と、を稼働させて行い、空調機5の運転は、各バルブ33を開いて熱交換器20に熱交換用水を流通させると共にファン22を稼働させて行う。外調機4の停止はヒートポンプ50の圧縮機53を止めて行い、空調機5の停止は各バルブ33を全閉にして熱交換器20の熱交換用水の流通を止めて行う。 In the above operation pattern, the external air conditioner 4 is operated by operating the compressor 53 of the heat pump 50, the outside air supply fan 41, and the heat source air exhaust fan 42, and the air conditioner 5 is operated. , Each valve 33 is opened to distribute heat exchange water to the heat exchanger 20 and the fan 22 is operated. The external air conditioner 4 is stopped by stopping the compressor 53 of the heat pump 50, and the air conditioner 5 is stopped by fully closing each valve 33 to stop the flow of heat exchange water of the heat exchanger 20.

温度補償部74は、低空調負荷の場合に分流回路28の第1グループG1で熱交換用水の流量を増減させて熱交換器20の熱交換で生じる熱交換用水の温度差を一定に制御すると共に空調機5の給気風量を増減させて被空調空間Sの温度を制御する。さらに温度補償部74は、高空調負荷の場合に全てのグループGで熱交換用水の流量を増減させて熱交換用水の温度差を一定に制御すると共に、高空調負荷と低空調負荷との間の通常空調負荷の場合に第2グループG2で熱交換用水の流量を増減させて熱交換用水の温度差を一定に制御する。これにより真夏や真冬などのように最大の熱交換量が必要となる高空調負荷の場合から、中間期などのように僅少な熱交換量で足りる低空調負荷の場合まで幅広く、空調機5の少水量大温度差運転に対応できる。 The temperature compensation unit 74 increases or decreases the flow rate of the heat exchange water in the first group G1 of the flow dividing circuit 28 in the case of a low air conditioning load, and constantly controls the temperature difference of the heat exchange water generated by the heat exchange of the heat exchanger 20. At the same time, the temperature of the air-conditioned space S is controlled by increasing or decreasing the air supply air volume of the air conditioner 5. Further, the temperature compensation unit 74 increases or decreases the flow rate of the heat exchange water in all groups G in the case of a high air conditioning load to control the temperature difference of the heat exchange water to be constant, and between the high air conditioning load and the low air conditioning load. In the case of the normal air conditioning load of the above, the temperature difference of the heat exchange water is controlled to be constant by increasing or decreasing the flow rate of the heat exchange water in the second group G2. As a result, there is a wide range of air-conditioning loads, from high air-conditioning loads that require the maximum amount of heat exchange, such as midsummer and midwinter, to low-air-conditioning loads that require a small amount of heat exchange, such as in the middle period. Can handle small water volume and large temperature difference operation.

エネルギー消費監視部75は、空調機5の熱交換器20に供された熱交換用水の流量と、熱交換器20の熱交換により生じた熱交換用水の温度差と、に基づいて被空調空間S毎のエネルギー消費量を算出してデータ出力する。熱源制御部76は、エネルギー消費監視部75にてデータ出力された全ての被空調空間Sのエネルギー消費量の増減に応じて熱源機10の運転台数を増減させる信号を出力する。 The energy consumption monitoring unit 75 is an air-conditioned space based on the flow rate of heat exchange water provided to the heat exchanger 20 of the air conditioner 5 and the temperature difference of the heat exchange water generated by the heat exchange of the heat exchanger 20. The energy consumption for each S is calculated and the data is output. The heat source control unit 76 outputs a signal for increasing or decreasing the number of operating heat source machines 10 according to the increase or decrease in the energy consumption of all the air-conditioned spaces S data output by the energy consumption monitoring unit 75.

図10は空調運転の一例を示している。空調運転開始後、外調機4は運転せずに空調機5のみを運転し、熱交換器20の熱交換用水の流量とファン22の給気風量を最大にしてウォーミングアップ運転する。被空調空間Sの温度(還気温度)が、予め設定された還気温度の許容範囲になれば、外調機4の運転を開始する。その後、空調機5の熱交換器20の熱交換で生じる熱交換用水の温度差(水温差)が、予め設定された水温差の許容範囲を外れている場合、設定水温差に近づくように熱交換器20の熱交換用水の流量を制御する。この処理によって、還気温度が設定還気温度の許容範囲を外れた場合、設定還気温度に近づくようにファン22の給気風量を制御する。これらの処理を空調機5の空調運転を停止するまで繰り返す。 FIG. 10 shows an example of air conditioning operation. After the start of the air conditioning operation, the external air conditioner 4 is not operated and only the air conditioner 5 is operated to maximize the flow rate of the heat exchange water of the heat exchanger 20 and the air supply air volume of the fan 22 to perform the warm-up operation. When the temperature of the air-conditioned space S (return air temperature) falls within the allowable range of the return air temperature set in advance, the operation of the external air conditioner 4 is started. After that, when the temperature difference (water temperature difference) of the heat exchange water generated by the heat exchange of the heat exchanger 20 of the air conditioner 5 is out of the preset allowable range of the water temperature difference, the heat is adjusted so as to approach the set water temperature difference. The flow rate of heat exchange water of the exchanger 20 is controlled. By this process, when the return air temperature deviates from the allowable range of the set return air temperature, the supply air volume of the fan 22 is controlled so as to approach the set return air temperature. These processes are repeated until the air conditioning operation of the air conditioner 5 is stopped.

なお、本発明は上述の実施例に限定されない。設計空調能力に応じて空調機器1の組数を増減したり、必要な空調能力を超える場合は空調機器1の適宜の組の外調機4を省略するも自由である。図例では分流回路28のグループGを2つのグループG1とG2に分配しているが、3つ以上のグループGに分配してそのうちの1つのグループGを最少分配割合とするも自由である。誘引放射ユニット6は天井板8に設置しているが被空調空間Sを構成する壁面に設置してもよい。また、天井板8を省略した状態の天井に空調機器1を設置してもよい。 The present invention is not limited to the above-mentioned examples. The number of sets of the air conditioner 1 may be increased or decreased according to the design air conditioning capacity, or if the required air conditioning capacity is exceeded, the external air conditioner 4 of an appropriate set of the air conditioner 1 may be omitted. In the illustrated example, the group G of the shunt circuit 28 is distributed to two groups G1 and G2, but it is also free to distribute the group G to three or more groups G and set one group G as the minimum distribution ratio. Although the attracting radiation unit 6 is installed on the ceiling plate 8, it may be installed on the wall surface forming the air-conditioned space S. Further, the air conditioner 1 may be installed on the ceiling with the ceiling plate 8 omitted.

1 空調機器
3 制御装置
4 外調機
5 空調機
6 誘引放射ユニット
10 熱源機
20 熱交換器
28 分流回路
30 伝熱管群
45 ケーシング
46 スライド機構
50 ヒートポンプ
51 外気用熱交換器
52 熱源空気用熱交換器
53 圧縮機
73 空調制御部
74 温度補償部
75 エネルギー消費監視部
76 熱源制御部
F 不重複ゾーン
G グループ
S 被空調空間
1 Air conditioner 3 Control device 4 External conditioner 5 Air conditioner 6 Induction radiation unit 10 Heat source machine 20 Heat exchanger 28 Divergence circuit 30 Heat transfer tube group 45 Casing 46 Slide mechanism 50 Heat pump 51 Heat exchange for outside air 52 Heat exchange for heat source air Unit 53 Compressor 73 Air conditioning control unit 74 Temperature compensation unit 75 Energy consumption monitoring unit 76 Heat source control unit F Non-overlapping zone G Group S Air-conditioned space

Claims (4)

熱交換用水である冷水又は温水を選択的に流通させる熱交換器(20)を有する空調機(5)を、備え、
前記熱交換器(20)は、前記熱交換用水が流通する伝熱管群(30)を複数のグループ(G)に分配しかつ前記分配の割合を相違させて成る分流回路(28)を、備え、
前記分流回路(28)の最少分配割合の第1のグループ(G1)の前記熱交換用水の流量と前記第1グループ(G1)を除いた前記分流回路(28)の第2の前記グループ(G2)の前記熱交換用水の流量とを別個に調整するバルブ(33)を、備え、
前記伝熱管群(30)が前記熱交換器(20)を通る空気の気流方向を横切るように蛇行しつつ前記気流方向に向かって延伸し、かつ、前記気流方向から見たときに、前記第2グループ(G2)と前記第1グループ(G1)が重ならず前記第2グループ(G2)のみが含まれる不重複ゾーン(F)と、前記第2グループ(G2)と前記第1グループ(G1)が重なる重複ゾーンと、が積層状に形成され、かつ、前記重複ゾーンが前記不重複ゾーン(F)で挟まれるように前記分流回路(28)を構成し、
冷房時に前記冷水を前記熱交換器(20)の前記分流回路(28)の前記第1グループ(G1)に流通させて前記第2グループ(G2)に流通させないように前記バルブ(33)を制御する制御装置(3)を、備えたことを特徴とする空気調和装置。
Heat exchanger for selectively circulating cold water or hot water is heat exchanged water (20) the air conditioner having the (5), comprising,
The heat exchanger (20) includes a flow dividing circuit (28) that distributes the heat transfer tube group (30) through which the heat exchange water flows to a plurality of groups (G) and has different distribution ratios. ,
The flow rate of the heat exchange water of the first group (G1) having the minimum distribution ratio of the shunt circuit (28) and the second group (G2) of the shunt circuit (28) excluding the first group (G1). ) Is provided with a valve (33) that separately adjusts the flow rate of the heat exchange water.
When the heat transfer tube group (30) extends toward the airflow direction while meandering across the airflow direction of the air passing through the heat exchanger (20), and when viewed from the airflow direction, the first. A non-overlapping zone (F) in which the two groups (G2) and the first group (G1) do not overlap and only the second group (G2) is included, and the second group (G2) and the first group (G1). ) Are formed in a stacked manner, and the diversion circuit (28) is configured so that the overlapping zones are sandwiched between the non-overlapping zones (F).
The valve (33) is controlled so that the cold water is circulated to the first group (G1) of the shunt circuit (28) of the heat exchanger (20) and not to the second group (G2) during cooling. An air conditioner characterized by being provided with a control device (3).
前記制御装置(3)は、低空調負荷の場合に前記分流回路(28)の前記第1グループ(G1)で前記熱交換用水の流量を増減させて前記熱交換器(20)の熱交換で生じる前記熱交換用水の温度差を一定に制御する温度補償部(74)と、前記空調機(5)の前記熱交換器(20)に供された前記熱交換用水の流量と前記熱交換器(20)の熱交換で生じる前記熱交換用水の温度差とに基づいて前記被空調空間(S)のエネルギー消費量を算出して出力するエネルギー消費監視部(75)と、を備えた請求項1に記載の空気調和装置。 In the case of a low air conditioning load, the control device (3) increases or decreases the flow rate of the heat exchange water in the first group (G1) of the diversion circuit (28) to exchange heat with the heat exchanger (20). The temperature compensating unit (74) that constantly controls the temperature difference of the heat exchange water that occurs, the flow rate of the heat exchange water provided to the heat exchanger (20) of the air conditioner (5), and the heat exchanger. claim energy consumption monitoring unit which calculates and outputs the energy consumption of the object to be air-conditioned space (S) based on the temperature difference between the heat exchange water generated by heat exchange with (75), with the (20) The air conditioner according to 1. 前記空調機(5)の前記熱交換器(20)に供される前記熱交換用水を冷却又は加熱して水温調整する複数台の熱源機(10)を、備え、前記制御装置(3)は、前記エネルギー消費監視部(75)にて出力された前記被空調空間(S)の前記エネルギー消費量の増減に応じて前記熱源機(10)の運転台数を増減させる信号を出力する熱源制御部(76)を、備えた請求項2に記載の空気調和装置 The control device (3) includes a plurality of heat source machines (10) for cooling or heating the heat exchange water provided in the heat exchanger (20) of the air conditioner (5) to adjust the water temperature. , A heat source control unit that outputs a signal that increases or decreases the number of operating units of the heat source machine (10) according to an increase or decrease in the energy consumption of the air-conditioned space (S) output by the energy consumption monitoring unit (75). The air conditioner according to claim 2, further comprising (76) . 前記空調機(5)の前記熱交換器(20)の伝熱管群(30)を楕円管にて構成した請求項1から3のいずれかに記載の空気調和装置 The air conditioner according to any one of claims 1 to 3, wherein the heat transfer tube group (30) of the heat exchanger (20) of the air conditioner (5) is formed of an elliptical tube .
JP2019132377A 2019-03-29 2019-07-18 Air conditioner Active JP6873194B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019132377A JP6873194B2 (en) 2019-07-18 2019-07-18 Air conditioner
EP20164673.4A EP3726153A1 (en) 2019-03-29 2020-03-20 Air conditioning system
AU2020202072A AU2020202072B2 (en) 2019-03-29 2020-03-23 Air conditioning system
CN202010218592.XA CN111750461B (en) 2019-03-29 2020-03-25 Air conditioning system
CN202020395508.7U CN211739391U (en) 2019-03-29 2020-03-25 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019132377A JP6873194B2 (en) 2019-07-18 2019-07-18 Air conditioner

Publications (2)

Publication Number Publication Date
JP2021017999A JP2021017999A (en) 2021-02-15
JP6873194B2 true JP6873194B2 (en) 2021-05-19

Family

ID=74565929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019132377A Active JP6873194B2 (en) 2019-03-29 2019-07-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP6873194B2 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103324A (en) * 1988-10-12 1990-04-16 Toda Constr Co Ltd Air conditioning system designed for intelligent building
JPH083368B2 (en) * 1989-06-05 1996-01-17 高砂熱学工業株式会社 Air conditioning equipment
JP2000146267A (en) * 1998-11-05 2000-05-26 Toho Gas Co Ltd Air conditioning control system
JP3422020B2 (en) * 2000-07-14 2003-06-30 木村工機株式会社 All season air conditioner
JP2003042480A (en) * 2001-08-01 2003-02-13 Kimura Kohki Co Ltd Ceiling installation type heat pump air conditioner
JP3736514B2 (en) * 2002-09-13 2006-01-18 三菱電機株式会社 Heat exchanger and air conditioner using heat exchanger
JP2004271095A (en) * 2003-03-10 2004-09-30 Osaka Gas Co Ltd Air conditioner
JP2005195280A (en) * 2004-01-08 2005-07-21 Takenaka Komuten Co Ltd Air conditioner and multi-bed room air conditioning apparatus
JP2008304096A (en) * 2007-06-06 2008-12-18 Sanken Setsubi Kogyo Co Ltd Air conditioning system
JP4907687B2 (en) * 2009-04-13 2012-04-04 木村工機株式会社 Heat pump type medium temperature air conditioning system
JP4999944B2 (en) * 2009-12-17 2012-08-15 木村工機株式会社 Induced radiant air conditioner
JP5198620B2 (en) * 2011-01-06 2013-05-15 木村工機株式会社 One span air conditioning system
JP2012088042A (en) * 2011-12-16 2012-05-10 Daikin Industries Ltd Air conditioning control device
JP6136388B2 (en) * 2012-03-13 2017-05-31 大成建設株式会社 Energy-saving air conditioning system
JP5741657B2 (en) * 2013-09-11 2015-07-01 ダイキン工業株式会社 Heat exchanger and air conditioner
JP6425750B2 (en) * 2017-03-01 2018-11-21 木村工機株式会社 Air conditioning system

Also Published As

Publication number Publication date
JP2021017999A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JPH05149605A (en) Air conditioner
JP3997482B2 (en) Water source air conditioning system
CN108534319B (en) Air conditioner and air conditioning system provided with same
CN108800375B (en) Air heat source heat pump type air conditioner
JP5554431B2 (en) External air conditioner with air conditioning function
JP5869648B1 (en) Air conditioning system
JP6906302B2 (en) Air conditioning system
JP6825900B2 (en) Air conditioning system
JP5775185B2 (en) Heat exchange coil and air conditioner
JP6425750B2 (en) Air conditioning system
JP6862504B2 (en) Separate installation air conditioning system
WO2018193931A1 (en) Air-conditioning system
JP6084737B1 (en) Air conditioning system
JP6873194B2 (en) Air conditioner
CN111750461B (en) Air conditioning system
JP2010196978A (en) Displacement ventilation system
AU2020205244B2 (en) Heat exchanger and air conditioner
JP4376285B2 (en) Mixed air conditioner
JP6764599B1 (en) Air conditioning system
JP6894961B2 (en) Pneumatic radiant air conditioner
JP6858396B2 (en) Air conditioning system
JP7061170B1 (en) Residential air conditioning system
JP2020003141A (en) Control device, air conditioning system, and control method
JP7118185B2 (en) residential air conditioning system
JP2005326047A (en) Ventilation air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210420

R150 Certificate of patent or registration of utility model

Ref document number: 6873194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150