JP6871128B2 - バイオセンサ - Google Patents

バイオセンサ Download PDF

Info

Publication number
JP6871128B2
JP6871128B2 JP2017203600A JP2017203600A JP6871128B2 JP 6871128 B2 JP6871128 B2 JP 6871128B2 JP 2017203600 A JP2017203600 A JP 2017203600A JP 2017203600 A JP2017203600 A JP 2017203600A JP 6871128 B2 JP6871128 B2 JP 6871128B2
Authority
JP
Japan
Prior art keywords
flow path
sample
separation membrane
permeate
storage portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017203600A
Other languages
English (en)
Other versions
JP2019078556A (ja
Inventor
佐藤 義治
義治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Arkray Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc filed Critical Arkray Inc
Priority to JP2017203600A priority Critical patent/JP6871128B2/ja
Publication of JP2019078556A publication Critical patent/JP2019078556A/ja
Application granted granted Critical
Publication of JP6871128B2 publication Critical patent/JP6871128B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、バイオセンサに関する。
バイオセンサの分野では、試薬流路に親水性フィルターが設けられ、試薬流路に流入した血液試料中の血漿が親水フィルターを透過して電極に達するとともに試薬と反応する構成を備えたバイオセンサがある(例えば、特許文献1)。このようなバイオセンサによれば、赤血球が電極に付着して電極の実効面積が低下することが回避される。本願に関連する他の先行技術としては、下記の特許文献2に記載の技術がある。
特開2017−3585号公報 特許第4761688号公報
しかし、上記した従来技術では、親水性フィルターを透過した血漿が徐々に試薬と反応する。このため、血漿による試薬の溶解時間や、試薬の溶解状態にばらつきが生じ、測定精度に影響が及ぶ可能性があった。
本発明は、試薬の溶解時間や試薬の溶解状態を安定化させることができるバイオセンサを提供することを目的とする。
本発明の一側面は、検体内の測定対象成分の測定に用いられるバイオセンサである。このバイオセンサは、前記検体中の有形成分と液体成分とを分離する分離膜と、前記分離膜を透過した透過物を貯留する貯留部と、前記貯留部に貯留された透過物の流路と、前記流路を形成する複数の面の一つに配置された電極及び試薬と、前記複数の面のうち前記電極及び試薬が配置された面以外の面に設けられ、前記貯留部に隣接する位置から前記試薬と前記透過物との反応部位に亘って設けられた親水面とを含む。
本発明の他の側面は、検体内の測定対象成分の測定に用いられるバイオセンサである。このバイオセンサは、前記検体中の有形成分と液体成分とを分離する分離膜と、前記分離膜を透過した透過物を貯留する貯留部と、前記貯留部と連通する前記透過物の流路と、前記流路を形成する面に配置された電極及び試薬と、前記流路を形成するとともに前記貯留部と接する面に設けられた親水面とを含む。
本発明によれば、試薬の溶解時間や試薬の溶解状態を安定化させることができる。
図1は実施形態に係るバイオセンサの平面図を示す。 図2は、図1に示したバイオセンサのA−A断面図である。
以下、実施形態に係るバイオセンサについて説明する。実施形態に係るバイオセンサは
、検体内の測定対象成分の測定に用いられるバイオセンサである。バイオセンサは、以下を含む。
・前記検体中の有形成分と液体成分とを分離する分離膜。
・前記分離膜を透過した透過物を貯留する貯留部。
・前記貯留部と連通する前記透過物の流路。
・前記流路を形成する複数の面の一つに配置された電極及び試薬。
・前記複数の面のうち前記電極及び試薬が配置された面以外の面に設けられ、前記流路が前記貯留部に隣接する位置から前記試薬と前記透過物との反応部位に亘って設けられた親水面。
実施形態にかかるバイオセンサによれば、分離膜によって有形成分が除去された透過物(液体成分)が貯留部に貯まる。貯留部に貯まった透過物が貯留部に隣接する親水面に触れることで、貯留部にある透過物が親水面を伝って急速に反応部位へと移動し、試薬と混ざり合って試薬を溶かし、試薬と反応する。透過物からは有形成分が除去されているので、有形成分が電極と接触して電極の実効面積が減るのを回避又は抑えることができる。親水面を伝って急速に透過物が移動することで、纏まった量(試薬との反応にふさわしい量)の透過物を反応部位に短時間で搬送できるので、試薬の溶解時間や試薬の溶解状態がばらつくのを抑えることができる。すなわち、試薬の溶解時間や試薬の溶解状態を安定化させることができる。
検体は、例えば、生物学的な試料である。生物学的な試料は、例えば、血液、間質液、尿などの液体試料である。試料中の測定対象成分は、グルコース(血糖)値、ラクテート(乳酸)値などである。試薬は、少なくとも酵素を含み、さらにメディエータを含む場合もある。試薬の処方(含有成分)は、試料及び測定対象成分によって適宜選択される。以下の説明では、一例として、血液(全血)を検体として、グルコース値の測定に使用されるバイオセンサについて説明する。血糖測定用のバイオセンサは、血糖自己測定(SMBG:Self Monitoring of Blood Glucose)用の血糖センサ(グルコースセンサ)である。血液が検体である場合、有形成分は血球(赤血球、白血球を含む)であり、液体成分は血漿である。
実施形態に係るバイオセンサにおいて、前記親水面が前記流路を形成する面のうち前記電極及び前記試薬が配置された面と対向する面に設けられているようにするのが好ましい。但し、電極及び試薬が配置された面の側方に位置する面(流路の側面)が親水面とされても良い。親水面は、流路を形成する複数の面のうちの二面以上に設けられても良く、二面以上に亘って設けられても良い。
流路は複数の面(平面の組み合わせ、曲面の組み合わせ、平面と曲面との組み合わせなど)によって形成され得る。但し、流路は、明確な境界のない面(例えば、円筒の内周面、球面、曲面の組み合わせ等)で形成されてもよい。この場合、親水面は、流路を形成するとともに流路と接する面に設けられる。
実施形態に係るバイオセンサにおいて、前記貯留部は、前記流路内で前記試薬と反応させる前記透過物の量に応じた容積を有するのが好ましい。また、親水面は、前記貯留部が透過物で満たされた場合に前記透過物と接触するように形成されているのが好ましい。貯留部の容積を規定して、所望の量の透過物(液体成分)が貯留部に貯まった場合に貯留部から流路へはみ出す透過物が親水面と接触し、これを契機に親水面を伝っての透過物の移動が開始されるようにする。このようにすれば、流路に所定量の透過物を送り込むことができ、反応部位へ搬送される透過物の量を安定化させることができる。
実施形態に係るバイオセンサにおいて、前記分離膜の上方に前記検体を貯留する検体貯
留部が配置され、前記分離膜の下方に前記貯留部が配置され、前記貯留部の側方に前記流路が形成されている構成を採用できる。分離膜を落下方向に直交する方向(水平方向)に広げて配置することで、検体の落下作用を通じて検体を有形成分と液体成分とに分離できる。但し、分離膜を垂直方向に広げて配置して、圧力をかけて検体中の液体成分が分離膜の反対側へ押し出されるようにしても良い。また、貯留部に所望の量の透過物が貯まるように、容積を調整した検体貯留部を設け、検体貯留部を検体で満たせば、所望量の検体の液体成分が分離膜を透過する構成を採用することで、検体貯留部への充填量を測定に要する検体量として直感的に理解可能となる。
実施形態に係るバイオセンサにおいて、分離膜は、単層構造でも、複数の膜が積層された構造でもよい。例えば、前記分離膜は、前記検体中の有形成分と液体成分とを分離する第1の膜と、前記第1の膜を透過した透過物中の有形成分と液体成分とを分離する第2の膜とを含み、前記第2の膜を透過した透過物が前記貯留部に貯留される構成を採用しても良い。この場合、第1の膜で除去しきれなかった有形成分を第2の膜で除去でき、透過物中の有形成分の量を減らすことができる。但し、膜の数は1又は2だけでなく、3以上の場合もあり得る。
分離膜は、検体が例えば血液の場合に、液体成分である血漿を透過させて、血液から有形成分である血球(特に赤血球)を除去するために使用される。分離膜で赤血球を除くことで、電極の有効面積に影響を与え得る赤血球の流路への導入量をなくす、又は減らすことができる。第1の膜及び第2の膜を用いる場合、前記第2の膜の有形成分の除去率が前記第1の膜の有形成分の除去率より高くなるように構成することができる。この場合、前記第1の膜の下方に前記第2の膜が配置され、前記第2の膜の下方に前記貯留部が配置される構成を採用することができる。検体中の液体成分が第1の膜及び第2の膜を透過して貯留部にたまり、或る程度の量が貯まった時点で側方にある親水面と接触して反応部位に移動する作用を、圧力付与のような外力を加えることなく実現できる。貯留部は、例えば、少なくとも、液だめ部と通路を含むように形成される。貯留部は、液だめ部が通路を介して流路と連通する構成を採用できる。或いは、貯留部は、透過物の通路が液だめ部を介して流路に連通する構成を採用することもできる。
上述したように、検体貯留部、分離膜及び貯留部を高さ(膜の厚さ方向)方向に配置する場合、前記検体貯留部の高さは、例えば0.1mm〜0.5mmであり、前記検体貯留部の内径は、例えば0.97mm〜53.21mmであり、前記貯留部に含まれる液だめ部の高さは、例えば0.1mm〜0.5mmである。前記貯留部に含まれる液だめ部の内径は、例えば0.5mm〜15.96mmであり、前記流路の幅は、例えば0.2mm〜5.0mmであり、前記流路の高さは、例えば0.02mm〜0.5mmであり、流路長は例えば0.10mm〜100mmである。
第1の膜の厚さは、好ましくは0.1mm〜0.5mmであり、さらに好ましくは0.2mm〜0.3mmである。第1の膜に多孔質膜を採用する場合、多孔質膜の孔径は、好ましくは0.5μm〜20μmであり、さらに好ましくは0.5μm〜10μmである。第2の膜の厚さは、好ましくは0.01mm〜0.50mmであり、さらに好ましくは0.02mm〜0.10mmである。第2の膜に多孔質膜を採用する場合、多孔質膜の孔径は、好ましくは0.5μm〜1.0μmであり、さらに好ましくは0.5μm〜0.8μmである。流路の幅は、好ましくは0.2mm〜5.0mmであり、さらに好ましくは1.0mm〜3.0mmである。流路の高さは、好ましくは0.02mm〜0.50mmであり、さらに好ましくは0.03mm〜0.20mmである。流路長は、好ましくは0.10mm〜100mmであり、さらに好ましくは1.0mm〜50mmである。
なお、分離膜が単層構造を有する場合、膜の厚さは、好ましくは0.01mm〜0.5
0mmであり、さらに好ましくは0.02mm〜0.40mmである。膜の孔径は、好ましくは0.5μm〜20μmであり、さらに好ましくは0.5μm〜10μmである。
以下、図面を参照して本発明の実施形態に係るバイオセンサについて説明する。以下に説明する実施形態の構成は例示であり、本発明は実施形態の構成に限定されない。
図1は実施形態に係るバイオセンサの平面図を示し、図2は図1に示したバイオセンサのA−A線断面図である。図1及び図2において、バイオセンサ10(以下「センサ10」)は、一端10aと他端10bとを有する長手方向(X方向)と、幅方向(Y方向)とを有する。センサ10は、絶縁性基板1(以下「基板1」)と、第1カバー2と、第2カバー3とを高さ方向(Z方向)に積層して接着することにより形成される。図2には接着剤による接着層4a、4bが図示されている。
基板1には、例えば合成樹脂(プラスチック)が用いられている。合成樹脂として、例えば、ポリエーテルイミド(PEI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレン(PE)、ポリスチレン(PS)、ポリメタクリレート(PMMA)、ポリプロピレン(PP)、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ガラスエポキシのような各種の樹脂を適用できる。なお、基板1には、合成樹脂以外の絶縁性材料を適用可能である。絶縁性材料は、合成樹脂の他、紙、ガラス、セラミック、生分解性材料などを含む。第1カバー2及び第2カバー3には、基板1と同じ材料を適用できる。
バイオセンサ10は、第1カバー2と第2カバー3との間に配置された(挟まれた)分離膜20を含み、分離膜20は、一例として、第1の膜と第1の膜の下方にある第2の膜とが積層されて形成されている。分離膜20は単層構造であってもよい。第2カバー3の分離膜20と平面視状態で重なる部分には、円形の貫通孔が形成されており、分離膜20に供給する検体を貯留する検体貯留部11として使用される。
また、第1カバー2の分離膜20に対応する部分(平面視において分離膜20と重なる部分)に貫通孔12が設けられている。貫通孔12の下方は、接着層4bが設けられていない平面矩形の空間である領域7Aが形成されている。貫通孔12及び領域7Aは、分離膜20を透過した透過物の貯留部13として使用される。領域7Aは貫通孔12の内径とほぼ同じ径を有する平面円形に形成され得る。但し、領域7Aの平面形状は矩形や円形以外の形状であってもよい。貫通孔12は液だめ部として使用され、領域7Aは通路として使用される。
上述した構成によって、検体貯留部11に貯留された血液中の有形成分(血球)と液体成分(血漿)とが分離膜20によって分離される。すなわち、検体中の有形成分が検体貯留部11に残り、透過物(液体成分)が分離膜20から出てくる。ここに、分離膜20を透過する血漿は微量であり、貫通孔12(液だめ部)の内面は疎水性である。これより、分離膜20の下面にしみ出した透過物にかかる表面張力は、透過物にかかる重力(或いは毛細管力)よりも大きい。このため、透過物は、すぐに貫通孔12の内面を伝って領域7A(通路)に流れることはない。したがって、時間の経過とともに分離膜20を透過した透過物の量が増加し、貫通孔12(液だめ部)を満たしていく。やがて、貫通孔12を満たす透過物の塊が領域7A(通路)にはみ出し、領域7Aと連通する流路14の親水面9に接触すると、透過物の塊が通路7Aを通って流路14に流れ込む。
分離膜20として、多孔質膜を適用できる。分離膜20を形成する第1の膜及び第2の膜のうち、第1の膜の下方にある第2の膜の孔径は、第1の膜の孔径よりも小さくなっており、第2の膜の赤血球の除去率は、第1の膜の赤血球の除去率よりも高くなっている。
分離膜20の材料は、特には限定されない。例えば、ポリエチレン及びポリプロピレン等のポリオレフィン樹脂、ポリメチルメタクリレート(PMMA)及びポリアクリロニトリル(PAN)等のアクリル又はメタクリル樹脂、ポリエチレンテレフタレート(PET)等のポリエステル樹脂、エポキシ樹脂、ポリスルホン、ポリエーテルスルホン、酢酸セルロース等の変性セルロース、セルロース、ポリフッ化ビニリデン(PVDF)、並びに、ポリテトラフルオロエチレン(PTFE)等の樹脂材料を使用できる。
基板1の上面には、カギ型の電極5と電極6が設けられている。電極5及び電極6のそれぞれは、センサ10の幅方向(Y方向)に延びる部分と、長手方向(X方向)に延びる部分とを有し、長手方向に延びる部分はリード部5a及びリード部6aをなす。リード部5a及びリード部6aは第1カバー2及び第2カバー3で覆われておらず、血糖値計(図示せず)のコネクタとの電気的接続に使用される。
電極5及び電極6のそれぞれは、例えば、金(Au),白金(Pt),銀(Ag),パラジウム,ルテニウムのような金属材料、或いはカーボンのような炭素材料を用いて形成される。例えば、電極5及び電極6のそれぞれは、金属材料を物理蒸着(PVD,例えばスパッタリング)、或いは化学蒸着(CVD)によって成膜することによって、所望の厚さを有する金属層として形成することができる。或いは、電極5及び電極6のそれぞれは、炭素材料を含むインクをスクリーン印刷で基板1上に印刷することで形成することもできる。
電極5及び電極6は、グルコース値の測定に使用される電極対であり、例えば電極6が作用極として使用され、電極5が対極として使用される。なお、電極は3以上設けられる場合もある。さらに、参照極が設けられる場合もある。
電極6の上には、試薬8が固定化されている。試薬8は酵素を含む。試薬8はさらにメディエータを含んでもよい。酵素は試料の種別や測定対象成分に応じて適宜選択される。測定対象成分が血液や間質液中のグルコースである場合、グルコースオキシダーゼ(GOD)やグルコースデヒドロゲナーゼ(GDH)が適用される。メディエータは、例えば、フェリシアン化物、p−ベンゾキノン、p−ベンゾキノン誘導体、フェナジンメトサルフェート、メチレンブルー、フェロセン、フェロセン誘導体、ルテニウム錯体等である。
基板1と第1カバー2との間に、検体(検体中の液体成分)が流れる流路14が形成される。流路14は、電極5、電極6及び試薬8を含む平面矩形の領域7Bを残して基板1と第1カバー2とを接着層4bで接着することで形成された空間であり、一端10a側で開口しており(開口部7a参照)、他端10b側で領域7A(貯留部13)と連通している。
電極5、電極6及び試薬8は、流路14内で露出しており、貯留部13から移動した透過物(検体の液体成分)との反応部位15を含む。流路14は、基板1の上面と、第1カバー2の下面と、接着層4bで形成された両側面からなる複数の面を有している。複数の面のうち、第1カバー2の下面は、高い親水性を有する親水面9として形成されている。また、第1カバー2の下面は、流路14を形成するとともに貯留部13と接する面の一例である。親水面9における水の接触角度は、例えば0°〜30°である。
親水面9は、例えば、界面活性剤の塗布やコーティング(親水層の形成),UV光の照射、プラズマ処理、コロナ放電などによる表面改質により形成できる。親水面9は、第1カバー2の下面の領域7Bと重複する部分全体に形成されている。これにより、親水面9は、流路14が貯留部13に隣接する位置から反応部位15に亘って形成されている。
貯留部13の容積は、流路14における反応部位15での試薬8との反応に用いる透過
物(検体の液体成分)の量に基づいて規定されている。貯留部13の貫通孔12(液だめ部)が透過物で満たされ、通路7Aにはみ出した場合に、透過物が親水面9と接触し、親水面9を伝って流路14内に急速に流れ込み、反応部位15まで移動可能となっている。
バイオセンサ10の使用方法は次の通りである。バイオセンサ10のリード部5a及びリード部6aを図示しない血糖計(測定装置)に電気的に接続する。次に、検体(例えば全血)を検体貯留部11に充填する。すると、分離膜20により検体中の有形成分(血球)と液体成分(血漿)とが分離される。分離膜20の透過物は(検体の液体成分(血漿):以下説明の便宜のため検体という)が貯留部13の貫通孔12(液だめ部)に貯まる。
貯留部13の貫通孔12(液だめ部)が検体で満たされ(一定量貯まり)、通路7Aにはみ出して親水面9に接触すると、貯留部13内の検体が親水面9を介して流路14に速やかに移動する。これにより、反応部位15が短時間で検体により満たされる。検体により試薬8が溶解され、試薬8中の酵素と検体との反応により生じた電子が直接に、或いは試薬8に含有されたメディエータを介して電極に達する。このような状態で、電極5と電極6との間に電圧を印加すると、電極に達した電子による電流(応答電流)が検出される。応答電流は血液中のグルコース濃度に依存するので、応答電流の電流値をグルコース濃度に換算することで、グルコース濃度(グルコース値)を測定することができる。
すなわち、実施形態に係るバイオセンサ10によれば、検体(全血)がバイオセンサ10の分離膜20により分離された血漿が貯留部13の貫通孔12(液だめ部)で一定量たまってから、流路14の内面の親水層(親水面9)に触れた後、速やかに流路14内の反応部位15に移動する。よって、一定量の検体(血漿)が短時間で反応部位15に供給されるようになるので、試薬8の溶解時間や溶解状態のばらつきがなくなり、グルコース値の測定精度を向上させることができる。
<寸法条件>
分離膜20の回収率(供給された検体量に対する透過物の割合)が30%で、血漿0.1μL〜20μLを確保可能な検体貯留部11、貯留部13の貫通孔12(液だめ部)、及び流路14の寸法範囲は以下の通りである。下記のL1,L2,L4〜L6、φ1及びφ2は図1及び図2に図示してある。
(検体貯留部11)
高さ(貫通孔の軸方向の長さ)L1:0.1mm〜0.5mm
孔径(貫通孔の内径)φ1:0.97mm〜53.21mm
(貫通孔12(液だめ部))
高さ(貫通孔12の軸方向の長さ)L2:0.1mm〜0.5mm
孔径(貫通孔12の内径)φ2:0.5mm〜15.96mm
(流路14)
流路幅L6:0.2mm〜5.0mm
高さL4:0.02mm〜0.5mm
流路長L5:0.10mm〜100mm
なお、上記寸法は、上記に限ったものではなく、分離膜20による液体成分の回収率や必要血漿量により、適宜設定することができる。
上記した検体貯留部11、貯留部13の貫通孔12、流路14の寸法は、以下のようにして決められる。上記のように、分離膜20の回収率が30%と仮定する。回収する透過物(血漿)の量を0.1μL〜20μLとする。
ここで、ヘマトクリット値(Hct値)が70%(Hct値の上限とする)の血液から分離膜20を用いて血漿0.1μLを得る場合を考える。上記回収率30%であるから、
分離膜20に供給する血漿の量(理論値)は0.33μLとなり、分離膜20に供給する検体量は1.11μLとなる。また、分離膜20を用いて血漿20μLを得る場合、回収率30%であるから、分離膜20に供給する血漿の量(理論値)は66.77μLとなり、分離膜20に供給する検体量は222.22μLとなる。
次に、ヘマトクリット値(Hct値)が10%(Hct値の下限とする)の血液から分離膜20を用いて血漿0.1μLを得る場合を考える。回収率30%であるから、分離膜20に供給する血漿の量(理論値)は0.33μLとなり、分離膜20に供給する検体量は0.37μLとなる。また、分離膜20を用いて血漿20μLを得る場合、回収率30%であるから、分離膜20に供給する血漿の量(理論値)は66.77μLとなり、分離膜20に供給する検体量は74.07μLとなる。
検体貯留部11の高さ(貫通孔の軸方向長さ)L1は、材料の厚さから、例えば0.1mm〜0.5mmとする。検体貯留部11の厚さを0.1mm(厚さの下限とする)に設定した場合、検体量が0.37μLである場合の検体貯留部11(貫通孔)の内径φ1は2.17mmとなる。これに対し、検体量が222.22μLである場合の検体貯留部11(貫通孔)の内径φ1は53.21mmとなる。
検体貯留部11の高さ(貫通孔の軸方向長さ)L1を0.5mm(高さの上限とする)に設定した場合、検体量が0.37μLである場合の検体貯留部11(貫通孔)の内径φ1は0.97mmとなる。これに対し、検体量が222.22μLである場合の検体貯留部11(貫通孔)の内径φ1は23.79mmとなる。これより、検体貯留部11(貫通孔)の高さL1及び内径φ1の範囲は、上述したような0.1mm〜0.5mm、0.97mm〜53.21mmとなる。
貫通孔12のサイズについては、以下の様にして算出される。第1カバー2の厚さを0.1mm(厚さの下限とする)に設定した場合、検体量(分離膜20からの透過物量)が0.1μLである場合の貫通孔12の内径φ2は1.13mmとなる。これに対し、検体量(分離膜20からの透過物量)が20μLである場合の貫通孔12の内径φ2は15.96mmとなる。
第1カバー2の厚さを0.5mm(厚さの上限とする)に設定した場合、検体量(分離膜20からの透過物量)が0.1μLである場合の貫通孔12の内径φ2は0.50mmとなる。これに対し、検体量(分離膜20からの透過物量)が20μLである場合の貫通孔12の内径φ2は7.14mmとなる。これより、貫通孔12の高さ(軸方向長さ)及び内径φ2の範囲は、上述したような0.1mm〜0.5mm、0.50mm〜15.96mmとなる。
検体量(分離膜20からの透過物の量)が0.1μLの場合、流路14の幅(流路幅)を例えば0.2mm〜4.0mm(例えば0.2mmと4.0mm)に設定する。また、流路14の高さを例えば0.02mm〜0.25mm(例えば0.02mmと0.25mm)に設定する。この場合、流路長は、0.10mm〜25mmとなる。
検体量(分離膜20からの透過物の量)が0.20μLの場合、流路14の幅(流路幅)を例えば0.5mm〜5.0mm(例えば0.5mmと5.0mm)に設定する。また、流路14の高さを例えば0.4mm〜0.5mm(例えば0.4mmと0.5mm)に設定する。この場合、流路長は、8.0mm〜100mmとなる。これらより、流路14の寸法は上記した通りとなる。
<変形例>
図1及び図2に示したバイオセンサ10の構成では、貯留部13は、分離膜20の下方に設けられた貫通孔12(液だめ部)と、貫通孔12(液だめ部)の下方にある領域7A(通路)とを含む。領域7A(通路)の側方には、流路14が形成され、貫通孔12(液だめ部)は、領域7A(通路)を介して流路14に連通している。このような構成によって、貫通孔12に分離膜20からの透過物を貯めるようにしている。すなわち、図1及び図2は、貯留部13が、分離膜20の下方に設けられた液だめ部(12)と、液だめ部(12)の下方に形成されるとともに流路14と連通する通路(7A)とを含む態様(第1の態様)を一例として示した。
上記のような貯留部12の態様(第1の態様)の代わりに、貯留部13が、分離膜20の下方に設けられた通路(12)と、通路(12)の下方に形成されるとともに流路14と連通する液だめ部(7A)とを含む態様(第2の態様)を適用することもできる。たとえば、貯留部13は、分離膜20の下方に設けられた貫通孔12と、貫通孔12の下方にある領域7Aとを含む(図2参照)。但し、第2の態様では、領域7Aが液だめ部として使用され、貫通孔12は分離膜20から出た透過物が領域7Aに至るまでの通路として使用される。領域7A(液だめ部)の側方に流路14が形成され、貫通孔12(通路)、領域7A(液だめ部)及び流路14は連通している。貫通孔12の内面の水との接触角度は、第1の態様より低く設定される。
第2の態様では、分離膜20を透過した透過物は、貫通孔12(通路)の内面を伝って領域7A(液だめ部)に流れ、領域7Aに貯まっていく。時間の経過とともに領域7A(液だめ部)に貯まった透過物が親水面9に接触し、親水面9を伝って透過物が流路14に流れ込む。第2の態様における領域7Aのサイズに、第1の態様において説明した貫通孔12のサイズを適用できる。実施形態で説明した構成は適宜組み合わせることができる。
5,6・・・電極
8・・・試薬
9・・・親水面
10・・・バイオセンサ
11・・・検体貯留部
12・・・貫通孔
13・・・貯留部
14・・・流路
20・・・分離膜

Claims (14)

  1. 検体内の測定対象成分の測定に用いられるバイオセンサにおいて、
    前記検体中の有形成分と液体成分とを分離する分離膜と、
    前記分離膜を透過した透過物を貯留する貯留部と、
    前記貯留部と連通する前記透過物の流路と、
    前記流路を形成する複数の面の一つに配置された電極及び試薬と、
    前記複数の面のうち前記電極及び前記試薬が配置された面以外の面に設けられ、前記流路が前記貯留部に隣接する位置から前記試薬と前記透過物との反応部位に亘って設けられた親水面と
    を含むバイオセンサ。
  2. 前記親水面が前記流路を形成する面のうち前記試薬が配置された面と対向する面に設けられている
    請求項1に記載のバイオセンサ。
  3. 前記貯留部は、前記流路内で前記試薬と反応させる前記透過物の量に応じた容積を有する
    請求項1又は2に記載のバイオセンサ。
  4. 前記親水面は、前記貯留部が透過物で満たされた場合に前記透過物と接触するように形成されている
    請求項1から3のいずれか1項に記載のバイオセンサ。
  5. 前記分離膜の上方に前記検体を貯留する検体貯留部が配置され、
    前記分離膜の下方に前記貯留部が配置され、
    前記貯留部の側方に前記流路が形成されている
    請求項1から4のいずれか1項に記載のバイオセンサ。
  6. 前記貯留部は、前記分離膜の下方に設けられた液だめ部と、前記液だめ部の下方に形成されるとともに前記流路と連通する通路とを含む
    請求項5に記載のバイオセンサ。
  7. 前記貯留部は、前記分離膜の下方に設けられた通路と、前記通路の下方に形成されるとともに前記流路と連通する液だめ部とを含む
    請求項5に記載のバイオセンサ。
  8. 前記分離膜は、
    前記検体中の有形成分と液体成分とを分離する第1の膜と、
    前記第1の膜を透過した透過物中の有形成分と液体成分とを分離する第2の膜とを含み、
    前記第2の膜を透過した透過物が前記貯留部に貯留される
    請求項1から7のいずれか1項に記載のバイオセンサ。
  9. 前記第2の膜の有形成分の除去率が前記第1の膜の有形成分の除去率より高い
    請求項8に記載のバイオセンサ。
  10. 前記第1の膜の下方に前記第2の膜が配置され、
    前記第2の膜の下方に前記貯留部が配置される
    請求項9に記載のバイオセンサ。
  11. 前記検体貯留部の高さが0.1mm〜0.5mmであり、
    前記検体貯留部の内径が0.97mm〜53.21mmであり、
    前記液だめ部の高さが0.1mm〜0.5mmであり、
    前記液だめ部の内径が0.5mm〜15.96mmであり、
    前記流路の幅が0.2mm〜5.0mmであり、
    前記流路の高さが0.02mm〜0.5mmであり、流路長が0.10mm〜100mmである
    請求項6から10のいずれか1項に記載のバイオセンサ。
  12. 前記検体が血液である
    請求項1から11のいずれか1項に記載のバイオセンサ。
  13. 前記測定対象成分がグルコースである
    請求項1から12のいずれか1項に記載のバイオセンサ。
  14. 検体内の測定対象成分の測定に用いられるバイオセンサにおいて、
    前記検体中の有形成分と液体成分とを分離する分離膜と、
    前記分離膜を透過した透過物を貯留する貯留部と、
    前記貯留部と連通する前記透過物の流路と、
    前記流路を形成する面に配置された電極及び試薬と、
    前記流路を形成するとともに前記貯留部と接する面に設けられた親水面と
    を含むバイオセンサ。
JP2017203600A 2017-10-20 2017-10-20 バイオセンサ Active JP6871128B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017203600A JP6871128B2 (ja) 2017-10-20 2017-10-20 バイオセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017203600A JP6871128B2 (ja) 2017-10-20 2017-10-20 バイオセンサ

Publications (2)

Publication Number Publication Date
JP2019078556A JP2019078556A (ja) 2019-05-23
JP6871128B2 true JP6871128B2 (ja) 2021-05-12

Family

ID=66626427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203600A Active JP6871128B2 (ja) 2017-10-20 2017-10-20 バイオセンサ

Country Status (1)

Country Link
JP (1) JP6871128B2 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426451A (en) * 1981-01-28 1984-01-17 Eastman Kodak Company Multi-zoned reaction vessel having pressure-actuatable control means between zones
JP3856438B2 (ja) * 2001-06-14 2006-12-13 松下電器産業株式会社 バイオセンサ
US6977032B2 (en) * 2001-11-14 2005-12-20 Matsushita Electric Industrial Co., Ltd. Biosensor
EP1482307B1 (en) * 2002-03-01 2007-10-03 Matsushita Electric Industrial Co., Ltd. Biosensor
JP2004264247A (ja) * 2003-03-04 2004-09-24 Matsushita Electric Ind Co Ltd バイオセンサ
JP2004325384A (ja) * 2003-04-28 2004-11-18 Matsushita Electric Ind Co Ltd バイオセンサ
GB0525997D0 (en) * 2005-12-21 2006-02-01 Oxford Biosensors Ltd Micro-fluidic structures
JP2007256237A (ja) * 2006-03-27 2007-10-04 Matsushita Electric Ind Co Ltd マイクロ化学チップおよびその製造方法
EP2211171A4 (en) * 2007-11-05 2014-04-16 Nippon Kayaku Kk BIOSENSOR
JPWO2009110089A1 (ja) * 2008-03-07 2011-07-14 株式会社ティー・ワイ・エー 体液成分の分析器具

Also Published As

Publication number Publication date
JP2019078556A (ja) 2019-05-23

Similar Documents

Publication Publication Date Title
JP4761688B2 (ja) バイオセンサおよびその製造方法
CN1205474C (zh) 生物传感器
US20080190783A1 (en) Electrode For Electrochemical Sensor
EP3148415B1 (en) Vertical-flow electronic bio-chemical sensing devices
RU2002128735A (ru) Способ предотвращения кратковременного взятия проб устройством, заполняемым действием капиллярной силы или капиллярным затеканием
CN101421616A (zh) 安培计检测优化的小型化生物传感器
US9528958B2 (en) Analytical test strip with capillary sample-receiving chambers separated by a physical barrier island
JP6782565B2 (ja) バイオセンサチップ及びバイオセンサ装置
US20060008581A1 (en) Method of manufacturing an electrochemical sensor
KR20150048702A (ko) 교차하는 샘플 수용 챔버들을 가진 전기화학-기반 분석 검사 스트립
TW201213797A (en) Electrochemical sensing testing sheet
JP6871128B2 (ja) バイオセンサ
JP2003254933A5 (ja)
JP2014006086A (ja) イオンセンサおよびイオンセンサの製造方法
US20050273032A1 (en) Filter and biosensor having the same
CN103091377B (zh) 生物传感器
US20150369813A1 (en) Analytical test strip with tiered capillary chamber
US20130341207A1 (en) Analytical test strip with capillary sample-receiving chambers separated by stop junctions
JP2004245735A (ja) 血液成分測定用使捨センサカード
WO2021099725A1 (fr) Dispositif microfluidique pour la mesure de concentrations d'especes dans un fluide corporel utilisant un faible volume
WO2020054704A1 (ja) 分析デバイス
JP4824667B2 (ja) 被検液分析用チップ
KR20160055186A (ko) 초박형 불연속 금속 층을 갖는 전기화학-기반 분석 검사 스트립
JP4917529B2 (ja) 被検液分析用チップ
JP2020180792A (ja) センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6871128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250