JP2020180792A - センサ - Google Patents

センサ Download PDF

Info

Publication number
JP2020180792A
JP2020180792A JP2019082066A JP2019082066A JP2020180792A JP 2020180792 A JP2020180792 A JP 2020180792A JP 2019082066 A JP2019082066 A JP 2019082066A JP 2019082066 A JP2019082066 A JP 2019082066A JP 2020180792 A JP2020180792 A JP 2020180792A
Authority
JP
Japan
Prior art keywords
groove
flow path
reagent
electrode
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019082066A
Other languages
English (en)
Inventor
原 拓也
Takuya Hara
拓也 原
悠 兼田
Yu Kaneda
悠 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Arkray Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc filed Critical Arkray Inc
Priority to JP2019082066A priority Critical patent/JP2020180792A/ja
Publication of JP2020180792A publication Critical patent/JP2020180792A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】作用極の測定部に滴下した試薬が溝、特に接続部に沿って延びる毛細管構造の溝部を伝って広がる広がり方にばらつきが発生していたとしても、測定結果のばらつきを抑制できるセンサを提供する。【解決手段】試料によって溶解する試薬を一方の電極に載置した一対の平面電極と、前記一対の平面電極が露出する流路と、前記一対の平面電極に向けて前記試料を前記流路内に導入する導入部とを有する試料内の測定対象成分の測定に用いられるセンサであって、前記一対の平面電極は、前記流路に形成された離間部によって離間されており、前記一方の電極は、試薬が載置された測定部と、前記測定部から前記導入部の方向に向けて延びる接続部を有し、前記離間部と接続すると共に、前記測定部から前記導入部の方向に向けて前記接続部に沿って延びる毛細管構造の溝部を有する。【選択図】図4

Description

本発明は、センサに関する。
現在、自己の血糖値(血液中のグルコース濃度の値)を測定するための様々な血糖値測定装置が市販されている。例えば、血糖値測定装置として、血糖自己測定を行うためのSMBG(Self−Monitoring of Blood Glucose)装置が知られている。SMBG装置では、穿刺器具などを用いて指先などから採取した血液を、測定器に装着したセンサ(試験片)に点着(付着)させて血糖値を測定する。
より詳細には、SMBG装置で用いられるセンサには、少なくとも酵素や、必要に応じてメディエータが含まれた試薬が載置された電極と、当該電極に接続されたリード線が設けられている。センサは、一般的に、液体状態の試薬が電極の上から滴下され、その後、電極上に滴下された試薬が乾燥されることによって、試薬が電極上に載置(固定)されることによって製造される。また、センサは、電極に直接、液体状の試薬を塗りつけることでも製造することができる。
センサでは、基板上に設けられた導電材料の少なくとも一部において基板を露出させる溝が形成され、当該溝によって周囲の導電材料と電気的に絶縁することで電極やリード線が形成される。溝は、例えば、基板上に設けられた導電材料を厚み方向に基板に達する深さまで削ることで形成できる。また、基板上の電極やリード線を形成する部分に導電材料を載せることで、電極やリード線の間に溝が形成される。
センサの導入部に点着された血液は、センサ内の流路を空気孔に向けて移動することで、導入部と空気孔との間に設けられた作用極および対極を有する電極上に達する。当該血液中のグルコースは電極上に載置された試薬と反応し、当該反応によってグルコースから電子が遊離される。この状態で、作用極と対極との間に測定器が電圧を印加すると、遊離した電子を介して、作用極から対極に向けて電流が流れる。この電流値の大きさは血糖値と比例関係にあるため、この関係を用いて測定した電流値を換算することで血糖値を測定することができる(特許文献1、2参照)。
この反応において、反応に寄与する電子は、主に作用極上でグルコースと反応した試薬の量に依存する。すなわち、作用極上に存在する試薬の量(濃度)に応じて、反応量が変わるため、電流値、すなわち、測定する血糖値が異なることになる。
特許第5663601号公報 中国特許出願公開107917942号明細書
作用極は、例えば、試料と試薬とを反応させる測定の場である。作用極へ液体状態の試薬を滴下すると、滴下した試薬が作用極と対極とを離間する離間部や、作用極から延びる接続部に到達することがある。ここで、接続部が毛細管構造の溝部によって規定されており、また溝部が離間部と接続している場合には、液体状態の試薬が溝部を伝う毛管現象によって、作用極から離れた位置にまで流れ出すことがある。すなわち、同じ形状の電極お
よび溝部を備えるセンサのそれぞれに対して、同じ量の試薬を電極上に滴下したとしても、溝部に流れ出す試薬の量は流体であるが故の特性や、滴下位置の微妙な違いによって、センサごとにばらつきが発生する。そのため、測定に使用するセンサごとに作用極上に載置された試薬の量が異なることになる。溝部を伝って流れ出た試薬の量が多い場合や、流れ出した距離が長い場合には、作用極で反応に寄与する試薬が少なくなってしまうため、グルコースと反応する試薬の量が少なくなり、その結果、血糖値の測定結果が実際の血糖値と比較し低い方向にばらつく虞がある。このような課題は血糖値を測定するセンサに限定されず、同じような測定原理を用いる電極に試薬を分注するセンサに共通する課題となる。
開示の技術の1つの側面は、作用極に滴下した試薬が溝、特に接続部に沿って延びる毛細管構造の溝部を伝って広がる広がり方にばらつきが発生していたとしても、測定結果のばらつきを抑制できるセンサを提供することを目的とする。
開示の技術の1つの側面は、次のようなセンサによって例示される。本センサは、試料によって溶解する試薬を一方の電極に載置した一対の平面電極と、前記一対の平面電極が露出する流路と、前記一対の平面電極に向けて前記試料を前記流路内に導入する導入部とを有する試料内の測定対象成分の測定に用いられるセンサであって、前記一対の平面電極は、前記流路に形成された離間部によって離間されており、前記一方の電極は、試薬が載置された測定部と、前記測定部から前記導入部の方向に向けて延びる接続部を有し、前記離間部と接続すると共に、前記測定部から前記導入部の方向に向けて前記接続部に沿って延びる毛細管構造の溝部を有する。
本センサは、作用極に滴下した試薬が溝、特に接続部に沿って延びる毛細管構造の溝部を伝って広がる広がり方にばらつきが発生していたとしても、測定結果のばらつきを抑制することができる。
図1は、実施形態に係るバイオセンサの外観の一例を示す図である。 図2は、実施形態に係るバイオセンサにおいてカバー部材を外した状態の平面図を示す。 図3は、実施形態に係るバイオセンサにおいてカバー部材およびスペーサを外した状態の平面図を示す。 図4は、図3において矩形領域Aによって囲まれた部分を拡大した図である。 図5は、図4のB−B線における断面の一例を示す図である。 図6は、実施形態に係るバイオセンサの使用態様の一例を示す図である。 図7は、比較例に係るバイオセンサの電極構造の一例を示す図である。 図8は、比較例に係るバイオセンサにおいて、作用極に滴下した試薬が溝に沿って広がった状態の一例を示す図である。 図9は、実施形態に係るバイオセンサにおいて、作用極に滴下した試薬が溝に沿って広がった状態の一例を示す図である。 図10は、グルコース濃度の測定結果のばらつきについて、実施形態と比較例とを比較する図である。 図11は、第1接続部の配置のバリエーションを例示する図である。
実施形態に係るセンサは、例えば、以下の構成を有する。
本実施形態に係るセンサは、試料によって溶解する試薬を一方の電極に載置した一対の平面電極と、前記一対の平面電極が露出する流路と、前記一対の平面電極に向けて前記試料を前記流路内に導入する導入部とを有する試料内の測定対象成分の測定に用いられるセンサであって、
前記一対の平面電極は、前記流路に形成された離間部によって離間されており、
前記一方の電極は、試薬が載置された測定部と、前記測定部から前記導入部の方向に向けて延びる接続部を有し、
前記離間部と接続すると共に、前記測定部から前記導入部の方向に向けて前記接続部に沿って延びる毛細管構造の溝部を有する。
上記センサにおいて、導入部から流路に導入された試料は、流路内を満たしながら一方の電極の測定部に向けて移動する。測定部には酵素を含む液体状の試薬が滴下されて載置されている。滴下した試薬は測定部に広がるとともに、試薬の一部は接続部に沿って延びる毛細管構造の溝部に達している。毛細管構造の溝部は、溝部に流入した試薬を毛管現象によって流れさせる程度の大きさ(幅や深さ)を有する溝である。接続部の縁に沿って延びる溝部に達した試薬は、毛管現象によって、溝部を伝わって広がることで測定部から流出することがある。接続部に沿って延びる溝部への試薬の広がり方はセンサ毎に異なり一定ではないため、試料によって測定部上で溶解する試薬の量がセンサ毎にばらつき、その結果、測定対象成分の測定結果がばらつく虞がある。本実施形態に係るセンサでは、測定部から導入部の方向に向けて接続部と接続部に沿って延びる溝部が延伸している(流路において測定部より上流側に向けて接続部と接続部の縁に沿って延びる溝部が延伸している)ので、測定部から流出した試薬は測定部よりも上流側に広がることになる。接続部に沿って延びる溝を伝わって測定部の上流側に流出した試薬の少なくとも一部は、導入部からの試料の移動によって測定部に戻される。そのため、本センサは、測定部に滴下した試薬が溝を伝わった広がり方のばらつきに起因する測定結果のばらつきを抑制できる。上記センサにおいて、前記溝部は、前記導電材料から前記絶縁性基板の方向に向けて、前記絶縁性基板に達するまで前記導電材料が削られて形成されたものであってもよい。
上記センサにおいて、前記流路において前記一対の平面電極が露出する平面は、絶縁性基板上に設けられる導電材料で形成され、前記溝部は、前記導電材料から前記絶縁性基板の方向に向けて、少なくとも前記絶縁性基板が露出するまで前記導電材料が削られて形成されたものであってもよい。また、上記センサにおいて、前記離間部は、前記導電材料から前記絶縁性基板の方向に向けて、少なくとも前記絶縁性基板が露出するまで前記導電材料が削られて形成された毛細管構造の溝であってもよい。このように溝部が形成されることで、一対の平面電極を周囲の導電材料から絶縁することができる。
上記センサにおいて、前記試薬は、さらに前記離間部を構成する前記溝にまで載置されてもよい。電流値の大きさは試薬が存在する電極の面積と相関がある。このように試薬が載置されることで、測定部上の全ての領域に試薬を載置することができるため、試薬が測定部上を伝わった広がり方のばらつきに起因する測定結果のばらつきを抑制できる。
上記センサにおいて、前記一方の電極は、前記測定部よりも前記導入部側の位置において前記接続部と接続し、前記導入部の方向と略直行する方向に延びて一端が前記流路の外に達する第1リード部をさらに備えてもよい。上記センサにおいて、前記一方の電極は、前記流路の外において前記第1リード部の一端に接続するとともに、前記センサの前記導入部とは反対側の端部に延びる第2リード部をさらに備えてもよい。導入部とは反対側の端部は測定部よりも下流側になる。第1リード部と第2リード部とが接続する位置が流路の外であるため、溝部を伝わって測定部から流出した試薬が第2リード部を伝わって測定部よりも下流にむけて広がることが抑制される。試薬が測定部よりも下流側に広がることが抑制されることで、導入部からの試料の移動によって測定部から流出した試薬を好適に
測定部に戻すことができる。
上記センサにおいて、前記一対の平面電極のうち前記一方の電極に対向する他方の電極は、前記接続部が延びる位置を開口し、前記測定部の周囲を前記離間部を挟んで囲むように配置されてもよい。他方の電極は、接続部が延びる位置を開口することで、接続部と電極とが電気的に接続されることが抑制される。また、一方の電極と他方の電極との間に離間部を挟むことで、一方の電極と他方の電極とが電気的に接続されることが抑制される。
また、上記センサにおいて、絶縁性基板、前記絶縁性基板の上に設けられ、前記一対の平面電極を露出させる露出部を有するスペーサをさらに有し、前記流路および前記導入部は、前記絶縁性基板、および、前記スペーサと、によって囲まれた空間によって規定されてもよい。上記センサにおいて、前記スペーサ上に設けられ、前記露出部を覆うカバー部材をさらに備え、前記流路および前記導入部は、前記絶縁性基板、前記スペーサ、および、前記カバー部材と、によって規定されてもよい。
上記センサにおいて、試料としては、液体状態の試料であって、試薬を溶解できればよく、血液、間質液、唾液、尿、涙等の生体由来の体液や、植物の樹液、工業排水、生活排水、湖の水、川の水、雨水、海水、水道水、井戸水、浄水器による濾水、などの任意の液体等を挙げることができる。生体由来の体液の場合、測定対象成分としては、グルコース、コルチゾール、コレステロール、ヘモグロビン等を挙げることができる。
上記センサは、前記流路において前記測定部から前記導入部へ向かう方向とは逆方向に設けられ、前記流路の内部の気体を流路の外に排出する空気孔をさらに備えてもよい。
上述したセンサについて、以下図面を参照してさらに詳述する。以下では、センサの一例として、血液中のグルコース濃度を測定するバイオセンサについて説明する。
図1は、実施形態に係るバイオセンサの外観の一例を示す図である。図1(A)は実施形態に係るバイオセンサ1の平面図を示し、図1(B)はバイオセンサ1を点着孔152からみた側面図を示し、図1(C)は、長手方向からバイオセンサ1をみた側面図を示す。図2は、実施形態に係るバイオセンサにおいてカバー部材を外した状態の平面図を示す。図3は、実施形態に係るバイオセンサにおいてカバー部材およびスペーサを外した状態の平面図を示す。バイオセンサ1は、基板11上に導電薄膜14、スペーサ12、カバー部材13をZ方向(高さ方向)の順に積層して形成される。バイオセンサ1は、長方形状に形成されており、X方向(長手方向)の一端10aには血液中のグルコース濃度を測定する測定装置3(図6参照)と電気的に接続される第1リード部161および第2リード部171が露出し、他端10bには血液を点着させる点着孔152が設けられる。バイオセンサ1は、「センサ」の一例である。
基板11は、板状(長方形状)に形成され、薄板上の絶縁性の基板である。基板11は、例えば、ポリエーテルイミド(PEI)、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)のような熱可塑性樹脂、ポリイミド樹脂、エポキシ樹脂のような各種の樹脂(プラスチック)、ガラス、セラミック、紙のような絶縁性材料で形成される。
導電薄膜14は、基板11のZ方向における一方の面(上面)に設けられ、厚みは10〜50μmである。図面では、導電薄膜14は基板11の上面全体を覆うように設けられているが、導電薄膜14は基板11の一部を覆う構成としてもよい。後述するように、導電薄膜14には、作用極16、対極17、第1リード部161、第2リード部171、第1接続部162、第2接続部172が形成される。そのため、導電薄膜14は、基板11の上面であって、作用極16、対極17、第1リード部161、第2リード部171、第
1接続部162、第2接続部172を形成する領域に設けられればよい。導電薄膜14は、例えば、真空蒸着、スパッタリング、イオンプレーティング法、静電スプレー法、化学気相成長法等によって基板11上に設けられる。導電薄膜14の素材は導電性を有する素材であれば特に限定は無いが、例えば、金、白金、銀、パラジウムおよびルテニウムのような金属材料、あるいはグラファイト、カーボンナノチューブ、グラフェン、メソポーラスカーボンなどのカーボンに代表される炭素材料を用いることができる。
スペーサ12は、導電薄膜14とカバー部材13とを接着する部材である。なお、上記の通り、導電薄膜14が基板11の全体を覆わない場合もあり、このような場合、スペーサ12はカバー部材13と基板11とを接着することもある。スペーサ12には、基板11と同一の絶縁性材料を適用できる。スペーサ12は、例えば、絶縁性の両面テープである。スペーサ12は、図2に例示されるように、Y方向(幅方向)に所定距離離れており、互いに接触すること無く配置され、X方向に延びるスペーサ121とスペーサ122とを含む。それぞれ長方形状に形成されたスペーサ121とスペーサ122との間が露出部となっており、スペーサ12のX方向の長さはカバー部材13のX方向の長さと同じである。スペーサ121とスペーサ122とがY方向に露出部によって所定距離離れていることで、カバー部材13と導電薄膜14との間にX方向に延びる隙間が形成され、当該隙間は流路15となる。なお、スペーサ121とスペーサ122の2つのスペーサの間は「露出部」の一例であって、たとえば1枚のスペーサがU字上の切り欠きを設け、当該切り欠き部が露出部を構成していてもよいし、3枚以上のスペーサによって露出部を構成していてもよい。露出部は、少なくとも作用極16、対極17、および第1接続部162とを露出させるのであればどのような形状であってもよい。また、スペーサ12は、絶縁性の両面テープに限らず、例えば2枚の絶縁性の両面テープの間に別の絶縁性薄膜を設けたものであってもよく、絶縁性基板とカバー部材の間に設けられ、露出部に空間(流路)を規定するものであればよい。この場合も露出部は、1つの部材で構成されていても、2枚以上の部材で構成されていてもよい。
カバー部材13は、板状(長方形状)に形成され、基板11の一部を覆う絶縁性のカバーである。カバー部材13には、基板11と同じ絶縁性材料を適用できる。カバー部材13の幅方向の長さは、基板11の幅方向の長さと同一である。また、カバー部材13の長手方向の長さは基板11の長手方向の長さより短い。カバー部材13は、他端10bにおいてカバー部材13の端部と基板11の端部が重なっている。一端10a側では、カバー部材13の端部は基板11の中途部分に達する。このようにカバー部材13が配置されることで、カバー部材13は、少なくともスペーサ12の露出部を覆っている。
スペーサ121とスペーサ122とが露出部によって互いに接触しないことで、カバー部材13、導電薄膜14、スペーサ121、スペーサ122によって囲まれた流路15が形成される。スペーサ121、スペーサ122がX方向に沿って延びるため、流路15は、バイオセンサ1のX方向に沿って形成される。流路15は、バイオセンサ1の一端10a側および他端10b側において開口している。一端10a側の流路15の開口は空気孔151となり、他端10b側の開口は点着孔152となる。空気孔151は、流路15の内部の気体を流路15外に排出する排気口である。流路15内には、作用極16、対極17、第1接続部162および第2接続部172が露出している。さらに、流路15内には、第1リード部161および第2リード部171の一部が露出している。点着孔152に点着された血液は、毛管現象によって空気孔151に向けて流路15内を満たしながら流路15内を空気孔151に向けて移動する。流路15内を移動した血液は作用極16に達し、作用極16上において血液中のグルコースと試薬とが反応する。なお、1枚のスペーサがU字上の切り欠きを設け、当該切り欠き部が露出部を構成していてもよいし、3枚以上のスペーサによって露出部を構成している場合、すなわち、流路15の一端10a側が閉塞している場合には、カバー部材13を厚み方向に貫通する孔を設け、カバー部材13
に設けた孔を空気孔としてもよい。この場合、カバー部材13をZ方向から平面視した場合に、空気孔の位置は作用極16および対極17よりも一端10a側(流路15の上流側)に設ければよい。流路15は、「流路」の一例である。点着孔152は、「導入部」の一例である。
導電薄膜14上には、例えば、レーザーによるトリミングやナイフ等の刃物によって導電薄膜14を厚み方向に基板11に達するまで削ることで形成した溝によって周囲から電気的に分離(絶縁)された領域を形成し、この電気的に分離された領域を作用極16、対極17、第1リード部161、第2リード部171、第1接続部162、第2接続部172とすることができる。図中では、作用極16、対極17、第1リード部161、第2リード部171、第1接続部162、第2接続部172の周囲を囲む実線によって溝を示している。作用極16および第1接続部162を含む電極と対極17とは、「一対の平面電極」の一例である。
図4は、図3において矩形領域Aによって囲まれた部分を拡大した図である。図5は、図4のB−B線における断面の一例を示す図である。図5では、図4を点着穴152の方向から見た断面図となっている。溝141は、導電薄膜14のZ方向に向けて導電薄膜14を削ることで形成されており、その深さは基板11に達する。溝141の深さが基板11に達するため、溝141の内部(溝141の底部)では基板11が露出する。溝141の幅Wは、10−150μm程度である。このように溝141の内壁は基板11および導電薄膜14によって構成され、底部は基板11によって構成される。本実施形態では、溝141の内壁および底部は疎水性を示すが、親水性を示していても良い。このように溝141が形成されることで、第1リード部161および第1接続部162は、導電薄膜14の他の領域と電気的に絶縁される。作用極16、対極17、第2リード部171、第2接続部172についても、同様に、溝141によって導電薄膜14の他の領域と電気的に絶縁される。すなわち、作用極16、対極17、第1リード部161、第2リード部171、第1接続部162、第2接続部172の周囲には、溝141が設けられているということができる。換言すれば、作用極16、対極17、第1リード部161、第2リード部171、第1接続部162、第2接続部172の縁に沿って溝141が設けられているということができる。
なお、溝141の深さ(Z方向の高さ)は、溝141によって作用極16、対極17、第1リード部161、第2リード部171、第1接続部162、第2接続部172が、導電薄膜14の他の領域と電気的に絶縁できる深さとなっていればよい。すなわち、図5では、溝141は基板11の上面に達する深さとなっているが、溝141はZ方向において基板11の内部にまで達してもよい。具体的には、溝141の深さは、少なくとも導電薄膜14の厚み以上であり、基板11の上面の厚み以下である、10〜70μm程度である。溝141は、このように幅が狭く深さが浅い毛細管構造を有するため、作用極16に載置される試薬が毛管現象によって溝141に流れ出しやすくなる。
作用極16は、血液によって溶解し、測定対象の試料である血液中のグルコースと反応させる液体状の試薬が滴下して載置された平面電極である。本実施形態において、作用極16は、試薬が載置された測定部となる。図中において作用極16は円形に形成されているが、作用極16の形状が円形に限定されるわけではない。作用極16の形状は、三角形、四角形、五角形等の多角形であってもよく、他の形状(例えば、扇形等)であってもよい。作用極16が円形に形成される場合、滴下した試薬が作用極16の表面に均等に拡散させることができるという効果が生じる。作用極16は、「測定部」の一例である。
作用極16に載置される試薬は、例えば、試料に溶解して所定の化学反応を起こす液体である。液体の試薬が作用極16に載置されると、毛管現象により溝141に沿って試薬
が流れ出すことがある。試薬は、例えば、酵素を含み、さらにメディエータを含んでもよい。酵素としては、例えば、グルコースオキシダーゼ、グルコースデヒドロゲナーゼ、アルコールオキシダーゼ、アルコールデヒドロゲナーゼ、ラクテートオキシダーゼ、ラクテートデヒドロゲナーゼ、コレステロールオキシダーゼ、ビリルビンオキシダーゼ、クレアチニナーゼ、クレアチナーゼ等を挙げることができる。
メディエータとしては、例えば、フェリシアン化物、p−ベンゾキノン、p−ベンゾキノン誘導体、フェナジンメトサルフェート、メチレンブルー、フェロセン、フェロセン誘導体、フェノチアジン誘導体、フェノキサジン誘導体、フェナントレンキノン誘導体、オスミウム錯体、ルテニウム錯体等を挙げることができる。
対極17は、作用極16の近傍に設けられる平面電極である。対極17は、例えば、作用極16(測定部)の周囲の一部を囲むように設けられており、少なくとも点着穴152の方向において開口する開口173を有する。作用極16と対極17とは、流路15内に形成され、作用極16の周囲を囲むとともに、開口173に対応する位置において開口する溝141によって所定距離(例えば、10−150μm)離れている。この作用極16を囲む溝141は、離間部141aとも称する。図中では、略C字形状に形成されており、円形に形成された作用極16の周囲の一部を囲むように配置された対極17が例示されているが、対極17の形状が略C字形状に限定されるわけではなく、作用極16と対極17とが並んで配置されてもよい。対極17は、作用極16と対極17との間に測定装置3から電圧が印加されたときに、作用極16上の試薬と反応したグルコースから遊離した電子を介して、作用極16から対極17に向けて電流が流れることが可能な位置に設けられればよい。対極17は、「平面電極」、「他方の電極」の一例である。
第1リード部161は、測定装置3と作用極16とを電気的に接続する。第1リード部161は、バイオセンサ1の一端10aからバイオセンサ1の長手方向に沿って他端10bに向かって延びる長手部分1611と、作用極16よりも点着孔152寄りの位置において屈曲してY方向に延びる短手部分1612とを含むL字型に形成された配線である。第1リード部161が屈曲する位置(長手部分1611と短手部分1612とが接続する位置)は流路15の外であり、Z方向から見た場合にスペーサ12と重なる位置である。短手部分1612は、少なくとも流路15内に達する。すなわち、第1リード部161の短手部分1612は、流路15内において、作用極16と点着孔152との間にまで延びる。換言すれば、短手部分1612は、点着孔152から見たときに(X方向視において)作用極16と重なる位置にまで延びる。なお、第1リード部161の長手部分1611と短手部分1612とが接続する位置、すなわち第1リード部161が屈曲する位置は、図面ではZ方向から見た場合にスペーサ12と重なる位置となっているが、他の位置であってもよい。例えば、第1リード部161の長手部分1611と短手部分1612とが接続する位置、すなわち第1リード部161が屈曲する位置は、流路15内であってもよい。短手部分1612は、「第1リード部」の一例である。長手部分1611は、「第2リード部」の一例である。
第2リード部171は、測定装置3と対極17とを電気的に接続する。第2リード部171は、バイオセンサ1の一端10aからバイオセンサ1の長手方向(X方向)に沿って他端10bに向かって延び、対極17の側方(対極17とX方向の位置が略重なる位置)に達する直線状の配線である。第2リード部171は、対極17のY方向における側方のうちいずれか一方の側方に達してもよい。また、第2リード部171は、長手方向に沿って延びる途中で分岐し、対極17のY方向における両方の側方に達してもよい。
第1接続部162は、作用極16(測定部)から他端10bの方向に向けて(点着孔152の方向に向けて)、開口173を介して延びる直線状の配線である。第1接続部16
2は、バイオセンサ1の長手方向に沿って(X方向に沿って)、作用極16から点着孔152に向けて直線状に延びるということができる。X方向に沿って延びる第1接続部162は、流路15内において作用極16と点着孔152との間にまでY方向に沿って延びる第1リード部161の短手部分1612に接続する。換言すれば、第1接続部162は、作用極16よりも点着孔152寄りの位置において、第1リード部161の短手部分1612に接続する。第1接続部162の縁に沿って形成された溝141は、開口173を介して、離間部141aに接続する。第1接続部162の縁に沿って形成された溝141は、溝部141bとも称する。すなわち、第1接続部162と溝部141bは、点着孔152に点着されて流路15内を移動する血液の移動方向とは逆方向に作用極16から延びるということができる。換言すれば、第1接続部162と溝部141bは、作用極16よりも流路15における上流側に配置されているということができる。溝部141bは、「溝部」の一例である。作用極16および第1接続部162を含む電極は、「平面電極」、「一方の電極」の一例でもある。
第2接続部172は、対極17からバイオセンサ1の短手方向に沿って(Y方向に沿って)直線状に延びる配線である。第2接続部172は、対極17のY方向における側方において、第2リード部171と接続する。Y方向に沿って延びる第2接続部172がX方向に沿って延びる第2リード部171と接続する位置は、流路15の外であり、Z方向から見た場合にスペーサ12と重なる位置である。すなわち、第1リード部161と作用極16とは、第1接続部162によって電気的に接続される。第2リード部171と対極17とは、第2接続部172によって電気的に接続される。
<バイオセンサ1の使用態様>
図6は、実施形態に係るバイオセンサの使用態様の一例を示す図である。図6では、穿刺器具を用いて指先などから採取した血液を、測定装置3に装着したバイオセンサ1に点着させて血糖値を測定するSMBG装置80が例示される。測定装置3は、バイオセンサ1に点着された血液のグルコース濃度を測定する装置であり、筐体31、複数の操作ボタン32、表示パネル33およびセンサ挿入口34を備える。
図6に示すように、測定装置3の筐体31には、操作ボタン32および表示パネル33が設けられる。操作ボタン32は、例えば、測定の開始、終了等の動作を行うために使用される。表示パネル33は、測定結果やエラー等を表示する。表示パネル33は、例えば、液晶表示装置である。センサ挿入口34にはバイオセンサ1が挿入される。センサ挿入口34にバイオセンサ1が挿入された状態で、バイオセンサ1の点着孔152に血液が点着される。点着された血液は作用極16上に移動し、作用極16(測定部)上において血液中のグルコースと試薬とが反応する。測定装置3は、センサ挿入口34に挿入されたバイオセンサ1の第1リード部161および第2リード部171を介して作用極16と対極17とに電圧を印加し、当該反応に応じた応答電流値を測定する。測定装置3は、測定した応答電流値を基に血液中のグルコース濃度を決定する。グルコース濃度の決定には、例えば、グルコース濃度と応答電流値とを対応付けた検量線を用いればよい。グルコース濃度の測定結果は、例えば、表示パネル33に表示される。
<比較例>
図7は、比較例に係るバイオセンサの電極構造の一例を示す図である。図7では、比較例に係るバイオセンサ1aにおける図3の矩形領域Aに囲まれた領域に相当する領域が例示される。比較例において実施形態と同一の構成については同一の符号を付し、その説明を省略する。以下、図7を参照して、比較例に係るバイオセンサ1aについて説明する。
比較例においても、実施形態と同様に、作用極16a、対極17a、第1接続部162a、第2接続部172aは、導電薄膜14へのレーザーによるトリミングによって溝14
1を形成し、溝141によって導電薄膜14の他の部分から電気的に絶縁することで、作用極16a、対極17a、第1接続部162a、第2接続部172aが形成される。すなわち、作用極16a、対極17a、第1接続部162a、第2接続部172aの周囲に沿って、溝141が設けられている。
比較例に係るバイオセンサ1aでは、作用極16aの周囲の一部を囲むように対極17aが設けられる。作用極16aからは、作用極16aと第1リード部161とを接続する第1接続部162aが、バイオセンサ1aのX方向に沿って、バイオセンサ1aの一端10aに向けて延びる。また、対極17aからは、対極17aと第2リード部171とを接続する第2接続部172aが、バイオセンサ1aのX方向に沿って、バイオセンサ1aの一端10aに向けて延びる。比較例における第1接続部162aおよび第2接続部172aは、作用極16aと点着孔152との間ではなく、作用極16aと空気孔151との間に配置される。すなわち、比較例では、第1接続部162aと第1接続部162aの縁に沿って形成された溝141は、点着孔152に点着されて流路15内を移動する血液の移動方向と同じ方向に作用極16aから延びている。換言すれば、比較例に係るバイオセンサ1aでは、第1接続部162aと第1接続部162aの縁に沿って形成された溝141は、作用極16よりも流路15における下流側に配置されているということができる。上述の通り、バイオセンサ1aの一端10a側に第1リード部161および第2リード部171が露出するため、第1接続部162aおよび第2接続部172aを作用極16aと空気孔151との間(すなわち、作用極16aよりも流路15における下流側)に配置することは、実施形態に係るバイオセンサ1よりもレーザーによるトリミングの簡素性の面から自然な設計であると考えられる。
<実施形態と比較例との比較>
実施形態および比較例のいずれにおいても、導電薄膜14へのレーザーによるトリミングによって溝141を形成することで、作用極、対極、第1接続部、第2接続部等が形成される。すなわち、作用極、対極、第1接続部、第2接続部等の縁には溝141が設けられる。作用極に滴下して作用極全体に広がった試薬は、作用極から第1接続部の周囲を囲む溝141に達し、溝141に達した試薬は溝141に沿って広がりやすく(流出しやすく)なる。そのため、試薬を作用極に滴下すると、毛管現象によって、滴下された試薬の一部が第1接続部の周囲を囲む溝141に沿って作用極から流出することがある。
図8は、比較例に係るバイオセンサにおいて、作用極に滴下した試薬が溝に沿って広がった状態の一例を示す図である。図8では、説明のため、試薬の広がりを誇張して例示している。比較例に係るバイオセンサ1aでは、上述の通り、第1接続部162aが作用極16aと空気孔151との間(流路15において、作用極16aよりも下流側)に配置される。すなわち、第1接続部162aの縁に沿って形成された溝141も作用極16aよりも下流側に配置される。そのため、比較例に係るバイオセンサ1aでは、作用極16aに滴下された試薬Mは、毛管現象によって、第1接続部162aの縁に沿って形成された溝141に沿って、作用極16aよりも下流側に流出し、作用極16aにおける血液中のグルコースとの反応に寄与しないことがある。作用極16aよりも下流側に流出した試薬Mは、点着孔152から流路15内を作用極16aに向けて移動する血液によって作用極16aに戻すことはできない。また、作用極16aから流出する試薬Mの量はバイオセンサ1a毎に異なり、一定ではない。そのため、バイオセンサ1a毎に作用極16a上でグルコースと反応する試薬Mの量にばらつきが生じ、このようなばらつきによって測定装置3が測定する応答電流値にもばらつきが生じる虞がある。すなわち、比較例に係るバイオセンサ1aでは、測定に用いるバイオセンサ1a毎にグルコース濃度の測定結果がばらつく虞がある。
図9は、実施形態に係るバイオセンサにおいて、作用極に滴下した試薬が溝に沿って広
がった状態の一例を示す図である。図9では、説明のため、試薬の広がりを誇張して例示している。図9では、作用極16(測定部)に滴下された試薬Mが、毛管現象によって、作用極16と対極17との間の離間部141aや第1接続部162の縁に沿って形成された溝部141bを伝って作用極16から流出している様子が例示される。離間部141aと溝部141bとは接続されているため、離間部141aに流出した試薬Mは、毛管現象により、溝部141bにまで流出しやすい広がりやすい。溝部141bに流出した試薬Mは、作用極16から離れた位置にまで流出することがある。ここで、実施形態に係るバイオセンサ1では、第1接続部162および第1接続部162の縁に沿って形成された溝部141bは、作用極16よりも上流側に配置されている。そのため、実施形態に係るバイオセンサ1では、作用極16から流出する試薬Mは、作用極16よりも上流側(点着孔152側)に流出する。
実施形態に係るバイオセンサ1では、作用極16へ滴下した試薬Mが第1接続部162の縁に沿って形成された溝部141bにまで広がって流出しても、流出した試薬Mの少なくとも一部は点着孔152から作用極16に向けて流路15内を満たしながら移動する血液によって作用極16に戻される。そのため、作用極16上で血液中のグルコースと反応する試薬Mの量、すなわち、測定する電流値に起因されるグルコースと試薬Mとの反応量の変動、つまり反応に寄与する試薬Mの減少量が比較例に係るバイオセンサ1aよりも抑制される。その結果、実施形態に係るバイオセンサ1は、作用極16に分注した試薬Mの広がり方のばらつきに起因するグルコース濃度の測定結果のばらつきを比較例に係るバイオセンサ1aよりも抑制することができる。
実施形態に係るバイオセンサ1では、作用極16と点着孔152との間に配置された第1接続部162と第1接続部162の縁に沿って形成された溝部141bは、作用極16から点着孔152の方向に向けて真っすぐに延びる。このような構成を採用することにより、作用極16から第1接続部162の縁に沿って形成された溝部141bに流出した試薬Mを点着孔152から移動する血液によって、より効率的に、作用極16に戻すことができる。そのため、実施形態に係るバイオセンサ1は、作用極16においてグルコースと反応させる試薬Mの量の変動をより一層抑制することができ、グルコース濃度の測定結果のばらつきが抑制される。また、実施形態に係るバイオセンサ1は、作用極16から流出した試薬Mを血液の流れによって作用極16に戻すことで、作用極16上に滴下された試薬Mをより有効に血液中のグルコースと反応させることができるため、試薬Mの利用効率を高めることができる。
<検証>
実施形態に係るバイオセンサ1と比較例に係るバイオセンサ1aのグルコース濃度の測定結果のばらつきについて検証したので、検証結果について説明する。検証では、グルコース濃度336mg/dl、ヘマトクリット値70%の血液を点着したバイオセンサを測定装置3のセンサ挿入口34に挿入し、測定装置3は200mVの電圧を6.5秒間継続して印加してグルコース濃度に対応する応答電流値の測定を行った。このような測定を実施形態に係るバイオセンサ1および比較例に係るバイオセンサ1aの各々で50回ずつ実施した。
図10は、グルコース濃度の測定結果のばらつきについて、実施形態と比較例とを比較する図である。図10の縦軸は、グルコース濃度の測定時における応答電流値の再現性を示す。再現性は、例えば、次の式(1)によって決定される。
Figure 2020180792
式(1)において、Rは血液中の実際のグルコース濃度(真値)に対応する応答電流値(理論値)、Mはバイオセンサを用いたグルコース濃度の測定結果として得られた応答電流値(測定値)を示す。式(1)を参照すると理解できるように、理論値と測定値との差が少ない程、再現性は低い数値となる。すなわち、再現性の数値が低い程、血液中の実際のグルコース濃度と測定結果として得られたグルコース値との差が少ないことを示す。
図10に示すように、比較例に係るバイオセンサ1aの再現性はおよそ4.4%であり、実施形態に係るバイオセンサ1の再現性はおよそ2.1%である。すなわち、比較例に係るバイオセンサ1aよりも実施形態に係るバイオセンサ1の再現性の方が低くなっている。このことから、実施形態に係るバイオセンサ1の方が、比較例に係るバイオセンサ1aよりもグルコース濃度の測定結果のばらつきが少ないことが理解できる。
比較例に係るバイオセンサ1aでは、上述の通り、第1接続部162aと第1接続部162aの縁に沿って形成された溝141は、作用極16aよりも下流側に設けられる。作用極16aに滴下された試薬Mは、作用極16a全体に広がるとともに、第1接続部162aの縁に沿って形成された溝141を伝って、作用極16aよりも下流側に流出する。そのため、点着孔152に点着された血液が流路15内を満たしながら作用極16に導入されても、当該血液によって、流出した試薬Mが作用極16aに戻されることはない。
一方、実施形態に係るバイオセンサ1では、上述の通り、第1接続部162と第1接続部162の縁に沿って形成された溝部141bとは作用極16よりも下流側に設けられる。作用極16に滴下された試薬Mは、作用極16全体に拡散するとともに、離間部141aや第1接続部162の縁に沿って形成された溝部141bに沿って、作用極16よりも上流側(点着孔152側)に流出する。そのため、点着孔152に点着された血液が流路15内を満たしながら作用極16に導入されると、当該血液によって、流出した試薬Mの少なくとも一部は作用極16に戻される。
実施形態に係るバイオセンサ1では、点着孔152から導入された血液によって、作用極16から溝部141bに流出した試薬Mのうち、少なくとも一部を作用極16に戻すことができる。そのため、作用極16上で血液中のグルコースと反応する試薬Mの量、すなわち、測定する電流値に起因されるグルコースと試薬Mとの反応量の変動、つまり反応に寄与する試薬Mの減少量が比較例に係るバイオセンサ1aよりも抑制される。そのため、図10に例示されるように、実施形態に係るバイオセンサ1は、比較例に係るバイオセンサ1よりも、再現性が低くなっていると考えられる。
<変形例>
上述した実施形態に係るバイオセンサ1に対しては、各種の変形を行うことができる。例えば、実施形態では第1接続部162と第1接続部162の縁に沿って形成された溝部141bは、作用極16と点着孔152との間に配置され、作用極16から点着孔152に向けてまっすぐに延びているが、第1接続部162と第1接続部162の縁に沿って形成された溝部141bは、作用極16から点着孔152への真っすぐな方向からずれた方向(斜めの方向)に延びていてもよい。図11は、第1接続部の配置のバリエーションを例示する図である。図11(A)、(B)、(C)に例示されるように、第1接続部162と第1接続部162の縁に沿って形成された溝部141bは、作用極16と点着孔152との間に配置され、作用極16から点着孔152に真っすぐ向かう方向からずれている。
真っすぐな方向からずれた溝部141bとしては、作用極16に載置された試薬Mが溝
部141bに流れ出す範囲が、作用極16と点着孔152との間であって作用極16の幅(Y方向の長さ)の範囲内となるように、溝部141bが設けられればよい。換言すれば、第1接続部162と第1リード部161とが接続する位置が、Y方向(幅方向)において、作用極16の幅の範囲内であればよい。第1接続部162と第1接続部162の縁に沿って形成された溝部141bと、作用極16と点着孔162とを結ぶ直線との角度は、例えば、60度未満であり、好ましくは45度未満であり、より好ましくは30度未満である。換言すれば、第1接続部162と第1接続部162の縁に沿って形成された溝部141bと作用極16と点着孔162とを結ぶ直線との角度が鋭角に(小さく)なればなるほど好ましい。
第1接続部162と第1接続部162の縁に沿って形成された溝部141bが作用極16と点着孔152との間に配置されていれば、作用極16から溝部141bに流出した試薬Mの少なくとも一部を点着孔152から流路15内を満たしながら移動する血液によって作用極16に戻すことができる。すなわち、グルコース濃度の測定結果のばらつきが比較例に係るバイオセンサ1aよりも抑制される。
実施形態では、導電薄膜14へのレーザーによるトリミングによって溝141が形成され、溝141によって導電薄膜14の他の領域から電気的に絶縁されることで、作用極16、対極17、第1接続部162、第2接続部172等が形成される。しかしながら、バイオセンサ1では、作用極16、対極17、第1接続部162、第2接続部172等が導電薄膜14へのレーザーによるトリミング以外の方法によって形成されてもよい。例えば、作用極16、対極17、第1接続部162、第2接続部172等が、例えば、カーボン印刷によって基板11上に形成されてもよい。カーボン印刷によって基板11上に形成された部分は、基板11の表面から突出する(盛り上がる)ことで、カーボン印刷によって基板11上に形成された部分同士の間において毛管現象が発生する程度の溝が生じる。バイオセンサ1は非常に微細なセンサであるため、この溝の幅は溝141と同様に非常に狭いものとなり、作用極16に滴下した試薬Mが毛管現象によって第1接続部162の周囲に生じる溝に沿って広がりやすくなる。そのため、カーボン印刷によって作用極16、対極17、第1接続部162、第2接続部172等を形成する場合でも、第1接続部162を作用極16と点着孔152との間に配置することで、電極に滴下した試薬Mの広がり方のばらつきに起因する測定結果のばらつきを抑制できる。
以上説明した実施形態では、流路15の一端10a側の開口が空気穴15となったが、空気穴15は他の方法によって設けられてもよい。例えば、空気穴15は、カバー部材13を厚み方向に貫通し、作用極16や対極17よりも上流側に位置する位置に設けられた貫通孔であってもよい。
以上で開示した実施形態や変形例はそれぞれ組み合わせることができる。
1・・・バイオセンサ
11・・・基板
12、121、122・・・スペーサ
13・・・カバー部材
14・・・導電薄膜
141・・・溝
141a・・・離間部
141b・・・溝部
15・・・流路
151・・・空気孔
152・・・点着孔
16・・・作用極(測定部)
161・・・第1リード部
1611・・・長手部分
1612・・・短手部分
162、162a・・・第1接続部
17・・・対極
171・・・第1リード部
172、172a・・・第2接続部
3・・・測定装置
31・・・筐体
32・・・操作ボタン
33・・・表示パネル
34・・・センサ挿入口
80・・・SMBG装置

Claims (10)

  1. 試料によって溶解する試薬を一方の電極に載置した一対の平面電極と、前記一対の平面電極が露出する流路と、前記一対の平面電極に向けて前記試料を前記流路内に導入する導入部とを有する試料内の測定対象成分の測定に用いられるセンサであって、
    前記一対の平面電極は、前記流路に形成された離間部によって離間されており、
    前記一方の電極は、試薬が載置された測定部と、前記測定部から前記導入部の方向に向けて延びる接続部を有し、
    前記離間部と接続すると共に、前記測定部から前記導入部の方向に向けて前記接続部に沿って延びる毛細管構造の溝部を有する、
    センサ。
  2. 前記流路において前記一対の平面電極が露出する平面は、絶縁性基板上に設けられる導電材料で形成され、
    前記溝部は、前記導電材料から前記絶縁性基板の方向に向けて、少なくとも前記絶縁性基板が露出するまで前記導電材料が削られて形成されたものである、
    請求項1に記載のセンサ。
  3. 前記離間部は、前記導電材料から前記絶縁性基板の方向に向けて、少なくとも前記絶縁性基板が露出するまで前記導電材料が削られて形成された毛細管構造の溝である、
    請求項2に記載のセンサ。
  4. 前記試薬は、さらに前記離間部を構成する前記溝にまで載置される、
    請求項3に記載のセンサ。
  5. 前記一方の電極は、前記測定部よりも前記導入部側の位置において前記接続部と接続し、前記導入部の方向と略直行する方向に延びて一端が前記流路の外に達する第1リード部をさらに備える、
    請求項1から4のいずれか一項に記載のセンサ。
  6. 前記一方の電極は、前記流路の外において前記第1リード部の一端に接続するとともに、前記センサの前記導入部とは反対側の端部に延びる第2リード部をさらに備える、
    請求項5に記載のセンサ。
  7. 前記一対の平面電極のうち前記一方の電極に対向する他方の電極は、前記接続部が延びる位置を開口し、前記測定部の周囲を前記離間部を挟んで囲むように配置される、
    請求項3から6のいずれか一項に記載のセンサ。
  8. 絶縁性基板、前記絶縁性基板の上に設けられ、前記一対の平面電極を露出させる露出部を有するスペーサをさらに有し、
    前記流路および前記導入部は、前記絶縁性基板、および、前記スペーサと、によって囲まれた空間によって規定される、
    請求項1から7のいずれかに記載のセンサ。
  9. 前記スペーサ上に設けられ、前記露出部を覆うカバー部材をさらに備え、
    前記流路および前記導入部は、前記絶縁性基板、前記スペーサ、および、前記カバー部材と、によって規定される、
    請求項8に記載のセンサ。
  10. 前記流路において前記測定部から前記導入部へ向かう方向とは逆方向に設けられ、前記
    流路の内部の気体を流路の外に排出する空気孔をさらに備える、
    請求項1から9のいずれか一項に記載のセンサ。
JP2019082066A 2019-04-23 2019-04-23 センサ Pending JP2020180792A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019082066A JP2020180792A (ja) 2019-04-23 2019-04-23 センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019082066A JP2020180792A (ja) 2019-04-23 2019-04-23 センサ

Publications (1)

Publication Number Publication Date
JP2020180792A true JP2020180792A (ja) 2020-11-05

Family

ID=73024632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019082066A Pending JP2020180792A (ja) 2019-04-23 2019-04-23 センサ

Country Status (1)

Country Link
JP (1) JP2020180792A (ja)

Similar Documents

Publication Publication Date Title
JP5483421B2 (ja) 検体センサおよび使用方法
JP5144529B2 (ja) センサー
US7887682B2 (en) Analyte sensors and methods of use
US10571425B2 (en) Disposable test sensor with improved sampling entrance
KR20150048702A (ko) 교차하는 샘플 수용 챔버들을 가진 전기화학-기반 분석 검사 스트립
US10386323B2 (en) Test sensor with multiple sampling routes
JP2020180792A (ja) センサ
JP6585636B2 (ja) 垂直に交わっている試料受容チャンバを備える、末端充填型の電気化学式分析検査ストリップ
CN203534868U (zh) 一种生物传感器
TW201501694A (zh) 具有經實體障壁島分隔之毛細管試樣接受室的分析測試條
TWM296369U (en) Electrochemistry biosensing test paper with interference eliminating function