JP6870341B2 - Gamma-ray resistant film - Google Patents

Gamma-ray resistant film Download PDF

Info

Publication number
JP6870341B2
JP6870341B2 JP2017009466A JP2017009466A JP6870341B2 JP 6870341 B2 JP6870341 B2 JP 6870341B2 JP 2017009466 A JP2017009466 A JP 2017009466A JP 2017009466 A JP2017009466 A JP 2017009466A JP 6870341 B2 JP6870341 B2 JP 6870341B2
Authority
JP
Japan
Prior art keywords
film
gamma
metal
reflective film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017009466A
Other languages
Japanese (ja)
Other versions
JP2018120017A (en
Inventor
直文 丸山
直文 丸山
直樹 三須
直樹 三須
叙夫 平川
叙夫 平川
仁美 笹尾
仁美 笹尾
務 竹内
務 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Priority to JP2017009466A priority Critical patent/JP6870341B2/en
Publication of JP2018120017A publication Critical patent/JP2018120017A/en
Application granted granted Critical
Publication of JP6870341B2 publication Critical patent/JP6870341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐ガンマ線反射膜に関し、より詳細には、石英ガラス基材のような基材の一部表面に形成され、ガンマ線照射に対して耐性を有する耐ガンマ線反射膜に関する。 The present invention relates to an anti-gamma ray reflective film, and more particularly to an anti-gamma ray reflective film formed on a partial surface of a base material such as a quartz glass base material and having resistance to gamma ray irradiation.

医学分野では、標準的な滅菌方法として、ガンマ線照射による医療機器の滅菌処理が行われている。ガンマ線照射により滅菌可能な光ファイバの一例が、特許文献1に記載されている。この特許文献1に記載の光ファイバには、水素含有光ファイバから外部への水素の拡散を抑制するために金属のコーティングが施されている。また、光ファイバの端面には、酸化アルミニウムなどの金属酸化物のコーティングが施されている。 In the medical field, as a standard sterilization method, sterilization of medical devices by gamma ray irradiation is performed. An example of an optical fiber that can be sterilized by gamma ray irradiation is described in Patent Document 1. The optical fiber described in Patent Document 1 is coated with a metal in order to suppress the diffusion of hydrogen from the hydrogen-containing optical fiber to the outside. Further, the end face of the optical fiber is coated with a metal oxide such as aluminum oxide.

また、ガンマ線滅菌される医療機器の一例として、光干渉断層撮影法(OCT,Optical Coherence Tomography)に使用される光プローブが挙げられる。OCTでは、患者の体内に挿入した光プローブの先端から側方にコヒーレント光を出射するとともに反射光を受光し、器官内の断層画像を生成する。
なお、光プローブの多くは、器官が傷つくことを防止するため、耐薬品性が高く摩擦の少ないフッ素樹脂製のチューブで被覆されている。
An example of a gamma-ray sterilized medical device is an optical probe used in optical coherence tomography (OCT). In OCT, coherent light is emitted laterally from the tip of an optical probe inserted into the patient's body and reflected light is received to generate a tomographic image in the organ.
Most of the optical probes are coated with a fluororesin tube having high chemical resistance and low friction in order to prevent damage to organs.

特開平11−343144号公報Japanese Unexamined Patent Publication No. 11-343144

金属反射膜を蒸着した光ファイバ等の医療機器にガンマ線を照射すると、金属反射膜が変質し、剥離したように見える現象(以下、「剥離現象」と称する。)が発生することがある。この剥離現象について本願に係る発明者は種々の実験及び検討を重ねた結果、この剥離現象が、医療機器を被覆するフッ素樹脂製のチューブ等が存在する場合にのみ発生することを見出した。また、フッ素樹脂にガンマ線を照射したところ、フッ化物が検出された。さらに、金属反射膜が変質した部分の付着物をラマン分光測定したところ、フッ化アルミニウムのラマンスペクトルと同様に158cm−1にピークを有するスペクトルが観測された。これらの結果から、剥離現象は、ガンマ線照射によりフッ素樹脂が僅かに分解され、発生したフッ素ラジカルが金属反射膜と反応したことによって発生したものであると考えられる。 When a medical device such as an optical fiber on which a metal reflective film is vapor-deposited is irradiated with gamma rays, the metal reflective film may be altered and a phenomenon that appears to be peeled off (hereinafter, referred to as “peeling phenomenon”) may occur. As a result of various experiments and studies on this peeling phenomenon, the inventor of the present application has found that this peeling phenomenon occurs only when a fluororesin tube or the like covering a medical device is present. Moreover, when the fluororesin was irradiated with gamma rays, fluoride was detected. Furthermore, when the deposits on the altered portion of the metal reflective film were measured by Raman spectroscopy, a spectrum having a peak at 158 cm -1 was observed, similar to the Raman spectrum of aluminum fluoride. From these results, it is considered that the peeling phenomenon was generated by the slight decomposition of the fluororesin by gamma-ray irradiation and the reaction of the generated fluorine radicals with the metal reflective film.

本発明は、かかる事情に鑑みてなされたものであり、ガンマ線照射に対して耐性を有する耐ガンマ線反射膜の提供を目的としている。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a gamma ray-resistant reflective film having resistance to gamma-ray irradiation.

本発明に係る耐ガンマ線反射膜は、基材の一部表面上に形成された反射膜を備え、前記反射膜は、金属反射層と、前記金属反射層の上側に形成された0.799ボルト以上の標準電極電位を有する金属又は合金で形成された保護層とを有し、前記基材は、光伝播部材であり、前記反射膜は、前記光伝搬部材内を伝播してきた光を反射し、前記基材の少なくとも一部が、フッ素樹脂製のチューブで被覆され、前記金属反射層は、アルミニウムの蒸着膜であり、前記保護層は、金又は銀の蒸着膜であることを特徴としている。 The gamma-resistant reflective film according to the present invention includes a reflective film formed on a part of the surface of the base material, and the reflective film is a metal reflective layer and 0.799 volts formed on the upper side of the metal reflective layer. possess a more protective layers formed of a metal or alloy having a standard electrode potential, the substrate is a light propagation member, the reflective film reflects the light having propagated through the optical propagation in the member The metal reflective layer is an aluminum vapor deposition film, and the protective layer is a gold or silver vapor deposition film, wherein at least a part of the base material is coated with a tube made of a fluororesin . ..

本発明の耐ガンマ線反射膜は、金属反射層の上側に、0.799ボルト以上の標準電極電位を有するイオン化傾向の低い金属又は合金で形成された保護層を有する。このようにイオン化傾向の小さい金属で保護層を形成することにより、金属反射層と、ガンマ線照射により発生したフッ素ラジカルとの反応を抑制し、ガンマ線の照射による反射膜のダメージを抑制することができる。 The gamma-ray-resistant reflective film of the present invention has a protective layer formed of a metal or alloy having a standard electrode potential of 0.799 volts or more and having a low ionization tendency on the upper side of the metal reflective layer. By forming the protective layer with a metal having a low ionization tendency in this way, the reaction between the metal reflective layer and the fluorine radicals generated by gamma ray irradiation can be suppressed, and damage to the reflective film due to gamma ray irradiation can be suppressed. ..

本発明の実施形態に係る耐ガンマ線反射膜の断面模式図である。It is sectional drawing of the gamma ray-resistant reflective film which concerns on embodiment of this invention.

以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1に、本発明に係る耐ガンマ線反射膜の断面模式図を示す。同図に示すように、本実施形態の耐ガンマ線反射膜は、石英ガラス基材1の上面に形成された反射膜2を備えている。 FIG. 1 shows a schematic cross-sectional view of the gamma ray-resistant reflective film according to the present invention. As shown in the figure, the gamma ray-resistant reflective film of the present embodiment includes a reflective film 2 formed on the upper surface of the quartz glass base material 1.

さらに、石英ガラス基材1は、不図示のフッ素樹脂製のチューブで被覆されている。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、及び、ポリフッ化ビニリデン(PVDF)が挙げられるが、これらに限定されない。 Further, the quartz glass base material 1 is covered with a fluororesin tube (not shown). Examples of the fluororesin include, but are not limited to, polytetrafluoroethylene (PTFE), fluorinated ethylene / hexafluoride propylene copolymer (FEP), and polyvinylidene fluoride (PVDF).

石英ガラス基材1は、光ファイバや屈折率分布(Gradient Index,GRIN)レンズのような光伝播部材で構成されるのがよい。また、耐ガンマ線反射膜2は、石英ガラス基材1の鏡面研磨した表面に形成されるのがよく、耐ガンマ線反射膜2は、石英ガラス基材1の内部を伝播してきた光を反射してもよいし、外部からの光を反射してもよい。 The quartz glass base material 1 is preferably composed of a light propagation member such as an optical fiber or a Gradient Index (GRIN) lens. Further, the gamma-reflecting film 2 is preferably formed on the mirror-polished surface of the quartz glass substrate 1, and the gamma-reflecting film 2 reflects the light propagating inside the quartz glass substrate 1. Alternatively, the light from the outside may be reflected.

反射膜2は、石英ガラス基材1の上面に、アンダーコート層21、金属反射層22、中間コート層23、保護層24、及びトップコート層25を順次に蒸着することにより形成された積層構造を有している。 The reflective film 2 is a laminated structure formed by sequentially depositing an undercoat layer 21, a metal reflective layer 22, an intermediate coat layer 23, a protective layer 24, and a top coat layer 25 on the upper surface of the quartz glass base material 1. have.

アンダーコート層21は、例えば、厚さ100nmのAlの蒸着膜で形成され、金属反射層22と石英ガラス基材1との接着性を高める効果を有することが好ましい。 The undercoat layer 21 is preferably formed of, for example, a vapor-deposited film of Al 2 O 3 having a thickness of 100 nm, and has an effect of enhancing the adhesiveness between the metal reflective layer 22 and the quartz glass base material 1.

金属反射層22は、例えば、厚さ100nmのアルミニウム(Al)の蒸着膜で形成される。なお、金属反射層22は、アルミニウムに限定されず、例えば、銀(Ag)の蒸着膜を形成してもよい。 The metal reflective layer 22 is formed of, for example, a thin-film aluminum (Al) film having a thickness of 100 nm. The metal reflective layer 22 is not limited to aluminum, and for example, a silver (Ag) vapor-deposited film may be formed.

また、中間コート層23は、例えば、厚さ100nmのSiOの蒸着膜で形成され、金属反射層22と保護層24との接着性を高める効果を有することが好ましい。 Further, it is preferable that the intermediate coat layer 23 is formed of, for example, a vapor-deposited film of SiO 2 having a thickness of 100 nm, and has an effect of enhancing the adhesiveness between the metal reflective layer 22 and the protective layer 24.

さらに、トップコート層25は、例えば、厚さ50nmのTiやMgFの蒸着膜で形成され、反射膜2の反射量増加の効果を有することが好ましい。 Further, it is preferable that the top coat layer 25 is formed of, for example, a vapor-deposited film of Ti 3 O 5 or Mg F 2 having a thickness of 50 nm and has an effect of increasing the reflection amount of the reflection film 2.

ここで、表1に、保護層24として、種々の材料で厚さ150nmの蒸着膜を形成した場合のガンマ線耐性の試験結果を示す。ガンマ線耐性の試験にあたっては、50kGyのガンマ線を照射し、さらに、気温55℃かつ湿度95%のチャンバ内での6時間の高温高湿試験を経た後、反射膜2を観察して耐性を評価した。 Here, Table 1 shows the test results of gamma ray resistance when a vapor-deposited film having a thickness of 150 nm is formed as the protective layer 24 from various materials. In the gamma ray resistance test, after irradiating with gamma rays of 50 kGy and performing a high temperature and high humidity test for 6 hours in a chamber with a temperature of 55 ° C. and a humidity of 95%, the reflective film 2 was observed to evaluate the resistance. ..

Figure 0006870341
Figure 0006870341

上記の表1に示すように、保護層24を、1.5Vの標準電極電位を有する金(Au)、又は0.799Vの標準電極電位を有する銀(Ag)の蒸着膜として形成した場合には、試験後も反射膜2がきれいに残っていた。
一方、保護層24を設けなかった場合、及び、保護層24を、0.345Vの標準電極電位を有する銅(Cu)、又は−0.146Vの標準電極電位を有する錫(Sn)の蒸着膜として形成した場合には、試験後に反射膜2の剥離現象が発生した。
As shown in Table 1 above, when the protective layer 24 is formed as a vapor-deposited film of gold (Au) having a standard electrode potential of 1.5 V or silver (Ag) having a standard electrode potential of 0.799 V. The reflective film 2 remained clean even after the test.
On the other hand, when the protective layer 24 is not provided, and the protective layer 24 is a vapor-deposited film of copper (Cu) having a standard electrode potential of 0.345 V or tin (Sn) having a standard electrode potential of −0.146 V. After the test, a peeling phenomenon of the reflective film 2 occurred.

上記の試験結果から、0.799ボルト以上の標準電極電位を有するイオン化傾向の低い金属で保護層24を形成した場合に、剥離現象の発生が回避されている。したがって、剥離現象の発生を回避するためには、耐ガンマ線反射膜の保護層24は、0.799ボルト以上の標準電極電位を有する金属で形成することが望ましい。
なお、保護層24は、0.799ボルト以上の標準電極電位を有する、金、銀、パラジウム又は白金をベースとした合金で形成してもよい。
From the above test results, the occurrence of the peeling phenomenon is avoided when the protective layer 24 is formed of a metal having a standard electrode potential of 0.799 volts or more and having a low ionization tendency. Therefore, in order to avoid the occurrence of the peeling phenomenon, it is desirable that the protective layer 24 of the gamma ray-resistant reflective film is made of a metal having a standard electrode potential of 0.799 volts or more.
The protective layer 24 may be formed of a gold, silver, palladium or platinum-based alloy having a standard electrode potential of 0.799 volts or more.

以上、本発明の実施形態を説明したが、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲で種々の変更実施が可能である。例えば、上述した実施形態では、石英ガラス基材上に耐ガンマ線反射膜を形成した例を説明したが、本発明では、基材の材料はこれに限定されず、種々の材料を採用することができる。また、基材の形態も限定されない。特に、反射膜を形成する光伝播部材の表面は平面に限定されず、曲面であってもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. For example, in the above-described embodiment, an example in which a gamma-ray resistant film is formed on a quartz glass base material has been described, but in the present invention, the material of the base material is not limited to this, and various materials can be adopted. it can. Further, the form of the base material is not limited. In particular, the surface of the light propagation member forming the reflective film is not limited to a flat surface, and may be a curved surface.

本発明は、光干渉断層撮影法(Optical Coherence Tomography, OCT)用の光プローブをはじめとする、ガンマ線照射による滅菌処理が必要な種々の医療機器に適用して好適である。また、本発明は、ガンマ線により被曝することが予想される原子炉周辺で測定等に使用される機器や、宇宙空間において使用される機器にも適用して好適である。 The present invention is suitable for application to various medical devices that require sterilization treatment by gamma ray irradiation, such as an optical probe for optical coherence tomography (OCT). The present invention is also suitable for application to equipment used for measurement and the like around a nuclear reactor, which is expected to be exposed to gamma rays, and equipment used in outer space.

1 石英ガラス基材
2 反射膜
21 アンダーコート層
22 金属反射層
23 中間コート層
24 保護層
25 トップコート層
1 Quartz glass base material 2 Reflective film 21 Undercoat layer 22 Metal reflective layer 23 Intermediate coat layer 24 Protective layer 25 Top coat layer

Claims (1)

基材の鏡面研磨した表面上に形成された反射膜を備え、
前記反射膜は、
金属反射層と、
前記金属反射層の上側に形成された0.799ボルト以上の標準電極電位を有する金属又は合金で形成された保護層と
を有し、
前記基材は、光伝播部材であり、
前記反射膜は、前記光伝搬部材内を伝播してきた光を反射し、
前記基材の少なくとも一部が、フッ素樹脂製のチューブで被覆され、
前記金属反射層は、アルミニウムの蒸着膜であり、
前記保護層は、金又は銀の蒸着膜である
ことを特徴とする、耐ガンマ線反射膜。
With a reflective film formed on the mirror-polished surface of the substrate,
The reflective film is
With a metal reflective layer,
It has a protective layer formed of a metal or alloy having a standard electrode potential of 0.799 volts or more, which is formed on the upper side of the metal reflecting layer,
The base material is a light propagation member and
The reflective film reflects the light propagating in the light propagating member.
At least a part of the base material is coated with a fluororesin tube.
The metal reflective layer is a thin-film aluminum film.
The protective layer is a gamma-ray resistant film, characterized in that it is a gold or silver vapor-deposited film.
JP2017009466A 2017-01-23 2017-01-23 Gamma-ray resistant film Active JP6870341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017009466A JP6870341B2 (en) 2017-01-23 2017-01-23 Gamma-ray resistant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009466A JP6870341B2 (en) 2017-01-23 2017-01-23 Gamma-ray resistant film

Publications (2)

Publication Number Publication Date
JP2018120017A JP2018120017A (en) 2018-08-02
JP6870341B2 true JP6870341B2 (en) 2021-05-12

Family

ID=63044986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009466A Active JP6870341B2 (en) 2017-01-23 2017-01-23 Gamma-ray resistant film

Country Status (1)

Country Link
JP (1) JP6870341B2 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713406A (en) * 1980-06-26 1982-01-23 Nhk Spring Co Ltd Reflecting mirror and its manufacture
JPH01105901U (en) * 1988-01-07 1989-07-17
JP2000019019A (en) * 1998-07-03 2000-01-21 Omron Corp Infrared detector
JP2001264523A (en) * 2000-03-15 2001-09-26 Olympus Optical Co Ltd Reflection mirror
JP2002214418A (en) * 2001-01-17 2002-07-31 Morita Mfg Co Ltd Reflecting mirror and hollow waveguide
JP2002341155A (en) * 2001-05-16 2002-11-27 Machida Endscope Co Ltd Hollow optical fiber and method for manufacturing the same
JP2003121623A (en) * 2001-10-12 2003-04-23 Canon Inc High reflective mirror and high reflective mirror optical system
JP5470673B2 (en) * 2006-03-27 2014-04-16 日亜化学工業株式会社 Semiconductor light emitting device and semiconductor light emitting element
JP5207369B2 (en) * 2008-07-02 2013-06-12 独立行政法人産業技術総合研究所 Analysis equipment
JP2010204380A (en) * 2009-03-03 2010-09-16 Kyocera Optec Co Ltd Light reflecting mirror and method of manufacturing the same
JP2011228104A (en) * 2010-04-19 2011-11-10 Panasonic Electric Works Co Ltd Illumination fixture
JP6087559B2 (en) * 2012-09-28 2017-03-01 富士フイルム株式会社 Film mirror and composite film used therefor
KR101375238B1 (en) * 2013-10-14 2014-03-18 신창핫멜트 주식회사 Reflective film with two metal reflective components
JP2016095456A (en) * 2014-11-17 2016-05-26 旭硝子株式会社 Video display transparent member, video display system, and video display method
JP6498028B2 (en) * 2015-05-15 2019-04-10 アンリツ株式会社 Endoscopic photodynamic therapy device

Also Published As

Publication number Publication date
JP2018120017A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6505919B2 (en) Statistical mapping in photoacoustic imaging system
Woo et al. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics
US6835936B2 (en) Scintillator panel, method of manufacturing scintillator panel, radiation detection device, and radiation detection system
Queiroz et al. Effect of diamond‐like carbon thin film coated acrylic resin on Candida albicans biofilm formation
JP6255531B2 (en) Antireflection film and method for manufacturing the same
JPWO2002023219A1 (en) Scintillator panel, radiation image sensor, and method of manufacturing the same
JP2014099349A (en) Transmission type target and radiation generating tube provided with the same, radiation generating device provided with the radiation generating tube, and radiographic device provided with the radiation generating device
JP6870341B2 (en) Gamma-ray resistant film
JP6870340B2 (en) Gamma-ray resistant film
Tellez et al. Peri-strut low-intensity areas in optical coherence tomography correlate with peri-strut inflammation and neointimal proliferation: an in-vivo correlation study in the familial hypercholesterolemic coronary swine model of in-stent restenosis
WO2013129308A1 (en) Absorption grid for radiographic-image capturing, method for producing same, and radiographic-image capturing system
Sharma et al. Validation of columnar CsI x‐ray detector responses obtained with hybridMANTIS, a CPU‐GPU Monte Carlo code for coupled x‐ray, electron, and optical transport
US11883563B2 (en) Resin composition, flexible tube, acoustic lens, and sheath for medical device to be subjected to gas low-temperature sterilization and medical device to be subjected to gas low-temperature sterilization
JP2004325442A (en) Radiation detector and its manufacturing method
JP6177466B2 (en) Endoscope
Isac et al. Effects of clinical use and sterilization on surface topography and surface roughness of three commonly used types of orthodontic archwires
Matsuura et al. Soft-x-ray hollow fiber optics with inner metal coating
Khader et al. Optical coherence tomography assessment of the enamel surface after debonding the ceramic brackets using three different techniques
Smith Patterns of recovery from acute severe asthma
Nguyen et al. Energy-dispersive X-ray spectroscopic analysis of an extraorally installed implant in a silicone facial prosthesis patient
Kidoguchi et al. Association between the NOS2 pentanucleotide repeat polymorphism and risk of postoperative recurrence of chronic rhinosinusitis with nasal polyps in a Japanese population
Karunakar et al. Demystifying the mesiobuccal root of maxillary first molar using cone-beam computed tomography
JP2002214418A (en) Reflecting mirror and hollow waveguide
RU224816U1 (en) X-RAY EMMITTER
JP5715473B2 (en) Method for modifying metal mirror surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6870341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150