JP6869379B2 - Blood vessel model - Google Patents

Blood vessel model Download PDF

Info

Publication number
JP6869379B2
JP6869379B2 JP2019565825A JP2019565825A JP6869379B2 JP 6869379 B2 JP6869379 B2 JP 6869379B2 JP 2019565825 A JP2019565825 A JP 2019565825A JP 2019565825 A JP2019565825 A JP 2019565825A JP 6869379 B2 JP6869379 B2 JP 6869379B2
Authority
JP
Japan
Prior art keywords
porous membrane
blood vessel
cell layer
hole
vessel model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019565825A
Other languages
Japanese (ja)
Other versions
JP2020521974A (en
Inventor
晃寿 伊藤
晃寿 伊藤
千早 柿沼
千早 柿沼
大地 引本
大地 引本
伸治 美馬
伸治 美馬
貴史 末広
貴史 末広
ネヴィル、クレイグ、エム.
サンドバック、キャスリン、エー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/618,151 external-priority patent/US20180356399A1/en
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JP2020521974A publication Critical patent/JP2020521974A/en
Application granted granted Critical
Publication of JP6869379B2 publication Critical patent/JP6869379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0691Vascular smooth muscle cells; 3D culture thereof, e.g. models of blood vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/0806Details, e.g. sample holders, mounting samples for testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5064Endothelial cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1347Smooth muscle cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1352Mesenchymal stem cells
    • C12N2502/1358Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/28Vascular endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2535/00Supports or coatings for cell culture characterised by topography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/086Investigating permeability, pore-volume, or surface area of porous materials of films, membranes or pellicules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Sustainable Development (AREA)
  • Vascular Medicine (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本開示は、血管モデルに関する。 The present disclosure relates to a vascular model.

最近、マイクロメートル単位の幅を有する流路であるマイクロ流路と呼ばれるものを含む装置を用いて、血管、内臓、肝臓及び肺のような臓器をモデリングしようとする試みがある。例えば、米国特許出願第2011/0053207号公報、日本特許第5415538号公報、及び日本特許第5815643号のそれぞれには、表面に細胞層が設けられた多孔膜、及び多孔膜によって画定された少なくとも2つのマイクロ流路を含む臓器モデルが開示されている。 Recently, there have been attempts to model organs such as blood vessels, internal organs, liver and lungs using devices that include what is called a microchannel, which is a channel with a width in the order of micrometers. For example, U.S. Patent Application No. 2011/0053207, Japanese Patent No. 5415538, and Japanese Patent No. 5815643 each have a porous membrane having a cell layer on its surface and at least two defined by the porous membrane. An organ model containing two microchannels is disclosed.

米国特許出願第2011/0053207号公報、日本特許第5415538号公報、及び日本特許第5815643号に開示されたような臓器モデルを用いて多様な実験及び試験を行うことができる。例えば、マイクロ流路のうちの一つを通じて薬物を含む血液を流した後、多孔膜を通じて一つのマイクロ流路から他のマイクロ流路に移動した赤血球、バイオマーカーなどの数又は量を測定することで、出血評価(extravasation test)と呼ばれる試験を行うことができる。この出血評価は、多孔膜の表面に設けられた細胞層に対する薬物性損傷レベルの評価を可能にし、薬物毒性試験を行うことができる。 A variety of experiments and tests can be performed using organ models such as those disclosed in US Patent Application 2011/0053207, Japanese Patent 5415538, and Japanese Patent 5815643. For example, measuring the number or amount of red blood cells, biomarkers, etc. that have moved from one microchannel to another through a perforated membrane after flowing drug-containing blood through one of the microchannels. A test called an extension test can be performed at the site. This bleeding evaluation makes it possible to evaluate the level of drug-induced damage to the cell layer provided on the surface of the porous membrane, and a drug toxicity test can be performed.

しかし、従来の臓器モデルに用いられる多孔膜の細孔はトラックエッチング法として知られる工程を用いて生成されるが、ここで、例えば、多孔膜を構成する物質に重イオンが照射される。従って、膜の細孔の開口率は、例えば2%乃至20%で低く、また膜も厚いため赤血球などの通過は多孔膜によって妨げられる。すなわち、従来の臓器モデルでは、多孔膜の表面に設けられた細胞層に対する薬物性損傷レベルが正確に評価されない場合があった。 However, the pores of the porous membrane used in the conventional organ model are generated by a process known as a track etching method, in which, for example, a substance constituting the porous membrane is irradiated with heavy ions. Therefore, the aperture ratio of the pores of the membrane is low, for example, 2% to 20%, and since the membrane is thick, the passage of red blood cells and the like is hindered by the porous membrane. That is, in the conventional organ model, the level of drug-induced damage to the cell layer provided on the surface of the porous membrane may not be accurately evaluated.

本開示は、出血評価中に赤血球などの移動が多孔膜によって妨げられることを抑制することができる血管モデルを提供する。 The present disclosure provides a vascular model capable of suppressing the movement of erythrocytes and the like from being blocked by a porous membrane during bleeding evaluation.

本開示の第1態様に係る血管モデルは、各マイクロ流路が形成される対向面をそれぞれ含む、互いに対向する一対の流路部材;及び厚さ方向に貫通する複数の貫通孔を含み、一対の流路部材の対向面の間に配置され、マイクロ流路間を画定する多孔膜を含み、ここで、多孔膜には血管内皮細胞層が設けられ、マイクロ流路のうちの一つに対向する一面を覆い、貫通孔の平均開口直径は1μm乃至20μmであり、貫通孔の開口率は30%乃至70%である。 The blood vessel model according to the first aspect of the present disclosure includes a pair of flow path members facing each other including facing surfaces on which each micro flow path is formed; and a pair of through holes penetrating in the thickness direction. Containing a porous membrane that is disposed between the opposing surfaces of the flow path members and defines between the microchannels, where the porous membrane is provided with a vascular endothelial cell layer and faces one of the microchannels. The average opening diameter of the through hole is 1 μm to 20 μm, and the opening ratio of the through hole is 30% to 70%.

上記構成において、マイクロ流路間を画定する多孔膜の貫通孔の平均開口直径は1μm乃至20μmであり、貫通孔の開口率は30%乃至70%である。従って、出血評価中に、赤血球などが多孔膜の貫通孔を通じて移動してマイクロ流路のうちの一つからマイクロ流路のうちの他の一つに移動する時、赤血球などの移動が多孔膜によって妨げられることを抑制することができる。 In the above configuration, the average opening diameter of the through-holes of the porous membrane defining between the microchannels is 1 μm to 20 μm, and the opening ratio of the through-holes is 30% to 70%. Therefore, during bleeding evaluation, when erythrocytes and the like move through the through holes of the porous membrane and move from one of the microchannels to the other one of the microchannels, the movement of erythrocytes and the like moves through the porous membrane. It can be suppressed from being hindered by.

本開示の第2態様において、第1態様で、多孔膜の膜厚は、貫通孔の平均開口直径の半分以下であってもよい。 In the second aspect of the present disclosure, in the first aspect, the film thickness of the porous membrane may be half or less of the average opening diameter of the through holes.

上記第2態様において、多孔膜の膜厚は、貫通孔の平均開口直径の半分以下であるため、多孔膜の膜厚が貫通孔の開口の平均開口直径の半分より大きい場合に比べて、赤血球などが多孔膜の貫通孔をより容易に通過することができる。従って、第2態様は、出血評価の精度を更に改善することができる。 In the second aspect, since the film thickness of the porous membrane is less than half the average opening diameter of the through hole, the erythrocyte is larger than half the average opening diameter of the opening of the through hole. Etc. can more easily pass through the through holes of the porous membrane. Therefore, the second aspect can further improve the accuracy of the bleeding evaluation.

本開示の第3態様において、第1又は第2態様で、貫通孔同士を連通させる連通孔が多孔膜の内側に形成されてもよく;貫通孔は、ハニカム状に配列されていてもよく;貫通孔の開口直径の変動係数は、10%以下であってもよく;多孔膜の空隙率は50%以上であってもよい。 In the third aspect of the present disclosure, in the first or second aspect, the communication holes for communicating the through holes with each other may be formed inside the porous membrane; the through holes may be arranged in a honeycomb shape; The coefficient of variation of the opening diameter of the through hole may be 10% or less; the porosity of the porous membrane may be 50% or more.

上記第3態様において、貫通孔はハニカム状に配列され、連通孔を通じて互いに連通される。貫通孔の開口の開口直径の変動係数は10%以下であり、多孔膜の空隙率は50%以上である。これにより、第3態様では赤血球などをより均一に通過させることができる。従って、第3態様は、出血評価の精度を更に改善することができる。 In the third aspect, the through holes are arranged in a honeycomb shape and communicate with each other through the communication holes. The coefficient of variation of the opening diameter of the through-hole opening is 10% or less, and the porosity of the porous membrane is 50% or more. Thereby, in the third aspect, red blood cells and the like can be passed more uniformly. Therefore, the third aspect can further improve the accuracy of the bleeding evaluation.

本開示の第4態様において、第1乃至第3態様で、細胞の細胞層は平滑筋細胞、間葉系幹細胞、ペリサイト、及び線維芽細胞からなる群の中から選択でき、他の一つのマイクロ流路に対向する多孔膜の他の面に設けられていてもよい。 In the fourth aspect of the present disclosure, in the first to third aspects, the cell layer of the cell can be selected from the group consisting of smooth muscle cells, mesenchymal stem cells, pericytes, and fibroblasts, and one other. It may be provided on another surface of the porous film facing the microchannel.

上記第4態様において、血管内皮細胞層が形成される面とは反対側の多孔膜の他の面に平滑筋細胞、間葉系幹細胞、ペリサイト、及び線維芽細胞からなる群由来の細胞の細胞層を形成することに起因して、実際の血管とより類似した血管モデルを達成することができる。 In the fourth aspect, cells derived from the group consisting of smooth muscle cells, mesenchymal stem cells, pericytes, and fibroblasts are formed on the other surface of the porous membrane opposite to the surface on which the vascular endothelial cell layer is formed. Due to the formation of cell layers, vascular models that are more similar to real blood vessels can be achieved.

本開示の第5態様において、第1態様乃至第4態様で、多孔膜の引張破断伸度は50%以上であり;多孔膜の10%の伸長に必要な応力は1000gf/mm以下であってもよい。 In the fifth aspect of the present disclosure, in the first to fourth aspects, the tensile elongation at break of the porous membrane is 50% or more; the stress required for 10% elongation of the porous membrane is 1000 gf / mm 2 or less. You may.

上記第5態様において、多孔膜は、引張破断伸度が50%以上であり、10%の伸長に必要な応力が1000gf/mm以下である可撓性材料から形成されるため、実際の血管とより類似した血管モデルを達成することができる。 In the fifth aspect, the porous membrane is formed from a flexible material having a tensile elongation at break of 50% or more and a stress required for elongation of 10% of 1000 gf / mm 2 or less, and thus is an actual blood vessel. A more similar vascular model can be achieved.

本開示の第6態様において、第1態様乃至第5態様で、貫通孔は平面視で偏平な形状を有していてもよく、長軸及び短軸を含んでもよい。 In the sixth aspect of the present disclosure, in the first to fifth aspects, the through hole may have a flat shape in a plan view, and may include a major axis and a minor axis.

上記第6態様において、貫通孔は、平面視で楕円形のような偏平形状を有するため、赤血球などは貫通孔をより容易に通過することができる。従って、第6態様は、出血評価の精度を更に改善することができる。 In the sixth aspect, since the through hole has a flat shape such as an ellipse in a plan view, red blood cells and the like can pass through the through hole more easily. Therefore, the sixth aspect can further improve the accuracy of the bleeding evaluation.

本開示の第7態様において、第1態様乃至第6態様で、多孔膜は貫通孔が形成される多孔性領域及び貫通孔が形成されていない非多孔性領域を含むことができる。 In the seventh aspect of the present disclosure, in the first to sixth aspects, the porous membrane can include a porous region in which a through hole is formed and a non-porous region in which a through hole is not formed.

上記第7態様において、例えば、マイクロ流路の入口付近及び出口付近に配置された多孔膜の一部は、貫通孔が形成されていない非多孔性領域として構成されるため、マイクロ流路内部の赤血球などの流れを調節することができる。従って、第7態様は、出血評価の精度を更に改善することができる。 In the seventh aspect, for example, a part of the porous membrane arranged near the inlet and the outlet of the microchannel is configured as a non-porous region in which no through hole is formed, so that the inside of the microchannel is formed. It can regulate the flow of red blood cells and the like. Therefore, the seventh aspect can further improve the accuracy of the bleeding evaluation.

上記態様によれば、本開示は、出血評価中の赤血球などの移動が多孔膜によって妨げられることを抑制することができる。 According to the above aspect, the present disclosure can suppress the movement of red blood cells and the like during bleeding evaluation from being hindered by the porous membrane.

例示的な実施態様の血管モデルの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the blood vessel model of an exemplary embodiment. 例示的な実施態様の血管モデルの全体構成を示す分解斜視図である。It is an exploded perspective view which shows the whole structure of the blood vessel model of an exemplary embodiment. 例示的な実施態様の血管モデルの多孔膜を示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing a porous membrane of a blood vessel model of an exemplary embodiment. 例示的な実施態様の血管モデルの多孔膜を示す平面図である。It is a top view which shows the porous membrane of the blood vessel model of an exemplary embodiment. 変形例の血管モデルの多孔膜を示す平面図である。It is a top view which shows the porous membrane of the blood vessel model of a modification. 変形例の血管モデルの多孔膜を示す平面図である。It is a top view which shows the porous membrane of the blood vessel model of a modification. 実施例1の多孔膜の顕微鏡写真である。It is a micrograph of the porous membrane of Example 1. 比較例1の多孔膜の顕微鏡写真である。It is a micrograph of the porous membrane of Comparative Example 1. 実施例3の細胞層付着血管モデルのマイクロ流路内の画像蛍光の結果である。It is the result of the image fluorescence in the microchannel of the cell layer attachment blood vessel model of Example 3. 比較例3の細胞層付着血管モデルのマイクロ流路内の画像蛍光の結果である。This is the result of image fluorescence in the microchannel of the cell layer-attached blood vessel model of Comparative Example 3. 実施例3の細胞層付着血管モデルにおけるFITC−デキストラン透過性試験の結果である。It is the result of the FITC-dextran permeability test in the cell layer attachment blood vessel model of Example 3. 比較例3の細胞層付着血管モデルにおけるFITC−デキストラン透過性試験の結果である。It is the result of the FITC-dextran permeability test in the cell layer attachment blood vessel model of Comparative Example 3. 実施例4の多孔膜の顕微鏡写真である。It is a micrograph of the porous membrane of Example 4. 図10Aの部分拡大図である。FIG. 10A is a partially enlarged view. 実施例5の多孔膜の顕微鏡写真である。It is a micrograph of the porous membrane of Example 5.

図1〜図6を参照して、本開示の例示的な実施態様の実施例及び変形例について説明する。以下の例示的な実施態様は、本開示の一例に過ぎず、本開示の範囲を限定するものではない。また、図面における多様な構成の寸法は、多様な構成を容易にするため、適宜に修正される。従って、図面の縮尺は実際の縮尺と異なる場合がある。 Examples and modifications of the exemplary embodiments of the present disclosure will be described with reference to FIGS. 1-6. The following exemplary embodiments are merely examples of the present disclosure and do not limit the scope of the present disclosure. Also, the dimensions of the various configurations in the drawings are modified as appropriate to facilitate the various configurations. Therefore, the scale of the drawing may differ from the actual scale.

図1及び図2に示すように、例示的な実施態様の血管モデル10は、互いに積層された上部流路部材12と下部流路部材14とを含む。上部流路部材12及び下部流路部材14は、例えば、ポリジメチルシロキサン(PDMS)のような弾性物質で構成されており、略長方形の板形状を有する。 As shown in FIGS. 1 and 2, the blood vessel model 10 of the exemplary embodiment includes an upper channel member 12 and a lower channel member 14 stacked on top of each other. The upper flow path member 12 and the lower flow path member 14 are made of an elastic substance such as polydimethylsiloxane (PDMS) and have a substantially rectangular plate shape.

PDMSの他に、上部流路部材12と下部流路部材14とを構成する材料の他の例は、シクロオレフィンポリマー(COP)、エポキシ樹脂、ウレタン樹脂、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、アクリル系熱可塑性エラストマー、ポリビニルアルコールなどを含む。 In addition to PDMS, other examples of materials constituting the upper flow path member 12 and the lower flow path member 14 include cycloolefin polymer (COP), epoxy resin, urethane resin, styrene-based thermoplastic elastomer, and olefin-based thermoplastic. Includes elastomers, acrylic thermoplastic elastomers, polyvinyl alcohol, etc.

上部マイクロ流路16を画定する凹部18は、上部流路部材12の下面、すなわち、下部流路部材14に対向する対向面12Aに形成されている。凹部18は、入口18A、出口18B、及び入口18Aと出口18Bとを連通させる流路部18Cを含む。 The recess 18 defining the upper microchannel 16 is formed on the lower surface of the upper channel member 12, that is, on the facing surface 12A facing the lower channel member 14. The recess 18 includes an inlet 18A, an outlet 18B, and a flow path portion 18C that communicates the inlet 18A and the outlet 18B.

貫通孔20A、20Bは、上部流路部材12に形成され、上部流路部材12を厚さ方向に貫通し、入口18A及び出口18Bとそれぞれ連通する下端部を有する。貫通孔20A、20Bの上端部は、上部流路部材12の上面に開口している。貫通孔20A、20Bの上端部には、液体供給管(図示せず)が接続されている。 The through holes 20A and 20B are formed in the upper flow path member 12, and have a lower end portion that penetrates the upper flow path member 12 in the thickness direction and communicates with the inlet 18A and the outlet 18B, respectively. The upper ends of the through holes 20A and 20B are open to the upper surface of the upper flow path member 12. A liquid supply pipe (not shown) is connected to the upper ends of the through holes 20A and 20B.

同様に、下部マイクロ流路22を画定する凹部24は、下部流路部材14の上面、すなわち、上部流路部材12に対向する対向面14Aに形成されている。凹部24は、入口24A、出口24B、及び入口24Aと出口24Bとを連通させる流路部24Cを含む。 Similarly, the recess 24 defining the lower microchannel 22 is formed on the upper surface of the lower channel member 14, that is, on the facing surface 14A facing the upper channel member 12. The recess 24 includes an inlet 24A, an outlet 24B, and a flow path portion 24C that communicates the inlet 24A and the outlet 24B.

下部流路部材14の入口24Aと出口24B及び上部流路部材12の入口18Aと出口18Bは、平面視で重ならない位置に設けられている。これに対して、下部流路部材14の流路部24C及び上部流路部材12の流路部18Cは、平面視で重なる位置に設けられている。 The inlet 24A and outlet 24B of the lower flow path member 14 and the inlet 18A and outlet 18B of the upper flow path member 12 are provided at positions where they do not overlap in a plan view. On the other hand, the flow path portion 24C of the lower flow path member 14 and the flow path portion 18C of the upper flow path member 12 are provided at overlapping positions in a plan view.

貫通孔26A、26Bも上部流路部材12に形成され、上部流路部材12を厚さ方向に貫通し、入口24A及び出口24Bとそれぞれ連通される下端部を有する。貫通孔26A、26Bの上端部は、上部流路部材12の上面に開口している。貫通孔26A、26Bの上端部には、液体供給管(図示せず)が接続されている。 Through holes 26A and 26B are also formed in the upper flow path member 12, and have a lower end portion that penetrates the upper flow path member 12 in the thickness direction and communicates with the inlet 24A and the outlet 24B, respectively. The upper ends of the through holes 26A and 26B are open to the upper surface of the upper flow path member 12. A liquid supply pipe (not shown) is connected to the upper ends of the through holes 26A and 26B.

多孔膜28は、上部流路部材12と下部流路部材14との対向面12A、14Aの間に設けられている。上部流路部材12及び下部流路部材14は、間に挟んだ状態で多孔膜28と接合される。また、上部流路部材12と下部流路部材14とを接合する方法としては、接着剤を用いて接合する方法以外に、溶着、吸着(自己吸着)、又はボルトによる接合などの多様な方法を採用することができる。 The porous membrane 28 is provided between the facing surfaces 12A and 14A of the upper flow path member 12 and the lower flow path member 14. The upper flow path member 12 and the lower flow path member 14 are joined to the porous membrane 28 in a state of being sandwiched between them. Further, as a method of joining the upper flow path member 12 and the lower flow path member 14, in addition to the method of joining using an adhesive, various methods such as welding, adsorption (self-adsorption), or joining with a bolt can be used. Can be adopted.

多孔膜28は、例えば、疎水性有機溶媒に溶解される疎水性ポリマーである。疎水性有機溶媒は、25℃の水で10以下(g/100g水)の溶解度を有する液体である。 The porous membrane 28 is, for example, a hydrophobic polymer dissolved in a hydrophobic organic solvent. The hydrophobic organic solvent is a liquid having a solubility of 10 or less (g / 100 g water) in water at 25 ° C.

疎水性ポリマーの例は、ポリブタジエン、ポリスチレン、ポリカーボネート、ポリエステル(例えば、ポリ乳酸、ポリカプロラクトン、ポリグリコール酸、ポリ乳酸−ポリグリコール酸共重合体、ポリ乳酸−ポリカプロラクトン共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレンサクシネート、ポリブチレンサクシネート、及びポリ−3−ヒドロキシブチレート)、ポリアクリレート、ポリメタクリレート、ポリアクリルアミド、ポリメタクリルアミド、ポリビニルクロライド、ポリビニリデンクロライド、ポリビニリデンフロライド、ポリヘキサフルオロプロペン、ポリビニルエーテル、ポリビニルカルバゾール、ポリビニルアセテート、ポリテトラフルオロエチレン、ポリラクトン、ポリアミド、ポリイミド、ポリウレタン、ポリウレア、多環芳香族化合物、ポリスルホン、ポリエーテルスルホン、ポリシロキサン誘導体、及びセルロースアシレート(例えば、トリアセチルセルロース、セルロースアセテートプロピオネート、及びセルロースアセテートブチレート)のようなポリマーを含む。例えば、日本特許第4734157号に開示された製造方法を利用してハニカム膜を製造する観点から、疎水性有機溶媒に溶解されるポリマーが好ましい。 Examples of hydrophobic polymers are polybutadiene, polystyrene, polycarbonate, polyester (eg, polylactic acid, polycaprolactone, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, polylactic acid-polycaprolactone copolymer, polyethylene terephthalate, polyethylene. Naphthalate, polyethylene succinate, polybutylene succinate, and poly-3-hydroxybutyrate), polyacrylate, polymethacrylate, polyacrylamide, polymethacrylicamide, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyhexafluoro. Propen, polyvinyl ether, polyvinyl carbazole, polyvinyl acetate, polytetrafluoroethylene, polylactone, polyamide, polyimide, polyurethane, polyurea, polycyclic aromatic compounds, polysulfone, polyethersulfone, polysiloxane derivatives, and cellulose acetate (eg, tri). Contains polymers such as acetyl cellulose, cellulose acetate propionate, and cellulose acetate butyrate). For example, from the viewpoint of producing a honeycomb film by using the production method disclosed in Japanese Patent No. 4734157, a polymer dissolved in a hydrophobic organic solvent is preferable.

例えば、溶媒に対する溶解度、光学特性、電気的特性、膜強度、及び弾性の観点から、これらポリマーは必要に応じてホモポリマー、コポリマー、ポリマーブレンド又はポリマーアロイの形態を取ることができる。これら重合体は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。多孔膜28の材料は、疎水性ポリマーに限定されず、細胞の接着性などの観点から多様な材料が選択できる。 For example, in terms of solubility in solvents, optical properties, electrical properties, film strength, and elasticity, these polymers can take the form of homopolymers, copolymers, polymer blends or polymer alloys as needed. These polymers may be used alone or in combination of two or more. The material of the porous membrane 28 is not limited to the hydrophobic polymer, and various materials can be selected from the viewpoint of cell adhesion and the like.

多孔膜28の上面28A及び下面28B(以下、上面28A及び下面28Bは総称して「主面」と称される場合がある)は、上部マイクロ流路16及び下部マイクロ流路22の流路部18C、24Cを実質的に覆うような大きさに決められており、上部マイクロ流路16が下部マイクロ流路22から画定される。 The upper surface 28A and the lower surface 28B of the porous membrane 28 (hereinafter, the upper surface 28A and the lower surface 28B may be collectively referred to as “main surface”) are the flow path portions of the upper micro flow path 16 and the lower micro flow path 22. The size is determined so as to substantially cover 18C and 24C, and the upper microchannel 16 is defined from the lower microchannel 22.

具体的に、多孔膜28の上面28A、すなわち、上部流路部材12に対向する主面は、上部流路部材12の凹部18とともに、上部マイクロ流路16を画定する。多孔膜28の下面28B、すなわち、下部流路部材14に対向する主面は、下部流路部材14の凹部24とともに、下部マイクロ流路22を画定する。 Specifically, the upper surface 28A of the porous membrane 28, that is, the main surface facing the upper flow path member 12, defines the upper micro flow path 16 together with the recess 18 of the upper flow path member 12. The lower surface 28B of the porous membrane 28, that is, the main surface facing the lower flow path member 14, defines the lower micro flow path 22 together with the recess 24 of the lower flow path member 14.

図3に示すように、例えば血管内皮細胞層36が多孔膜28の上面28Aに設けられ、上面28Aを完全に覆う。これにより、上部マイクロ流路16の内部は、血管の内部と非常に類似した環境を構成する。血管内皮細胞の例は、臍帯静脈、臍帯動脈、大動脈、冠動脈、肺動脈、肺微小血管、又は真皮微小血管に由来する血管内皮細胞;及び多能性幹細胞から分化された血管内皮細胞を含む。 As shown in FIG. 3, for example, the vascular endothelial cell layer 36 is provided on the upper surface 28A of the porous membrane 28 and completely covers the upper surface 28A. As a result, the inside of the upper microchannel 16 constitutes an environment very similar to the inside of the blood vessel. Examples of vascular endothelial cells include umbilical veins, umbilical arteries, aortas, coronary arteries, pulmonary arteries, pulmonary microvessels, or vascular endothelial cells derived from dermal microvessels; and vascular endothelial cells differentiated from pluripotent stem cells.

例えば、平滑筋細胞、間葉系幹細胞、ペリサイト、及び線維芽細胞からなる群の中から選択された細胞から構成された細胞層38が多孔膜28の下面28Bに設けられ、下面28Bを完全に覆う。これにより、下部マイクロ流路22は、血管外部と非常に類似した環境を構成する。間葉系幹細胞(MSC)は、筋肉細胞、脂肪細胞、軟骨細胞などに分裂することができる体性幹細胞である。 For example, a cell layer 38 composed of cells selected from the group consisting of smooth muscle cells, mesenchymal stem cells, pericytes, and fibroblasts is provided on the lower surface 28B of the porous membrane 28 to completely complete the lower surface 28B. Cover with. As a result, the lower microchannel 22 constitutes an environment very similar to the outside of the blood vessel. Mesenchymal stem cells (MSCs) are somatic stem cells that can divide into muscle cells, adipocytes, chondrocytes, and the like.

多孔膜28の上面28Aには、平滑筋細胞、間葉系幹細胞、ペリサイト、及び線維芽細胞からなる群の中から選択された細胞の細胞層38が設けられてもよく、多孔膜28の下面28Bには血管内皮細胞層36が設けられてもよい。更に、多孔膜28の主面のうちの少なくとも一つに血管内皮細胞層36が設けられることで十分である。多孔膜28の他の一つの主面には、細胞層38が設けられないように構成されてもよい。 The upper surface 28A of the porous membrane 28 may be provided with a cell layer 38 of cells selected from the group consisting of smooth muscle cells, mesenchymal stem cells, pericytes, and fibroblasts, and the porous membrane 28 may be provided with a cell layer 38. The lower surface 28B may be provided with a vascular endothelial cell layer 36. Further, it is sufficient that the vascular endothelial cell layer 36 is provided on at least one of the main surfaces of the porous membrane 28. The other main surface of the porous membrane 28 may be configured so that the cell layer 38 is not provided.

細胞の接着性の観点から、多孔膜28の上面28A及び下面28Bのうちの少なくとも一つに細胞が播種される領域は、フィブロネクチン、コラーゲン(例えば、I型コラーゲン、IV型コラーゲン又はV型コラーゲン)、ラミニン、ビトロネクチン、ゼラチン、パーレカン、ニドゼン、プロテオグリカン、オステオポンチン、テネシン、ネフロネクチン、基底膜マトリックス、及びポリリジンからなる群の中から選択された少なくとも一つによって被覆されることが好ましい。また、多孔膜28及び後述する貫通孔30の内部は、これらの少なくとも一つによってコーティングされていることが好ましい。 From the viewpoint of cell adhesion, the region where cells are seeded on at least one of the upper surface 28A and the lower surface 28B of the porous membrane 28 is fibronectin, collagen (for example, type I collagen, type IV collagen or type V collagen). , Laminin, Vitronectin, Gelatin, Perlecan, Nidozen, Proteoglycan, Osteopontin, Tenesin, Nephronectin, Basement Membrane Matrix, and Polylysine, preferably coated with at least one selected from the group. Further, it is preferable that the inside of the porous membrane 28 and the through hole 30 described later is coated with at least one of these.

血管内皮細胞層36及び細胞層38を多孔膜28の各主面に設けるために、例えば、細胞懸濁液を上部マイクロ流路16及び下部マイクロ流路22に注ぎ、多孔膜28の主面に細胞を播種する方法を採用することができる。更に、別の培養装置内で多孔膜28の主面に細胞を播種して培養した後、血管内皮細胞層36及び細胞層38が形成されている多孔膜28を血管モデル10に装着する方法も採用することができる。 In order to provide the vascular endothelial cell layer 36 and the cell layer 38 on each main surface of the porous membrane 28, for example, a cell suspension is poured into the upper microchannel 16 and the lower microchannel 22 and is placed on the main surface of the porous membrane 28. A method of seeding cells can be adopted. Further, there is also a method in which cells are seeded and cultured on the main surface of the porous membrane 28 in another culture apparatus, and then the porous membrane 28 on which the vascular endothelial cell layer 36 and the cell layer 38 are formed is attached to the blood vessel model 10. Can be adopted.

図3及び図4に示すように、多孔膜28を厚さ方向に貫通する複数の貫通孔30が多孔膜28に形成されている。貫通孔30の開口30Aが多孔膜28の上面28A及び下面28Bのそれぞれに設けられている。図4に示すように、開口30Aは、平面視で円形である。開口30Aは、互いに分離して設けられる。扁平部32は、隣接した開口30Aの間で延びる。開口30Aは円形に限定されず、多角形で構成されてもよい。 As shown in FIGS. 3 and 4, a plurality of through holes 30 penetrating the porous membrane 28 in the thickness direction are formed in the porous membrane 28. An opening 30A of the through hole 30 is provided on each of the upper surface 28A and the lower surface 28B of the porous membrane 28. As shown in FIG. 4, the opening 30A is circular in a plan view. The openings 30A are provided separately from each other. The flat portion 32 extends between adjacent openings 30A. The opening 30A is not limited to a circular shape, and may be formed of a polygonal shape.

複数の開口30Aは、規則的に配列され、本例示的な実施態様では、図4に示すように、例えば、ハニカム状に配列される。ハニカム状配列は、開口30Aの中心が平行六角形の単位(正六角形が好ましい)又はこれに近い形状に対する、頂点の位置と対角線が交差する地点に配置される配列である。ここで、「開口の中心」とは、平面視で開口30Aの中心を意味する。 The plurality of openings 30A are regularly arranged, and in this exemplary embodiment, they are arranged, for example, in a honeycomb shape, as shown in FIG. The honeycomb-shaped array is an array in which the center of the opening 30A is arranged at a point where the position of the apex and the diagonal line intersect with respect to a unit of a parallel hexagon (preferably a regular hexagon) or a shape close thereto. Here, the "center of the opening" means the center of the opening 30A in a plan view.

開口30Aの配列は、ハニカム状に制限されない。開口30Aは、格子状又は面心格子状で構成することができる。格子状配列は、開口の中心が平行四辺形(正方形、長方形、菱形が含まれることは言うまでもなく、正方形が好ましい)又はこれに近い形状の単位に対する頂点の位置に配置される配列である。面心格子状配列は、開口の中心が平行四辺形(正方形、長方形、菱形が含まれることは言うまでもなく、正方形が好ましい)又はこれに近い形状の単位に対する頂点の位置及び対角線が交差する地点に配置される配列である。 The arrangement of the openings 30A is not limited to the honeycomb shape. The opening 30A can be configured in a lattice pattern or a face-centered lattice pattern. A grid-like array is an array in which the center of the opening is arranged at the position of the apex with respect to a unit having a parallelogram (preferably a square, not to mention a square, a rectangle, and a rhombus) or a unit having a shape close to the parallelogram. The face-to-center grid arrangement is such that the center of the opening is a parallelogram (preferably a square, not to mention squares, rectangles, rhombuses) or at the point where the vertices and diagonals intersect with respect to a unit of similar shape. It is an array to be arranged.

開口30Aの配列は、任意であってよい。しかし、多孔膜28の上面28A及び下面28Bの開口30Aの密度を均一にする観点から、複数の開口30Aは規則的に配置されることが好ましい。規則的な配列は、上記配列の平行六角形又は平行四辺形単位の表面積の変動係数が、例えば10%以下の配列である。開口30Aのうち一部は欠落しているか、開口30Aは整列されていない可能性がある。しかし、開口30Aは連続隙間なく全方向に配置されていることが好ましい。「変動係数」とは、所定の母集団の標準偏差をその平均で割った値であり、母集団の分散位を百分率で表す指標である。 The arrangement of openings 30A may be arbitrary. However, from the viewpoint of making the densities of the openings 30A of the upper surface 28A and the lower surface 28B of the porous film 28 uniform, it is preferable that the plurality of openings 30A are regularly arranged. A regular arrangement is an arrangement in which the coefficient of variation of the surface area of the parallel hexagonal or parallelogram unit of the above arrangement is, for example, 10% or less. Some of the openings 30A may be missing or the openings 30A may be out of alignment. However, it is preferable that the openings 30A are arranged in all directions without continuous gaps. The "coefficient of variation" is a value obtained by dividing the standard deviation of a predetermined population by the average, and is an index expressing the variance of the population as a percentage.

図3に示すように、多孔膜28の各貫通孔30は、球欠形状を有し、これは球体の上端及び下端が切断された形状である。互いに隣接する貫通孔30は、多孔膜28内部の各連通孔34を通じて互いに連通されている。 As shown in FIG. 3, each through hole 30 of the porous membrane 28 has a spherical missing shape, which is a shape in which the upper end and the lower end of the sphere are cut off. The through holes 30 adjacent to each other communicate with each other through the communication holes 34 inside the porous membrane 28.

各貫通孔30は、隣接するすべての貫通孔30と連通することが好ましい。本例示的な実施態様のように、複数の貫通孔30の開口30Aがハニカム状に配列されている場合、各貫通孔30は6個の連通孔34を通じて隣接する6個の貫通孔30とそれぞれ連通される。貫通孔30は筒状、円柱状、多角柱状などを有していてもよく、連通孔34は隣接した貫通孔30同士を連結する筒状の空隙であってもよい。 Each through hole 30 preferably communicates with all adjacent through holes 30. When the openings 30A of the plurality of through holes 30 are arranged in a honeycomb shape as in this exemplary embodiment, each through hole 30 is connected to six adjacent through holes 30 through the six communication holes 34, respectively. Communicate. The through hole 30 may have a tubular shape, a columnar shape, a polygonal columnar shape, or the like, and the communication hole 34 may be a tubular void connecting adjacent through holes 30 to each other.

貫通孔30の各開口30Aの開口直径Dは、例えば、血液内の赤血球が通過することができる大きさである。具体的には、平均開口直径は、好ましくは1μm乃至20μmであり、より好ましくは3μm乃至10μmである。平均開口直径を1μm以上に設定すると、貫通孔30は赤血球が通過できるサイズになり、平均開口直径を20μm以下に設定すると、多孔膜28の主面に血管内皮細胞層36及び細胞層38の保有ができるようになる。 The opening diameter D of each opening 30A of the through hole 30 is, for example, a size through which red blood cells in the blood can pass. Specifically, the average opening diameter is preferably 1 μm to 20 μm, more preferably 3 μm to 10 μm. When the average opening diameter is set to 1 μm or more, the through hole 30 becomes a size through which red blood cells can pass, and when the average opening diameter is set to 20 μm or less, the vascular endothelial cell layer 36 and the cell layer 38 are retained on the main surface of the porous membrane 28. Will be able to.

ここで、「開口直径D」は、開口30Aの長軸であり、「平均開口直径」は、任意に選択された10個以上の開口30Aについて測定された開口直径Dの計算平均である。「長軸」とは、開口の輪郭上の任意に選択された2点間の最長距離を意味する。しかし、方向が特定された場合「長軸」とは、その方向に沿って任意に選択された2点間の最長距離を意味する。 Here, the "opening diameter D" is the long axis of the opening 30A, and the "average opening diameter" is the calculated average of the opening diameters D measured for 10 or more arbitrarily selected openings 30A. The "long axis" means the longest distance between two arbitrarily selected points on the contour of the aperture. However, when a direction is specified, the "long axis" means the longest distance between two arbitrarily selected points along that direction.

貫通孔30の開口30Aの開口率は、好ましくは30%乃至70%であり、より好ましくは40%乃至60%である。開口率を30%以上に設定すると、多孔膜28によって赤血球の移動が妨げられることを抑制することができ、開口率を70%以下に設定すると、多孔膜28に必要な強度が達成できる。 The opening ratio of the opening 30A of the through hole 30 is preferably 30% to 70%, more preferably 40% to 60%. When the aperture ratio is set to 30% or more, it is possible to suppress the movement of erythrocytes from being hindered by the porous membrane 28, and when the aperture ratio is set to 70% or less, the strength required for the porous membrane 28 can be achieved.

ここで、「開口率」とは、百分率でS2対S1の割合を示し、S1は多孔膜28の主面が平滑であるという仮定の下に(すなわち、多孔膜28に開口30Aがないと仮定の下に)、多孔膜28の表面積の単位を示し、S2は単位表面当たりで設けられた開口30Aの表面積の合計を示し、ここで、S1及びS2に対して等しい測定単位が用いられる。 Here, the "aperture ratio" indicates the ratio of S2 to S1 as a percentage, and S1 assumes that the main surface of the porous membrane 28 is smooth (that is, the porous membrane 28 does not have an opening 30A). Below), the unit of surface area of the porous membrane 28, S2 indicates the total surface area of the openings 30A provided per unit surface, where equal units of measurement are used for S1 and S2.

多孔膜28の膜厚Tは、好ましくは貫通孔30の開口30Aの平均開口直径の半分以下である。具体的には、厚さTは、好ましくは0.5μm乃至10μmであり、より好ましくは1μm乃至10μmである。多孔膜28の膜厚Tを貫通孔30の平均開口直径の半分以下の厚さに設定すると、多孔膜28によって赤血球の移動が妨げられることを抑制することができる。 The film thickness T of the porous membrane 28 is preferably half or less of the average opening diameter of the opening 30A of the through hole 30. Specifically, the thickness T is preferably 0.5 μm to 10 μm, and more preferably 1 μm to 10 μm. When the film thickness T of the porous membrane 28 is set to a thickness of half or less of the average opening diameter of the through hole 30, it is possible to prevent the porous membrane 28 from hindering the movement of red blood cells.

また、多孔膜28は細胞が付着して成長する足場であるため、多孔膜28の一方の面の細胞と多孔膜28の他の面の細胞との間の細胞間相互作用、すなわち、体液因子を通じた情報送信、又は細胞間接触の少なくとも一つは、多孔膜28上の開口率が大きくなるほど、及び多孔膜28の膜厚が薄くなるほど、より活性化する。多孔膜28の主面に血管内皮細胞層36及び細胞層38を提供するための細胞培養間細胞間相互作用がより活発になるほど、生体内組織の物と類似した機能性を有する血管モデルがよりよく生成できる。 Further, since the porous membrane 28 is a scaffold on which cells adhere and grow, the cell-cell interaction between the cells on one surface of the porous membrane 28 and the cells on the other surface of the porous membrane 28, that is, a fluid factor. At least one of information transmission through, or cell-cell contact, becomes more active as the opening ratio on the porous membrane 28 increases and as the film thickness of the porous membrane 28 decreases. The more active the cell-cell interactions between cell cultures to provide the vascular endothelial cell layer 36 and the cell layer 38 on the main surface of the porous membrane 28, the more the vascular model having functionality similar to that of in vivo tissue. Can be generated well.

開口30Aの開口直径Dの変動係数は、好ましくは10%以下であり、変動係数が小さいほどより好ましい。開口直径Dの変動係数が小さいほど、より均一に赤血球などが多孔膜28内の複数の貫通孔30を通過することができる。 The coefficient of variation of the opening diameter D of the opening 30A is preferably 10% or less, and the smaller the coefficient of variation is, the more preferable. The smaller the coefficient of variation of the opening diameter D, the more uniformly red blood cells and the like can pass through the plurality of through holes 30 in the porous membrane 28.

多孔膜28の空隙率は、好ましくは50%以上である。空隙率を50%以上に設定すると、多孔膜28によって赤血球の移動が妨げられることを抑制することができる。空隙率が大きすぎると、多孔膜28の強度は、そのために必要な強度に関して不十分になるため、空隙率は95%以下が好ましい。 The porosity of the porous membrane 28 is preferably 50% or more. When the porosity is set to 50% or more, it is possible to prevent the perforated membrane 28 from hindering the movement of red blood cells. If the porosity is too large, the strength of the porous membrane 28 will be insufficient with respect to the strength required for that purpose, so the porosity is preferably 95% or less.

ここで、「空隙率」とは、V2とVIとの比率を百分率で表したものであり、V1は多孔膜28の主面が平滑であるという仮定の下に(すなわち、多孔膜28に開口30Aがないと仮定の下に)、多孔膜28の嵩の単位を示し、V2は単位嵩当たりで設けられた貫通孔30及び連通孔34の嵩の合計を示し、ここで、V1及びV2に対して等しい測定単位が用いられる。 Here, the "porosity" is the ratio of V2 to VI expressed as a percentage, and V1 is open to the porous film 28 under the assumption that the main surface of the porous film 28 is smooth (that is, the opening in the porous film 28). (Assuming there is no 30A), the unit of bulk of the porous film 28 is shown, where V2 is the sum of the bulks of the through holes 30 and the communication holes 34 provided per unit bulk, where V1 and V2 Equal units of measure are used.

多孔膜28の引張破断伸度は、好ましくは50%以上であり、より好ましくは100%であり、更に好ましくは200%以上である。多孔膜28の10%の伸長に必要な応力は、好ましくは1000gf/mm以下である。引張破断伸度が増加し、10%の伸長に必要な応力が減少することによって材料はより可撓性になる。従って、多孔膜28を曲げ、引き伸ばし、圧縮することが可能であり、血管モデル10を実際の血管により近づけることができる。 The tensile elongation at break of the porous membrane 28 is preferably 50% or more, more preferably 100%, and even more preferably 200% or more. The stress required for 10% elongation of the porous membrane 28 is preferably 1000 gf / mm 2 or less. The material becomes more flexible by increasing the tensile elongation at break and reducing the stress required for 10% elongation. Therefore, the perforated membrane 28 can be bent, stretched, and compressed, allowing the blood vessel model 10 to be closer to the actual blood vessel.

ここで、「引張破断伸度」は、JIS K 6251:2010に規定された方法によって多孔膜28の引張破断伸びを測定することで評価できる。「10%の伸長に必要な応力」は、JIS K 6251:2010に規定された方法によって多孔膜28が10%伸長する時に多孔膜28に加えられる応力を測定することで評価できる。 Here, the "tensile fracture elongation" can be evaluated by measuring the tensile elongation at break of the porous membrane 28 by the method specified in JIS K 6251: 2010. "Stress required for 10% elongation" can be evaluated by measuring the stress applied to the porous membrane 28 when the porous membrane 28 is elongated by 10% by the method specified in JIS K 6251: 2010.

貫通孔30が形成された多孔膜28を製造する方法の例には、ナノプリント法、結露法、エッチング法、サンドブラスト工程、又はプレス成形工程を含む。ナノプリント法は、多孔膜28を構成する材料を突出部及び凹部を有するモールドに注ぐか、又はこのようなモールドを多孔膜28を構成する材料に対して加圧することで貫通孔30を生成する方法である。結露法とは、多孔膜28を構成する材料の表面に凝結を誘導し、水滴をモールドにして貫通孔30を形成する方法である。 Examples of the method for producing the porous film 28 in which the through hole 30 is formed include a nanoprint method, a dew condensation method, an etching method, a sandblasting step, or a press molding step. The nanoprint method creates through holes 30 by pouring the material constituting the porous membrane 28 into a mold having protrusions and recesses, or by pressurizing such a mold against the material constituting the porous membrane 28. The method. The dew condensation method is a method of inducing condensation on the surface of a material constituting the porous membrane 28 and molding water droplets to form a through hole 30.

他の方法と比べて、結露法は、多孔膜28の膜厚をより薄くすることができ、開口30Aの空隙率及び開口率を増加させることができ、また連通孔34を多孔膜28内に設けることができる。従って、本例示的な実施態様において、多孔膜28は結露法を利用して製造される。結露法は、例えば、日本特許第4945281号公報、日本特許第5422230号公報、日本特許第5405374号公報、及び日本特開第2011−74140号公報に詳細に記載されている。 Compared with other methods, the dew condensation method can make the film thickness of the porous membrane 28 thinner, increase the porosity and aperture ratio of the opening 30A, and make the communication holes 34 in the porous membrane 28. Can be provided. Therefore, in this exemplary embodiment, the porous membrane 28 is manufactured using the condensation method. The dew condensation method is described in detail in, for example, Japanese Patent No. 4945281, Japanese Patent No. 5422230, Japanese Patent No. 5405374, and Japanese Patent Application Laid-Open No. 2011-74140.

次に、本例示的な実施態様の血管モデル10を用いて薬物毒性評価が行われる場合を例として説明する。薬物毒性試験を行う際に、まず、上部流路部材12及び下部流路部材14は、間に挟んだ状態で多孔膜28と接合され、図2に示すように上部マイクロ流路16及び下部マイクロ流路22を含む血管モデル10を生成する。血管内皮細胞層36及び細胞層38は、多孔膜28の主面に設けられている。 Next, a case where drug toxicity evaluation is performed using the blood vessel model 10 of this exemplary embodiment will be described as an example. When conducting a drug toxicity test, first, the upper flow path member 12 and the lower flow path member 14 are joined to the porous membrane 28 in a state of being sandwiched between them, and as shown in FIG. 2, the upper micro flow path 16 and the lower micro flow path 16 and the lower micro are joined. A blood vessel model 10 including a flow path 22 is generated. The vascular endothelial cell layer 36 and the cell layer 38 are provided on the main surface of the porous membrane 28.

そして、ポンプを用いて薬物を含む血液希釈液を管(図示せず)及び貫通孔20Aを通過し上部マイクロ流路16内へ流し、上部マイクロ流路16の内部を通過した後、貫通孔20B及び管(図示せず)を通過して血管モデル10から流出させる。 Then, using a pump, a blood diluent containing a drug is passed through a tube (not shown) and a through hole 20A into the upper microchannel 16 and passed through the inside of the upper microchannel 16 and then through hole 20B. And through a tube (not shown) and drained from the vascular model 10.

一方、ポンプを用いて培養液又は生理食塩水溶液を管(図示せず)及び貫通孔26Aを通過し下部マイクロ流路22内へ流し、下部マイクロ流路22の内部を通過した後、貫通孔26B及び管(図示せず)を通過して血管モデル10から流出させる。血液希釈液が流れる上部マイクロ流路16の圧力は、培養液又は生理食塩水溶液が流れる下部マイクロ流路22の圧力より高い。 On the other hand, using a pump, the culture solution or physiological saline solution is passed through a tube (not shown) and the through hole 26A into the lower microchannel 22, passed through the inside of the lower microchannel 22, and then through hole 26B. And through a tube (not shown) and drained from the vascular model 10. The pressure of the upper microchannel 16 through which the blood diluent flows is higher than the pressure of the lower microchannel 22 through which the culture solution or physiological saline solution flows.

毒性試験の開始時に、図3に示すように、多孔膜28の上面28Aの全体及び下面28Bの全体が、血管内皮細胞層36及び細胞層38によってそれぞれ覆われている。従って、血液内の赤血球は、多孔膜28を通過することができす、下部マイクロ流路22内へ漏出されない。 At the start of the toxicity test, as shown in FIG. 3, the entire upper surface 28A and the entire lower surface 28B of the porous membrane 28 are covered with the vascular endothelial cell layer 36 and the cell layer 38, respectively. Therefore, red blood cells in the blood do not leak into the lower microchannel 22 which can pass through the porous membrane 28.

しかし、毒性試験の開始から一定の時間が経過すると、血管内皮細胞層36は薬物の毒性によって損傷される。血管内皮細胞層36に加えて、細胞層38も薬物によって損傷される。このような損傷された部分によって多孔膜28を通過し、下部マイクロ流路22に流入された赤血球の数を測定することで、すなわち出血評価を行うことで、血管内皮細胞層36及び細胞層38に対する薬物性損傷のレベルを評価することができる。 However, after a certain period of time from the start of the toxicity test, the vascular endothelial cell layer 36 is damaged by the toxicity of the drug. In addition to the vascular endothelial cell layer 36, the cell layer 38 is also damaged by the drug. By measuring the number of red blood cells that have passed through the porous membrane 28 and flowed into the lower microchannel 22 by such a damaged portion, that is, by performing a bleeding evaluation, the vascular endothelial cell layer 36 and the cell layer 38 The level of drug-induced injury to the patient can be assessed.

また、薬物の毒性によって血管内皮細胞層36が損傷される場合、血管内皮細胞層36と細胞層38との間の細胞間相互作用によって細胞層38を構成する細胞の状態が変化し、その結果、細胞層38に隙間が形成される可能性がある。隙間を通過し下部マイクロ流路22に流入された赤血球の数を測定することで、すなわち出血評価を行うことで、血管内皮細胞層36に対する薬物性損傷のレベル及び細胞層38の反応のレベルを評価することができる。 Further, when the vascular endothelial cell layer 36 is damaged by the toxicity of the drug, the state of the cells constituting the cell layer 38 is changed by the cell-cell interaction between the vascular endothelial cell layer 36 and the cell layer 38, and as a result. , There is a possibility that a gap may be formed in the cell layer 38. By measuring the number of red blood cells that have passed through the gap and flowed into the lower microchannel 22, that is, by performing a bleeding evaluation, the level of drug-induced damage to the vascular endothelial cell layer 36 and the level of reaction of the cell layer 38 can be determined. Can be evaluated.

血管内皮細胞層36と細胞層38との間の細胞間相互作用は、多孔膜28上の開口率が大きくなるほど、及び多孔膜28の膜厚が薄くなるほどより活性化にするため、この試験では高い感度で行われることができる。 In this test, the cell-cell interaction between the vascular endothelial cell layer 36 and the cell layer 38 becomes more active as the aperture ratio on the porous membrane 28 increases and as the film thickness of the porous membrane 28 decreases. It can be done with high sensitivity.

また、上記毒性試験において、血液希釈液の代わりに、上部マイクロ流路16を通じて薬物及びトレーサーを含む溶液を流してもよい。トレーサーの例には、蛍光−標識化学物質、放射性同位元素含有化学物質、染料化合物など、より具体的にはデキストラン、エバンスブルー、フルオレセインナトリウム及びFITCマイクロビーズからなる群の中から選択される少なくとも1つが含まれる。蛍光染料は、好ましくは励起波長/蛍光波長が580nm/605nmであり、赤色である。 Further, in the above toxicity test, a solution containing a drug and a tracer may be flowed through the upper microchannel 16 instead of the blood diluent. Examples of tracers include fluorescent-labeled chemicals, radioactive isotope-containing chemicals, dye compounds, and more specifically at least one selected from the group consisting of dextran, evance blue, sodium fluorescein and FITC microbeads. Is included. The fluorescent dye preferably has an excitation wavelength / fluorescence wavelength of 580 nm / 605 nm and is red.

血管内皮細胞層36及び細胞層38に対する薬物性損傷のレベルは、トレーサーのタイプによって蛍光強度、放射線又は色度を測定してトレーサーを定量化し、多孔膜28を通過し上部マイクロ流路16から下部マイクロ流路22内へ流入されたトレーサーの量を測定することで評価できる。 The level of drug-induced damage to the vascular endothelial cell layer 36 and cell layer 38 is determined by measuring fluorescence intensity, radiation or chromaticity according to the type of tracer, quantifying the tracer, passing through the porous membrane 28 and from the upper microchannel 16 to the lower part. It can be evaluated by measuring the amount of tracer that has flowed into the microchannel 22.

本例示的な実施態様は、下部マイクロ流路22から上部マイクロ流路16を画定する多孔膜28において、貫通孔30の開口30Aの平均開口直径が1μm乃至20μmであり、貫通孔30の開口30Aの開口率が30%乃至70%であるように構成される。従って、上部マイクロ流路16を通じて流れる赤血球が多孔膜28の貫通孔30を通過し下部マイクロ流路22に移動する出血評価の間、多孔膜28によって赤血球の移動が妨げられることを抑制することができる。 In this exemplary embodiment, in the porous membrane 28 defining the upper microchannel 16 from the lower microchannel 22, the average opening diameter of the opening 30A of the through hole 30 is 1 μm to 20 μm, and the opening 30A of the through hole 30 The aperture ratio is configured to be 30% to 70%. Therefore, it is possible to suppress the movement of erythrocytes from being hindered by the porous membrane 28 during the bleeding evaluation in which the erythrocytes flowing through the upper microchannel 16 pass through the through hole 30 of the porous membrane 28 and move to the lower microchannel 22. it can.

また、本例示的な実施態様は、多孔膜28の膜厚が貫通孔30の開口30Aの平均開口直径の半分以下になるように構成される。従って、多孔膜28の膜厚が貫通孔30の開口30Aの平均開口直径の半分より大きい場合と比べて、赤血球が多孔膜28内の貫通孔30をより容易に通過することができる。従って、本例示的な実施態様は、出血評価の精度を更に改善することができる。 Further, in this exemplary embodiment, the film thickness of the porous membrane 28 is configured to be half or less of the average opening diameter of the opening 30A of the through hole 30. Therefore, erythrocytes can more easily pass through the through hole 30 in the porous membrane 28 as compared with the case where the film thickness of the porous membrane 28 is larger than half of the average opening diameter of the opening 30A of the through hole 30. Therefore, this exemplary embodiment can further improve the accuracy of bleeding assessment.

また、本例示的な実施態様は、ハニカム状に配列された貫通孔30の開口部30Aで構成されており、多孔膜28内の貫通孔30は連通孔34を通じて互いに連通される。貫通孔30の開口30Aの開口直径の変動係数は10%以下であり、多孔膜28の空隙率は50%以上である。従って、赤血球は多孔膜28内の複数の貫通孔30をより均一に通過することができる。従って、本例示的な実施態様は、出血評価の精度を更に改善することができる。 Further, in this exemplary embodiment, the openings 30A of the through holes 30 arranged in a honeycomb shape are formed, and the through holes 30 in the porous membrane 28 communicate with each other through the communication holes 34. The coefficient of variation of the opening diameter of the opening 30A of the through hole 30 is 10% or less, and the porosity of the porous membrane 28 is 50% or more. Therefore, erythrocytes can more uniformly pass through the plurality of through holes 30 in the porous membrane 28. Therefore, this exemplary embodiment can further improve the accuracy of bleeding assessment.

また、本例示的な実施態様は、多孔膜28の上面28Aに設けられた血管内皮細胞層36、及び多孔膜28の下面28Bに設けられた細胞層38で構成される。細胞層38は、平滑筋細胞、間葉系幹細胞、ペリサイト、及び線維芽細胞からなる群の中から選択された細胞で構成される。また、多孔膜28は引張破断伸度が50%以上で、10%の伸長に必要な応力が1000gf/mm以下である可撓性材料で構成される。それにより、本例示的な実施態様において、血管モデル10は、実際の血管により近づけるように構成することができる。 Further, this exemplary embodiment is composed of a vascular endothelial cell layer 36 provided on the upper surface 28A of the porous membrane 28 and a cell layer 38 provided on the lower surface 28B of the porous membrane 28. The cell layer 38 is composed of cells selected from the group consisting of smooth muscle cells, mesenchymal stem cells, pericytes, and fibroblasts. Further, the porous membrane 28 is made of a flexible material having a tensile elongation at break of 50% or more and a stress required for elongation of 10% of 1000 gf / mm 2 or less. Thereby, in this exemplary embodiment, the blood vessel model 10 can be configured to be closer to the actual blood vessel.

本開示の例示的な実施態様の例について説明した。しかし、本開示は、上記に制限されるものでなく、本開示の趣旨を逸脱しない範囲内で上記以外にも多様な変形で具現できる。 Examples of exemplary embodiments of the present disclosure have been described. However, the present disclosure is not limited to the above, and can be embodied in various modifications other than the above without departing from the gist of the present disclosure.

例えば、上記の例示的な実施態様の多孔膜28の貫通孔30の開口30Aは、平面視で円形形状を有するが、図5に示すように、多孔膜48の貫通孔50の開口50Aは、平面視で楕円形の形状を有することができる。貫通孔50の開口50Aを楕円形に構成することで、例えば、円盤状赤血球が貫通孔50の開口50Aを容易に通過することができ、血液中の他の細胞はこれを通過しにくくすることができる。 For example, the opening 30A of the through hole 30 of the porous membrane 28 in the above exemplary embodiment has a circular shape in a plan view, but as shown in FIG. 5, the opening 50A of the through hole 50 of the porous membrane 48 is. It can have an elliptical shape in plan view. By forming the opening 50A of the through hole 50 in an elliptical shape, for example, a disc-shaped red blood cell can easily pass through the opening 50A of the through hole 50, and other cells in the blood can hardly pass through the opening 50A. Can be done.

貫通孔50の開口50Aの開口50Aを楕円形で形成する方法の例は、多孔膜48に図4に示すような円形開口30Aを形成した後、多孔膜48を一方向(図4の左右方向)に沿って延伸する方法を含む。この方法は、同じ方向(図5の左右方向)に沿って長軸方向を有する複数の楕円形開口50Aが形成される可能性がある。 An example of a method of forming the opening 50A of the opening 50A of the through hole 50 in an elliptical shape is that after forming a circular opening 30A as shown in FIG. 4 in the porous membrane 48, the porous membrane 48 is formed in one direction (horizontal direction in FIG. 4). ) Includes a method of stretching along. This method may form a plurality of elliptical openings 50A having major axial directions along the same direction (horizontal direction in FIG. 5).

また、多孔膜48を延伸せず、プレス成形などを用いて多孔膜48に楕円形の開口50Aを直接形成してもよい。また、開口50Aの形状が平面視で長軸及び短軸を有する偏平な形状である限り、開口50Aの形状は、例えば、多角形を延伸させることでなる偏平な多角形状であってもよい。 Further, the elliptical opening 50A may be directly formed in the porous film 48 by press molding or the like without stretching the porous film 48. Further, as long as the shape of the opening 50A is a flat shape having a long axis and a short axis in a plan view, the shape of the opening 50A may be, for example, a flat polygon formed by extending a polygon.

上記の例示的な実施態様の多孔膜28において、貫通孔30の開口30Aは、多孔膜28の主面の全体にわたり規則的に配置される。しかし、図6に示すように、多孔膜58は、貫通孔60の開口60Aが形成される多孔性領域62及び貫通孔60の開口60Aが形成されていない非多孔性領域64(図6で二点鎖線で表示された領域)を設けることができる。 In the porous membrane 28 of the above exemplary embodiment, the openings 30A of the through holes 30 are regularly arranged over the entire main surface of the porous membrane 28. However, as shown in FIG. 6, the porous film 58 has a porous region 62 in which the opening 60A of the through hole 60 is formed and a non-porous region 64 in which the opening 60A of the through hole 60 is not formed (2 in FIG. 6). The area indicated by the dotted line) can be provided.

具体的には、多孔膜58において、図1に示した上部マイクロ流路16を構成する凹部18の入口18A付近及び出口18B付近、及び図1に示した下部マイクロ流路22を構成する凹部24の入口24A付近及び出口24B付近に配置された部分は、例えば非多孔性領域64として構成される。 Specifically, in the porous membrane 58, the vicinity of the inlet 18A and the vicinity of the outlet 18B of the recess 18 constituting the upper microchannel 16 shown in FIG. 1, and the recess 24 constituting the lower microchannel 22 shown in FIG. The portions arranged in the vicinity of the inlet 24A and the vicinity of the outlet 24B of the above are configured as, for example, a non-porous region 64.

一般的に、血液のような液体の流れは、入口18A、24A及び出口18B、24Bで容易に攪乱される。従って、非多孔性領域64として入口18A、24A付近及び出口18B、24B付近に多孔膜58を構成することで、上部マイクロ流路16及び下部マイクロ流路22での血液のような液体の流れを調節することができる。従って、多孔膜58は出血評価の精度を更に改善することができる。 In general, the flow of liquids such as blood is easily disrupted at inlets 18A, 24A and outlets 18B, 24B. Therefore, by forming the porous membrane 58 near the inlets 18A and 24A and near the outlets 18B and 24B as the non-porous region 64, the flow of a liquid such as blood in the upper microchannel 16 and the lower microchannel 22 can be prevented. Can be adjusted. Therefore, the porous membrane 58 can further improve the accuracy of bleeding evaluation.

本開示の血管モデルは、薬物毒性に伴う赤血球などの漏出物質の血管外への移動が多孔膜により妨げられることを抑制した状態で、出血評価を行うことができる。従って、本開示の血管モデルは、高い正確度で毒性試験を行うことができる血管モデルとして用いることができる。 In the vascular model of the present disclosure, bleeding evaluation can be performed in a state where the movement of leaking substances such as erythrocytes to the outside of the blood vessel due to drug toxicity is suppressed by the porous membrane. Therefore, the blood vessel model of the present disclosure can be used as a blood vessel model capable of performing toxicity tests with high accuracy.

以下に、本開示の例示的な実施態様の例について詳細に説明する。本開示の例示的な実施態様は、以下に例示された例によって制限されるものと解釈されてはならない。 Examples of exemplary embodiments of the present disclosure will be described in detail below. The exemplary embodiments of the present disclosure should not be construed as being restricted by the examples exemplified below.

図7Aは、実施例1の多孔膜の顕微鏡写真を示す。実施例1では、複数の貫通孔の開口はハニカム状に配列され、貫通孔は連通孔を通じて連通され、上記の例示的な実施態様の多孔膜28と同様にポリカーボネートで形成された多孔膜が用いられた。実施例1の多孔膜の開口の平均開口直径は5μmであり、開口の開口率は55%であり、多孔膜の膜厚は2.2μmであり、開口の開口直径の変動係数は3.5%であり、多孔膜の空隙率は75%であり、引張破断伸びは250%であり、10%の伸長に必要な応力は100gf/mmであった。 FIG. 7A shows a micrograph of the porous membrane of Example 1. In Example 1, the openings of the plurality of through holes are arranged in a honeycomb shape, the through holes are communicated through the communication holes, and a porous membrane formed of polycarbonate is used as in the porous membrane 28 of the above-exemplified embodiment. Was done. The average opening diameter of the opening of the porous membrane of Example 1 is 5 μm, the aperture ratio of the opening is 55%, the thickness of the porous membrane is 2.2 μm, and the coefficient of variation of the opening diameter of the opening is 3.5. %, The void ratio of the porous membrane was 75%, the tensile elongation at break was 250%, and the stress required for 10% elongation was 100 gf / mm 2 .

製造された多孔膜の微細構造は、プロファイル走査型レーザー顕微鏡(製品名:VK−X100、Keyence,Japan製)を用いて測定した。単一のスクリーンに50個以上の開口が現れる倍率を用いて観察した。観察された顕微鏡写真に基づいて、各開口直径Dを測定し、平均開口直径DAV及び開口直径Dの変動係数σDを求めるために、一つのスクリーン上に存在する開口に対して画像分析を実施した。開口直径の変動係数(百分率で指定)は、計算(σD/DAV)×100を用いて達成できる。 The fine structure of the produced porous membrane was measured using a profile scanning laser microscope (product name: VK-X100, manufactured by Keyence, Japan). Observation was made using a magnification at which 50 or more openings appeared on a single screen. Based on the observed micrographs, each aperture diameter D was measured and image analysis was performed on the openings present on one screen to determine the average aperture diameter DAV and the coefficient of variation σD of the aperture diameter D. .. The coefficient of variation of the opening diameter (specified as a percentage) can be achieved using the calculation (σD / DAV) × 100.

平均開口直径及び開口率は、2D画像分析ソフトウェアWinROOF(三谷商事株式会社製)を用いて、顕微鏡写真に対して、2値化処理及び画像処理を施すことで達成された。多孔膜の膜厚は、プロファイル走査型レーザー顕微鏡を用いて10箇所で測定した開口部の厚さの平均値である。 The average aperture diameter and aperture ratio were achieved by subjecting the micrographs to binarization and image processing using 2D image analysis software WinROOF (manufactured by Mitani Shoji Co., Ltd.). The film thickness of the porous film is an average value of the thickness of the openings measured at 10 points using a profile scanning laser microscope.

多孔膜の断面を走査型電子顕微鏡(SEM、製品名:SU8030、Hitachi,Japan製)を用いて観察し、貫通孔と同等の球体の直径を多孔膜の空隙率として計算した。評価される多孔膜サンプルをミクロトーム(製品名:FCS、オーストリアReichert社製)でスライスして断面観察用サンプルを作成し、断面観察用サンプルの表面をOs層で厚さ6nmにコーティングし、サンプルを2kVの加速電圧を用いてSEMで観察した。多孔膜の引張破断伸び及び10%の伸長に必要な応力は、FUDOH RHEO METER RT−2002D・D(株式会社レオテック製)を用いて測定された。 The cross section of the porous membrane was observed using a scanning electron microscope (SEM, product name: SU8030, manufactured by Hitachi, Japan), and the diameter of a sphere equivalent to the through hole was calculated as the void ratio of the porous membrane. The porous membrane sample to be evaluated is sliced with a microtome (product name: FCS, manufactured by Reichert, Austria) to prepare a sample for cross-section observation, and the surface of the sample for cross-section observation is coated with an Os layer to a thickness of 6 nm, and the sample is prepared. It was observed by SEM using an acceleration voltage of 2 kV. The stress required for tensile elongation at break and 10% elongation of the porous membrane was measured using FUDOH RHEO METER RT-2002DD (manufactured by Rheotech Co., Ltd.).

図7Bは、比較例1の多孔膜の顕微鏡写真を示す。比較例1ではトラックエッチング法によって開口を形成するポリカーボネートで形成された従来技術の多孔膜が用いられた。また、比較例1の多孔膜における開口の平均開口直径は5.7μmであり、開口の開口率は12.4%であり、多孔膜の膜厚は10.6μmであり、開口の開口直径の変動係数は35%であり、多孔膜の空隙率は15%であり、引張破断伸度は150%であり、10%の伸長に必要な応力は5800gf/mmであった。 FIG. 7B shows a micrograph of the porous membrane of Comparative Example 1. In Comparative Example 1, a conventional porous film made of polycarbonate having openings formed by a track etching method was used. The average opening diameter of the openings in the porous membrane of Comparative Example 1 was 5.7 μm, the aperture ratio of the openings was 12.4%, the film thickness of the porous membrane was 10.6 μm, and the opening diameter of the openings. The coefficient of variation was 35%, the void ratio of the porous membrane was 15%, the tensile elongation at break was 150%, and the stress required for 10% elongation was 5800 gf / mm 2 .

多孔膜は、両面に医療用紙が付着されて製造される。多孔膜の一面の医療用紙をピンセットを用いて取り除き、医療用紙を取り除いた面は下部流路部材に下向きに設定する。次に、多孔膜を綿棒を用いてエタノールに浸漬し、多孔膜と下部流路部材とを接合させる。 The porous membrane is manufactured by adhering medical paper on both sides. The medical paper on one side of the porous membrane is removed using tweezers, and the side from which the medical paper has been removed is set downward on the lower flow path member. Next, the porous membrane is immersed in ethanol using a cotton swab to join the porous membrane and the lower flow path member.

次に、多孔膜の他の面の医療用紙をピンセットを用いて取り除き、上部流路部材を多孔膜の他の面に積層する。上部流路部材と下部流路部材の位置を顕微鏡でチェックしながら整列させ、上部流路部材と下部流路部材とを接合させる。それにより、実施例1の血管モデル及び比較例1の血管モデルがそれぞれ製造された。 Next, the medical paper on the other surface of the porous membrane is removed using tweezers, and the upper flow path member is laminated on the other surface of the porous membrane. The positions of the upper flow path member and the lower flow path member are aligned while being checked with a microscope, and the upper flow path member and the lower flow path member are joined. As a result, the blood vessel model of Example 1 and the blood vessel model of Comparative Example 1 were produced, respectively.

実施例1及び比較例1で、多孔膜の赤血球に対する透過性を評価するために、用いられる多孔膜は、その主面に設けられた血管内皮細胞層36又は平滑筋細胞、間葉系幹細胞、ペリサイト、及び線維芽細胞からなる群から選択された細胞の細胞層を有していない。 In Example 1 and Comparative Example 1, the porous membrane used for evaluating the permeability of the porous membrane to erythrocytes is a vascular endothelial cell layer 36 or smooth muscle cells provided on the main surface thereof, mesenchymal stem cells, and the like. It does not have a cell layer of cells selected from the group consisting of pericytes and fibroblasts.

実施例2では、実施例1の血管モデルを取り、多孔膜の上面にラット血管内皮細胞層を形成し、多孔膜の下面にラット平滑筋細胞で構成された細胞層を形成することで、細胞層が付着した血管モデルを製造した。 In Example 2, cells are taken by taking the vascular model of Example 1, forming a rat vascular endothelial cell layer on the upper surface of the porous membrane, and forming a cell layer composed of rat smooth muscle cells on the lower surface of the porous membrane. A vascular model with layers was produced.

比較例2では、比較例1の血管モデルを取り、多孔膜の上面にラット血管内皮細胞層を形成し、多孔膜の下面にラット平滑筋細胞で構成された細胞層を形成することで、細胞層が付着した血管モデルを製造した。 In Comparative Example 2, cells were taken by taking the vascular model of Comparative Example 1, forming a rat vascular endothelial cell layer on the upper surface of the porous membrane, and forming a cell layer composed of rat smooth muscle cells on the lower surface of the porous membrane. A vascular model with layers was produced.

実施例2及び比較例2において、ラット血管内皮細胞にはAngio−Proteomie製のラット動脈内皮細胞が用いられ、ラット平滑筋細胞にはLonza製のラット大動脈平滑筋細胞が用いられた。下部マイクロ流路を、初期の細胞濃度が3×10細胞/mlであるラット平滑筋細胞の細胞懸濁液100μLで播種した。培養1日後、上部マイクロ流路に細胞濃度が3×10細胞/mlであるラット血管内皮細胞の細胞懸濁液100μLで播種した。培養2日後、実施例2及び比較例2の細胞層付着血管モデルが得られた。 In Example 2 and Comparative Example 2, rat vascular endothelial cells manufactured by Angio-Proteomie were used as rat vascular endothelial cells, and rat aortic smooth muscle cells manufactured by Lonza were used as rat smooth muscle cells. Lower microchannel, initial cell concentration was seeded at cell suspension 100μL of rat smooth muscle cells which is 3 × 10 6 cells / ml. After one day incubation, cell concentration and seeded with cell suspensions 100μL of rat vascular endothelial cells is 3 × 10 6 cells / ml in the upper microchannel. Two days after culturing, cell layer-attached blood vessel models of Example 2 and Comparative Example 2 were obtained.

3.7×10細胞/mlの赤血球数を有する血液希釈液を、実施例1及び比較例1で製造された血管モデルの上部マイクロ流路を通じて流し、生理食塩水溶液を下部マイクロ流路を通じて流した。血液希釈液及び生理食塩水溶液の流体伝達速度は500μL/分で設定し、上部マイクロ流路の内部圧力は約8.7kPaで設定し、下部マイクロ流路の内部圧力は約1.3kPaに設定し、実際の血管内部の血流及び血圧条件に近接したパラメータを確立した。 A blood diluent having a red blood cell count of 3.7 × 10 5 cells / ml was flowed through the upper microchannel of the vascular model produced in Example 1 and Comparative Example 1, and a saline solution was flowed through the lower microchannel. did. The fluid transfer rate of the blood diluent and the aqueous saline solution was set at 500 μL / min, the internal pressure of the upper microchannel was set at about 8.7 kPa, and the internal pressure of the lower microchannel was set at about 1.3 kPa. , Established parameters close to the actual blood flow and blood pressure conditions inside the blood vessel.

流体伝達を開始してから一定の時間が経過した後、下部マイクロ流路内部、すなわち生理食塩水溶液内部の赤血球の数は、実施例1では9.2×10細胞/mlの赤血球数を提供し、比較例1の血管モデルでは2.2×10細胞/mlの赤血球数を提供した。 After a lapse of a predetermined time from the start of the fluid transfer, the internal lower microchannel, that is, the number of saline solution inside the red blood cells, providing a number of red blood cells in Example 1, 9.2 × 10 4 cells / ml and provided the number of red blood cells 2.2 × 10 4 cells / ml in the blood vessel model in Comparative example 1.

この試験では、実施例1及び比較例1の多孔膜が共に、血圧の条件と同等の条件下で赤血球に対する透過性を有することを確認できた。また、比較例1の多孔膜と比べて、実施例1の多孔膜は赤血球透過性が高く、本例示的な実施態様の多孔膜により赤血球の移動が妨げられることを抑制できることを確認できた。 In this test, it was confirmed that both the porous membranes of Example 1 and Comparative Example 1 had permeability to erythrocytes under the same conditions as blood pressure. Further, it was confirmed that the porous membrane of Example 1 has higher erythrocyte permeability than the porous membrane of Comparative Example 1, and that the porous membrane of this exemplary embodiment can suppress the hindrance of the movement of erythrocytes.

トレーサーに対して1.81×10ビーズ/ml濃度の蛍光ビーズを含む培養培地希釈液を、実施例2及び比較例2で製造された細胞層付着血管モデルの上部マイクロ流路を通じて流し、蛍光ビーズを含まない培養培地を下部マイクロ流路を通じて流した。蛍光ビーズは直径が4μmであり、励起波長が580nmで蛍光波長が605nmである赤色蛍光染料に標識された。蛍光ビーズを含む培養培地希釈液及び蛍光ビーズを含まない培養培地の流体伝達速度は500μL/分に設定し、上部マイクロ流路の内部圧力は約8.7kPaに設定し、下部マイクロ流路の内部圧力は約1.3kPaに設定し、実際の血管内部の血流及び血圧条件に近接したパラメータを確立した。 The culture medium dilution containing 1.81 × 10 6 beads / ml concentration of fluorescent beads relative tracer, flowing through the upper micro-channel of a cell layer adhered vessel model produced in Example 2 and Comparative Example 2, a fluorescent The bead-free culture medium was run through the lower microchannel. The fluorescent beads were labeled with a red fluorescent dye having a diameter of 4 μm, an excitation wavelength of 580 nm and a fluorescence wavelength of 605 nm. The fluid transfer rate of the culture medium diluent containing fluorescent beads and the culture medium not containing fluorescent beads was set to 500 μL / min, the internal pressure of the upper microchannel was set to about 8.7 kPa, and the inside of the lower microchannel. The pressure was set to about 1.3 kPa and parameters close to the actual blood flow and blood pressure conditions inside the blood vessel were established.

流体伝達を開始してから一定の時間が経過した後、下部マイクロ流路内部、すなわち培養培地内部の蛍光ビーズの数は、実施例2では6.5×10ビーズ/mlの蛍光ビーズ数を提供し、比較例2では9.2×10ビーズ/mlの蛍光ビーズ数を提供した。1.81×10ビーズ/mlで蛍光ビーズを含む生理食塩水希釈液を、実施例1及び比較例1で製造された血管モデルの上部マイクロ流路を通じて流し、生理食塩水を下部マイクロ流路を通じて流した。流体伝達速度は、500μL/分に設定された。下部マイクロ流路内部の蛍光ビーズの数は、実施例1では1.7×10ビーズ/mlの蛍光ビーズ数を提供し、比較例1では4.3×10ビーズ/mlの蛍光ビーズ数を提供した。この試験では、多孔膜の両面に細胞層を形成すると、多孔膜の蛍光ビーズに対する透過性を低減させ、多孔膜にバリア特性を付与することを確認できた。 After a lapse of a predetermined time from the start of the fluid transfer, the internal lower microchannel, that is, the number of the culture medium in the fluorescent beads, fluorescent number beads of Example 2, 6.5 × 10 4 beads / ml Provided, and in Comparative Example 2, the number of fluorescent beads of 9.2 × 10 3 beads / ml was provided. A saline diluted solution containing fluorescent beads at 1.81 × 10 6 beads / ml was flowed through the upper microchannel of the blood vessel model produced in Example 1 and Comparative Example 1, and the saline solution was flowed through the lower microchannel. Shed through. The fluid transfer rate was set to 500 μL / min. The number of fluorescent beads inside the lower microchannel provided 1.7 × 10 5 beads / ml in Example 1 and 4.3 × 10 4 beads / ml in Comparative Example 1. Provided. In this test, it was confirmed that forming cell layers on both sides of the porous membrane reduces the permeability of the porous membrane to fluorescent beads and imparts barrier properties to the porous membrane.

薬物であるサイトカラシンを上部マイクロ流路と下部マイクロ流路のそれぞれを通じて50μg/mlの濃度及び0.7μL/minの流速で1日間流すことで、実施例2及び比較例2で製造された細胞層付着血管モデルの多孔膜の両面にある細胞層を薬物に露出させた。 The cells produced in Example 2 and Comparative Example 2 by flowing the drug cytochalasin through the upper microchannel and the lower microchannel respectively at a concentration of 50 μg / ml and a flow rate of 0.7 μL / min for 1 day. The cell layers on both sides of the perforated membrane of the layered vascular model were exposed to the drug.

薬物露出後、上述の細胞層付着血管モデルに対する蛍光ビーズ透過性試験と同じ方法を用いて蛍光ビーズ透過性試験を実施した。流体伝達を開始してから一定の時間が経過した後、下部マイクロ流路内部、すなわち培養培地内部の蛍光ビーズの数は、実施例2では1.7×10ビーズ/mlの蛍光ビーズ数を提供し、比較例2では6.7×10ビーズ/mlの蛍光ビーズ数を提供した。 After drug exposure, a fluorescent bead permeability test was performed using the same method as the fluorescent bead permeability test for the cell layer-attached blood vessel model described above. After a lapse of a predetermined time from the start of the fluid transfer, the internal lower microchannel, that is, the number of the culture medium in the fluorescent beads, fluorescent number beads of Example 2, 1.7 × 10 5 beads / ml Provided, and in Comparative Example 2, the number of fluorescent beads of 6.7 × 10 3 beads / ml was provided.

この試験では、薬物によって細胞層が損傷された後、実施例2及び比較例2の細胞層付着血管モデルにおいて、蛍光ビーズが多孔膜を通過できることを確認できた。また、比較例2の多孔膜に比べて、実施例2の多孔膜は、蛍光ビーズに対する透過性が高く、本例示的な実施態様の多孔膜は、蛍光ビーズの移動が妨げられることを抑制することを確認できた。従って、本例示的な実施態様の多孔膜は、高感度で血管モデルにおける薬物毒性の評価が可能であることが確認された。 In this test, it was confirmed that the fluorescent beads could pass through the porous membrane in the cell layer-attached blood vessel models of Example 2 and Comparative Example 2 after the cell layer was damaged by the drug. Further, the porous membrane of Example 2 has higher permeability to the fluorescent beads than the porous membrane of Comparative Example 2, and the porous membrane of this exemplary embodiment suppresses the movement of the fluorescent beads from being hindered. I was able to confirm that. Therefore, it was confirmed that the porous membrane of this exemplary embodiment can evaluate drug toxicity in a vascular model with high sensitivity.

実施例3では、実施例2と同様に、細胞層付着血管モデルを多孔膜の上面に形成されたラット血管内皮細胞層と多孔膜の下面に形成されたラット平滑筋細胞層で製造した。 In Example 3, similarly to Example 2, a cell layer-attached blood vessel model was produced from a rat vascular endothelial cell layer formed on the upper surface of the porous membrane and a rat smooth muscle cell layer formed on the lower surface of the porous membrane.

比較例3では、比較例2と同様に、細胞層付着血管モデルを多孔膜の上面に形成されたラット血管内皮細胞層と多孔膜の下面に形成されたラット平滑筋細胞層で製造した。 In Comparative Example 3, similarly to Comparative Example 2, a cell layer-attached blood vessel model was produced from a rat vascular endothelial cell layer formed on the upper surface of the porous membrane and a rat smooth muscle cell layer formed on the lower surface of the porous membrane.

実施例3及び比較例3で使用した細胞は、実施例2及び比較例で使用した細胞と同じであった。細胞層を形成するために、下部マイクロ流路を、初期の細胞濃度が3×10細胞/mlであるラット平滑筋細胞の細胞懸濁液100μLで播種した。培養1日後、上部マイクロ流路を細胞濃度が1×10細胞/mlであるラット血管内皮細胞の細胞懸濁液100μLで播種し、6時間かけて培養した。次に、各培養培地(ラットEC培地/SMC培地)をポンプを用いて、0.7μL/分の流体伝達速度で各流路を通じて流した。培養2日後、実施例3及び比較例3の細胞層付着血管モデルが得られた。 The cells used in Example 3 and Comparative Example 3 were the same as the cells used in Example 2 and Comparative Example. To form a cell layer, the lower microchannel, initial cell concentration was seeded at cell suspension 100μL of rat smooth muscle cells which is 3 × 10 6 cells / ml. One day after culturing, the upper microchannel was seeded with 100 μL of a cell suspension of rat vascular endothelial cells having a cell concentration of 1 × 10 6 cells / ml, and cultured for 6 hours. Next, each culture medium (rat EC medium / SMC medium) was flowed through each channel at a fluid transfer rate of 0.7 μL / min using a pump. Two days after culturing, cell layer-attached blood vessel models of Example 3 and Comparative Example 3 were obtained.

実施例3及び比較例3で製造された細胞層付着血管モデルの下部マイクロ流路を閉じ、トレーサーに対して12.5μg/50μlの濃度でFITC−デキストラン(46945、Sigma−Aldrich社製)を含む培養培地希釈液を上部マイクロ流路を通じて流した。FITC−デキストランを含む培養培地希釈液の流体伝達速度は7μL/分に設定した。
流路を通じてFITC−デキストランを流してから2分後、倒立顕微鏡(製品名:EclipseTs2、Nikon社製)を用いてマイクロ流路での蛍光を画像化した。画像化パラメータに対して、倍率:4倍、ゲイン:1600、及び露出時間:60msが用いられた。これらの結果は、図8A及び図8Bに示している。実施例3及び比較例3の両方において、下部流路で蛍光が観察されなかった。これはFITC−デキストランが上部流路から下部流路に浸透しなかったことを示す。この試験では、多孔膜の両面に細胞層を形成すると、FITC−デキストラン透過を抑制し、多孔膜にバリア特性を付与することを確認できた。
The lower microchannel of the cell layer-attached blood vessel model produced in Example 3 and Comparative Example 3 is closed and contains FITC-dextran (46945, manufactured by Sigma-Aldrich) at a concentration of 12.5 μg / 50 μl with respect to the tracer. The culture medium diluent was flowed through the upper microchannel. The fluid transfer rate of the culture medium diluent containing FITC-dextran was set to 7 μL / min.
Two minutes after flowing FITC-dextran through the channel, fluorescence in the microchannel was imaged using an inverted microscope (product name: EclipseTs2, manufactured by Nikon Corporation). Magnification: 4x, gain: 1600, and exposure time: 60ms were used for the imaging parameters. These results are shown in FIGS. 8A and 8B. No fluorescence was observed in the lower flow path in both Example 3 and Comparative Example 3. This indicates that FITC-dextran did not penetrate from the upper channel to the lower channel. In this test, it was confirmed that forming cell layers on both sides of the porous membrane suppresses FITC-dextran permeation and imparts barrier properties to the porous membrane.

薬物であるフェノルドパムを上部マイクロ流路を通じて500ng/mlの濃度及び0.7μL/minの流速で1日間流すことで、実施例3及び比較例3で製造された細胞層付着血管モデルの多孔膜の血管内皮細胞層を薬物に露出させた。
薬物露出後、上述の細胞層付着血管モデルに対するFITC−デキストラン透過性試験と同じ方法を用いてFITC−デキストラン透過性試験を実施した。これらの結果は、図9A及び図9Bに示した。実施例3の細胞層付着血管モデルでは、上部マイクロ流路に加えて、下部マイクロ流路を含んで広範囲にわたり蛍光が観察された。比較例3の細胞層付着血管モデルでは、下部マイクロ流路で観察された蛍光は最小限であった。この試験では、薬物によって細胞層が損傷された後、実施例3及び比較例3の両方の細胞層付着血管モデルにおけるFITC−デキストランが多孔膜を通過できることを確認できた。また、実施例3の多孔膜は、比較例3の多孔膜よりFITC−デキストランに対して透過性であったので、本例示的な実施態様の多孔膜は、FITC−デキストランの移動を妨げないことを確認できた。従って、本例示的な実施態様の多孔膜は、高感度で血管モデルにおける薬物毒性の評価が可能であることが確認された。
By flowing the drug Phenoldpam through the upper microchannel at a concentration of 500 ng / ml and a flow rate of 0.7 μL / min for 1 day, the porous membrane of the cell layer-attached blood vessel model produced in Example 3 and Comparative Example 3 was prepared. The vascular endothelial cell layer was exposed to the drug.
After drug exposure, the FITC-dextran permeability test was performed using the same method as the FITC-dextran permeability test for the cell layer-attached blood vessel model described above. These results are shown in FIGS. 9A and 9B. In the cell layer-attached blood vessel model of Example 3, fluorescence was observed over a wide range including the lower microchannel in addition to the upper microchannel. In the cell layer-attached blood vessel model of Comparative Example 3, the fluorescence observed in the lower microchannel was minimal. In this test, it was confirmed that FITC-dextran in both the cell layer-attached vascular models of Example 3 and Comparative Example 3 could pass through the porous membrane after the cell layer was damaged by the drug. Further, since the porous membrane of Example 3 was more permeable to FITC-dextran than the porous membrane of Comparative Example 3, the porous membrane of this exemplary embodiment does not interfere with the movement of FITC-dextran. I was able to confirm. Therefore, it was confirmed that the porous membrane of this exemplary embodiment can evaluate drug toxicity in a vascular model with high sensitivity.

実施例4では、実施例1の血管モデルの上部及び下部流路の直線部分に12mm×0.2mm開口を提供することで血管モデルを製造した。開口は、下部流路部材と多孔膜との間に0.2mm幅のスリットが形成されたポリプロピレン補強部材を挿入することで形成された。補強部材は100μmの厚さを有する。図10A及び図10Bは、実施例4の多孔膜の顕微鏡写真を示す。 In Example 4, the blood vessel model was manufactured by providing a 12 mm × 0.2 mm opening in the straight portion of the upper and lower flow paths of the blood vessel model of Example 1. The opening was formed by inserting a polypropylene reinforcing member having a 0.2 mm wide slit formed between the lower flow path member and the porous membrane. The reinforcing member has a thickness of 100 μm. 10A and 10B show micrographs of the porous membrane of Example 4.

実施例5では、実施例1の血管モデルの多孔膜に60℃で15分間コラーゲン(5005−100ML、AdvancedBioMatrix社製)を噴霧した後、コラーゲンを乾燥させて厚いコーティングを形成し、その後、多孔膜の上面にラット血管内皮細胞層を形成し、多孔膜の下面にラット平滑筋細胞層を形成することで、細胞層付着血管モデルを製造した。図11は実施例5の多孔膜の顕微鏡写真を示す。 In Example 5, collagen (5005-100ML, manufactured by AdvancedBioMatrix) was sprayed on the porous membrane of the blood vessel model of Example 1 at 60 ° C. for 15 minutes, and then the collagen was dried to form a thick coating, and then the porous membrane was formed. A cell layer-attached blood vessel model was produced by forming a rat vascular endothelial cell layer on the upper surface of the membrane and forming a rat smooth muscle cell layer on the lower surface of the porous membrane. FIG. 11 shows a micrograph of the porous membrane of Example 5.

実施例6では、実施例4の血管モデルを取り、多孔膜の上面にラット血管内皮細胞層を形成することで、単一の細胞層が付着した血管モデルを製造した。 In Example 6, the blood vessel model of Example 4 was taken, and a rat vascular endothelial cell layer was formed on the upper surface of the porous membrane to produce a blood vessel model to which a single cell layer was attached.

トレーサーに対して1.81×10ビーズ/ml濃度の蛍光ビーズを含む培養培地希釈液を、実施例6で製造された単一の細胞層付着血管モデルの上部マイクロ流路を通じて流し、蛍光ビーズを含まない培養培地を下部マイクロ流路を通じて流した。蛍光ビーズは直径が4umであり、励起波長が580nmであり、蛍光波長が605nmである赤色蛍光染料に標識された。蛍光ビーズを含む培養培地希釈液及び蛍光ビーズを含まない培養培地の流体伝達速度は500μL/分に設定し、上部マイクロ流路の内部圧力は約8.7kPaに設定し、下部マイクロ流路の内部圧力は約1.3kPaに設定し、実際の血管内部の血流及び血圧条件に近接したパラメータを確立した。 A diluted solution of culture medium containing 1.81 × 10 6 beads / ml concentration of fluorescent beads was flowed through the upper microchannel of the single cell layer-attached vascular model produced in Example 6 to the tracer, and the fluorescent beads were flown. The culture medium containing no was flowed through the lower microchannel. The fluorescent beads were labeled with a red fluorescent dye having a diameter of 4 um, an excitation wavelength of 580 nm and a fluorescence wavelength of 605 nm. The fluid transfer rate of the culture medium diluent containing fluorescent beads and the culture medium not containing fluorescent beads was set to 500 μL / min, the internal pressure of the upper microchannel was set to about 8.7 kPa, and the inside of the lower microchannel. The pressure was set to about 1.3 kPa and parameters close to the actual blood flow and blood pressure conditions inside the blood vessel were established.

流体伝達を開始してから一定の時間が経過した後、下部マイクロ流路内部、すなわち培養培地内部の蛍光ビーズの数は、実施例6で2.67×10ビーズ/mlの蛍光ビーズ数を提供した。実施例4の血管モデルの上部流路を通じて1.81×10ビーズ/mlの蛍光ビーズを含む生理食塩水希釈液を流すこと、及び500μL/分の流体伝達速度で下部流路を通じて生理食塩水を流すことは、実施例4で7.23×10ビーズ/mlの蛍光ビーズ数を提供した。この試験では、多孔膜の単一の面に細胞層を形成すると、多孔膜の蛍光ビーズに対する透過性を低減させ、多孔膜にバリア特性を付与することを確認できた。 After a lapse of a predetermined time from the start of the fluid transfer, the internal lower microchannel, that is, the number of the culture medium in the fluorescent beads, fluorescent number beads 2.67 × 10 4 beads / ml in Example 6 Provided. Flowing the saline diluent containing 1.81 × 10 6 beads / ml of fluorescent beads through the upper flow passage of the vessel model of Example 4, and saline through the lower passage at 500 [mu] L / min fluid transfer rate We have provided a number of fluorescent beads 7.23 × 10 5 beads / ml in example 4 to flow. In this test, it was confirmed that forming a cell layer on a single surface of the porous membrane reduces the permeability of the porous membrane to fluorescent beads and imparts barrier properties to the porous membrane.

実施例7では、実施例1の血管モデルを取り、多孔膜の上面に誘導多能性幹細胞由来のヒト血管内皮細胞層を形成し、多孔膜の下面にヒト間葉系幹細胞を形成することで、細胞層付着血管モデルを生成した。 In Example 7, the vascular model of Example 1 was taken, a human vascular endothelial cell layer derived from induced pluripotent stem cells was formed on the upper surface of the porous membrane, and human mesenchymal stem cells were formed on the lower surface of the porous membrane. , Generated a cell layer-attached blood vessel model.

実施例8では、複数の貫通孔の開口がハニカム状に配列されて貫通孔が連通孔を通じて連通される、上記の例示的な実施態様の多孔膜28と同様にポリカーボネートで形成された多孔膜が用いられた。実施例8の多孔膜の開口の平均開口直径は3μmであり、開口の開口率は52%であり、多孔膜の膜厚は1.2μmであり、開口の開口直径の変動係数は5.0%であり、多孔膜の空隙率は80%であった。 In the eighth embodiment, the porous membrane formed of polycarbonate is similar to the porous membrane 28 of the above-exemplified embodiment in which the openings of the plurality of through holes are arranged in a honeycomb shape and the through holes are communicated through the communication holes. It was used. The average opening diameter of the opening of the porous membrane of Example 8 is 3 μm, the aperture ratio of the opening is 52%, the thickness of the porous membrane is 1.2 μm, and the coefficient of variation of the opening diameter of the opening is 5.0. The void ratio of the porous membrane was 80%.

実施例9では、実施例8の血管モデルを取り、多孔膜の上面にラット血管内皮細胞を形成し、多孔膜の下面にラット平滑筋細胞を形成することで、細胞層付着血管モデルを製造した。 In Example 9, the blood vessel model of Example 8 was taken, rat vascular endothelial cells were formed on the upper surface of the porous membrane, and rat smooth muscle cells were formed on the lower surface of the porous membrane to produce a cell layer-attached blood vessel model. ..

Claims (8)

各マイクロ流路が形成される対向面をそれぞれ含む、互いに対向する一対の流路部材と、
多孔膜を厚さ方向に貫通する複数の貫通孔を含み、一対の流路部材の対向面の間に配置され、マイクロ流路間を画定する前記多孔膜と、
を備え、
前記多孔膜には、血管内皮細胞層が設けられ、前記血管内皮細胞層は、マイクロ流路のうちの一つに対向する一面を覆い、
前記貫通孔の平均開口直径は1μm20μmであり、
前記貫通孔の開口率は30%70%であり、
前記多孔膜の膜厚は、前記貫通孔の平均開口直径の半分以下である、
血管モデル。
A pair of flow path members facing each other, including facing surfaces on which each micro flow path is formed,
Includes a plurality of through-holes penetrating the porous film in the thickness direction, is arranged between the opposing surfaces of the pair of the channel members, said porous membrane defining between microchannel,
With
The porous membrane is provided with a vascular endothelial cell layer, and the vascular endothelial cell layer covers one surface facing one of the microchannels.
The average opening diameter of the through hole is 1 [mu] m ~ 20 [mu] m,
The aperture ratio of the through hole is 30% to 70%
The film thickness of the porous membrane is less than half the average opening diameter of the through hole.
Blood vessel model.
前記多孔膜の膜厚は、0.5μm〜10μmである、請求項1に記載の血管モデル。 The blood vessel model according to claim 1, wherein the film thickness of the porous membrane is 0.5 μm to 10 μm. 前記多孔膜の内側に形成される、前記貫通孔同士を連通させる連通孔を更に含み、
前記貫通孔はハニカム状に配列され
前記貫通孔の開口直径の変動係数は10%以下であり
前記多孔膜の空隙率は50%以上である、
請求項1に記載の血管モデル。
The porous membrane is of formed inside, further comprising a communication hole for communicating the through hole with each other,
The through holes are arranged in a honeycomb shape, and the through holes are arranged in a honeycomb shape .
The coefficient of variation of the opening diameter of the through hole is 10% or less .
The porosity of the porous membrane is 50% or more.
The blood vessel model according to claim 1.
他の一つの前記マイクロ流路に対向する前記多孔膜の他の面に設けられている、平滑筋細胞、間葉系幹細胞、ペリサイト、及び線維芽細胞からなる群の中から選択された細胞の細胞層を更に含む、請求項1に記載の血管モデル。 Is provided on the other surface of said porous membrane opposite to the other one the microchannel of smooth muscle cells, mesenchymal stem cells, pericytes, and cells selected from the group consisting of fibroblasts The blood vessel model according to claim 1, further comprising a cell layer of. 前記多孔膜の引張破断伸度が50%以上であり
前記多孔膜の10%の伸長に必要な応力が1000gf/mm以下である、請求項1に記載の血管モデル。
Tensile elongation at break of the porous membrane is not less than 50%,
The blood vessel model according to claim 1, wherein the stress required for 10% elongation of the porous membrane is 1000 gf / mm 2 or less.
前記貫通孔は、平面視で偏平な形状を有し、長軸及び短軸を含む、請求項1に記載の血管モデル。 The blood vessel model according to claim 1, wherein the through hole has a flat shape in a plan view and includes a long axis and a short axis. 前記多孔膜は、前記貫通孔が形成される多孔性領域及び前記貫通孔が形成されていない非多孔性領域を含む、請求項1に記載の血管モデル。 The porous membrane, the porous region and the through hole through hole is formed includes a non-porous region is not formed, vessel model according to claim 1. 請求項1の血管モデルを提供し、
血管内皮細胞層が設けられる前記多孔膜の面に対向する前記マイクロ流路で薬物を含む血液希釈液を流し
前記多孔膜の他の面に対向する前記マイクロ流路内へ漏出される赤血球の数を数える、
こと含む、薬物を含んだ血液希釈液を用いて出血評価を行う方法。
The blood vessel model of claim 1 is provided.
Flowing a blood diluent containing the drug in the microchannel facing the surface of the porous membrane vascular endothelial cell layer is provided,
Count the number of red blood cells to be leaked into the micro flow path opposite to the other surface of the porous membrane,
A method of evaluating bleeding using a blood diluent containing a drug.
JP2019565825A 2017-06-09 2018-06-07 Blood vessel model Active JP6869379B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15/618,151 2017-06-09
US15/618,151 US20180356399A1 (en) 2017-06-09 2017-06-09 Blood vessel model
US201862640589P 2018-03-09 2018-03-09
US62/640,589 2018-03-09
PCT/US2018/036364 WO2018226902A2 (en) 2017-06-09 2018-06-07 Blood vessel model

Publications (2)

Publication Number Publication Date
JP2020521974A JP2020521974A (en) 2020-07-27
JP6869379B2 true JP6869379B2 (en) 2021-05-12

Family

ID=64566007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019565825A Active JP6869379B2 (en) 2017-06-09 2018-06-07 Blood vessel model

Country Status (6)

Country Link
EP (1) EP3635395A4 (en)
JP (1) JP6869379B2 (en)
KR (1) KR102345370B1 (en)
CN (1) CN111263697B (en)
CA (1) CA3066616C (en)
WO (1) WO2018226902A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020195458A1 (en) * 2019-03-28 2021-10-14 富士フイルム株式会社 Measuring device, operation program of measuring device and measuring method
JP2021024089A (en) * 2019-07-31 2021-02-22 株式会社リコー Three-dimensional fabrication model, method for manufacturing the same, and coating agent for hydrogel object
JPWO2021261495A1 (en) * 2020-06-25 2021-12-30
JP2023047434A (en) * 2021-09-27 2023-04-06 東洋製罐グループホールディングス株式会社 Microfluid device, and method for using microfluid device
CN114149923B (en) * 2021-11-19 2024-03-08 大连理工大学 Construction method of single-channel microchip model for endothelial cell-smooth muscle cell co-culture
EP4289934A1 (en) * 2022-06-09 2023-12-13 Finnadvance Oy Cell culture membrane structure, methods for producing the same, cell culture plate, cell culture apparatus comprising the cell culture membrane structure, and methods for cell cultivation by using the cell culture apparatus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696023B2 (en) * 1986-11-10 1994-11-30 宇部日東化成株式会社 Artificial blood vessel and method for producing the same
US7790443B2 (en) * 2002-08-27 2010-09-07 Vanderbilt University Bioreactors with substance injection capacity
WO2005034624A2 (en) * 2003-05-21 2005-04-21 The General Hospital Corporation Microfabricated compositions and processes for engineering tissues containing multiple cell types
JP2005298554A (en) * 2004-04-07 2005-10-27 Sumitomo Electric Ind Ltd Stretched polytetrafluoroethylene porous film having elasticity-restoring property in film thickness direction, its manufacturing method and use of porous film
JP4904025B2 (en) * 2004-08-06 2012-03-28 富士フイルム株式会社 Film production method
US20060266463A1 (en) * 2005-05-27 2006-11-30 Fuji Photo Film Co., Ltd. Honeycomb composite film, and method for producing the same
US20070243574A1 (en) * 2006-01-27 2007-10-18 University Of Arizona Vascular mimic for drug and device evaluation
KR101390755B1 (en) * 2006-03-28 2014-04-30 후지필름 가부시키가이샤 Production method of porous film
JP4734157B2 (en) * 2006-03-30 2011-07-27 富士フイルム株式会社 Honeycomb porous film and honeycomb composite film
US7943683B2 (en) * 2006-12-01 2011-05-17 Tepha, Inc. Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers
EP2248121A2 (en) * 2008-02-11 2010-11-10 The General Hospital Corporation System and method for in vitro blood vessel modeling
CN107988072B (en) * 2008-07-16 2022-11-29 儿童医疗中心有限公司 Organ mimic device with microchannels and methods of use and manufacture thereof
JP2010115624A (en) * 2008-11-14 2010-05-27 Fuji Xerox Co Ltd Microchannel device, separation device, and separation method
CN101520960B (en) * 2009-03-31 2010-09-08 四川大学 Experimental device for in-vitro simulated blood vessel microenvironment
JP2017504320A (en) * 2013-12-20 2017-02-09 プレジデント アンド フェローズ オブ ハーバード カレッジ Low shear microfluidic device and methods of use and manufacture thereof
JP6327618B2 (en) * 2014-01-08 2018-05-23 学校法人関西医科大学 Vascular system simple model
US10465155B2 (en) * 2015-08-10 2019-11-05 Board Of Regents, The University Of Texas System Non-linear flow path devices and methods for cell culture
US10426872B2 (en) * 2015-10-07 2019-10-01 The Regents Of The University Of Michigan Nerve repair scaffolds having high microchannel volume and methods for making the same

Also Published As

Publication number Publication date
KR20200005742A (en) 2020-01-16
CN111263697A (en) 2020-06-09
WO2018226902A2 (en) 2018-12-13
JP2020521974A (en) 2020-07-27
CA3066616A1 (en) 2018-12-13
KR102345370B1 (en) 2021-12-31
EP3635395A4 (en) 2020-07-29
CN111263697B (en) 2022-04-08
EP3635395A2 (en) 2020-04-15
CA3066616C (en) 2022-06-21
WO2018226902A3 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6869379B2 (en) Blood vessel model
JP6041872B2 (en) Bioartificial kidney
Nguyen et al. Microfluidic approach for the fabrication of cell-laden hollow fibers for endothelial barrier research
US10758902B2 (en) Method of fabricating semipermeable ultrathin polymer membranes
Valverde et al. Biomimetic models of the glomerulus
CN110740707B (en) Biopsy phantom device, blood vessel wall phantom device, and method for evaluating test substance
US20230203417A1 (en) Microfluidic device
KR102036843B1 (en) Chip for simulating lung and methof for preparing the same
US20200190456A1 (en) Native Extracellular Matrix-Derived Membrane Inserts for Organs-On-Chips, Multilayer Microfluidics Microdevices, Bioreactors, Tissue Culture Inserts, and Two-dimensional and Three-dimensional Cell Culture Systems
US20130230911A1 (en) Porous structure with independently controlled surface patterns
US20200110075A1 (en) Blood vessel model
Shakeri et al. Engineering Organ-on-a-Chip Systems for Vascular Diseases
WO2019168118A1 (en) Microfluidic channel device
KR101569619B1 (en) Experimental apparatus to simulate the contraction and expansion capability of human body organs for pathophysiological study
Graybill et al. Ultra-thin and ultra-porous nanofiber networks as a basement-membrane mimic
McAllister Continuous Extrusion of Homogeneous and Heterogeneous Hydrogel Tubes
US20230356220A1 (en) Channel device and manufacturing method thereof
Ryu et al. Three-dimensional biodegradable microscaffolding: Scaffold characterization and cell population at single cell resolution
Chien Developing a 3D in vitro Model by Microfluidics
WO2022235210A1 (en) Micropatterned 3d hydrogel microarray in fluidic channels for spheroid-in-gel culture
WO2022272312A1 (en) Nanofiber networks as membrane mimics for in vitro applications
Carmo A multiplexed organ-on-chip device for the study of the blood-brain barrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210413

R150 Certificate of patent or registration of utility model

Ref document number: 6869379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250