JP6868283B2 - Environmental purification powder and its manufacturing method, and environmental purification molded products - Google Patents
Environmental purification powder and its manufacturing method, and environmental purification molded products Download PDFInfo
- Publication number
- JP6868283B2 JP6868283B2 JP2018006171A JP2018006171A JP6868283B2 JP 6868283 B2 JP6868283 B2 JP 6868283B2 JP 2018006171 A JP2018006171 A JP 2018006171A JP 2018006171 A JP2018006171 A JP 2018006171A JP 6868283 B2 JP6868283 B2 JP 6868283B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- environmental purification
- water
- sand
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000746 purification Methods 0.000 title claims description 124
- 239000000843 powder Substances 0.000 title claims description 113
- 230000007613 environmental effect Effects 0.000 title claims description 110
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000004576 sand Substances 0.000 claims description 87
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 75
- 239000002699 waste material Substances 0.000 claims description 66
- 239000002245 particle Substances 0.000 claims description 28
- 239000002002 slurry Substances 0.000 claims description 20
- 238000001694 spray drying Methods 0.000 claims description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 238000000855 fermentation Methods 0.000 claims description 9
- 230000004151 fermentation Effects 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 102
- 238000005266 casting Methods 0.000 description 64
- 241000894006 Bacteria Species 0.000 description 40
- 238000000034 method Methods 0.000 description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 30
- 238000012360 testing method Methods 0.000 description 30
- 230000000694 effects Effects 0.000 description 29
- 238000010438 heat treatment Methods 0.000 description 24
- 239000000047 product Substances 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 23
- 239000000126 substance Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000005416 organic matter Substances 0.000 description 16
- 229910052742 iron Inorganic materials 0.000 description 15
- 230000008569 process Effects 0.000 description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 13
- 229910052698 phosphorus Inorganic materials 0.000 description 13
- 239000011574 phosphorus Substances 0.000 description 13
- 239000002689 soil Substances 0.000 description 13
- 239000007787 solid Substances 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 244000005700 microbiome Species 0.000 description 11
- 235000015097 nutrients Nutrition 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 9
- 229930002868 chlorophyll a Natural products 0.000 description 8
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- 239000007921 spray Substances 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 239000004567 concrete Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 229910001385 heavy metal Inorganic materials 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 230000002195 synergetic effect Effects 0.000 description 5
- 230000036962 time dependent Effects 0.000 description 5
- 229920003169 water-soluble polymer Polymers 0.000 description 5
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 239000002361 compost Substances 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000008635 plant growth Effects 0.000 description 4
- 235000010413 sodium alginate Nutrition 0.000 description 4
- 239000000661 sodium alginate Substances 0.000 description 4
- 229940005550 sodium alginate Drugs 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 239000011449 brick Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 210000003608 fece Anatomy 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 235000000396 iron Nutrition 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000006148 magnetic separator Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002338 electrophoretic light scattering Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920000247 superabsorbent polymer Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 235000012712 vegetable carbon Nutrition 0.000 description 1
- 239000004108 vegetable carbon Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Processing Of Solid Wastes (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Biological Treatment Of Waste Water (AREA)
Description
本発明は廃鋳物砂を原料とする環境浄化用粉体及びその製造方法、並びに環境浄化用成形物に関する。 The present invention relates to an environmental purification powder made from waste cast sand, a method for producing the same, and an environmental purification molded product.
鋳物製造工程から生ずる廃鋳物砂は毎年莫大な量が発生している。これらの廃鋳物砂の一部は、鋳造業向きの再生砂やセメント工場へ代替原料として利用されているが、それ以外の用途で有効な資源として再利用される量は少なく、過半数は埋め戻し材または再利用されずに埋め立て処分とされているのが現状である。
しかし、現在設置されている最終処分場の埋め立て可能な残余量は減少しており、新たな最終処分場の建設も困難な状況となっている。また、廃鋳物砂には鉛や銅等の重金属も含まれることがあるため、土壌からの溶出を防ぐべく、管理型最終処分場への埋め立てが必要な場合もあり、処分費用の高騰化が問題となっている。このため、廃鋳物砂を廃棄物としてではなく、資源として有効に利用する技術が求められている。
A huge amount of waste casting sand generated from the casting manufacturing process is generated every year. Some of these waste casting sands are used as alternative raw materials for recycled sand and cement factories suitable for the foundry industry, but the amount reused as an effective resource for other purposes is small, and the majority is backfilled. The current situation is that the materials are not reused and are disposed of in landfills.
However, the amount of landfill residue that can be reclaimed at the final disposal site currently installed is decreasing, making it difficult to construct a new final disposal site. In addition, since waste casting sand may contain heavy metals such as lead and copper, it may be necessary to reclaim it in a controlled final disposal site in order to prevent elution from the soil, resulting in an increase in disposal costs. It is a problem. Therefore, there is a demand for a technique for effectively using waste cast sand as a resource, not as a waste.
従来、こうした廃鋳物砂を資源として利用する技術としては、廃鋳物砂を焼成して有機物成分を除去したり、湿式で不純物を除いたりして再利用可能な状態にすることが行われている(特許文献1〜4)。 Conventionally, as a technique for utilizing such waste casting sand as a resource, it has been performed to burn the waste casting sand to remove organic components or to remove impurities by a wet method to make it in a reusable state. (Patent Documents 1 to 4).
しかし、上記のような再利用方法では、焼成に多量のエネルギーが必要となったり、不純物の除去のための複雑な工程が不可欠となったりするため、製造コストの高騰化を招来し、大量に発生する廃鋳物砂を処理することは困難となっていた。 However, in the above-mentioned reuse method, a large amount of energy is required for firing and a complicated process for removing impurities is indispensable, which leads to an increase in manufacturing cost and a large amount. It has been difficult to dispose of the generated waste casting sand.
こうした問題を解決すべく、焼成していない廃鋳物砂が有機物やアンモニアガスや重金属イオンの吸着能に優れていることを利用した吸着剤が開発されている(特許文献5)。さらには、焼成していない廃鋳物砂のゼータ電位がバクテリア等の微生物のゼータ電位と異なり負であることに着目し、廃鋳物砂を焼成することなく、微生物が吸着し易い生物担体として利用する技術が知られている(特許文献6)。 In order to solve these problems, an adsorbent has been developed utilizing the fact that uncalcined waste cast sand has an excellent ability to adsorb organic substances, ammonia gas and heavy metal ions (Patent Document 5). Furthermore, paying attention to the fact that the zeta potential of uncalcined waste casting sand is negative unlike the zeta potential of microorganisms such as bacteria, it is used as a biological carrier on which microorganisms easily adsorb without firing the waste casting sand. The technique is known (Patent Document 6).
しかし、廃鋳物砂を焼成することなく、そのまま吸着剤やバクテリア等の生物が吸着し易い生物担体として利用した場合、水中においてpHがアルカリとなり、環境を悪化させるというおそれがあった。
本発明は、上記従来の実情に鑑みてなされたものであって、廃鋳物砂を原料とし、製造に要するエネルギーコストが低廉で、環境を汚染する恐れが少なく、生物担体として優れた機能を有し、植物の育成に適した活力ある土壌作りを可能とする環境浄化用粉体及びその製造方法、並びに環境浄化用成形物を提供することを解決すべき課題としている。
However, when the waste casting sand is used as it is as a biological carrier on which organisms such as adsorbents and bacteria are easily adsorbed without firing, the pH becomes alkaline in water, which may worsen the environment.
The present invention has been made in view of the above-mentioned conventional circumstances, uses waste cast sand as a raw material, has a low energy cost required for production, is less likely to pollute the environment, and has excellent functions as a biological carrier. However, it is an issue to be solved to provide a powder for environmental purification and a method for producing the same, and a molded product for environmental purification, which enables the creation of vibrant soil suitable for growing plants.
本発明者らは、廃鋳物砂を焼成することなく、そのまま環境浄化用粉体として利用する場合において、水中でpHがアルカリとなるという問題点の解決について鋭意研究を行った。その結果、廃鋳物砂に付着しているアルカリ成分が原因であることを見出し、さらには、このアルカリ成分は加熱処理によって揮散し、除去されることを見出し、本発明を完成させるに至った。 The present inventors have conducted intensive research on solving the problem that the pH becomes alkaline in water when the waste casting sand is used as it is as an environmental purification powder without firing. As a result, it was found that the cause was an alkaline component adhering to the waste casting sand, and further, it was found that this alkaline component was volatilized and removed by heat treatment, and the present invention was completed.
すなわち、本発明の環境浄化用粉体は、有機成分が炭素含有量として1質量%以上40質量%以下で含まれている廃鋳物砂が180℃以上400℃以下となるように加熱処理されており、pH7におけるゼータ電位が−10mV以下であることを特徴とする。 That is, the environmental purification powder of the present invention is heat-treated so that the waste casting sand containing an organic component having a carbon content of 1% by mass or more and 40% by mass or less is 180 ° C. or more and 400 ° C. or less. It is characterized in that the zeta potential at pH 7 is -10 mV or less.
本発明の環境浄化用粉体は、有機成分を含み炭素含有量が1質量%以上40質量%以下の廃鋳物砂を原料としており、その廃鋳物砂が400℃以下となるように加熱処理されているため、有機分が未だ燃焼除去されずに残留している。発明者の試験結果によれば、本発明の環境浄化用粉体は、廃鋳物砂に有機物が残留していることに起因して、pH7におけるゼータ電位が−10mV以下となっている。これに対して水中の有機物を分解するバクテリアは正のゼータ電位を有している。(例えば、集菌技術に関する研究〜複合減菌装置の開発〜、埼玉県産業技術総合センター研究報告、第2巻(2004)等)。このため、本発明の環境浄化用粉体は、水中の有機物を分解するバクテリアを静電的に引き寄せるという、生物担体としての優れた機能を発揮する。このため、バクテリアによる被処理水の生物処理にとって極めて都合が良い。また、負のゼータ電位はバクテリアの栄養源となる有機物を引き寄せる効果も発揮する。これらの相乗効果により、バクテリアの活動が活性化され、水系の浄化作用が発揮されることとなる。また、バクテリアによって分解されて生成した窒素分やリン酸等が肥料成分となり、植物の成長が促進される。このため、植栽土や植生基盤材、目砂、目土などに混ぜることにより客土の活力を高めることができ、植物の育成に適した活力ある土壌作りが可能となる。
また、加熱処理は400℃以下という低い温度で行われるため、焼成されていない鋳物砂と同様(特許文献5参照)、アンモニアガスや重金属イオンに対する吸着能を有することが期待できる。
さらには、バクテリアによる被処理水の生物処理やアンモニアガス等に対する吸着能を通じて、臭気についても低減させることができる。
The powder for environmental purification of the present invention is made from waste casting sand containing an organic component and having a carbon content of 1% by mass or more and 40% by mass or less, and is heat-treated so that the waste casting sand is 400 ° C. or less. Therefore, the organic matter remains without being burned and removed. According to the test results of the inventor, the environmental purification powder of the present invention has a zeta potential at pH 7 of -10 mV or less due to the residual organic matter in the waste casting sand. Bacteria that decompose organic matter in water, on the other hand, have a positive zeta potential. (For example, research on bacteriostatic technology-development of complex sterilization device-, Saitama Prefectural Industrial Technology Center Research Report, Volume 2 (2004), etc.). Therefore, the powder for environmental purification of the present invention exhibits an excellent function as a biological carrier by electrostatically attracting bacteria that decompose organic substances in water. Therefore, it is extremely convenient for the biological treatment of the water to be treated by bacteria. Negative zeta potentials also have the effect of attracting organic matter, which is a nutrient source for bacteria. Due to these synergistic effects, the activity of bacteria is activated and the purification action of the water system is exerted. In addition, nitrogen and phosphoric acid produced by decomposition by bacteria become fertilizer components and promote plant growth. Therefore, the vitality of the soil dressing can be enhanced by mixing it with the planting soil, the vegetation base material, the sand, the soil, etc., and it is possible to create a vibrant soil suitable for growing plants.
Further, since the heat treatment is performed at a low temperature of 400 ° C. or lower, it can be expected to have an adsorptive ability to ammonia gas and heavy metal ions as in the case of uncalcined cast sand (see Patent Document 5).
Furthermore, the odor can be reduced through the biological treatment of the water to be treated by bacteria and the adsorption ability to ammonia gas and the like.
これに対して、400℃を超えて廃鋳物砂を加熱処理した場合、廃鋳物砂に含まれる有機物は燃焼除去され、本来の鋳物砂を構成しているケイ砂等が示す正のゼータ電位となるため、バクテリアを静電的に引き寄せるという効果を発揮することはできない。また、バクテリアの栄養源となる有機物を引き寄せる効果も小さい。このため、バクテリアの活動は不活発となり、水系の浄化作用が発揮され難くなる。また、臭気を低減させる効果も低くなる。 On the other hand, when the waste casting sand is heat-treated at a temperature exceeding 400 ° C., the organic matter contained in the waste casting sand is burned and removed, and the positive zeta potential indicated by the silica sand or the like constituting the original casting sand is obtained. Therefore, the effect of electrostatically attracting bacteria cannot be exerted. In addition, the effect of attracting organic matter, which is a nutrient source for bacteria, is small. For this reason, the activity of bacteria becomes inactive, and it becomes difficult to exert the purifying action of the water system. In addition, the effect of reducing the odor is also reduced.
また、本発明の環境浄化用粉体は、有機成分が炭素含有量として1質量%以上40質量%以下で含まれている廃鋳物砂が180℃以上となるように加熱処理されている。本発明者によれば、有機成分が炭素含有量として1質量%以上40質量%以下で含まれている廃鋳物砂が180℃以上となるように加熱処理した場合、有機物中に含まれるアルカリ成分が揮発し除去される。このため、この環境浄化用粉体を水中に投じてもpHの変動は小さく、アルカリ側に大きく変化するということはない。このため、環境を悪化させるというおそれが少ない。これに対して、加熱処理をしていない廃鋳物砂では、水中に投じた場合、有機物中に含まれるアルカリ成分が残留しているため、水中に投じた場合、アルカリ側に大きく変化し、環境を悪化させるというおそれが生じる。 Further, the environmental purification powder of the present invention is heat-treated so that the waste casting sand containing an organic component having a carbon content of 1% by mass or more and 40% by mass or less is 180 ° C. or more. According to the present inventor, when the waste casting sand containing an organic component having a carbon content of 1% by mass or more and 40% by mass or less is heat-treated to 180 ° C. or more, the alkaline component contained in the organic substance. Is volatilized and removed. Therefore, even if this environmental purification powder is poured into water, the pH fluctuation is small and does not change significantly on the alkaline side. Therefore, there is little risk of deteriorating the environment. On the other hand, in the case of waste cast sand that has not been heat-treated, when it is thrown into water, the alkaline component contained in the organic matter remains, so when it is thrown into water, it changes significantly to the alkaline side, and the environment. There is a risk of worsening.
したがって、本発明の環境浄化用粉体によれば、廃鋳物砂を原料とし、製造に要するエネルギーコストが低廉で、環境を汚染する恐れが少なく、生物担体として優れた機能を有し、植物の育成に適した活力ある土壌作りを可能となる。また、バクテリアによる被処理水の生物処理やアンモニアガス等に対する吸着能を通じて、臭気を低減させる機能も有することとなる。 Therefore, according to the powder for environmental purification of the present invention, waste casting sand is used as a raw material, the energy cost required for production is low, there is little risk of polluting the environment, and it has an excellent function as a biological carrier, and is a plant. It is possible to create vibrant soil suitable for growing. In addition, it also has a function of reducing odor through biological treatment of water to be treated by bacteria and adsorption ability to ammonia gas and the like.
なお、本発明の環境浄化用粉体は、「有機成分が炭素含有量として1質量%以上40質量%以下で含まれている廃鋳物砂が180℃以上400℃以下となるように加熱処理されており、・・・・」とされており、いわゆるプロダクト・バイ・プロセスによって表現されているが、これは、廃鋳物砂が180℃以上400℃以下となるように加熱処理されることにより、どのような構造的変化が生じているかが明確でなく、このためプロダクト・バイ・プロセス以外の方法で表現することが不可能・非現実的であることによるものである。 The environmental purification powder of the present invention is heat-treated so that the waste casting sand containing an organic component having a carbon content of 1% by mass or more and 40% by mass or less is 180 ° C. or more and 400 ° C. or less. It is expressed by the so-called product-by-process, but this is because the waste casting sand is heat-treated so that it is 180 ° C or higher and 400 ° C or lower. This is because it is not clear what kind of structural change is occurring, and therefore it is impossible and unrealistic to express it by any method other than product-by-process.
本発明の環境浄化用粉体の原料となる廃鋳物砂は、ケイ砂、粘土、デンプン、植物性油及び炭素を含む生砂型からの廃鋳物砂、及び/又は、ケイ砂と有機バインダー樹脂とを含む有機砂型からの廃鋳物砂とすることができる。これらの廃鋳物砂は、有機成分を多く含んでいるため、好適に用いることができる。 The waste casting sand used as a raw material for the environmental purification powder of the present invention includes silica sand, clay, starch, waste casting sand from a raw sand mold containing vegetable oil and carbon, and / or silica sand and an organic binder resin. It can be a waste casting sand from an organic sand mold containing. Since these waste casting sands contain a large amount of organic components, they can be preferably used.
また、本発明の環境浄化用粉体は前述したように、水中の有機物を分解するバクテリアを静電的に引き寄せるという、生物担体としての優れた機能を発揮するとともに、水中に投じても水質をアルカリ性側に大きく変動させることはないため、これを固化剤で固めて成形することにより、優れた環境浄化用成形物とすることができる。
このような成形物であれば、例えば、水処理用の吸着塔等に環境浄化用成形物充填した場合、圧損が小さくなり、吸着塔からの流出もなく、ハンドリングも容易となる。また、植栽用土として用いた場合、バクテリアを静電的に引き寄せるという、生物担体としての優れた機能を発揮するとともに、隙間が形成されて多くの空気を取り込むことができるため、植物の成育環境が良好となる。
Further, as described above, the powder for environmental purification of the present invention exerts an excellent function as a biological carrier of electrostatically attracting bacteria that decompose organic substances in water, and even when thrown into water, the water quality is improved. Since it does not fluctuate significantly on the alkaline side, it can be molded by solidifying it with a solidifying agent to obtain an excellent molded product for environmental purification.
With such a molded product, for example, when the adsorption tower for water treatment is filled with the molded product for environmental purification, the pressure loss becomes small, there is no outflow from the adsorption tower, and handling becomes easy. In addition, when used as planting soil, it exerts an excellent function as a biological carrier by electrostatically attracting bacteria, and a gap is formed to take in a large amount of air, so that it is a plant growth environment. Becomes good.
固化剤としては、アルギン酸ソーダ、アクリル系の高吸水性樹脂、ポリビニルアルコール樹脂、ポリエチレン樹脂等の有機ポリマー化合物や、酸化(軽焼)マグネシウム等の無機粉末等が挙げられる。また、固化剤とともに無機粉末を加えてもよい。水分調整用無機粉末としては特に限定はないが、溶融スラグ、コンガラ、クリンカーアッシュ、石英、硅砂、粘土等の粉末を用いることができる。また、本発明の環境浄化用粉体は、乾燥した状態としてもよい。 Examples of the solidifying agent include organic polymer compounds such as sodium alginate, acrylic highly water-absorbent resin, polyvinyl alcohol resin, and polyethylene resin, and inorganic powders such as oxidized (lightly baked) magnesium. Inorganic powder may be added together with the solidifying agent. The inorganic powder for adjusting the water content is not particularly limited, but powders such as molten slag, congara, clinker ash, quartz, silica sand, and clay can be used. Further, the environmental purification powder of the present invention may be in a dry state.
また、固化剤を略中性の水溶性ポリマーとし、水分調整用無機粉末の添加によって含水率を適宜調整することができる。ここで、略中性の水溶性ポリマーとは、水に溶解させたときに植物の生育に適切な中性域である5.5〜8.6の範囲となる水溶性ポリマーのことをいい、具体的には、アルギン酸ソーダ、アクリル系の高吸水性樹脂、ポリビニルアルコール樹脂等が挙げられる。このようにして製造された環境浄化用成形物は、固化剤として略中性の水溶性ポリマーを用いているため、pHがほぼ中性となり、環境浄化材料として、樹脂、不織布、スポンジ、繊維、ゴム、紙、木材等に、混合、含浸、固着などして好適に利用することができ、これらは、粉体としたり、ペレット状にしたり、シートやマット状にしたり、任意の形状の成形品とすることもできる。また、アンモニアや重金属などに対する吸着性も期待できる。
発明者らの試験結果によれば、含水率が25質量%未満では造粒が困難となり、篩工程における歩留まりが悪くなる。また、含水率が35質量%を超えると、フレコン内で自重により粒子同士がくっついて大きな塊状となり易くなる。
Further, the solidifying agent is a substantially neutral water-soluble polymer, and the water content can be appropriately adjusted by adding an inorganic powder for adjusting the water content. Here, the substantially neutral water-soluble polymer means a water-soluble polymer in the range of 5.5 to 8.6, which is a neutral range suitable for plant growth when dissolved in water. Specific examples thereof include sodium alginate, acrylic superabsorbent polymer, polyvinyl alcohol resin and the like. Since the molding for environmental purification produced in this manner uses a substantially neutral water-soluble polymer as a solidifying agent, the pH becomes almost neutral, and as the environmental purification material, resin, non-woven fabric, sponge, fiber, etc. It can be suitably used by mixing, impregnating, fixing, etc. with rubber, paper, wood, etc., and these can be made into powders, pellets, sheets, mats, or molded products of any shape. It can also be. In addition, it can be expected to have adsorptivity to ammonia and heavy metals.
According to the test results of the inventors, if the water content is less than 25% by mass, granulation becomes difficult and the yield in the sieving process becomes poor. Further, when the water content exceeds 35% by mass, the particles tend to stick to each other due to their own weight in the flexible container to form a large lump.
本発明の環境浄化用粉体の製造方法は、有機成分が炭素含有量として1質量%以上40質量%以下で含まれている廃鋳物砂が180℃以上400℃以下となるように加熱処理する加熱工程を備えることを特徴とする。
さらには、粒子径に応じて分級する分級工程を備えることも好ましい。こうであれば、目的に応じて様々な粒子径の環境浄化用粉体とすることができる。
In the method for producing an environmental purification powder of the present invention, waste casting sand containing an organic component having a carbon content of 1% by mass or more and 40% by mass or less is heat-treated so as to be 180 ° C. or more and 400 ° C. or less. It is characterized by including a heating step.
Furthermore, it is also preferable to include a classification step for classifying according to the particle size. In this case, powders for environmental purification having various particle sizes can be obtained depending on the purpose.
また、前記加熱工程前に廃鋳物砂を水洗する洗浄工程を備えていてもよい。こうであれば、洗浄工程では廃鋳物砂が水洗されるため、廃鋳物砂に含まれている水溶性の有害物が除去される。このため、有害物の溶出のおそれが少ない浄化材となる。 Further, a washing step of washing the waste casting sand with water may be provided before the heating step. In this case, since the waste casting sand is washed with water in the washing step, the water-soluble harmful substances contained in the waste casting sand are removed. Therefore, it is a purifying material with less risk of elution of harmful substances.
さらには、廃鋳物砂に含まれる鉄類を除去する鉄除去工程を備えていてもよい。こうであれば、浄化材が鉄さびによって固化したり、赤く変色したりするのを防ぐことができる。浄化材の鉄類を除くためには、廃鋳物砂に対して、磁力で鉄類を除去する鉄類除去装置を通過させること等の手段を用いることができる。 Further, an iron removing step for removing irons contained in the waste casting sand may be provided. In this case, it is possible to prevent the purifying material from solidifying due to iron rust or turning red. In order to remove iron as a purifying material, means such as passing an iron removing device for removing iron by magnetic force through the waste casting sand can be used.
また、本発明の環境浄化用粉体は、細かく粉砕した廃鋳物砂のスラリーをスプレードライ法によって加熱乾燥して得ることもできる。すなわち、有機成分が炭素含有量として1質量%以上40質量%以下で含まれており、平均粒子径が40μm以下の粒子径の廃鋳物砂微細粉に水を加えてスラリーとするスラリー工程と、該スラリーをスプレードライ装置でスラリー乾燥物が180℃以上400℃以下となるように噴霧乾燥して、pH7におけるゼータ電位が−10mV以下である環境浄化用粉体とするスプレードライ工程とを備えることを特徴とする環境浄化用粉体の製造方法である。 Further, the powder for environmental purification of the present invention can also be obtained by heating and drying a slurry of finely crushed waste casting sand by a spray drying method. That is, a slurry step in which water is added to waste casting sand fine powder having a carbon content of 1% by mass or more and 40% by mass or less and an average particle size of 40 μm or less to form a slurry. It is provided with a spray-drying step of spray-drying the slurry with a spray-drying device so that the dried slurry is 180 ° C. or higher and 400 ° C. or lower to obtain an environmental purification powder having a zeta potential at pH 7 of −10 mV or lower. It is a method for producing a powder for environmental purification, which is characterized by the above.
この方法によれば、スプレードライ工程における噴霧条件(例えばスプレーノズル穴の大きさや噴霧圧等)を制御することにより環境浄化用粉体の粒子径をコントロールすることが可能となり、さらさらとしたハンドリングが容易な顆粒状の粉体とすることができる。このため、河川や湖沼投入した場合において崩壊し難いため、濁りを生ずることも少ない。また、袋詰め作業において埃が立つこともほとんどなく、コンポストや堆肥の製造等において添加剤として使用した際に、分散性、混合性が優れる。さらには、スプレードライ工程において有機成分が炭素含有量として1質量%以上40質量%以下で含まれている廃鋳物砂が180℃以上となるように加熱処理されているため、前述したように、有機物中に含まれるアルカリ成分が揮発し除去される。このため、この環境浄化用粉体を水中に投じてもpHの変動は小さく、アルカリ側に大きく変化するということはない。 According to this method, it is possible to control the particle size of the powder for environmental purification by controlling the spray conditions (for example, the size of the spray nozzle hole, the spray pressure, etc.) in the spray drying process, and the handling is smooth. It can be easily made into a granular powder. For this reason, it is unlikely to collapse when it is thrown into a river or lake, and it is less likely to cause turbidity. In addition, there is almost no dust generated in the bagging work, and when used as an additive in the production of compost and compost, the dispersibility and mixability are excellent. Further, in the spray-drying step, the waste casting sand containing an organic component having a carbon content of 1% by mass or more and 40% by mass or less is heat-treated so as to have a carbon content of 180 ° C. or more. Alkaline components contained in organic matter are volatilized and removed. Therefore, even if this environmental purification powder is poured into water, the pH fluctuation is small and does not change significantly on the alkaline side.
また、スプレードライ工程において有機成分が炭素含有量として1質量%以上40質量%以下で含まれている廃鋳物砂が400℃以下となるように加熱処理されているため、有機分が未だ燃焼除去されずに残留しており、残留する有機物によって、pH7におけるゼータ電位が−10mV以下となっている。このため、水中の有機物を分解するバクテリアを静電的に引き寄せるという、生物担体としての優れた機能を発揮する。このため、バクテリアによる被処理水の生物処理にとって極めて都合が良い。また、負のゼータ電位はバクテリアの栄養源となる有機物を引き寄せる効果も発揮する。これらの相乗効果により、ひいてはバクテリアの活動が活性化され、水系の浄化作用が発揮されることとなる。さらには、バクテリアによる被処理水の生物処理やアンモニアガス等に対する吸着能を通じて、臭気を低減させる機能も有することとなる。このため、養豚場や鶏舎やコンポストに環境浄化用粉体を撒いておくことにより、臭気を低減させることができる。 Further, in the spray-drying step, the waste casting sand containing an organic component having a carbon content of 1% by mass or more and 40% by mass or less is heat-treated so as to be 400 ° C. or less, so that the organic component is still burned and removed. The zeta potential at pH 7 is -10 mV or less due to the remaining organic matter. Therefore, it exhibits an excellent function as a biological carrier by electrostatically attracting bacteria that decompose organic matter in water. Therefore, it is extremely convenient for the biological treatment of the water to be treated by bacteria. Negative zeta potentials also have the effect of attracting organic matter, which is a nutrient source for bacteria. Due to these synergistic effects, the activity of bacteria is activated, and the purification action of the water system is exerted. Furthermore, it also has a function of reducing odor through biological treatment of water to be treated by bacteria and adsorption ability to ammonia gas and the like. Therefore, the odor can be reduced by sprinkling the environmental purification powder on the pig farm, the poultry house, or the compost.
また、鋳物工場では鋳物砂をリサイクル使用する場合、微粉となった鋳物砂は製品に悪影響を及ぼすため敬遠され易く、廃鋳物砂としては細かい粒度のものが多くなる傾向にある。一方、スプレー法を用いた製造方法では、平均粒子径が40μm以下という細かい粒子径の廃鋳物砂微細粉をスプレードライするため、鋳物工場から廃棄され易い細かい廃鋳物砂を原料にできる。このため、廃鋳物砂のリサイクル使用に適用し易いという利点を有する。 Further, when the foundry recycles the foundry sand, the finely divided foundry sand has an adverse effect on the product and is easily avoided, and the waste foundry sand tends to have a fine particle size. On the other hand, in the manufacturing method using the spray method, since the fine powder of waste casting sand having an average particle size of 40 μm or less is spray-dried, fine waste casting sand that is easily discarded from the foundry can be used as a raw material. Therefore, it has an advantage that it can be easily applied to the recycled use of waste casting sand.
なお、スプレードライ法の種類については特に限定はなく、スラリーを噴霧して乾燥させるものであればよい。例えば、ロータリーアトマイザーを用いたディスク噴射型のスプレードライ装置や、ノズルから噴霧するノズル噴射型のスプレードライ装置等を用いることができる。 The type of spray-drying method is not particularly limited, and any method may be used as long as the slurry is sprayed and dried. For example, a disc injection type spray drying device using a rotary atomizer, a nozzle injection type spray drying device that sprays from a nozzle, or the like can be used.
スプレー法を用いた製造方法では、スラリー工程においてスラリー中に固化剤を添加してもよい。こうであれば、製造された環境浄化用粉体の強度を高めることができる。このため、河川や湖沼投入した場合において、さらに崩壊し難くなり、濁りを生ずることもほとんどなく、さらにハンドリング性に優れた環境浄化用粉体となる。また、袋詰め作業において埃が立つこともない。 In the production method using the spray method, a solidifying agent may be added to the slurry in the slurry step. In this case, the strength of the produced environmental purification powder can be increased. Therefore, when it is thrown into a river or lake, it becomes more difficult to collapse, hardly causes turbidity, and it becomes a powder for environmental purification with excellent handleability. In addition, no dust is generated during the bagging work.
以下、本発明の実施の形態を説明するが、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
環境浄化用粉体の原料となる廃鋳物砂については、鉄鋳物、アルミ鋳物、銅合金鋳物等に用いられた廃鋳物砂を用いることができる。この中でも鉄鋳物に用いられた廃鋳物砂が特に好ましい。アルミ鋳物や銅合金鋳物は軟らかいために削られ易く、アルミや銅合金が多量に混入しているおそれがある。また、銅合金には鉛等の有害な重金属を含むおそれがある。 As the waste casting sand used as a raw material for the powder for environmental purification, the waste casting sand used for iron castings, aluminum castings, copper alloy castings and the like can be used. Of these, waste casting sand used for iron casting is particularly preferable. Since aluminum castings and copper alloy castings are soft, they are easily scraped, and there is a possibility that a large amount of aluminum or copper alloy is mixed. In addition, copper alloys may contain harmful heavy metals such as lead.
ただし、原料となる廃鋳物砂は、有機成分が炭素含有量として1質量%以上40質量%以下で含まれていなければならない。有機成分がこの範囲で含まれていれば、pH7におけるゼータ電位が−10mV以下(さらに好ましくは−20mV以下)となり、正のゼータ電位を有する水中の有機物を分解するバクテリアを静電的に引き寄せる機能を発揮する。このため、生物担体としての優れた機能を発揮し、バクテリアによる被処理水の生物処理が盛んになされることとなる。また、環境浄化用粉体表面の負のゼータ電位はバクテリアの栄養源となる有機物を引き寄せる効果も発揮する。これらの相乗効果により、ひいてはバクテリアの活動が活性化され、水系の浄化作用が発揮されることとなる。 However, the waste casting sand used as a raw material must contain an organic component in a carbon content of 1% by mass or more and 40% by mass or less. If the organic component is contained in this range, the zeta potential at pH 7 becomes -10 mV or less (more preferably -20 mV or less), and the function of electrostatically attracting bacteria that decompose organic matter in water having a positive zeta potential. Demonstrate. For this reason, it exhibits an excellent function as a biological carrier, and biological treatment of the water to be treated by bacteria is actively carried out. In addition, the negative zeta potential on the surface of the powder for environmental purification also exerts the effect of attracting organic substances that are nutrient sources for bacteria. Due to these synergistic effects, the activity of bacteria is activated, and the purification action of the water system is exerted.
鋳物砂型には、ケイ砂、粘土、デンプン、植物性油、炭素等を含む生砂型や、ケイ砂、フェノール樹脂やフラン樹脂等の有機バインダー樹脂を含む有機砂型があるが、そのどちらも原料として用いることができる。 Casting sand molds include raw sand molds containing silica sand, clay, starch, vegetable oil, carbon, etc., and organic sand molds containing organic binder resins such as silica sand, phenol resin and furan resin, both of which are used as raw materials. Can be used.
鋳物工場から回収された上記の廃鋳物砂は、まず大きな固形物をスクリーン等により除去される。除去された固形物はロッドミル等で粉砕し、再度スクリーンで分級してもよい。こうして大きな固形物を除去された廃鋳物砂は加熱炉において180℃〜400℃となるように加熱されて、実施形態の環境浄化用粉体となる。 In the above-mentioned waste casting sand recovered from the foundry, a large solid substance is first removed by a screen or the like. The removed solid matter may be crushed with a rod mill or the like and classified again with a screen. The waste casting sand from which large solids have been removed is heated to 180 ° C. to 400 ° C. in a heating furnace to obtain the environmental purification powder of the embodiment.
こうして得られた環境浄化用粉末は、そのまま浄化材として河川等の浄化に用いることができる。また、環境浄化用粉末に対し、さらに固化剤として普通ポルトランドセメント、酸化マグネシウム、珪酸ナトリウム、珪酸カリウム等の固化剤を加え、さらに水を加えて造粒装置によって造粒したものを浄化用成形物とすることができる。また、こうして得られた浄化用成形物をさらに加圧成形してブリック状、リング状、板状、円柱状、球状、パイプ状等、目的によって適宜適当な形状に成形することも可能である。 The environmental purification powder thus obtained can be used as it is as a purification material for purification of rivers and the like. In addition, a solidifying agent such as ordinary Portland cement, magnesium oxide, sodium silicate, or potassium silicate is added to the environmental purification powder as a solidifying agent, and water is further added to granulate the powder with a granulator. Can be. Further, the purification molded product thus obtained can be further pressure-molded to be appropriately formed into an appropriate shape depending on the purpose, such as a brick shape, a ring shape, a plate shape, a columnar shape, a spherical shape, or a pipe shape.
また、この環境浄化用粉末に有機バインダーやカルシウム系固化剤や酸化マグネシウム系固化剤等を添加し、さらに水を加え、遊星式混合攪拌機。真空土練機、縦型ミキサー、パグルミキサー等の混合機を用いて混合し、造粒装置によって粒子形状とした後、ストックヤードに貯留して固化するのを待つ。こうして得られた環境浄化用成形物は、水中においても流されることがないため、水中においてBODやCODを減らすための浄化材として用いたり、環境浄化材料として、樹脂、不織布、スポンジ、繊維、ゴム、紙、木材等に、混合、含浸、固着などして好適に利用することができ、これらは、粉体としたり、ペレット状にしたり、シートやマット状にしたり、任意の形状の成形品とすることもできる。また、アンモニアや重金属などに対する吸着性も期待できる。 In addition, an organic binder, a calcium-based solidifying agent, a magnesium oxide-based solidifying agent, etc. are added to this environmental purification powder, and water is further added to form a planetary mixing stirrer. Mix using a mixer such as a vacuum clay kneader, vertical mixer, or puggle mixer, shape the particles with a granulator, and then store them in the stockyard and wait for them to solidify. Since the molded product for environmental purification thus obtained is not washed away even in water, it can be used as a purifying material for reducing BOD and COD in water, or as an environmental purification material, resin, non-woven fabric, sponge, fiber, rubber. , Paper, wood, etc. can be mixed, impregnated, fixed, etc., and these can be made into powders, pellets, sheets, mats, and molded products of any shape. You can also do it. In addition, it can be expected to have adsorptivity to ammonia and heavy metals.
また、この環境浄化用粉末をセメント粉末と混合し、プレミクスモルタル材とすることもでき、塗付したり、型枠に流して固化させた後、型枠から外して環境浄化用成形物としてのコンクリート板とすることもできる。こうして得られたコンクリート板は、生物担体としての優れた機能を発揮する環境浄化用粉末を含有するため、バクテリアによる被処理水の生物処理が盛んになされることとなる。また、バクテリアの栄養源となる有機物を引き寄せる効果も発揮するため、バクテリアの活動が活性化され、水系の浄化作用が発揮されることとなる。なお、生物による水浄化はコンクリート板の表面で行われるため、コンクリート板の表面部分のみを環境浄化用粉末含有のコンクリートとし、内部は通常の骨材を用いたコンクリートとしても、同様の効果を得ることができる。 In addition, this environmental purification powder can be mixed with cement powder to form a premix mortar material, which can be applied or poured into a mold to solidify, and then removed from the mold to form an environmental purification molded product. It can also be a concrete plate of. Since the concrete plate thus obtained contains an environmental purification powder that exerts an excellent function as a biological carrier, biological treatment of the water to be treated by bacteria is actively carried out. In addition, since it also exerts the effect of attracting organic substances that are nutrient sources for bacteria, the activity of bacteria is activated and the purifying action of the water system is exerted. Since water purification by living organisms is performed on the surface of the concrete plate, the same effect can be obtained even if only the surface part of the concrete plate is made of concrete containing powder for environmental purification and the inside is made of concrete using ordinary aggregate. be able to.
以下、本発明をさらに具体化した実施例について説明する。 Hereinafter, examples in which the present invention is further embodied will be described.
(実施例1)
実施例1の環境浄化用粉体は、図1に示す工程により製造した。
<固形物除去工程S11>
まず固形物除去工程S11として、鉄鋳物工場から廃棄された有機バインダー樹脂を含む有機砂型起因の廃鋳物砂(炭素含有量として4質量%含有)を収集し、50mm及び5mmの2段階のスクリーンに通してガラス、金属、レンガ等の夾雑物を除去し、5mm未満の粒子径の部分を分取した。一方、5〜50mmの分級部分については、ロッドミルで5mm未満の粒子径に破砕して5mm未満の粒子径とした。
(Example 1)
The environmental purification powder of Example 1 was produced by the process shown in FIG.
<Solid matter removal step S11>
First, as the solid matter removing step S11, waste casting sand (containing 4% by mass as carbon content) caused by an organic sand mold containing an organic binder resin discarded from an iron foundry is collected and put on a two-stage screen of 50 mm and 5 mm. By passing through, impurities such as glass, metal, and brick were removed, and a portion having a particle size of less than 5 mm was separated. On the other hand, the classified portion of 5 to 50 mm was crushed with a rod mill to a particle size of less than 5 mm to obtain a particle size of less than 5 mm.
<洗浄工程S12>
次に洗浄工程S12として、固形物除去工程S11で分取された5mm未満の粒子をスパイラル洗浄機に送り、水洗浄を行った。
<Washing step S12>
Next, as the cleaning step S12, the particles of less than 5 mm separated in the solid matter removing step S11 were sent to a spiral cleaning machine and washed with water.
<鉄除去工程S13>
さらに、洗浄工程S12によって洗浄された5mm未満の粒子中の鉄類を湿式磁選機を用いて除去した。
<Iron removal step S13>
Further, irons in the particles of less than 5 mm washed by the washing step S12 were removed by using a wet magnetic separator.
<フィルタープレス工程S14>
水洗浄され、鉄除去された廃鋳物砂をシックナーに送り、水中でゆっくり撹拌しながら沈殿濃縮し、さらにフィルタープレス装置でろ過した。
<Filter press process S14>
The waste casting sand washed with water and iron-removed was sent to a thickener, precipitated and concentrated in water with gentle stirring, and further filtered with a filter press device.
<加熱工程S15>
最後にフィルタープレスされたろ過物が300℃となるように加熱炉内で充分乾燥させて、実施例1の環境浄化用粉体を得た(加熱工程S15)。
<Heating step S15>
Finally, the filter-pressed filtrate was sufficiently dried in a heating furnace so as to have a temperature of 300 ° C. to obtain an environmental purification powder of Example 1 (heating step S15).
(比較例1)
比較例1の環境浄化用粉体は、実施例1と同様にして固形物除去工程S11、洗浄工程S12、鉄除去工程S13、フィルタープレス工程S14を行って得られた粉体であり、加熱工程S15は行っていない。
(Comparative Example 1)
The environmental purification powder of Comparative Example 1 is a powder obtained by performing the solid matter removing step S11, the cleaning step S12, the iron removing step S13, and the filter pressing step S14 in the same manner as in Example 1, and is a heating step. S15 is not done.
(比較例2)
実施例1の加熱工程S15における加熱温度を800°Cとし、その他の工程は実施例1と同様に行った。
(Comparative Example 2)
The heating temperature in the heating step S15 of Example 1 was set to 800 ° C., and other steps were carried out in the same manner as in Example 1.
(実施例2及び実施例3)
実施例2及び実施例3の環境浄化用粉体は、図2に示す工程により製造した。
すなわち、実施例1と同様にして固形物除去工程S11、洗浄工程S12、及び鉄除去工程S131を行った後、バイブル分級機によって0.15mmφ未満の粒子と、0.15mmφ以上の粒子とに分級した(分級工程S132)。そして、分級された0.15mmφ未満の粒子をフィルタープレス(フィルター工程S14)し、粒子が300℃となるように加熱炉内で充分乾燥させて、実施例2の環境浄化用粉体(微細粒砂)を得た(加熱工程S15)。また、同様に分級された0.15mmφ以上の粒子をフィルタープレス(フィルター工程S14)し、粒子が300℃となるように加熱炉内で充分乾燥させて(加熱工程S15)、実施例3の環境浄化用粉体(細粒砂)を得た(加熱工程S15)。
(Example 2 and Example 3)
The environmental purification powders of Examples 2 and 3 were produced by the process shown in FIG.
That is, after performing the solid matter removing step S11, the cleaning step S12, and the iron removing step S131 in the same manner as in Example 1, particles having a size of less than 0.15 mmφ and particles having a size of 0.15 mmφ or more were classified by a bible classifier ( Classification step S132). Then, the classified particles having a diameter of less than 0.15 mmφ are filter-pressed (filter step S14), sufficiently dried in a heating furnace so that the particles reach 300 ° C., and the environmental purification powder (fine grain sand) of Example 2 is obtained. ) Was obtained (heating step S15). Further, similarly classified particles having a diameter of 0.15 mmφ or more are filter-pressed (filter step S14) and sufficiently dried in a heating furnace so that the particles reach 300 ° C. (heating step S15) to purify the environment of Example 3. Powder (fine-grained sand) for use was obtained (heating step S15).
(評 価)
<ゼータ電位の測定>
上記実施例1〜3並びに比較例1及び比較例2の環境浄化用粉体について、ゼータ電位の測定を行った。すなわち、試料(0.01g)をpH7のリン酸緩衝液(100ml)に加え、10分間超音波による分散を行った分散液について、電気泳動光散乱法に基づくゼータ電位測定装置により、25°C下において測定を行った。
(Rating)
<Measurement of zeta potential>
The zeta potentials of the environmental purification powders of Examples 1 to 3 and Comparative Examples 1 and 2 were measured. That is, a sample (0.01 g) was added to a phosphate buffer solution (100 ml) having a pH of 7, and the dispersion was dispersed by ultrasonic waves for 10 minutes at 25 ° C. using a zeta potential measuring device based on an electrophoretic light scattering method. Measurements were made below.
その結果、表1に示すように、実施例1〜3の環境浄化用粉体のゼータ電位は−32mVから−41mVの範囲にあり、廃鋳物砂が300℃となるように加熱工程を行っているにもかかわらず、加熱工程を行っていない比較例1の環境浄化用粉体よりも負方向に大きなゼータ電位を示した。したがって、実施例1〜3の環境浄化用粉体は、正のゼータ電位を有するバクテリアを静電的に吸着し、バクテリアの生息に適した環境となるため、環境浄化用粉体として好適であることが分かった。また、環境浄化用粉体表面の負のゼータ電位はバクテリアの栄養源となる有機物を引き寄せる効果も発揮する。これらの相乗効果により、ひいてはバクテリアの活動が活性化され、水系の浄化作用が発揮されることが分かった。
一方、廃鋳物砂に対して800℃となるように加熱工程を行っている比較例2の粉体のゼータ電位は−2mVとなった。このことから、比較例2の粉体は正のゼータ電位を有するバクテリアを静電的に吸着する効果は小さく、バクテリアの栄養源となる有機物を引き寄せる効果も劣るため、バクテリアの生息に適した環境とはならず、環境浄化用粉体としては不適であることが分かった。廃鋳物砂に対して800℃での加熱工程を行っている比較例2の粉体のゼータ電位が−2mVであるのは、加熱工程において有機物が酸化分解し、鋳物砂を構成している鉱物であるケイ砂等の本来のゼータ電位が発現したことによるものと考えられる。
As a result, as shown in Table 1, the zeta potential of the environmental purification powder of Examples 1 to 3 is in the range of −32 mV to −41 mV, and the heating step is performed so that the waste casting sand becomes 300 ° C. Despite this, it showed a larger zeta potential in the negative direction than the environmental purification powder of Comparative Example 1 in which the heating step was not performed. Therefore, the environmental purification powders of Examples 1 to 3 are suitable as environmental purification powders because they electrostatically adsorb bacteria having a positive zeta potential and provide an environment suitable for the habitat of the bacteria. It turned out. In addition, the negative zeta potential on the surface of the powder for environmental purification also exerts the effect of attracting organic substances that are nutrient sources for bacteria. It was found that these synergistic effects, in turn, activate the activity of bacteria and exert a purifying effect on the water system.
On the other hand, the zeta potential of the powder of Comparative Example 2 in which the heating step was performed so that the temperature of the waste casting sand was 800 ° C. was -2 mV. From this, the powder of Comparative Example 2 has a small effect of electrostatically adsorbing bacteria having a positive zeta potential, and has a poor effect of attracting organic substances that are nutrient sources for the bacteria. It was found that it was not suitable as a powder for environmental purification. The zeta potential of the powder of Comparative Example 2 in which the waste casting sand is heated at 800 ° C. is -2 mV because the organic matter is oxidatively decomposed in the heating step and constitutes the foundry sand. It is considered that this is due to the development of the original zeta potential of the silica sand and the like.
<懸濁液の水素イオン濃度試験>
実施例1〜3並びに比較例1及び2の環境浄化用粉体について、40gを秤取り、200mlの純水中に加えて撹拌し、懸濁液の水素イオン濃度(pH)をガラス電極によって測定した。測定回数は5回とした。
その結果、表2に示すように、実施例1〜3の環境浄化用粉体はpH6.67〜6.80の範囲内で安定しており、環境基準内の範囲内となった。
これに対して、比較例1の環境浄化用粉体はpH9.0〜9.7となり、環境基準を大幅に超えるアルカリ性の値となった。
また、比較例2の環境浄化用粉体では7.5〜9.2の範囲で安定せず、環境基準を超えることもあった。
これらの結果から、実施例1〜3の環境浄化用粉体は、比較例1及び比較例2の環境浄化用粉体と比較して、微生物の生育環境としてより好適であり、環境に対してより悪影響を与え難いことが分かった。また、これらの結果は、実施例1の環境浄化用粉体を製造するときの加熱工程(図1におけるステップS15)において、アルカリ成分が揮発して除去されるからであると考えられる。
<Hydrogen ion concentration test of suspension>
For the environmental purification powders of Examples 1 to 3 and Comparative Examples 1 and 2, 40 g was weighed, added to 200 ml of pure water and stirred, and the hydrogen ion concentration (pH) of the suspension was measured by a glass electrode. did. The number of measurements was 5 times.
As a result, as shown in Table 2, the environmental purification powders of Examples 1 to 3 were stable in the range of pH 6.67 to 6.80, and were within the range of the environmental standard.
On the other hand, the environmental purification powder of Comparative Example 1 had a pH of 9.0 to 9.7, which was an alkaline value that greatly exceeded the environmental standard.
In addition, the environmental purification powder of Comparative Example 2 was not stable in the range of 7.5 to 9.2 and sometimes exceeded the environmental standard.
From these results, the environmental purification powders of Examples 1 to 3 are more suitable as a growth environment for microorganisms than the environmental purification powders of Comparative Examples 1 and 2, and are environmentally friendly. It turned out that it was less likely to have an adverse effect. Further, it is considered that these results are due to the fact that the alkaline component is volatilized and removed in the heating step (step S15 in FIG. 1) when producing the environmental purification powder of Example 1.
<湖沼水の浄化試験>
上記実施例1の環境浄化用粉体1Lを秤取り、水槽(600mm×300mm×360mm)の底に敷き詰め、さらにI池の湖沼水を57L入れた。設置場所は屋外であり、遮光はしない状態とした。湖沼水を循環ポンプによって毎分8Lの速度で循環させながら所定時間ごとにサンプリングし、表3に示す方法により、化学的酸素要求量(COD)、全窒素(T−N)、全リン(T−P)及びクロロフィルaについて測定した。試験期間は17日間とした。
また、比較例3として、天然砂利についても同様の試験を行った。
<Lake water purification test>
1 L of the environmental purification powder of Example 1 was weighed, spread on the bottom of a water tank (600 mm × 300 mm × 360 mm), and 57 L of lake water of I pond was further added. The installation location was outdoors, and there was no shading. Lake water is sampled at predetermined time intervals while being circulated at a rate of 8 L / min by a circulation pump, and chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (T) are measured by the methods shown in Table 3. -P) and chlorophyll a were measured. The test period was 17 days.
In addition, as Comparative Example 3, a similar test was conducted on natural gravel.
−結 果−
・化学的酸素要求量(COD)について
化学的酸素要求量(COD)の経時変化を図3に示す。試験開始後17日目において、実施例1の環境浄化用粉体では、CODの値はほとんど変化しなかったが、比較例1の天然砂利では、試験開始後17日目でCOD濃度の顕著な上昇が認められた。
なお、CODの測定においては、酸化剤として過マンガン酸カリウムを用いているため、実施例1の環境浄化用粉体での試験におけるCOD値には、植物プランクトンによって取り込まれた有機物の分も含まれ得る。このため、実施例1の環境浄化用粉体では、CODの値はほとんど変化しなかったものの、植物プランクトン以外の有機物についての水質の浄化はそれ以上進んでいるものと考えられる。
-Fruit-
-Regarding the chemical oxygen demand (COD) Fig. 3 shows the change over time in the chemical oxygen demand (COD). On the 17th day after the start of the test, the COD value of the environmental purification powder of Example 1 hardly changed, but in the natural gravel of Comparative Example 1, the COD concentration was remarkable on the 17th day after the start of the test. An increase was observed.
Since potassium permanganate is used as an oxidizing agent in the measurement of COD, the COD value in the test with the environmental purification powder of Example 1 includes the amount of organic substances taken up by phytoplankton. It can be. Therefore, although the COD value of the environmental purification powder of Example 1 hardly changed, it is considered that the purification of water quality for organic substances other than phytoplankton is further advanced.
・全窒素(T−N)について
全窒素(T-N)の経時変化を図4に示す。試験開始後3日において、全窒素(T-N)の濃度変化は、実施例1の環境浄化用粉体,比較例1の天然砂利ともに僅少であったが、試験開始後17日では、両者ともに全窒素(T−N)の濃度は減少した(減少率は実施例1の実施例1で約82%、比較例1の天然砂利で約68%)。
後述するクロロフィルaの濃度が、設置後17日で上昇していることから、全窒素(T−N)の減少は、植物プランクトンの増殖によるものと考えられる。
-Regarding total nitrogen (TN) Figure 4 shows the time course of total nitrogen (TN). On the 3rd day after the start of the test, the change in the concentration of total nitrogen (TN) was slight for both the environmental purification powder of Example 1 and the natural gravel of Comparative Example 1, but on the 17th day after the start of the test, both were all. The concentration of nitrogen (TN) decreased (the rate of decrease was about 82% in Example 1 of Example 1 and about 68% in the natural gravel of Comparative Example 1).
Since the concentration of chlorophyll a, which will be described later, increased 17 days after installation, it is considered that the decrease in total nitrogen (TN) is due to the growth of phytoplankton.
・全リン(T−P)について
全リン(T−P)の経時変化を図5に示す。実施例1の環境浄化用粉体における全リン(T−P)濃度は、試験開始後1日で約57%(減少率:約43%)、試験開始後3日で36%(減少率:64%)となり、試験開始後17日では、10%(減少率:90%)となった。一方、比較例1の天然砂利における全リン(T−P)濃度は、試験開始後3日において、減少量は僅少であるが、試験開始後17日で約29%(減少率約71%)となった。
以上の結果は、次の理由によるものと考えられる。
すなわち、実施例1の環境浄化用粉体のゼータ電位は−10mV以下であり、正のゼータ電位を有する微生物が吸着しやすく、微生物の栄養源となる有機物を引き寄せる効果も発揮するため、微生物の生息環境が良好となり、原水中のリンが微生物によって固定化され、除去される。
これに対して、比較例3の天然砂利のゼータ電位はそれほど負側に大きく偏っておらず、正のゼータ電位を有する微生物が吸着し難く、微生物の栄養源となる有機物を引き寄せる効果も小さいので、微生物の生息環境が悪くなり、原水中のリンが微生物によって固定化され難くなったと考えられる。
-Regarding total phosphorus (TP) FIG. 5 shows the time course of total phosphorus (TP). The total phosphorus (TP) concentration in the environmental purification powder of Example 1 was about 57% (decrease rate: about 43%) 1 day after the start of the test and 36% (decrease rate: about 43%) 3 days after the start of the test. 64%), and 17 days after the start of the test, it was 10% (decrease rate: 90%). On the other hand, the total phosphorus (TP) concentration in the natural gravel of Comparative Example 1 decreased slightly 3 days after the start of the test, but was about 29% (decrease rate of about 71%) 17 days after the start of the test. It became.
The above results are considered to be due to the following reasons.
That is, the zeta potential of the environmental purification powder of Example 1 is -10 mV or less, and microorganisms having a positive zeta potential are easily adsorbed, and the effect of attracting organic substances that are nutrient sources of microorganisms is also exhibited. The habitat is improved, and phosphorus in the raw water is fixed and removed by microorganisms.
On the other hand, the zeta potential of the natural gravel of Comparative Example 3 is not so biased to the negative side, it is difficult for microorganisms having a positive zeta potential to be adsorbed, and the effect of attracting organic substances that are nutrient sources of microorganisms is small. It is considered that the habitat of microorganisms has deteriorated and it has become difficult for microorganisms to immobilize phosphorus in the raw water.
・クロロフィルaについて
クロロフィルaの経時変化を図6に示す。クロロフィルaは、実施例1の環境浄化用粉体及び比較例1の天然砂利ともに、試験開始後1日では減少し、試験開始後3日では、10倍程度の濃度に上昇した。また、試験開始後17日では、実施例1の環境浄化用粉体は約20倍,比較例1の天然砂利は約60倍に上昇した。このように、クロロフィルaの濃度が上昇したのは、この試験が常温かつ日光の入射を許した条件下で行われており、植物プランクトン(例えば藍藻類)が増殖したことが原因である。このことは水槽の状況を示す図7の写真から判断しても明らかである。すなわち、植物プランクトンの増殖に伴って、全窒素(T−N)及び全リン(T−P)が取り込まれる。植物プランクトンが多くなると粒子同士が凝集して沈降し、全窒素(T−N)及び全リン(T−P)が大きく減少したものと考えられる。
-About chlorophyll a The time course of chlorophyll a is shown in FIG. Chlorophyll a decreased in both the environmental purification powder of Example 1 and the natural gravel of Comparative Example 1 1 day after the start of the test, and increased to about 10 times the concentration 3 days after the start of the test. On the 17th day after the start of the test, the environmental purification powder of Example 1 increased about 20 times, and the natural gravel of Comparative Example 1 increased about 60 times. The increase in the concentration of chlorophyll a is due to the growth of phytoplankton (for example, blue-green algae) in this test conducted at room temperature and under conditions that allow sunlight to enter. This is clear from the photograph of FIG. 7 showing the state of the aquarium. That is, with the growth of phytoplankton, total nitrogen (TN) and total phosphorus (TP) are taken up. It is considered that when the amount of phytoplankton increased, the particles aggregated and settled, and total nitrogen (TN) and total phosphorus (TP) decreased significantly.
以上で述べたように、I池の原水を用いて実施例1の環境浄化用粉体及び比較例1の天然砂利の浄化試験を行ったところ、全りん(T−P)について、実施例1の環境浄化用粉体の低減効果は顕著であり、短時間にリンを吸着する効果を有していた。原水中のリンが微生物によって固定化され、除去された。
また、全窒素(T−N)については、ビオトープサンド,天然砂利ともに設置後17日で大きく減少した。植物プランクトンの増殖に伴う減少であるものと考えられるが、実施例1の環境浄化用粉体は、比較例1の天然砂利と比べ、クロロフィルaの増加が少ない上、全窒素(T−N)の減少量も大きいことから、天然砂利に比べて、植物プランクトンの増殖の抑制効果と全窒素(T−N)の低減効果を有しているものと考えられる。
更に、設置後17日目のCOD値に着目すれば、実施例1の環境浄化用粉体は、比較例1の天然砂利に見られたような濃度の上昇もなく、有機物の分解を効果的に行うことが分かった。
As described above, when the purification test of the environmental purification powder of Example 1 and the natural gravel of Comparative Example 1 was carried out using the raw water of the I pond, the total phosphorus (TP) was subjected to Example 1 The effect of reducing the powder for environmental purification was remarkable, and it had the effect of adsorbing phosphorus in a short time. Phosphorus in the raw water was immobilized and removed by microorganisms.
In addition, total nitrogen (TN) decreased significantly 17 days after installation for both biotope sand and natural gravel. Although it is considered that the decrease is due to the growth of phytoplankton, the environmental purification powder of Example 1 has a smaller increase in chlorophyll a and total nitrogen (TN) as compared with the natural gravel of Comparative Example 1. Since the amount of decrease in phytoplankton is also large, it is considered that it has an effect of suppressing the growth of phytoplankton and an effect of reducing total nitrogen (TN) as compared with natural gravel.
Furthermore, focusing on the COD value on the 17th day after installation, the environmental purification powder of Example 1 is effective in decomposing organic matter without an increase in concentration as seen in the natural gravel of Comparative Example 1. I found out that I would do it.
<発酵試験>
実施例1の環境浄化用粉体について、以下の方法により発酵促進剤としての効果を評価した。200mlの三角フラスコに滅菌した標準液体培地100mlを入れ、そこへ所定量の発酵菌材(株式会社ミズホ製)と実施例1の環境浄化用粉体0.1gとを加え、常温(5〜10℃)で27日間静置した。また、比較のため、標準液体培地100mlをのみをいれたもの、及び、標準液体培地100mlと発酵菌材と添加したものを用意し、同様に常温(5〜10℃)で27日間静置した。
その結果、図8に示すように、実施例1の環境浄化用粉体を加えたものは、発酵菌材のみの培地に比べて、発酵促進剤の培地の方が白く濁り液面に白い膜が張っていた。以上の結果から、実施例1の環境浄化用粉体を入れた場合に、入れない場合と比べて発酵が促進されることが分かった。
<Fermentation test>
The effect of the environmental purification powder of Example 1 as a fermentation accelerator was evaluated by the following method. Put 100 ml of a sterilized standard liquid medium in a 200 ml Erlenmeyer flask, add a predetermined amount of fermented bacterial material (manufactured by Mizuho Co., Ltd.) and 0.1 g of the environmental purification powder of Example 1 to the room temperature (5 to 10). The mixture was allowed to stand at ℃) for 27 days. For comparison, a medium containing only 100 ml of a standard liquid medium and a medium containing 100 ml of a standard liquid medium and a fermented bacterial material were prepared, and similarly allowed to stand at room temperature (5 to 10 ° C.) for 27 days. ..
As a result, as shown in FIG. 8, in the medium to which the environmental purification powder of Example 1 was added, the medium of the fermentation accelerator became cloudy and white on the liquid surface as compared with the medium containing only the fermentation bacterial material. Was stretched. From the above results, it was found that when the environmental purification powder of Example 1 was added, fermentation was promoted as compared with the case where it was not added.
なお、上記実施例では、洗浄工程S12及び鉄除去工程を湿式下で行っているが、全工程を乾式下で行ってもよい。 In the above embodiment, the cleaning step S12 and the iron removing step are performed under a wet type, but all the steps may be performed under a dry type.
<環境浄化用成形物の製造>
(実施例4)
造粒工程として、前述した実施例1の環境浄化用粉体とMgO系固化材とを遊星式混合攪拌機によって96:4の質量比で混合し、さらにこの混合物100質量部に対し、スラグ骨材を20質量部加えて造粒機で造粒した。次に篩工程として、20mmφの篩によって篩い分けした後、1日間ストックヤードで放置して実施例4の環境浄化用成形物とした。
<Manufacturing molded products for environmental purification>
(Example 4)
As a granulation step, the above-mentioned powder for environmental purification of Example 1 and the MgO-based solidifying material are mixed by a planetary mixing stirrer at a mass ratio of 96: 4, and further, slag aggregate is added to 100 parts by mass of this mixture. Was added by 20 parts by mass and granulated by a granulator. Next, as a sieving step, after sieving with a 20 mmφ sieve, it was left in a stockyard for 1 day to obtain an environmental purification molded product of Example 4.
(実施例5)
実施例5では、固化材として略中性の水溶性ポリマーであるアルギン酸ナトリウムを用い、実施例5と同様の方法によって環境浄化用成形物を製造した。
(Example 5)
In Example 5, a substantially neutral water-soluble polymer, sodium alginate, was used as the solidifying material, and an environmental purification molded product was produced by the same method as in Example 5.
(評 価)
上記実施例4及び実施例5の環境浄化用成形物は、造粒物となって固化されているため、水処理用の吸着塔等に環境浄化用成形物充填した場合、圧損が小さくなり、吸着塔からの流出もなく、ハンドリングも容易となる。また、植栽用土として用いた場合、隙間が形成されて多くの空気を取り込むことができるため、植物の成育環境が良好となる。
また、実施例5の環境浄化用成形物の場合には、含水率が25質量%以上であれば歩留まりが良好であり、含水率が35質量%未満であれば、環境浄化用成形物同士が貯留中にくっついて塊状になるという現象を防ぐことができた。
(Rating)
Since the environmental purification molded products of Examples 4 and 5 are solidified as granulated products, the pressure loss becomes small when the environmental purification molded product is filled in an adsorption tower or the like for water treatment. There is no outflow from the adsorption tower, and handling is easy. Further, when it is used as a planting soil, a gap is formed and a large amount of air can be taken in, so that the plant growing environment is improved.
Further, in the case of the environmental purification molded product of Example 5, the yield is good when the water content is 25% by mass or more, and when the water content is less than 35% by mass, the environmental purification molded products are separated from each other. It was possible to prevent the phenomenon of sticking to each other during storage and forming a lump.
−スプレードライ装置を用いた環境浄化用粉体の製造−
(実施例6)
実施例6の環境浄化用粉体は、図9に示すように、スプレードライ装置を用いて造粒及び加熱を行い製造した。以下詳述する
<固形物除去工程S21>
まず固形物除去工程S21として、鉄鋳物工場から廃棄された有機バインダー樹脂を含む有機砂型起因の廃鋳物砂(炭素含有量として4質量%含有)を収集し、50mm及び5mmの2段階のスクリーンに通してガラス、金属、レンガ等の夾雑物を除去し、5mm未満の粒子径の部分を分取した。一方、5〜50mmの分級部分については、ロッドミルで5mm未満の粒子径に破砕して5mm未満の粒子径とした。
-Manufacture of powder for environmental purification using a spray-drying device-
(Example 6)
As shown in FIG. 9, the environmental purification powder of Example 6 was produced by granulating and heating using a spray-drying device. <Solid matter removal step S21> described in detail below.
First, as the solid matter removing step S21, waste casting sand (containing 4% by mass as carbon content) caused by an organic sand mold containing an organic binder resin discarded from an iron foundry is collected and put on a two-stage screen of 50 mm and 5 mm. By passing through, impurities such as glass, metal, and brick were removed, and a portion having a particle size of less than 5 mm was separated. On the other hand, the classified portion of 5 to 50 mm was crushed with a rod mill to a particle size of less than 5 mm to obtain a particle size of less than 5 mm.
<洗浄工程S22>
次に洗浄工程S22として、固形物除去工程S21で分取された5mm未満の粒子をスパイラル洗浄機に送り、水洗浄を行った。
<Washing step S22>
Next, as the cleaning step S22, the particles of less than 5 mm separated in the solid matter removing step S21 were sent to a spiral cleaning machine to perform water cleaning.
<鉄除去工程S23>
さらに、洗浄工程S12によって洗浄された5mm未満の粒子中の鉄類を湿式磁選機を用いて除去した。
<Iron removal step S23>
Further, irons in the particles of less than 5 mm washed by the washing step S12 were removed by using a wet magnetic separator.
<粉砕工程S24>
水洗浄され、鉄除去された廃鋳物砂粉砕物を高速回転ハンマーミル等の微粉砕機で粉砕し、粒子径が40μm以下の廃鋳物砂粉砕物とした。
<Crushing step S24>
The waste casting sand crushed product washed with water and iron-removed was pulverized with a fine crusher such as a high-speed rotary hammer mill to obtain a waste casting sand crushed product having a particle size of 40 μm or less.
<スラリー工程S25>
粉砕工程S24において得られた粒子径が40μm以下の廃鋳物砂粉砕物をスラリー槽に入れ、攪拌機で撹拌しながら水を加えてスラリーとした。
<Slurry step S25>
The crushed waste cast sand obtained in the crushing step S24 having a particle size of 40 μm or less was placed in a slurry tank, and water was added while stirring with a stirrer to prepare a slurry.
<スプレードライ工程S26>
最後にスラリーをスプレードライ装置によって乾燥粉体が300℃となる条件で噴霧乾燥させ、実施例6の環境浄化用粉体を得た。
<Spray dry process S26>
Finally, the slurry was spray-dried by a spray-drying apparatus under the condition that the dry powder was at 300 ° C. to obtain the environmental purification powder of Example 6.
(評 価)
・臭気低減試験
スプレードライ工程S26を経て得られた実施例6の環境浄化用粉体を直径30cm長さ150cmの円筒管に充填し、豚糞が積まれた豚舎の空気を通じたところ、臭気が顕著に低減された。これに対して、同じ円筒管におが粉を充填し、同様の実験を行ったところ、臭気の低減は認められなかった。
・発酵促進試験
実施例6の環境浄化用粉体を豚糞に対して5重量%添加し、堆肥化を行ったところ、3か月で堆肥が完成し、臭気もほとんどなかった。
これに対して、豚糞35重量%+おが粉65重量%の混合物について同様の堆肥化を試みたところ、農地で使用可能な状態となるまで8か月を要し、その間、臭気も著しく、問題となった。
・ハンドリングについての評価
スプレードライ工程S26を経て得られた実施例6の環境浄化用粉体は、40μm以下の廃鋳物砂粉砕物を用いるため、従来、粒径が細かすぎて扱いにくかった廃鋳物砂も原料とすることができる。また、40μm以下の廃鋳物砂粉砕物は2次凝集体を形成しているため、さらさらとしたハンドリングが容易な顆粒状の粉体であり、水中に投じてもすぐに崩壊するということはなく、濁りを生ずることもなかった。また、袋詰め作業において埃が立つこともほとんどなかった。さらには、成形品などの原材料としての使用する場合にも、操作性が大幅に向上した。また、2次凝集体の平均粒径はスプレードライ装置のノズル径及び温度を変更することにより0,020mm〜5mmまで自由に制御することが可能であった。
(Rating)
-Odor reduction test When the environmental purification powder of Example 6 obtained through the spray-drying step S26 was filled in a cylindrical tube having a diameter of 30 cm and a length of 150 cm and passed through the air of a piggery filled with pig droppings, an odor was emitted. It was significantly reduced. On the other hand, when the same cylindrical tube was filled with powder and the same experiment was conducted, no reduction in odor was observed.
-Fermentation promotion test When 5% by weight of the environmental purification powder of Example 6 was added to pig feces and composted, the compost was completed in 3 months and there was almost no odor.
On the other hand, when the same composting was attempted on a mixture of 35% by weight of pig droppings + 65% by weight of rice flour, it took 8 months until it became usable on agricultural land, and during that time, the odor was also remarkable. , Became a problem.
-Evaluation of handling Since the powder for environmental purification of Example 6 obtained through the spray-drying step S26 uses a waste casting sand crushed product having a size of 40 μm or less, it is a waste casting that has conventionally been difficult to handle due to its fine particle size. Sand can also be used as a raw material. In addition, since the crushed waste cast sand of 40 μm or less forms secondary agglomerates, it is a granular powder that is easy to handle and does not collapse immediately even when thrown in water. , It did not cause turbidity. In addition, there was almost no dust generated during the bagging work. Furthermore, operability has been greatly improved when used as a raw material for molded products and the like. Further, the average particle size of the secondary aggregate could be freely controlled from 0,020 mm to 5 mm by changing the nozzle diameter and temperature of the spray drying device.
また、この環境浄化用粉体を水中に投じてもpHの変動は小さく、アルカリ側に大きく変化するということはなく、実施例1の環境浄化用粉体と同程度であった。さらには、pH7におけるゼータ電位も−10mV以下であった。以上の結果から、実施例6の環境浄化用粉体も水中の有機物を分解するバクテリアを静電的に引き寄せるという、生物担体としての優れた機能を発揮することが分かった。このため、バクテリアによる被処理水の生物処理にとって極めて都合が良い。また、負のゼータ電位はバクテリアの栄養源となる有機物を引き寄せる効果も発揮する。これらの相乗効果により、ひいてはバクテリアの活動が活性化され、水系の浄化作用が発揮されることとなる。 Further, even when the environmental purification powder was poured into water, the pH fluctuation was small and did not change significantly on the alkaline side, which was about the same as that of the environmental purification powder of Example 1. Furthermore, the zeta potential at pH 7 was also -10 mV or less. From the above results, it was found that the environmental purification powder of Example 6 also exhibits an excellent function as a biological carrier by electrostatically attracting bacteria that decompose organic matter in water. Therefore, it is extremely convenient for the biological treatment of the water to be treated by bacteria. Negative zeta potentials also have the effect of attracting organic matter, which is a nutrient source for bacteria. Due to these synergistic effects, the activity of bacteria is activated, and the purification action of the water system is exerted.
(実施例7)
実施例7の環境浄化用粉体では、実施例6の環境浄化用粉体を製造工程におけるスラリー工程S25においてスラリー中に固化剤としてアルギン酸ソーダを500ppmの濃度となるように加えた。その他については実施例6と同様であり、説明を省略する。
(Example 7)
In the environmental purification powder of Example 7, the environmental purification powder of Example 6 was added to the slurry in the slurry step S25 in the manufacturing process so as to have a concentration of sodium alginate as a solidifying agent at a concentration of 500 ppm. Others are the same as in the sixth embodiment, and the description thereof will be omitted.
実施例7の環境浄化用粉体では、40μm以下の廃鋳物砂粉砕物からなる顆粒状粉体の機械的強度が実施例6の環境浄化用粉体よりもはるかに優れ、指で押しつぶすのが困難なほどであった。また、ハンドリングが極めて容易で、水中に投じても長期間崩壊するということはなく、濁りを生ずることもなかった。また、袋詰め作業において埃が立つこともなかった。 In the environmental purification powder of Example 7, the mechanical strength of the granular powder composed of crushed waste cast sand of 40 μm or less is much superior to that of the environmental purification powder of Example 6, and it is difficult to crush it with a finger. It was difficult. In addition, it was extremely easy to handle, did not collapse for a long period of time even when thrown in water, and did not cause turbidity. In addition, no dust was generated during the bagging work.
この発明は、上記発明の実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 The present invention is not limited to the description of the examples of the above invention. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.
本発明の環境浄化用粉体は、バクテリアの活性化を促進させることから、バクテリアによって分解されて生成した窒素分やリン酸等が肥料成分となり、植物の成長が促進される。このため、植栽土や植生基盤材、目砂、目土などに混ぜることにより客土の活力を高めることができる。さらには、バクテリアの生息環境を向上させるため、植物の育成に適した活力ある土壌作りが可能となる。また、湖沼等の水質改善のための生物担体となる固定床等に利用可能である。さらには、環境浄化材料として、樹脂、不織布、スポンジ、繊維、ゴムなどに、混合、含浸、固着などして好適に利用することができ、成形品とすることもできる。 Since the powder for environmental purification of the present invention promotes the activation of bacteria, nitrogen and phosphoric acid produced by decomposition by bacteria serve as fertilizer components, and the growth of plants is promoted. Therefore, the vitality of the soil dressing can be enhanced by mixing it with the planting soil, the vegetation base material, the sand, and the soil. Furthermore, in order to improve the habitat of bacteria, it is possible to create vibrant soil suitable for growing plants. It can also be used as a fixed floor or the like as a biological carrier for improving water quality in lakes and marshes. Further, as an environmental purification material, it can be suitably used by mixing, impregnating, fixing, etc. with a resin, a non-woven fabric, a sponge, a fiber, a rubber, or the like, and can also be a molded product.
S11,S21…固形物除去工程
S12,S22…洗浄工程
S13、S131,S23…鉄除去工程
S132…分級工程
S14…フィルタープレス工程
S15…加熱工程
S24…粉砕工程
S25…スラリー工程
S26…スプレードライ工程
S11, S21 ... Solid matter removing process S12, S22 ... Cleaning process S13, S131, S23 ... Iron removing process S132 ... Classification process S14 ... Filter press process S15 ... Heating process S24 ... Grinding process S25 ... Slurry process S26 ... Spray drying process
Claims (2)
該スラリーをスプレードライ装置でスラリー乾燥物が180℃以上400℃以下となるように噴霧乾燥して、pH7におけるゼータ電位が−10mV以下である環境浄化用粉体とするスプレードライ工程と、
を備えることを特徴とする水質浄化、臭気低減及び発酵促進用粉体の製造方法。 A slurry step in which water is added to waste cast sand fine powder having a carbon content of 1% by mass or more and 40% by mass or less and an average particle size of 40 μm or less as a carbon content.
A spray-drying step of spray-drying the slurry with a spray-drying device so that the dried slurry has a temperature of 180 ° C. or higher and 400 ° C. or lower to obtain an environmental purification powder having a zeta potential of −10 mV or lower at pH 7.
A method for producing a powder for water purification, odor reduction and fermentation promotion, which comprises the above.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017006421 | 2017-01-18 | ||
JP2017006421 | 2017-01-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018114494A JP2018114494A (en) | 2018-07-26 |
JP6868283B2 true JP6868283B2 (en) | 2021-05-12 |
Family
ID=62984752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018006171A Active JP6868283B2 (en) | 2017-01-18 | 2018-01-18 | Environmental purification powder and its manufacturing method, and environmental purification molded products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6868283B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7053243B2 (en) * | 2017-12-13 | 2022-04-12 | 東洋炭素株式会社 | Microbial immobilization carrier |
-
2018
- 2018-01-18 JP JP2018006171A patent/JP6868283B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018114494A (en) | 2018-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109158084A (en) | Metal peroxides modification biological charcoal dephosphorization material and its preparation method and application | |
JP6021199B2 (en) | Method for producing phosphate fertilizer | |
JP2007306844A (en) | Method for producing greening material using waste material, and greening material | |
WO2013002250A1 (en) | Phosphate fertilizer, and method for producing phosphate fertilizer | |
CN102603359B (en) | Coal ash biological filter material and preparation method thereof | |
JP2014171953A (en) | Granular-type environmental water treatment agent, and method for treating water contaminated with harmful substances by using the same | |
CN112661231A (en) | Multifunctional long-acting composite filler and preparation method thereof | |
JP6868283B2 (en) | Environmental purification powder and its manufacturing method, and environmental purification molded products | |
CN107417058A (en) | A kind of river embankment bed mud is modified the method and its application for preparing ecology filler | |
CN102503053B (en) | Early-strength sludge modifier for landfill treatment and application thereof | |
JP2013247860A (en) | Recycled soil | |
JP6022226B2 (en) | Method for producing silicate phosphate fertilizer | |
JP4947247B2 (en) | Composition for removing nitrate nitrogen and the like and method for producing the same | |
JP3040097B2 (en) | Contact purification material and method for producing the same | |
JPH0693260A (en) | Soil additive | |
KR100993120B1 (en) | Water purification block by using bottom ash and method thereof | |
JP4269087B2 (en) | Method for producing activated material for removing nitrate nitrogen | |
JP3628661B2 (en) | Method for producing porous granular material using inorganic waste as raw material | |
JP2004321036A (en) | Granular culture soil | |
JP2009280439A (en) | Cement molded body, cement composition and method for producing cement molded body | |
JP2008188570A (en) | Cleaning material and manufacturing method thereof | |
JP4633604B2 (en) | Adsorbent production method, adsorbent, adsorbent granule, and adsorbent granule production method | |
JP2012020257A (en) | Sintered material generation method and sintered material | |
JP6021182B2 (en) | Method for producing a bitter earth phosphate fertilizer | |
CN113813916B (en) | Salt-tolerant deep dephosphorizing agent and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201028 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20201119 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20210106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210405 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6868283 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |