JP6866502B2 - Humidification / cooling air blower Wet curtain device and control method - Google Patents

Humidification / cooling air blower Wet curtain device and control method Download PDF

Info

Publication number
JP6866502B2
JP6866502B2 JP2019556267A JP2019556267A JP6866502B2 JP 6866502 B2 JP6866502 B2 JP 6866502B2 JP 2019556267 A JP2019556267 A JP 2019556267A JP 2019556267 A JP2019556267 A JP 2019556267A JP 6866502 B2 JP6866502 B2 JP 6866502B2
Authority
JP
Japan
Prior art keywords
temperature
wet curtain
indoor
sensor
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019556267A
Other languages
Japanese (ja)
Other versions
JP2021500001A (en
Inventor
振宇 斉
振宇 斉
徳棟 孔
徳棟 孔
蓉 金
蓉 金
之奇 洪
之奇 洪
鵬程 聶
鵬程 聶
傑 周
傑 周
▲ガイ▼ 師
▲ガイ▼ 師
慧泉 王
慧泉 王
衛珍 胡
衛珍 胡
美華 胡
美華 胡
林生 蔡
林生 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Publication of JP2021500001A publication Critical patent/JP2021500001A/en
Application granted granted Critical
Publication of JP6866502B2 publication Critical patent/JP6866502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Description

本発明は、温室の降温加湿技術分野に関し、特に加湿・降温風機ウエットカーテン装置及び制御方法に関する。 The present invention relates to the field of greenhouse heating / humidifying technology, and particularly to a humidifying / cooling air blower wet curtain device and a control method.

従来、風機ウエットカーテン降温装置の設計において、ウエットカーテンと風機がそれぞれ温室の両側に取り付けられ、風機によって排風され、温室内に負圧になり、室外の空気がウエットカーテンを通って、降温される。 Conventionally, in the design of a wind blower wet curtain heating device, a wet curtain and a wind blower are installed on both sides of the greenhouse, and the air is exhausted by the wind blower to create a negative pressure in the greenhouse, and the outdoor air is cooled through the wet curtain. To.

このような降温方式の設計では、温室内に気温の分布が不均一になりやすく、また、ウエットカーテンと風機との間隔が大きくなるにつれて、ウエットカーテン端と風機端との気温差がますます大きくなり、生産に影響を与える。一般的に、ウエットカーテンと風機との間隔が40メートルを超えると、負圧式風機ウエットカーテン降温を採用できなくなる。従来の負圧式風機ウエットカーテン降温では、風機の制御に単純な簡単な起動および停止の制御が用いられるため、適切な降温通風量を得ることができず、室内温度が繰り返して昇降し、空気の流れが急開始したり急停止したりしてしまい、温室内における環境の安定性が悪く、機器の運転と温室内作物の成長に影響を与える。さらに、従来の負圧式風機ウエットカーテン降温装置では、温室内の作物の病原や虫源の吸い込みが生じやすく、また、ウエットカーテンと風機が温室の両端に位置するので、吸気口と排気口を設ける必要があり、温室内外空間のアレンジに困難をもたらし、温室の両端にあるウエットカーテンと風機によって温室外の日光の入射が多く遮断され、温室内のウエットカーテン側と風機側の採光に大きく影響する。また、ウエットカーテンは、加湿効率が高く、加湿効果が良い装置であり、特に冬季の加温期間において、温室は一般に湿度が不十分であり、加湿する必要があるが、従来の負圧式の風機ウエットカーテン降温装置の設計では、温室内においてウエットカーテンを通る内気循環を形成することができず、ウエットカーテンが加湿器として使用できない。 In such a temperature-lowering design, the temperature distribution tends to be uneven in the greenhouse, and as the distance between the wet curtain and the wind blower increases, the temperature difference between the wet curtain end and the wind blower end becomes larger and larger. And affect production. Generally, if the distance between the wet curtain and the wind blower exceeds 40 meters, the negative pressure type wind blower wet curtain lowering temperature cannot be adopted. In the conventional negative pressure type winder wet curtain lowering temperature, since simple simple start and stop control is used to control the blower, it is not possible to obtain an appropriate amount of lowering temperature ventilation, and the room temperature repeatedly rises and falls, and the air The flow suddenly starts or stops, and the environment in the greenhouse is not stable, which affects the operation of equipment and the growth of crops in the greenhouse. Furthermore, in the conventional negative pressure type wind blower wet curtain temperature lowering device, pathogens and insect sources of crops in the greenhouse are likely to be sucked in, and since the wet curtain and the wind blower are located at both ends of the greenhouse, an intake port and an exhaust port are provided. It is necessary to make it difficult to arrange the space inside and outside the greenhouse, and the wet curtains and wind blowers at both ends of the greenhouse block a lot of sunlight from outside the greenhouse, which greatly affects the lighting on the wet curtain side and the wind blower side in the greenhouse. .. In addition, the wet curtain is a device with high humidification efficiency and good humidification effect. Especially in the warming period in winter, the humidity of the greenhouse is generally insufficient and it is necessary to humidify it. In the design of the wet curtain temperature lowering device, the inside air circulation through the wet curtain cannot be formed in the greenhouse, and the wet curtain cannot be used as a humidifier.

従来の風機ウエットカーテン降温装置の欠陥を解消するために、本発明によって加湿・降温風機ウエットカーテン装置及び制御方法が提供され、温室は、正圧式の降温設計が採用され、温室の同一側にウエットカーテンと風機が設けられている。温室内外の環境因子の変化状況に応じて、吸気口側窓モータと角度センサによって吸気口側窓バッフルの角度変化を調節し、温室の新風量と温室内の循環風量が自動的に調節され、温室内の温度の精確な制御を図る。冬春の季節の際、温室が加湿される必要があるとき、室内湿度センサ、室内温度センサ、ガラスバッフル、ウエットカーテン給水電磁弁、ウエットカーテン、吸気口側窓バッフルと風機によって、温室内の空気の内循環が実現されるとともに、ウエットカーテン給水電磁弁、ウエットカーテンによって加湿される。正圧式の降温設計と吸気口防虫ネット、天井窓排気口防虫ネットの防虫ネット設計が採用され、温室内の作物の病原、虫源の進入を減少させる。風機、通風ダクトと排気口を用いて、送風を行って、温室を降温させ、又は加湿するとき、温室内の温度又は湿度の分布を均一とする。放射センサ、温度センサ、湿度センサが温室室外吸気口防虫ネットの上方に設けられている。温室内温度センサ、室内湿度センサが温室の中央に位置する。制御方法において、フィードフォワード方式の比例積分制御を採用することで、降温時の温度制御の精確性を向上させる。当該加湿・降温風機ウエットカーテン装置は、環境制御精度が高く、降温と防虫効果が良い温室に広く適用することができる。 In order to eliminate the defects of the conventional air blower wet curtain lowering device, the present invention provides a humidifying / lowering air blower wet curtain device and a control method, and the greenhouse adopts a positive pressure type lowering design and is wet on the same side of the greenhouse. There are curtains and winders. The intake port side window motor and angle sensor adjust the angle change of the intake port side window baffle according to the change of environmental factors inside and outside the greenhouse, and the new air volume of the greenhouse and the circulating air volume in the greenhouse are automatically adjusted. Accurate control of the temperature inside the greenhouse. When the greenhouse needs to be humidified during the winter-spring season, the air in the greenhouse is provided by the indoor humidity sensor, indoor temperature sensor, glass baffle, wet curtain water supply electromagnetic valve, wet curtain, intake side window baffle and air blower. The internal circulation of the glass is realized, and the water is humidified by the wet curtain water supply electromagnetic valve and the wet curtain. A positive pressure type temperature reduction design, an intake port insect net, and a ceiling window exhaust net insect net design are adopted to reduce the pathogenesis of crops in the greenhouse and the invasion of insect sources. When the greenhouse is cooled or humidified by blowing air using a wind blower, a ventilation duct and an exhaust port, the distribution of temperature or humidity in the greenhouse is made uniform. A radiation sensor, a temperature sensor, and a humidity sensor are provided above the greenhouse outdoor air intake insect net. The greenhouse temperature sensor and indoor humidity sensor are located in the center of the greenhouse. By adopting the proportional integral control of the feedforward method in the control method, the accuracy of the temperature control at the time of temperature decrease is improved. The humidifying / cooling air blower wet curtain device can be widely applied to greenhouses having high environmental control accuracy and good temperature lowering and insect repellent effects.

上記目的を達成するために、本発明で採用される技術案は以下の通りである。加湿・降温風機ウエットカーテン装置であって、温室を降温させ、湿度を増加させるために用いられ、当該降温装置は、天井窓モータと、放射センサと、温度センサと、湿度センサと、側窓バッフル駆動機構と、吸気口側窓バッフルの開度を検出するための角度センサと、吸気口側窓バッフルと、ウエットカーテンと、ウエットカーテン給水電磁弁と、風機と、ガラスバッフルと、ハウジングと、排気口と、通風ダクトと、室内温度センサと、室内湿度センサと、天井窓排気口とを備え、前記温室の一側壁には、室外吸気口が開設され、室外吸気口には、吸気口側窓バッフルがヒンジ接続され、吸気口側窓バッフルの開度は、側窓バッフル駆動機構によって制御され、ウエットカーテンと風機は、ハウジングによって接続されているとともに、それぞれハウジングの両側に取り付けられ、前記ウエットカーテンは、ウエットカーテン給水電磁弁によって出水が制御され、ハウジングにおけるウエットカーテン側に位置する上方には、ガラスバッフルが設けられ、ガラスバッフルと温室の室外吸気口を有する側の側壁が温室室内吸気口を形成し、前記風機は、通風ダクトに連通し、通風ダクトには、排気口が設けられ、前記放射センサ、温度センサ、及び湿度センサは、温室外に設けられ、前記室内温度センサ、及び室内湿度センサは、温室内に設けられ、前記温室の頂部には、複数の天井窓が開設され、天井窓には、天井窓モータが取り付けられ、前記天井窓モータ、放射センサ、温度センサ、湿度センサ、角度センサ、ウエットカーテン給水電磁弁、吸気口側窓モータ、風機、室内温度センサ、及び室内湿度センサは、いずれもコントローラに接続されている。 The technical proposal adopted in the present invention in order to achieve the above object is as follows. A humidifying / cooling air blower wet curtain device, which is used to lower the temperature of a greenhouse and increase the humidity. The temperature lowering device includes a ceiling window motor, a radiation sensor, a temperature sensor, a humidity sensor, and a side window baffle. Drive mechanism, angle sensor for detecting the opening of the intake port side window baffle, intake port side window baffle, wet curtain, wet curtain water supply electromagnetic valve, wind blower, glass baffle, housing, exhaust It is provided with a mouth, a ventilation duct, an indoor temperature sensor, an indoor humidity sensor, and a ceiling window exhaust port. An outdoor intake port is opened on one side wall of the greenhouse, and an intake port side window is provided on the outdoor intake port. The baffle is hinged, the opening degree of the intake port side window baffle is controlled by the side window baffle drive mechanism, and the wet curtain and the wind blower are connected by a housing and attached to both sides of the housing, respectively. The outflow is controlled by the wet curtain water supply electromagnetic valve, a glass baffle is provided above the housing located on the wet curtain side, and the side wall on the side having the glass baffle and the outdoor intake port of the greenhouse serves as the indoor intake port of the greenhouse. The wind blower communicates with the ventilation duct, the ventilation duct is provided with an exhaust port, the radiation sensor, the temperature sensor, and the humidity sensor are provided outside the greenhouse, and the indoor temperature sensor and the indoor humidity are provided. The sensor is provided in the greenhouse, a plurality of ceiling windows are opened at the top of the greenhouse, a ceiling window motor is attached to the ceiling window, and the ceiling window motor, radiation sensor, temperature sensor, humidity sensor, etc. The angle sensor, the wet curtain water supply electromagnetic valve, the intake port side window motor, the wind blower, the indoor temperature sensor, and the indoor humidity sensor are all connected to the controller.

さらに、前記側窓バッフル駆動機構は、弧形プッシュロッドラックと、吸気口側窓モータとを備え、前記側窓モータは、室外吸気口における温室の側壁外に取り付けられ、側窓モータの出力軸には、歯車が取り付けられ、弧形プッシュロッドラックの一端は、吸気口側窓バッフルに固定され、歯車と弧形プッシュロッドラックは、噛合伝動する。 Further, the side window baffle drive mechanism includes an arc-shaped push rod rack and an intake port side window motor, and the side window motor is attached to the outside of the side wall of the greenhouse at the outdoor intake port, and the output shaft of the side window motor. A gear is attached to the wheel, one end of the arc-shaped push rod rack is fixed to the window baffle on the intake port side, and the gear and the arc-shaped push rod rack are meshed and transmitted.

さらに、前記放射センサ、温度センサ、及び湿度センサは、温室室外吸気口の上方に設けられている。 Further, the radiation sensor, the temperature sensor, and the humidity sensor are provided above the greenhouse outdoor intake port.

さらに、前記室内温度センサ、及び室内湿度センサは、温室の中央に設けられている。 Further, the indoor temperature sensor and the indoor humidity sensor are provided in the center of the greenhouse.

さらに、前記角度センサは、温室側壁と吸気口側窓バッフルとの間に設けられている。 Further, the angle sensor is provided between the greenhouse side wall and the intake port side window baffle.

さらに、前記温室室内吸気口には、吸気口防虫ネットが設けられている。 Further, the intake port insect repellent net is provided at the intake port in the greenhouse.

さらに、前記天井窓排気口には、天井窓排気口防虫ネットが設けられている。 Further, the ceiling window exhaust port is provided with an insect repellent net for the ceiling window exhaust port.

本発明は、上述した加湿・降温風機ウエットカーテン装置を制御する方法を提供することをもう1つの目的とし、当該方法は、
ステップ1であって、まず、コントローラに、室内において降温を起動する温度閾値Tcと、湿度増加を起動する湿度閾値Hwと、風機が降温を起動する閾値

Figure 0006866502
と、ウエットカーテン給水電磁弁が開弁する閾値dと、ウエットカーテン給水電磁弁が開弁する降温湿度閾値h1と、ウエットカーテン給水電磁弁が開弁する湿度増加閾値h2とを設定し、コントローラが室外気温センサ、室外湿度センサ、放射強度センサ、室内気温センサ及び室内湿度センサから伝達される情報を受信するステップ1と、
ステップ2であって、室外気温センサ、及び室内気温センサは、検出した温度信号、及び放射強度センサは、検出した室内の太陽放射値をコントローラに伝達し、コントローラは、受信した室外温度及び放射強度の室内温度への影響値に基づき、次式によって室内の所望気温Tqを計算し、
Figure 0006866502
ただし、Tqは室内の所望気温であり、Tsは設定された標準温度であり、Toは室外温度の室内温度への影響値であり、Trは太陽放射強度の室内温度への影響値であり、k1は、室外温度の室内温度への影響値を計算する影響係数であり、tは現在の室外温度であり、t0は指定された室外温度の参考値であり、k2は太陽放射強度の室内温度への影響値を計算する影響係数であり、rは現在の室外放射強度であり、r0は指定された室外放射強度の参考値であるステップ2と、
ステップ3であって、コントローラが室内の所望気温Tqを計算して取得し、室内の所望気温Tqが室内において降温を起動する閾値温度Tcよりも高い場合、加湿・降温風機ウエットカーテン装置が降温モードに入り、室内の所望気温Tqが室内において降温を起動する閾値温度Tcよりも低い場合、加湿・降温風機ウエットカーテン装置が加湿モードに入り、コントローラが室内気象因子に基づき、装置の異なるモードでの風機の起動及び停止、室外吸気口の新風量、ウエットカーテン給水電磁弁の開弁又は閉弁、天井窓排気口の開放又は閉鎖を計算制御し、風機の起動又は停止状態は、次式のように計算され、
Figure 0006866502
ただし、Pfは風機の起動又は停止状態であり、1は起動であり、0は停止であり、Tcは室内において降温を起動する閾値温度であり、bは風機が降温を起動する閾値であり、Hwは温室内において湿度増加を起動する湿度閾値であり、Hiは室内湿度センサが検出した湿度値であり、h2はウエットカーテン給水電磁弁が開弁する湿度増加閾値であり、Tiは室内気温センサが検出した実際の温度値であり、dはウエットカーテン給水電磁弁が開弁する閾値であるステップ3と、
ステップ4であって、コントローラは、角度センサ、吸気口側窓モータが作動することで、吸気口側窓バッフルと吸気口立面とのなす角を制御することにより、温室に入る新風量を制御し、室外吸気口の新風量の計算では、室内において現在実際に測定した気温t2(n)と5分前の室内気温t2(n−1)との差|t2(n−1)−t2(n)|で室内気温の変化の速さを測り、
閾値δを設定し、|t2(n−1)−t2(n)|≧δであると、比例調節法を用いて5分間の新風量Q(n+1)を計算して、次式のように得られ、
Figure 0006866502
ただし、Qは設定される標準新風量であり、t1(n+2)は10分後の室内の所望気温であり、kpは比例係数であり、Qoは室外温度の新風量の計算への影響値であり、Qrは太陽放射照度の新風量の計算への影響値であり、koは室外温度の新風量の計算への影響係数であり、krは太陽放射照度の新風量の計算への影響係数であり、
|t2(n−1)−t2(n)|<δかつ|t2(n)−t1(n+2)|>δ1であるとき、積分により、定常状態誤差が解消されると、次の5分間の新風量Q(n+1)は、次式のようになり、
Figure 0006866502
ただし、δiは正値積分係数であり、t(n)は設定された室内気温の降温温度であり、δ1は設定された別の閾値であるステップ4と、
ステップ5であって、室外湿度センサ、室内湿度センサ、及び室内温度センサは5分間ごとに信号の検出を行い、検出した信号をコントローラに伝達し、コントローラは、検出した信号に基づき、ウエットカーテン給水電磁弁の開弁と閉弁を制御し、次式のように計算し、
Figure 0006866502
ただし、Pcはウエットカーテン給水電磁弁の開弁又は閉弁の状態であり、1は開弁を示し、0は閉弁を示し、Hiは室内湿度センサが検出した実際の湿度値であり、Hoは室外湿度センサが検出した湿度値であり、Tiは室内気温センサが検出した実際の温度値であり、Tcは設定される室内において降温を起動する温度閾値であり、dはウエットカーテン給水電磁弁が開弁する温度閾値であり、Hwは、温室内において湿度増加を起動する湿度閾値であり、h1はウエットカーテン給水電磁弁が開弁する降温湿度閾値であり、h2はウエットカーテン給水電磁弁が開弁する湿度増加閾値であるステップ5と、を含む。 Another object of the present invention is to provide a method for controlling the above-mentioned humidifying / cooling air blower wet curtain device, and the method is described in the present invention.
In step 1, first, the controller has a temperature threshold T c that activates the temperature decrease in the room, a humidity threshold H w that activates the humidity increase, and a threshold that the wind blower activates the temperature decrease.
Figure 0006866502
, The threshold d at which the wet curtain water supply electromagnetic valve opens, the temperature / humidity threshold h 1 at which the wet curtain water supply electromagnetic valve opens, and the humidity increase threshold h 2 at which the wet curtain water supply electromagnetic valve opens are set. Step 1 in which the controller receives information transmitted from the outdoor air temperature sensor, the outdoor humidity sensor, the radiation intensity sensor, the indoor air temperature sensor, and the indoor humidity sensor.
In step 2, the outdoor air temperature sensor and the indoor air temperature sensor detect the temperature signal, and the radiation intensity sensor transmits the detected indoor solar radiation value to the controller, and the controller receives the received outdoor temperature and radiation intensity. Calculate the desired indoor air temperature T q by the following formula based on the effect value on the indoor temperature.
Figure 0006866502
However, T q is the desired temperature of the room, T s is the standard temperature set, T o is the impact value of the indoor temperature of the outdoor temperature, T r is the influence of the room temperature of the solar radiation intensity It is a value, k 1 is an influence coefficient for calculating the influence value of the outdoor temperature on the indoor temperature, t is the current outdoor temperature, t 0 is a reference value of the specified outdoor temperature, and k 2 Is the influence coefficient for calculating the effect value of the solar radiation intensity on the indoor temperature, r is the current outdoor radiation intensity, and r 0 is the reference value of the specified outdoor radiation intensity in step 2 and
A step 3, the controller is obtained by calculating the desired air temperature T q of the room, if desired temperature T q of the room is higher than the threshold temperature T c starting the cooling in the indoor, humidified and cooled blower wet curtain device Enters the cooling mode, and when the desired indoor air temperature T q is lower than the threshold temperature T c that activates the indoor temperature, the humidification / cooling air blower wet curtain device enters the humidification mode, and the controller is based on the indoor weather factor. The start and stop of the air blower in different modes, the new air volume of the outdoor intake port, the opening or closing of the wet curtain water supply electromagnetic valve, the opening or closing of the ceiling window exhaust port are calculated and controlled, and the start or stop state of the wind fan is , Calculated as
Figure 0006866502
However, P f is the start or stop state of the wind blower, 1 is the start, 0 is the stop, T c is the threshold temperature at which the temperature drop is started indoors, and b is the threshold temperature at which the wind blower starts the temperature drop. Yes, H w is the humidity threshold that activates the humidity increase in the greenhouse, H i is the humidity value detected by the indoor humidity sensor, and h 2 is the humidity increase threshold that the wet curtain water supply electromagnetic valve opens. T i is the actual temperature value detected by the indoor air temperature sensor, and d is the threshold value at which the wet curtain water supply electromagnetic valve opens.
In step 4, the controller controls the amount of new air entering the greenhouse by controlling the angle between the intake port side window baffle and the intake port elevation by operating the angle sensor and the intake port side window motor. However, in the calculation of the new air volume at the outdoor air intake , the difference between the temperature t 2 (n) actually measured indoors and the indoor temperature t 2 (n-1) 5 minutes ago | t 2 (n-1) Measure the speed of change in indoor temperature with −t 2 (n) |
When the threshold value δ is set and | t 2 (n-1) −t 2 (n) | ≧ δ, the new air volume Q (n + 1) for 5 minutes is calculated using the proportional adjustment method, and the following equation is used. Obtained like
Figure 0006866502
However, Q is the standard new air volume to be set, t 1 (n + 2) is the desired indoor temperature after 10 minutes, k p is a proportional coefficient, and Q o is the calculation of the new air volume for the outdoor temperature. The influence value, Q r is the influence value on the calculation of the new air volume of the solar irradiance, k o is the influence coefficient on the calculation of the new air volume of the outdoor temperature, and k r is the influence value of the new air volume of the solar irradiance. It is a coefficient of influence on the calculation.
When | t 2 (n-1) −t 2 (n) | <δ and | t 2 (n) −t 1 (n + 2) |> δ 1 and the steady-state error is eliminated by integration, The new air volume Q (n + 1) for the next 5 minutes is as shown in the following equation.
Figure 0006866502
However, δ i is the positive integration coefficient, t (n) is the set indoor air temperature decrease temperature, and δ 1 is another set threshold in step 4 and
In step 5, the outdoor humidity sensor, the indoor humidity sensor, and the indoor temperature sensor detect signals every 5 minutes and transmit the detected signals to the controller, and the controller supplies wet curtain water based on the detected signals. Control the opening and closing of the solenoid valve, calculate as follows,
Figure 0006866502
However, P c is the state of opening or closing of the wet curtain water supply electromagnetic valve, 1 denotes a valve opening, 0 indicates the closing, H i is the actual humidity value room humidity sensor has detected , H o is the humidity value detected the outdoor humidity sensor, T i is the actual temperature value room temperature sensor detects, T c is the temperature threshold to start the cooling in a room to be set, d is The temperature threshold at which the wet curtain water supply electromagnetic valve opens, H w is the humidity threshold at which the humidity increase is activated in the greenhouse, and h 1 is the temperature / humidity threshold at which the wet curtain water supply electromagnetic valve opens. 2 includes step 5 which is a humidity increase threshold at which the wet curtain water supply electromagnetic valve opens.

ステップ1〜ステップ5により、コントローラは、装置において風機の起動又は停止、ウエットカーテン給水電磁弁の開弁と閉弁、天井窓の開放と閉鎖を制御するとともに、室外吸気口の新風量に基づき、吸気口側窓バッフルの開放角度を調節することで、温室内の温度、湿度を調節して、室内の気温、湿度が求められる要求を満たすようにする。 According to steps 1 to 5, the controller controls the start or stop of the wind blower, the opening and closing of the wet curtain water supply electromagnetic valve, the opening and closing of the ceiling window in the apparatus, and based on the new air volume of the outdoor intake port. By adjusting the opening angle of the window baffle on the intake port side, the temperature and humidity in the greenhouse are adjusted so that the indoor temperature and humidity meet the required requirements.

本発明が奏する有益な効果は、従来の負圧式降温ウエットカーテン装置に比べ、本発明に係る装置における風機とウエットカーテンが同一側に位置し、温室の長さの設計が受ける影響が小さく、降温の時、温室内の温度の分布がより均一となる。温室の同一側にウエットカーテンと風機が設けられることで、従来のウエットカーテン風機の配置を最適化し、風機による温室内への日除けを減少し、温室の採光性及び空間利用率を向上させる。吸気口側窓バッフルの角度が変化することにより、温室に入る新風量と温室内の循環風量を調節し、温室室内の温度を精確に調節制御する目的に達成し、従来のウエットカーテン風機が起動及び停止して、温室内の温度が急激に変化する欠陥を避ける。通風ダクトで送風することにより、温室内の温湿度の分布を均一とする。温室内の空気の内循環とウエットカーテンの出水により温室を加湿する目的に達成することができる。温室の生産領域の正圧式の設計と吸気排気口の防虫ネットの設計により、温室内への有害な病原、虫源の進入を減少させる。制御方法では、フィードフォワード方式の制御を採用し、温度、湿度制御の精度を向上させる。 The beneficial effect of the present invention is that the wind blower and the wet curtain in the device according to the present invention are located on the same side as compared with the conventional negative pressure type wet curtain device, and the influence on the length design of the greenhouse is small, and the temperature is lowered. At this time, the temperature distribution in the greenhouse becomes more uniform. By installing the wet curtain and the wind blower on the same side of the greenhouse, the arrangement of the conventional wet curtain wind blower is optimized, the awning in the greenhouse by the wind blower is reduced, and the daylighting property and the space utilization rate of the greenhouse are improved. By changing the angle of the window baffle on the intake port side, the new air volume entering the greenhouse and the circulating air volume in the greenhouse are adjusted to achieve the purpose of accurately adjusting and controlling the temperature inside the greenhouse, and the conventional wet curtain wind blower is activated. And stop to avoid defects where the temperature in the greenhouse changes rapidly. By blowing air through a ventilation duct, the distribution of temperature and humidity in the greenhouse is made uniform. The purpose of humidifying the greenhouse can be achieved by the internal circulation of air in the greenhouse and the flooding of wet curtains. The positive pressure design of the greenhouse production area and the design of the insect repellent net at the intake and exhaust ports reduce the invasion of harmful pathogens and insect sources into the greenhouse. In the control method, feedforward control is adopted to improve the accuracy of temperature and humidity control.

本発明の原理図である。It is a principle diagram of this invention. 本発明の降温モード(室内と室外との混合吸気)の側面図である。It is a side view of the temperature lowering mode (mixed intake air between indoor and outdoor) of this invention. 本発明の降温モード(完全な室外吸気)の側面図である。It is a side view of the temperature lowering mode (complete outdoor intake) of this invention. 本発明の加湿モードの側面図である。It is a side view of the humidification mode of this invention.

以下、図面と実施例に合わせて本発明をさらに説明する。 Hereinafter, the present invention will be further described with reference to the drawings and examples.

図1に示すように、加湿・降温風機ウエットカーテン装置は、温室に対して降温および加湿するために用いられ、当該降温装置は、天井窓モータ1と、放射センサ2と、温度センサ3と、湿度センサ4と、側窓バッフル駆動機構と、吸気口側窓バッフルの開度を検出する角度センサ8と、吸気口側窓バッフル9と、ウエットカーテン10と、ウエットカーテン給水電磁弁11と、風機13と、ガラスバッフル15と、ハウジング16と、排気口17と、通風ダクト18と、室内温度センサ19と、室内湿度センサ20と、天井窓排気口23とを備える。前記温室の一側壁に室外吸気口5が開設され、室外吸気口5に吸気口側窓バッフル9がヒンジ接続されており、吸気口側窓バッフル9の開度が側窓バッフル駆動機構によって制御される。ウエットカーテン10と風機13とは、ハウジング16により接続されているとともに、ハウジング16の両側にそれぞれ取り付けられており、上記ウエットカーテン10は、ウエットカーテン給水電磁弁11によって出水が制御される。ハウジング11におけるウエットカーテン10側に位置する上方にガラスバッフル15が設けられ、ガラスバッフル15と温室における室外吸気口5を有する側の側壁とで温室室内吸気口14が形成されている。前記風機13が通風ダクト18に連通し、通風ダクト18に排気口17が設けられ、通風ダクト18に種植苗床21が設けられ、苗床に植物22が種植される。上記放射センサ2、温度センサ3、湿度センサ4が温室外に設けられ、上記室内温度センサ19、室内湿度センサ20が温室内に設けられている。上記温室頂部に複数の天井窓が開設され、天井窓に天井窓モータ1が取り付けられている。上記天井窓モータ1、放射センサ2、温度センサ3、湿度センサ4、角度センサ8、ウエットカーテン給水電磁弁11、吸気口側窓モータ12、風機13、室内温度センサ19、及び室内湿度センサ20は、いずれもコントローラに接続されている。上記コントローラとしては、浙江大学の型番ZJU―AES―05の製品が用いられてもよいが、これに限定されない。 As shown in FIG. 1, a humidifying / cooling air blower wet curtain device is used for lowering and humidifying a greenhouse, and the heating device includes a ceiling window motor 1, a radiation sensor 2, and a temperature sensor 3. Humidity sensor 4, side window baffle drive mechanism, angle sensor 8 that detects the opening degree of the intake port side window baffle, intake port side window baffle 9, wet curtain 10, wet curtain water supply electromagnetic valve 11, and wind blower. A glass baffle 15, a housing 16, an exhaust port 17, a ventilation duct 18, an indoor temperature sensor 19, an indoor humidity sensor 20, and a ceiling window exhaust port 23 are provided. An outdoor intake port 5 is opened on one side wall of the greenhouse, an intake port side window baffle 9 is hinged to the outdoor intake port 5, and the opening degree of the intake port side window baffle 9 is controlled by a side window baffle drive mechanism. To. The wet curtain 10 and the wind fan 13 are connected by a housing 16 and are attached to both sides of the housing 16, respectively. The wet curtain 10 is controlled by a wet curtain water supply solenoid valve 11. A glass baffle 15 is provided above the housing 11 located on the wet curtain 10 side, and the greenhouse indoor air intake port 14 is formed by the glass baffle 15 and the side wall of the greenhouse on the side having the outdoor air intake port 5. The air blower 13 communicates with the ventilation duct 18, an exhaust port 17 is provided in the ventilation duct 18, a seed plantation nursery 21 is provided in the ventilation duct 18, and a plant 22 is planted in the nursery. The radiation sensor 2, the temperature sensor 3, and the humidity sensor 4 are provided outside the greenhouse, and the indoor temperature sensor 19 and the indoor humidity sensor 20 are provided inside the greenhouse. A plurality of ceiling windows are opened at the top of the greenhouse, and a ceiling window motor 1 is attached to the ceiling windows. The ceiling window motor 1, radiation sensor 2, temperature sensor 3, humidity sensor 4, angle sensor 8, wet curtain water supply electromagnetic valve 11, intake port side window motor 12, wind blower 13, room temperature sensor 19, and room humidity sensor 20 are , Both are connected to the controller. As the controller, a product of Zhejiang University model number ZJU-AES-05 may be used, but the controller is not limited thereto.

さらに、上記側窓バッフル駆動機構が、弧形プッシュロッドラック7と、吸気口側窓モータ12とを備え、上記側窓モータ12が室外吸気口5における温室側壁外に取り付けられ、側窓モータ12の出力軸に歯車が取り付けられ、弧形プッシュロッドラック7の一端が吸気口側窓バッフル9に固定され、歯車と弧形プッシュロッドラック7が噛合伝動し、即ち、内噛合伝動の形態が構成されている。 Further, the side window baffle drive mechanism includes an arc-shaped push rod rack 7 and an intake port side window motor 12, and the side window motor 12 is attached to the outside of the greenhouse side wall at the outdoor intake port 5, and the side window motor 12 A gear is attached to the output shaft of the above, one end of the arc-shaped push rod rack 7 is fixed to the intake port side window baffle 9, and the gear and the arc-shaped push rod rack 7 are meshed and transmitted, that is, the form of internal meshing transmission is configured. Has been done.

さらに、上記放射センサ2、温度センサ3、及び湿度センサ4が温室室外吸気口5の上方に設けられている。 Further, the radiation sensor 2, the temperature sensor 3, and the humidity sensor 4 are provided above the greenhouse outdoor air intake port 5.

さらに、上記室内温度センサ19と、室内湿度センサ20とが温室の中央に設けられている。 Further, the indoor temperature sensor 19 and the indoor humidity sensor 20 are provided in the center of the greenhouse.

さらに、上記角度センサ8が温室側壁と吸気口側窓バッフル9との間に設けられ、吸気口側窓バッフル9の開口の大きさを検出することに用いられる。 Further, the angle sensor 8 is provided between the greenhouse side wall and the intake port side window baffle 9, and is used to detect the size of the opening of the intake port side window baffle 9.

さらに、上記温室室内吸気口5には吸気口防虫ネット6が設けられている。 Further, the intake port insect repellent net 6 is provided at the intake port 5 in the greenhouse.

さらに、上記天井窓排気口23には天井窓排気口防虫ネット24が設けられている。 Further, the ceiling window exhaust port 23 is provided with a ceiling window exhaust port insect repellent net 24.

図2に示すように、降温モードに入り、コントローラは、室内外の環境因子に基づき、室内の新風量を計算し、角度センサ8と吸気口側窓モータ12とを作動させることで、吸気口側窓バッフル9と室外吸気口の立面とのなす角が制御され、室外吸気口5を介してウエットカーテン10に入る新風量が調節され、室外吸気口5の新風空気と室内吸気口14の室内空気が混合してウエットカーテン10に入ってから冷空気に降温され、冷空気が風機13、通風ダクト18及び排気口17を通って温室に均一に入って降温され、冷空気が温室に入ってから受熱して上昇し、室内吸気口14とウエットカーテン10とに入って循環降温され、又は天井窓排気口23を介して室外に排出される。 As shown in FIG. 2, in the temperature lowering mode, the controller calculates the new air volume in the room based on the indoor and outdoor environmental factors, and operates the angle sensor 8 and the intake port side window motor 12 to operate the intake port side window motor 12. The angle between the side window baffle 9 and the elevation of the outdoor intake port is controlled, the amount of new air entering the wet curtain 10 via the outdoor intake port 5 is adjusted, and the fresh air in the outdoor intake port 5 and the indoor intake port 14 After the indoor air is mixed and enters the wet curtain 10, the temperature is lowered to the cold air, the cold air enters the greenhouse uniformly through the air blower 13, the ventilation duct 18 and the exhaust port 17 and is cooled, and the cold air enters the greenhouse. After that, it receives heat and rises, enters the indoor intake port 14 and the wet curtain 10, circulates and lowers the temperature, or is discharged to the outside through the ceiling window exhaust port 23.

図3に示すように、降温モードに入り、降温最大負荷に達している。吸気口側窓バッフル9と吸気口裏面とが90度の角をなし、室外吸気口5が完全に開放し、室内吸気口14が完全に閉鎖している。 As shown in FIG. 3, the temperature lowering mode has been entered and the maximum temperature lowering load has been reached. The intake port side window baffle 9 and the back surface of the intake port form an angle of 90 degrees, the outdoor intake port 5 is completely open, and the indoor intake port 14 is completely closed.

図4に示すように、加湿モードに入る。吸気口側窓バッフル9が吸気口裏面に重ね合わせ、室外吸気口5が完全に閉鎖し、室内吸気口14が完全に開放する。室内の乾燥空気が室内吸気口14を介してウエットカーテン10に入り、ウエットカーテン給水電磁弁11が開弁し、湿潤空気に加湿され、風機13、通風ダクト18、及び排気口17を通って温室に均一に入って加湿され、湿潤空気が温室に入り乾燥した後に上昇し、室内吸気口14とウエットカーテン10に入って循環加湿される。 As shown in FIG. 4, the humidification mode is entered. The intake port side window baffle 9 is superposed on the back surface of the intake port, the outdoor intake port 5 is completely closed, and the indoor intake port 14 is completely opened. The dry air in the room enters the wet curtain 10 through the indoor intake port 14, the wet curtain water supply electromagnetic valve 11 opens, is humidified by the moist air, and passes through the air blower 13, the ventilation duct 18, and the exhaust port 17 to the greenhouse. The moist air enters the greenhouse and dries, then rises, and enters the indoor air intake port 14 and the wet curtain 10 to be circulated and humidified.

加湿・降温風機ウエットカーテン装置の制御において、検出された温室内外の環境因子の状況に従って、装置が降温モード又は加湿モードに入るように制御される。温室内で設定される温度、湿度値及び実際に測定される温度、湿度値により、風機、天井窓モータ、側窓通風口モータの起動と停止、及びウエットカーテン給水電磁弁の閉弁と開弁を計算判断する。 In the control of the humidifying / cooling air blower wet curtain device, the device is controlled to enter the cooling mode or the humidifying mode according to the detected environmental factors inside and outside the greenhouse. Depending on the temperature and humidity value set in the greenhouse and the temperature and humidity value actually measured, start and stop of the wind blower, ceiling window motor, side window ventilation port motor, and closing and opening the wet curtain water supply solenoid valve. To calculate and judge.

装置の降温モードでの新風量の制御において、吸気口側窓バッフルの角度が変化することで、温室に入る新風量と温室内循環風量を調節し、温室室内の温度を精確に調節して制御する。温室内の温度が室外温度、太陽放射因子の影響を受けるため、フィードフォワードの比例積分を用いて装置の降温モードでの可変な新風量の制御を行う方法は、具体的に以下のステップを含む。 In the control of the new air volume in the cooling mode of the device, the angle of the window baffle on the intake port side changes to adjust the new air volume entering the greenhouse and the circulating air volume in the greenhouse, and accurately adjust and control the temperature inside the greenhouse. To do. Since the temperature inside the greenhouse is affected by the outdoor temperature and solar radiation factors, the method of controlling the variable new air volume in the cooling mode of the device using feedforward proportional integration specifically includes the following steps. ..

ステップ1であって、まず、コントローラには、室内において降温を起動する温度閾値Tcと、湿度増加を起動する湿度閾値Hwと、風機が降温を起動する閾値bと、ウエットカーテン給水電磁弁が開弁する閾値dと、ウエットカーテン給水電磁弁が開弁する降温湿度閾値h1と、ウエットカーテン給水電磁弁が開弁する湿度増加閾値h2とを設定し、コントローラが室外気温センサ、室外湿度センサ、放射強度センサ、室内気温センサ及び室内湿度センサから伝達される情報をリアルタイムに受信する。 In step 1, first, the controller has a temperature threshold T c that activates the temperature decrease in the room, a humidity threshold H w that activates the humidity increase, a threshold b that the wind blower activates the temperature decrease, and a wet curtain water supply electromagnetic valve. The threshold value d for opening the valve, the humidity decrease threshold h 1 for opening the wet curtain water supply electromagnetic valve, and the humidity increase threshold h 2 for opening the wet curtain water supply electromagnetic valve are set, and the controller sets the outdoor air temperature sensor and the outdoor temperature sensor. Receives information transmitted from the humidity sensor, radiation intensity sensor, indoor air temperature sensor, and indoor humidity sensor in real time.

ステップ2であって、室外気温センサ及び室内気温センサは、検出された温度信号を、および放射強度センサは、検出された室内太陽放射値をコントローラに伝達し、コントローラは、受信した室外温度及び放射強度の室内温度への影響値に基づき、次式により室内所望気温Tqを計算する。

Figure 0006866502
ただし、Tsは設定された標準温度であり、Toは室外温度の室内温度への影響値であり、Trは太陽放射強度の室内温度への影響値であり、Tqは温室内の所望気温であり、k1は室外温度の室内温度への影響値を計算するための影響係数であり、k2は太陽放射強度の室内温度への影響値を計算するための影響係数であり、tは現在の室外温度であり、t0は指定された室外温度の参考値であり、rは現在の室外放射強度であり、r0は指定された室外放射強度の参考値である。 In step 2, the outdoor air temperature sensor and the indoor air temperature sensor transmit the detected temperature signal, the radiation intensity sensor transmits the detected indoor solar radiation value to the controller, and the controller transmits the received outdoor temperature and radiation. Based on the effect value of the intensity on the indoor temperature, the desired indoor air temperature T q is calculated by the following formula.
Figure 0006866502
However, T s is the standard temperature set, T o is the impact value of the indoor temperature of the outdoor temperature, T r is the impact value of the room temperature of the solar radiation intensity, T q is in the greenhouse It is the desired temperature, k 1 is the influence coefficient for calculating the influence value of the outdoor temperature on the indoor temperature, and k 2 is the influence coefficient for calculating the influence value of the solar radiation intensity on the indoor temperature. t is the current outdoor temperature, t 0 is the reference value for the specified outdoor temperature, r is the current outdoor radiation intensity, and r 0 is the reference value for the specified outdoor radiation intensity.

ステップ3であって、コントローラが室内の所望気温Tqを計算して取得し、室内の所望気温Tqが室内において降温を起動する閾値温度Tcよりも高い場合、加湿・降温風機ウエットカーテン装置が降温モードに入り、室内の所望気温Tqが室内において降温を起動する閾値温度Tcよりも低い場合、加湿・降温風機ウエットカーテン装置が加湿モードに入る。コントローラが室内気象因子に基づき、装置の異なるモードでの風機の起動及び停止、室外吸気口の新風量、ウエットカーテン給水電磁弁の開弁又は閉弁、天井窓排気口の開放又は閉鎖を計算して制御し、風機の起動又は停止状態は、次式通り計算される。

Figure 0006866502
ただし、Pfは風機の起動又は停止状態であり、1は起動であり、0は停止であり、Tqは室内の所望気温であり、Tiは室内気温センサが検出した実際の温度値であり、Tcは室内において降温を起動する閾値温度であり、Hiは室内湿度センサが検出した湿度値であり、Hoは室外湿度センサが検出した湿度値であり、Hwは温室内において湿度増加を起動する湿度閾値であり、bは風機が降温を起動する閾値であり、dはウエットカーテン給水電磁弁が開弁する閾値であり、h2はウエットカーテン給水電磁弁が開弁する湿度増加閾値である。 A step 3, the controller is obtained by calculating the desired air temperature T q of the room, if desired temperature T q of the room is higher than the threshold temperature T c starting the cooling in the indoor, humidified and cooled blower wet curtain device Enters the temperature lowering mode, and when the desired indoor air temperature T q is lower than the threshold temperature T c that initiates the temperature lowering in the room, the humidifying / lowering air blower wet curtain device enters the humidifying mode. The controller calculates the start and stop of the wind blower in different modes of the device, the new air volume of the outdoor intake, the opening or closing of the wet curtain water supply solenoid valve, and the opening or closing of the ceiling window exhaust based on the indoor weather factors. The start or stop state of the wind blower is calculated according to the following equation.
Figure 0006866502
However, P f is the start or stop state of the wind blower, 1 is the start, 0 is the stop, T q is the desired indoor temperature, and T i is the actual temperature value detected by the room temperature sensor. There, T c is the threshold temperature for starting the cooling in the indoor, H i is the humidity value room humidity sensor detects, H o is the humidity value outdoor humidity sensor detects, H w in greenhouse Humidity threshold that activates humidity increase, b is the threshold that the wind blower activates temperature decrease, d is the threshold that the wet curtain water supply electromagnetic valve opens, and h 2 is the humidity that the wet curtain water supply electromagnetic valve opens. The increase threshold.

ステップ4であって、コントローラは、角度センサ、吸気口側窓モータが作動するで、吸気口側窓バッフルと吸気口立面とのなす角を制御することにより、温室に入る新風量を制御する。室外吸気口の新風量の計算は、以下の通りである。すなわち、室内において現在実際に測定した気温t2(n)と5分前の室内気温t2(n−1)との差|t2(n−1)−t2(n)|で室内気温の変化の速さを測定する。 In step 4, the controller controls the amount of new air entering the greenhouse by controlling the angle between the intake port side window baffle and the intake port elevation by operating the angle sensor and the intake port side window motor. .. The calculation of the new air volume at the outdoor air intake is as follows. That is, the difference between the air temperature t 2 (n) actually measured in the room and the indoor air temperature t 2 (n-1) 5 minutes ago | t 2 (n-1) −t 2 (n) | Measure the speed of change.

閾値δを設定し、|t2(n−1)−t2(n)|≧δであると、比例調節法を用いて5分間の新風量Q(n+1)を計算して、次式のように得られる。

Figure 0006866502
ただし、Qは設定される標準新風量であり、t1(n+2)は10分後の室内の所望気温であり、kpは比例係数であり、Qoは室外温度の新風量の計算への影響値であり、Qrは太陽放射照度の新風量の計算への影響値であり、koは室外温度の新風量の計算への影響係数であり、krは太陽放射照度の新風量の計算への影響係数である。 When the threshold value δ is set and | t 2 (n-1) −t 2 (n) | ≧ δ, the new air volume Q (n + 1) for 5 minutes is calculated using the proportional adjustment method, and the following equation is used. Obtained like this.
Figure 0006866502
However, Q is the standard new air volume to be set, t 1 (n + 2) is the desired indoor temperature after 10 minutes, k p is a proportional coefficient, and Q o is the calculation of the new air volume for the outdoor temperature. The influence value, Q r is the influence value on the calculation of the new air volume of the solar irradiance, k o is the influence coefficient on the calculation of the new air volume of the outdoor temperature, and k r is the influence value of the new air volume of the solar irradiance. It is a coefficient of influence on the calculation.

|t2(n−1)−t2(n)|<δかつ|t2(n)−t1(n+2)|>δ1であるとき、積分により、定常状態誤差が解消されると、次の5分間の新風量Q(n+1)は、次式のようになる。

Figure 0006866502
ただし、δiは正値積分係数であり、t(n)は設定された室内気温の降温温度であり、δ1は設定された別の閾値である。 When | t 2 (n-1) −t 2 (n) | <δ and | t 2 (n) −t 1 (n + 2) |> δ 1 and the steady-state error is eliminated by integration, The new air volume Q (n + 1) for the next 5 minutes is as follows.
Figure 0006866502
However, δ i is the positive integration factor, t (n) is the set indoor air temperature drop temperature, and δ 1 is another set threshold.

ステップ5であって、室外湿度センサ、室内湿度センサ、及び室内温度センサは、5分間ごとに信号の検出を行い、検出した信号をコントローラに伝達する。コントローラは、検出された信号に基づき、ウエットカーテン給水電磁弁の開弁と閉弁を制御し、次式のように計算する。

Figure 0006866502
ただし、Pcはウエットカーテン給水電磁弁の開弁又は閉弁の状態であり、1は開弁を示し、0は閉弁を示し、Hiは室内湿度センサが検出した実際の湿度値であり、Hoは室外湿度センサが検出した湿度値であり、Tiは、室内気温センサが検出した実際の温度値であり、Tcは室内において降温を起動する温度閾値であり、dはウエットカーテン給水電磁弁が開弁する温度閾値であり、Hwは温室内において湿度増加を起動する湿度閾値であり、h1はウエットカーテン給水電磁弁が開弁する降温湿度閾値であり、h2はウエットカーテン給水電磁弁が開弁する湿度増加閾値である。 In step 5, the outdoor humidity sensor, the indoor humidity sensor, and the indoor temperature sensor detect a signal every 5 minutes and transmit the detected signal to the controller. The controller controls the opening and closing of the wet curtain water supply solenoid valve based on the detected signal, and calculates as follows.
Figure 0006866502
However, P c is the open or closed state of the wet curtain water supply electromagnetic valve, 1 indicates the valve open, 0 indicates the valve closed, and H i is the actual humidity value detected by the indoor humidity sensor. , H o is the humidity value detected the outdoor humidity sensor, T i is the actual temperature value room temperature sensor detects, T c is the temperature threshold to start the cooling in a room, d is the wet curtain H w is the temperature threshold at which the water supply electromagnetic valve opens, H w is the humidity threshold at which the humidity increase is activated in the greenhouse, h 1 is the temperature / humidity threshold at which the wet curtain water supply electromagnetic valve opens, and h 2 is the wet humidity threshold. This is the humidity increase threshold at which the curtain water supply electromagnetic valve opens.

ステップ1からステップ5により、コントローラは、装置において風機の起動又は停止、ウエットカーテン給水電磁弁の開弁と閉弁、天井窓の開放と閉鎖を制御するとともに、室外吸気口の新風量に基づき、吸気口側窓バッフルの開放角度を調節することで、温室内の温度、湿度を調節して、室内の気温、湿度が求められる要求を満たすようにする。 From step 1 to step 5, the controller controls the start or stop of the wind blower, the opening and closing of the wet curtain water supply electromagnetic valve, the opening and closing of the ceiling window in the device, and based on the new air volume of the outdoor intake port. By adjusting the opening angle of the window baffle on the intake port side, the temperature and humidity in the greenhouse are adjusted so that the indoor temperature and humidity meet the required requirements.

1 天井窓モータ
2 放射センサ
3 温度センサ
4 湿度センサ
5 室外吸気口
6 室外吸気口防虫ネット
7 プッシュロッドラック
8 角度センサ
9 吸気口側窓バッフル
10 ウエットカーテン
11 ウエットカーテン給水電磁弁
12 吸気口側窓モータ
13 風機
14 室内吸気口
15 ガラスバッフル
16 ハウジング
17 排気口
18 通風ダクト
19 室内温度センサ
20 室内湿度センサ
23 天井窓排気口
24 天井窓排気口防虫ネット。
1 Ceiling window motor 2 Radiation sensor 3 Temperature sensor 4 Humidity sensor 5 Outdoor intake port 6 Outdoor intake port insect repellent net 7 Push rod rack 8 Angle sensor 9 Intake port side window baffle 10 Wet curtain 11 Wet curtain Water supply electromagnetic valve 12 Intake port side window Motor 13 Winder 14 Indoor air intake 15 Glass baffle 16 Housing 17 Exhaust port 18 Ventilation duct 19 Indoor temperature sensor 20 Indoor humidity sensor 23 Ceiling window exhaust port 24 Ceiling window exhaust port Insect-proof net.

Claims (7)

温室に対して降温させ、湿度を増加させるための加湿・降温風機ウエットカーテン装置であって、天井窓モータ(1)と、放射センサ(2)と、温度センサ(3)と、湿度センサ(4)と、側窓バッフル駆動機構と、吸気口側窓バッフルの開度を検出する角度センサ(8)と、吸気口側窓バッフル(9)と、ウエットカーテン(10)と、ウエットカーテン給水電磁弁(11)と、風機(13)と、ガラスバッフル(15)と、ハウジング(16)と、排気口(17)と、通風ダクト(18)と、室内温度センサ(19)と、室内湿度センサ(20)と、天井窓排気口(23)となどを備え、
前記温室の一側壁には、室外吸気口(5)が開設され、室外吸気口(5)には、吸気口側窓バッフル(9)がヒンジ接続され、吸気口側窓バッフル(9)の開度は、側窓バッフル駆動機構によって制御されており、
ウエットカーテン(10)と風機(13)は、ハウジング(16)によって接続され、ハウジング(16)の両側にそれぞれ取り付けられ、前記ウエットカーテン(10)は、ウエットカーテン給水電磁弁(11)により出水が制御され、
ハウジング(11)におけるウエットカーテン(10)側に位置する上方には、ガラスバッフル(15)が設けられ、ガラスバッフル(15)と温室の室外吸気口(5)を有する側の側壁とが、温室室内吸気口(14)を形成し、
前記風機(13)は、通風ダクト(18)に連通し、通風ダクト(18)には、排気口(17)が設けられており、
前記放射センサ(2)、温度センサ(3)、及び湿度センサ(4)は、温室外に設けられ、前記室内温度センサ(19)、及び室内湿度センサ(20)は、温室内に設けられており、
前記温室の頂部には、複数の天井窓が開設され、天井窓には、天井窓モータ(1)が取り付けられており、
前記天井窓モータ(1)、放射センサ(2)、温度センサ(3)、湿度センサ(4)、角度センサ(8)、ウエットカーテン給水電磁弁(11)、吸気口側窓モータ(12)、風機(13)、室内温度センサ(19)、及び室内湿度センサ(20)は、いずれもコントローラに接続されており、
前記側窓バッフル駆動機構は、弧形プッシュロッドラック(7)と、吸気口側窓モータ(12)とを備え、前記吸気口側窓モータ(12)は、室外吸気口(5)における温室の側壁外に取り付けられ、前記吸気口側窓モータ(12)の出力軸には、歯車が取り付けられ、前記弧形プッシュロッドラック(7)の一端は、前記吸気口側窓バッフル(9)に固定され、前記歯車と前記弧形プッシュロッドラック(7)とは、噛合伝動することを特徴とする加湿・降温風機ウエットカーテン装置。
A humidifying / lowering air blower wet curtain device for lowering the temperature of a greenhouse and increasing the humidity. It is a ceiling window motor (1), a radiation sensor (2), a temperature sensor (3), and a humidity sensor (4). ), The side window baffle drive mechanism, the angle sensor (8) that detects the opening degree of the intake port side window baffle, the intake port side window baffle (9), the wet curtain (10), and the wet curtain water supply electromagnetic valve. (11), wind blower (13), glass baffle (15), housing (16), exhaust port (17), ventilation duct (18), indoor temperature sensor (19), indoor humidity sensor (11) 20) and a ceiling window exhaust port (23), etc.
An outdoor air intake (5) is opened on one side wall of the greenhouse, and a window baffle (9) on the air intake side is hinged to the outdoor air intake (5) to open the window baffle (9) on the air intake side. The degree is controlled by the side window baffle drive mechanism,
The wet curtain (10) and the wind blower (13) are connected by a housing (16) and attached to both sides of the housing (16), respectively, and the wet curtain (10) is discharged by a wet curtain water supply solenoid valve (11). Controlled
A glass baffle (15) is provided above the housing (11) located on the wet curtain (10) side, and the glass baffle (15) and the side wall on the side having the outdoor air intake (5) of the greenhouse form a greenhouse. Forming the indoor air intake (14),
The air blower (13) communicates with the ventilation duct (18), and the ventilation duct (18) is provided with an exhaust port (17).
The radiation sensor (2), the temperature sensor (3), and the humidity sensor (4) are provided outside the greenhouse, and the indoor temperature sensor (19) and the indoor humidity sensor (20) are provided inside the greenhouse. Ori,
A plurality of ceiling windows are opened at the top of the greenhouse, and a ceiling window motor (1) is attached to the ceiling windows.
The ceiling window motor (1), radiation sensor (2), temperature sensor (3), humidity sensor (4), angle sensor (8), wet curtain water supply electromagnetic valve (11), intake port side window motor (12), The wind blower (13), the indoor temperature sensor (19), and the indoor humidity sensor (20) are all connected to the controller .
The side window baffle drive mechanism includes an arc-shaped push rod rack (7) and an intake port side window motor (12), and the intake port side window motor (12) is a greenhouse in an outdoor intake port (5). A gear is attached to the output shaft of the intake port side window motor (12) attached to the outside of the side wall, and one end of the arc-shaped push rod rack (7) is fixed to the intake port side window baffle (9). A humidifying / lowering air blower wet curtain device , wherein the gear and the arc-shaped push rod rack (7) are engaged and transmitted.
前記放射センサ(2)、温度センサ(3)、及び湿度センサ(4)は、室外吸気口(5)の上方に設けられていることを特徴とする請求項に記載の加湿・降温風機ウエットカーテン装置。 The humidifying / lowering air blower wet according to claim 1 , wherein the radiation sensor (2), the temperature sensor (3), and the humidity sensor (4) are provided above the outdoor intake port (5). Curtain device. 前記室内温度センサ(19)、及び室内湿度センサ(20)は、温室の中央に設けられていることを特徴とする請求項に記載の加湿・降温風機ウエットカーテン装置。 The humidifying / lowering air blower wet curtain device according to claim 2 , wherein the indoor temperature sensor (19) and the indoor humidity sensor (20) are provided in the center of the greenhouse. 前記角度センサ(8)は、温室側壁と吸気口側窓バッフル(9)との間に設けられていることを特徴とする請求項に記載の加湿・降温風機ウエットカーテン装置。 The humidifying / lowering air blower wet curtain device according to claim 3 , wherein the angle sensor (8) is provided between the greenhouse side wall and the intake port side window baffle (9). 前記室外吸気口(5)には、吸気口防虫ネット(6)が設けられていることを特徴とする請求項に記載の加湿・降温風機ウエットカーテン装置。 The humidifying / lowering air blower wet curtain device according to claim 4 , wherein the outdoor intake port (5) is provided with an intake port insect repellent net (6). 前記天井窓排気口(23)には、天井窓排気口防虫ネット(24)が設けられていることを特徴とする請求項に記載の加湿・降温風機ウエットカーテン装置。 The humidifying / lowering air blower wet curtain device according to claim 5 , wherein the ceiling window exhaust port (23) is provided with a ceiling window exhaust port insect repellent net (24). 請求項1乃至のいずれか1項に記載の加湿・降温風機ウエットカーテン装置の制御方法であって、
ステップ1であって、まず、コントローラには、室内において降温を起動する温度閾値Tcと、湿度増加を起動する湿度閾値Hwと、風機が降温を起動する閾値bと、ウエットカーテン給水電磁弁が開弁する閾値dと、ウエットカーテン給水電磁弁が開弁する降温湿度閾値h1と、ウエットカーテン給水電磁弁が開弁する湿度増加閾値h2とを設定し、コントローラは、室外気温センサ、室外湿度センサ、放射強度センサ、室内気温センサ及び室内湿度センサから伝達される情報をリアルタイムに受信するステップ1と、
ステップ2であって、室外気温センサ、及び室内気温センサは、検出した温度信号、及び放射強度センサは、検出した室内の太陽放射値をコントローラに伝達し、コントローラは、受信した室外温度及び放射強度の室内温度への影響値に基づき、次式によって室内の所望気温Tqを計算し、
Figure 0006866502
ただし、Tqは室内の所望気温であり、Tsは設定された標準温度であり、Toは室外温度の室内温度への影響値であり、Trは太陽放射強度の室内温度への影響値であり、k1は、室外温度の室内温度への影響値を計算する影響係数であり、tは現在の室外温度であり、t0は指定された室外温度の参考値であり、k2は太陽放射強度の室内温度への影響値を計算する影響係数であり、rは現在の室外放射強度であり、r0は指定された室外放射強度の参考値であるステップ2と、
ステップ3であって、コントローラが室内の所望気温Tqを計算して取得し、室内の所望気温Tqが室内において降温を起動する閾値温度Tcよりも高い場合、加湿・降温風機ウエットカーテン装置が降温モードに入り、室内の所望気温Tqが室内において降温を起動する閾値温度Tcよりも低い場合、加湿・降温風機ウエットカーテン装置が加湿モードに入り、コントローラが室内気象因子に基づき、装置の異なるモードでの風機の起動及び停止、室外吸気口の新風量、ウエットカーテン給水電磁弁の開弁又は閉弁、天井窓排気口の開放又は閉鎖を計算して制御し、風機の起動又は停止状態が、次式のように計算され、
Figure 0006866502
ただし、Pfは風機の起動又は停止状態であり、1は起動であり、0は停止であり、Tcは室内において降温を起動する閾値温度であり、bは風機が降温を起動する閾値であり、Hwは温室内において湿度増加を起動する湿度閾値であり、Hiは室内湿度センサが検出した湿度値であり、h2はウエットカーテン給水電磁弁が開弁する湿度増加閾値であり、Tiは室内気温センサが検出した実際の温度値であり、dはウエットカーテン給水電磁弁が開弁する閾値であるステップ3と、
ステップ4であって、コントローラは、角度センサ、吸気口側窓モータが作動することで、吸気口側窓バッフルと吸気口立面とのなす角を制御することにより、温室に入る新風量を制御し、室外吸気口の新風量の計算では、室内において現在実際に測定した気温t2(n)と5分前の室内気温t2(n−1)との差|t2(n−1)−t2(n)|で室内気温の変化の速さを測り、
閾値δを設定し、|t2(n−1)−t2(n)|≧δであると、比例調節法を用いて5分間の新風量Q(n+1)を計算して、次式のように得られ、
Figure 0006866502
ただし、Qは設定される標準新風量であり、t1(n+2)は10分後の室内の所望気温であり、kpは比例係数であり、Qoは室外温度の新風量の計算への影響値であり、Qrは太陽放射照度の新風量の計算への影響値であり、koは室外温度の新風量の計算への影響係数であり、krは太陽放射照度の新風量の計算への影響係数であり、
|t2(n−1)−t2(n)|<δかつ|t2(n)−t1(n+2)|>δ1であるとき、積分により、定常状態誤差が解消されると、次の5分間の新風量Q(n+1)は、次式のようになり、
Figure 0006866502
ただし、δiは正値積分係数であり、t(n)は設定された室内気温の降温温度であり、δ1は設定された別の閾値であるステップ4と、
ステップ5であって、室外湿度センサ、室内湿度センサ、及び室内温度センサは5分間ごとに信号の検出を行い、検出した信号をコントローラに伝達し、コントローラは、検出した信号に基づき、ウエットカーテン給水電磁弁の開弁と閉弁を制御し、次式のように計算し、
Figure 0006866502
ただし、Pcはウエットカーテン給水電磁弁の開弁又は閉弁の状態であり、1は開弁を示し、0は閉弁を示し、Hiは室内湿度センサが検出した実際の湿度値であり、Hoは室外湿度センサが検出した湿度値であり、Tiは室内気温センサが検出した実際の温度値であり、Tcは設定される室内において降温を起動する温度閾値であり、dはウエットカーテン給水電磁弁が開弁する温度閾値であり、Hwは、温室内において湿度増加を起動する湿度閾値であり、h1はウエットカーテン給水電磁弁が開弁する降温湿度閾値であり、h2はウエットカーテン給水電磁弁が開弁する湿度増加閾値であるステップ5と、を含み、
ステップ1〜ステップ5により、コントローラは、装置において風機の起動又は停止、ウエットカーテン給水電磁弁の開弁と閉弁、天井窓の開放と閉鎖を制御するとともに、室外吸気口の新風量に基づき、吸気口側窓バッフルの開放角度を調節することで、温室内の温度、湿度を調節して、室内の気温、湿度が求められる要求を満たすようにすることを特徴とする加湿・降温風機ウエットカーテン装置の制御方法。
The method for controlling a humidifying / lowering air blower wet curtain device according to any one of claims 1 to 6.
In step 1, first, the controller has a temperature threshold T c that activates the temperature decrease in the room, a humidity threshold H w that activates the humidity increase, a threshold b that the wind blower activates the temperature decrease, and a wet curtain water supply electromagnetic valve. The threshold value d for opening the valve, the humidity decrease threshold h 1 for opening the wet curtain water supply electromagnetic valve, and the humidity increase threshold h 2 for opening the wet curtain water supply electromagnetic valve are set, and the controller is an outdoor air temperature sensor. Step 1 of receiving information transmitted from the outdoor humidity sensor, radiation intensity sensor, indoor air temperature sensor, and indoor humidity sensor in real time, and
In step 2, the outdoor air temperature sensor and the indoor air temperature sensor detect the temperature signal, and the radiation intensity sensor transmits the detected indoor solar radiation value to the controller, and the controller receives the received outdoor temperature and radiation intensity. Calculate the desired indoor air temperature T q by the following formula based on the effect value on the indoor temperature.
Figure 0006866502
However, T q is the desired temperature of the room, T s is the standard temperature set, T o is the impact value of the indoor temperature of the outdoor temperature, T r is the influence of the room temperature of the solar radiation intensity It is a value, k 1 is an influence coefficient for calculating the influence value of the outdoor temperature on the indoor temperature, t is the current outdoor temperature, t 0 is a reference value of the specified outdoor temperature, and k 2 Is the influence coefficient for calculating the effect value of the solar radiation intensity on the indoor temperature, r is the current outdoor radiation intensity, and r 0 is the reference value of the specified outdoor radiation intensity in step 2 and
A step 3, the controller is obtained by calculating the desired air temperature T q of the room, if desired temperature T q of the room is higher than the threshold temperature T c starting the cooling in the indoor, humidified and cooled blower wet curtain device Enters the cooling mode, and when the desired indoor air temperature T q is lower than the threshold temperature T c that activates the indoor temperature, the humidification / cooling air blower wet curtain device enters the humidification mode, and the controller is based on the indoor weather factor. Start and stop of the wind blower in different modes, new air temperature of the outdoor intake port, opening or closing of the wet curtain water supply electromagnetic valve, opening or closing of the ceiling window exhaust port are calculated and controlled, and the start or stop of the wind blower The state is calculated as
Figure 0006866502
However, P f is the start or stop state of the wind blower, 1 is the start, 0 is the stop, T c is the threshold temperature at which the temperature drop is started indoors, and b is the threshold temperature at which the wind blower starts the temperature drop. Yes, H w is the humidity threshold that activates the humidity increase in the greenhouse, H i is the humidity value detected by the indoor humidity sensor, and h 2 is the humidity increase threshold that the wet curtain water supply electromagnetic valve opens. T i is the actual temperature value detected by the indoor air temperature sensor, and d is the threshold value at which the wet curtain water supply electromagnetic valve opens.
In step 4, the controller controls the amount of new air entering the greenhouse by controlling the angle between the intake port side window baffle and the intake port elevation by operating the angle sensor and the intake port side window motor. However, in the calculation of the new air volume at the outdoor air intake , the difference between the temperature t 2 (n) actually measured indoors and the indoor temperature t 2 (n-1) 5 minutes ago | t 2 (n-1) Measure the speed of change in indoor temperature with −t 2 (n) |
When the threshold value δ is set and | t 2 (n-1) −t 2 (n) | ≧ δ, the new air volume Q (n + 1) for 5 minutes is calculated using the proportional adjustment method, and the following equation is used. Obtained like
Figure 0006866502
However, Q is the standard new air volume to be set, t 1 (n + 2) is the desired indoor temperature after 10 minutes, k p is a proportional coefficient, and Q o is the calculation of the new air volume for the outdoor temperature. The influence value, Q r is the influence value on the calculation of the new air volume of the solar irradiance, k o is the influence coefficient on the calculation of the new air volume of the outdoor temperature, and k r is the influence value of the new air volume of the solar irradiance. It is a coefficient of influence on the calculation.
When | t 2 (n-1) −t 2 (n) | <δ and | t 2 (n) −t 1 (n + 2) |> δ 1 and the steady-state error is eliminated by integration, The new air volume Q (n + 1) for the next 5 minutes is as shown in the following equation.
Figure 0006866502
However, δ i is the positive integration coefficient, t (n) is the set indoor air temperature decrease temperature, and δ 1 is another set threshold in step 4 and
In step 5, the outdoor humidity sensor, the indoor humidity sensor, and the indoor temperature sensor detect signals every 5 minutes and transmit the detected signals to the controller, and the controller supplies wet curtain water based on the detected signals. Control the opening and closing of the solenoid valve, calculate as follows,
Figure 0006866502
However, P c is the state of opening or closing of the wet curtain water supply electromagnetic valve, 1 denotes a valve opening, 0 indicates the closing, H i is the actual humidity value room humidity sensor has detected , H o is the humidity value detected the outdoor humidity sensor, T i is the actual temperature value room temperature sensor detects, T c is the temperature threshold to start the cooling in a room to be set, d is The temperature threshold at which the wet curtain water supply electromagnetic valve opens, H w is the humidity threshold at which the humidity increase is activated in the greenhouse, and h 1 is the temperature / humidity threshold at which the wet curtain water supply electromagnetic valve opens. 2 includes step 5 which is the humidity increase threshold at which the wet curtain water supply electromagnetic valve opens.
In steps 1 to 5, the controller controls the start or stop of the wind blower, the opening and closing of the wet curtain water supply electromagnetic valve, the opening and closing of the ceiling window in the device, and based on the new air volume of the outdoor intake port. By adjusting the opening angle of the window baffle on the intake port side, the temperature and humidity inside the greenhouse can be adjusted to meet the required requirements for indoor temperature and humidity. How to control the device.
JP2019556267A 2018-11-05 2019-03-05 Humidification / cooling air blower Wet curtain device and control method Active JP6866502B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811308075.0A CN109282408B (en) 2018-11-05 2018-11-05 Wet curtain device of humidifying and cooling fan and control method
CN201811308075.0 2018-11-05
PCT/CN2019/076914 WO2020093632A1 (en) 2018-11-05 2019-03-05 Humidifying and cooling draught fan wet curtain device and control method

Publications (2)

Publication Number Publication Date
JP2021500001A JP2021500001A (en) 2021-01-07
JP6866502B2 true JP6866502B2 (en) 2021-04-28

Family

ID=65175422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019556267A Active JP6866502B2 (en) 2018-11-05 2019-03-05 Humidification / cooling air blower Wet curtain device and control method

Country Status (3)

Country Link
JP (1) JP6866502B2 (en)
CN (1) CN109282408B (en)
WO (1) WO2020093632A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282408B (en) * 2018-11-05 2023-10-31 浙江大学 Wet curtain device of humidifying and cooling fan and control method
CN110118402A (en) * 2019-05-16 2019-08-13 陈太明 Air-cooler and its water supply system
CN111610809A (en) * 2020-05-27 2020-09-01 珠海裕泓农业科技有限公司 Temperature and humidity automatic balance control method and system in water curtain cooling
CN113985932B (en) * 2020-07-12 2022-08-09 山西科鼎宏贸科技有限公司 Air port motor all-weather intelligent control method based on room temperature regulation and control
CN112924774B (en) * 2021-01-21 2023-07-14 杭州永谐科技有限公司上海分公司 Constant temperature darkroom system for aging test
CN113197078B (en) * 2021-03-22 2023-06-13 新疆农业科学院农业机械化研究所 Vegetable cultivation device based on sunlight greenhouse intelligent control
CN113287466A (en) * 2021-05-08 2021-08-24 西藏自治区农牧科学院蔬菜研究所 Fruiting workshop intelligent temperature and humidity control and uniform distribution equipment and using method thereof
CN113251483B (en) * 2021-05-17 2022-04-29 河南新野纺织股份有限公司 Novel energy-conserving weaving air conditioner control system of wet curtain
CN113133364B (en) * 2021-05-18 2023-03-17 宁夏好家乡生态农业科技发展有限公司 Intelligent temperature and humidity control method and system for greenhouse
CN114047793B (en) * 2021-09-26 2022-07-15 南京农业大学 Water curtain cooling system based on swinery body surface temperature and temperature adjusting method thereof
CN114679989B (en) * 2022-02-28 2023-06-02 北京市农林科学院智能装备技术研究中心 Ventilating system of multi-span greenhouse and multi-span greenhouse
CN115469699B (en) * 2022-09-20 2023-05-30 珠海格力电器股份有限公司 Temperature combined control method and device based on various cooling equipment and electronic equipment
CN116349532B (en) * 2023-03-07 2024-02-27 广东省农业科学院设施农业研究所 Planting greenhouse humidity control system
CN117160818A (en) * 2023-09-05 2023-12-05 南昌工程学院 Paint drawing female house based on adjustable temperature and humidity

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES485722A1 (en) * 1978-11-07 1980-07-01 Mitsubishi Electric Corp Simplified air conditioner
JP4914137B2 (en) * 2006-07-19 2012-04-11 フルタ電機株式会社 House temperature drop and ventilation equipment
CN201917007U (en) * 2009-11-19 2011-08-03 白少华 Domestic ventilation refresher
CN202444894U (en) * 2011-12-19 2012-09-26 中国农业科学院农业环境与可持续发展研究所 Hydro-thermal circulation system for solar greenhouses
US20150223409A1 (en) * 2012-01-26 2015-08-13 Mansur Abahusayn Desalination greenhouse
JP6128920B2 (en) * 2013-03-12 2017-05-17 徳寿工業株式会社 Plant growing greenhouse
CN204948942U (en) * 2015-09-23 2016-01-13 苏州工业园区宅艺智能科技有限公司 Warmhouse booth's temperature control system
CN105393850B (en) * 2015-12-17 2017-12-15 山西农业大学 A kind of closed heliogreenhouse heat sink
CN205721457U (en) * 2016-04-28 2016-11-23 塔里木大学 A kind of Intelligent Greenhouse control system
CN105830819B (en) * 2016-06-02 2018-11-16 北京中农富通园艺有限公司 A kind of wet curtain fan positive draft circulation temperature lowering system and its segmented cooling method
CN106489619A (en) * 2016-11-22 2017-03-15 沈阳农业大学 Heliogreenhouse wet curtain fan regulator control system and method
CN107223495B (en) * 2017-06-06 2022-05-27 浙江大学 Fan wet curtain cooling device and control method
CN207995733U (en) * 2018-03-26 2018-10-23 泉州永春佳鼎农业机械有限公司 A kind of intelligent Greenhouse
CN109282408B (en) * 2018-11-05 2023-10-31 浙江大学 Wet curtain device of humidifying and cooling fan and control method
CN209101474U (en) * 2018-11-05 2019-07-12 浙江大学 It is a kind of to humidify and temperature-dropping fan wet curtain device

Also Published As

Publication number Publication date
CN109282408B (en) 2023-10-31
WO2020093632A1 (en) 2020-05-14
CN109282408A (en) 2019-01-29
JP2021500001A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6866502B2 (en) Humidification / cooling air blower Wet curtain device and control method
US9500383B2 (en) Method for controlling a ventilation system for the ventilation of an enclosure and a ventilation system
US9933182B2 (en) System for optimising an environmental parameter of an enclosed space
KR101267633B1 (en) The control system of optimum sensory temperature with humidity criterion
CN102494390B (en) Intelligent air adjusting system, air supply device and intelligent air adjusting method
KR101693987B1 (en) the air conditioning system for preventing excess moisture
EP3024316A1 (en) Greenhouse having an air mixing chamber which is equipped with a heating unit at an ambient air inlet
CN107223495B (en) Fan wet curtain cooling device and control method
CN109681994B (en) Scientific greenhouse wet curtain cooling device and control method
CN108762063B (en) Circulating ventilation cooling system of wet curtain fan of sunlight greenhouse and control method thereof
CN112931235A (en) Air-conditioning positive pressure type livestock and poultry house
JP2019010010A (en) Control device for ventilation system of poultry house
JP7081124B2 (en) Control device and agricultural house
KR101546873B1 (en) multiplex environment control system of green house and control method thereof
JP2009150643A (en) Natural convection type underfloor heating ventilation system
KR101774162B1 (en) the fan heater with temperature control function according to humidity for growth and development of animals and plants
CN209101474U (en) It is a kind of to humidify and temperature-dropping fan wet curtain device
KR101917260B1 (en) Operating method of heat exchanging ventilator installed in stable
CN206176661U (en) Warm and humid regulator of intelligent ventilation
CN106812445B (en) Indoor illumination window with automatic regulation and its light irradiation regulating method
WO2017164416A1 (en) Poultry shed and control apparatus for poultry shed ventilation system
CN109631227A (en) A kind of multilayer electrical house environment control method
CN210298939U (en) Dairy cow feeding house with temperature regulation function
CN110012737B (en) Intelligent potato control raw material warehouse
CN202444930U (en) Constant-temperature cowhouse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191015

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200804

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210407

R150 Certificate of patent or registration of utility model

Ref document number: 6866502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150