JP6863858B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP6863858B2
JP6863858B2 JP2017160633A JP2017160633A JP6863858B2 JP 6863858 B2 JP6863858 B2 JP 6863858B2 JP 2017160633 A JP2017160633 A JP 2017160633A JP 2017160633 A JP2017160633 A JP 2017160633A JP 6863858 B2 JP6863858 B2 JP 6863858B2
Authority
JP
Japan
Prior art keywords
sealing portion
photoelectric conversion
substrate
electrolyte
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017160633A
Other languages
Japanese (ja)
Other versions
JP2018037654A (en
Inventor
健治 勝亦
健治 勝亦
圭介 中
圭介 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of JP2018037654A publication Critical patent/JP2018037654A/en
Application granted granted Critical
Publication of JP6863858B2 publication Critical patent/JP6863858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、光電変換素子に関する。 The present invention relates to a photoelectric conversion element.

光電変換素子として、安価で、高い光電変換効率が得られることから、色素を用いた光電変換素子が注目されており、色素を用いた光電変換素子に関して種々の開発が行われている。 As a photoelectric conversion element, a photoelectric conversion element using a dye has attracted attention because it is inexpensive and high photoelectric conversion efficiency can be obtained, and various developments have been made on the photoelectric conversion element using a dye.

このような色素を用いた光電変換素子としては、例えば下記特許文献1の低照度用色素増感光電変換素子が知られている。下記特許文献1には、透明基板および透明基板上に設けられる透明導電膜を有する透明導電性基板並びに透明導電性基板上に設けられる酸化物半導体層を備える作用極と、作用極に対向する対極と、酸化物半導体層に吸着される光増感色素と、作用極と対極とを連結する封止部と、作用極、対極および封止部によって囲まれるセル空間内に充填される電解質とを備え、電解質中のI の濃度が10mmol/L以下である低照度用色素増感太陽電池が開示されている。 As a photoelectric conversion element using such a dye, for example, the dye-sensitized electric conversion element for low illuminance of Patent Document 1 below is known. The following Patent Document 1 describes a transparent conductive substrate having a transparent conductive film provided on a transparent substrate and a transparent substrate, and a working electrode provided with an oxide semiconductor layer provided on the transparent conductive substrate, and a counter electrode facing the working electrode. The photosensitizing dye adsorbed on the oxide semiconductor layer, the sealing portion connecting the working electrode and the counter electrode, and the electrolyte filled in the cell space surrounded by the working electrode, the counter electrode and the sealing portion. A dye-sensitized solar cell for low light having a concentration of I 3 in an electrolyte of 10 mmol / L or less is disclosed.

特開2013−201099号公報Japanese Unexamined Patent Publication No. 2013-201099

しかし、上述した特許文献1に記載の光電変換素子は、電解質中のポリハロゲン化物イオンの濃度が低い場合(例えば0.05M以下である場合)に、耐久性の点で改善の余地を有していた。 However, the photoelectric conversion element described in Patent Document 1 described above has room for improvement in terms of durability when the concentration of polyhalide ions in the electrolyte is low (for example, when it is 0.05 M or less). Was there.

本発明は上記事情に鑑みてなされたものであり、電解質中のポリハロゲン化物イオンの濃度が低い場合に優れた耐久性を有する光電変換素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a photoelectric conversion element having excellent durability when the concentration of polyhalide ions in an electrolyte is low.

本発明者らは、上記特許文献1記載の光電変換素子において上記課題が生じる原因について検討を行った。その結果、上記特許文献1記載の光電変換素子において、電解質中のポリハロゲン化物イオンの濃度が低い場合(例えば0.05M以下である場合)には、電解質中への酸素の透過速度が大きすぎると耐久性が低下する一方、電解質中への酸素の透過速度が小さすぎても耐久性が低下することに本発明者らは気付いた。そこで、本発明者らはさらに鋭意研究を重ねた結果、1日当たりの封止部内への酸素の透過量、すなわち、封止部内への酸素透過速度と、封止部内の電解質の量との比が一定の範囲内にある場合に上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors have investigated the causes of the above-mentioned problems in the photoelectric conversion element described in Patent Document 1. As a result, in the photoelectric conversion element described in Patent Document 1, when the concentration of the polyhalide ion in the electrolyte is low (for example, when it is 0.05 M or less), the permeation rate of oxygen into the electrolyte is too high. The present inventors have noticed that the durability is lowered even if the permeation rate of oxygen into the electrolyte is too low. Therefore, as a result of further diligent research, the present inventors have made a ratio of the amount of oxygen permeated into the sealing portion per day, that is, the oxygen permeation rate into the sealing portion and the amount of electrolyte in the sealing portion. We have found that the above-mentioned problems can be solved when the above-mentioned problem is within a certain range, and have completed the present invention.

すなわち、本発明は、少なくとも1つの光電変換セルを備え、前記光電変換セルが、電極基板と、前記電極基板に対向する対向基板と、前記電極基板又は前記対向基板に設けられる酸化物半導体層と、前記電極基板及び前記対向基板を接合する環状の封止部と、前記電極基板、前記対向基板及び前記封止部によって形成されるセル空間に充填される電解質とを備え、前記電解質がハロゲン化物イオン及びポリハロゲン化物イオンからなる酸化還元対を含み、前記電解質中の前記ポリハロゲン化物イオンの濃度が0.05M以下であり、下記式(1)で表されるRが0.00040〜0.00200cm(STP)/(day・mL)である、光電変換素子である。

R=v/m (1)
(上記式(1)中、vは下記式(2)で表される前記封止部の酸素透過速度(cm(STP)/day)を表し、mは前記電解質の量(mL)を表す)

v=d×C×a/w (2)
(上記式(2)中、dは前記封止部の酸素透過係数(cm(STP)・mm/(m・day・atm))を表し、aは前記封止部における酸素の透過面積(m)を表し、Cは前記セル空間の内部における酸素分圧と前記セル空間の外部における酸素分圧との差の絶対値(atm)を表し、wは前記封止部の幅(mm)を表す)
That is, the present invention includes at least one photoelectric conversion cell, and the photoelectric conversion cell includes an electrode substrate, an opposing substrate facing the electrode substrate, and an oxide semiconductor layer provided on the electrode substrate or the opposing substrate. An annular sealing portion that joins the electrode substrate and the facing substrate, and an electrolyte that fills the cell space formed by the electrode substrate, the facing substrate, and the sealing portion, and the electrolyte is a halide. It contains a redox pair consisting of an ion and a polyhalide ion, the concentration of the polyhalide ion in the electrolyte is 0.05 M or less, and R represented by the following formula (1) is 0.00040 to 0. It is a photoelectric conversion element having 00200 cm 3 (STP) / (day · mL).

R = v / m (1)
(In the above formula (1), v represents the oxygen permeation rate (cm 3 (STP) / day) of the sealing portion represented by the following formula (2), and m represents the amount (mL) of the electrolyte. )

v = d × C × a / w (2)
(In the above formula (2), d represents the oxygen permeation coefficient (cm 3 (STP) · mm / (m 2 · day · atm)) of the sealing portion, and a is the oxygen permeation area in the sealing portion. (M 2 ) is represented, C represents the absolute value (atm) of the difference between the oxygen partial pressure inside the cell space and the oxygen partial pressure outside the cell space, and w is the width (mm) of the sealing portion. ) Represents)

本発明の光電変換素子は、電解質中のポリハロゲン化物イオンの濃度が低い場合(0.05M以下である場合)に、優れた耐久性を有することが可能となる。 The photoelectric conversion element of the present invention can have excellent durability when the concentration of the polyhalide ion in the electrolyte is low (when the concentration is 0.05 M or less).

なお、本発明者らは、本発明の光電変換素子によって上記の効果が得られる理由について以下のように推察している。 The present inventors infer the reason why the above effect can be obtained by the photoelectric conversion element of the present invention as follows.

すなわち、本発明の光電変換素子においては、セル空間の内部に、電解質の量に対して多量の酸素が侵入することが抑制される。このため、光電変換素子に光が入射される際に、侵入した酸素の活性化に次ぐハロゲン化物イオンからポリハロゲン化物イオンへの酸化反応の進行によるものと思われる電解質中のポリハロゲン化物イオンの濃度の増加が進行しにくくなり、最大出力動作電流の低下が十分に抑制される。また、本発明の光電変換素子によれば、セル空間の内部に、電解質の量に対して、酸素が完全に侵入しなくなることが抑制され、ポリハロゲン化物イオンからハロゲン化物イオンへの還元反応によるものと思われる電解質中のポリハロゲン化物イオンの濃度の減少が進行しにくくなり、最大出力動作電流の低下が起こりにくくなる。このように、本発明の光電変換素子によれば、電解質中のポリハロゲン化物イオンの濃度が低く、ポリハロゲン化物イオンの濃度の変化率が大きいにもかかわらず、最大出力動作電流の低下が起こりにくくなる。その結果、光電変換素子の最大出力の低下がより十分に抑制される。従って、本発明の光電変換素子は、電解質中のポリハロゲン化物イオンの濃度が低い場合に優れた耐久性を有することが可能になるものと考えられる。 That is, in the photoelectric conversion element of the present invention, it is possible to prevent a large amount of oxygen from entering the cell space with respect to the amount of electrolyte. Therefore, when light is incident on the photoelectric conversion element, the polyhalide ion in the electrolyte is considered to be due to the progress of the oxidation reaction from the halide ion to the polyhalide ion following the activation of the invading oxygen. The increase in concentration is less likely to proceed, and the decrease in maximum output operating current is sufficiently suppressed. Further, according to the photoelectric conversion element of the present invention, it is suppressed that oxygen does not completely penetrate into the cell space with respect to the amount of electrolyte, and the reduction reaction from the polyhalide ion to the halide ion causes the reaction. The decrease in the concentration of polyhalide ions in the electrolyte, which is thought to be the case, is less likely to proceed, and the decrease in the maximum output operating current is less likely to occur. As described above, according to the photoelectric conversion element of the present invention, the maximum output operating current is lowered even though the concentration of the polyhalide ion in the electrolyte is low and the rate of change in the concentration of the polyhalide ion is large. It becomes difficult. As a result, the decrease in the maximum output of the photoelectric conversion element is more sufficiently suppressed. Therefore, it is considered that the photoelectric conversion element of the present invention can have excellent durability when the concentration of the polyhalide ion in the electrolyte is low.

上記光電変換素子においては、前記式(2)中の酸素透過係数dが46〜195cm(STP)・mm/(m・day・atm)であることが好ましい。 In the photoelectric conversion element, the oxygen permeability coefficient d in the formula (2) is preferably 46 to 195 cm 3 (STP) · mm / (m 2 · day · atm).

この場合、上記式(2)中の酸素透過係数dが46cm(STP)・mm/(m・day・atm)未満である場合と比べて、封止部の幅wを十分に大きくすることが可能となり、封止部と電極基板との接着面積、および、封止部と対向基板との接着面積を増加させることができるため、封止部と電極基板との接着性、および、封止部と対向基板との接着性がより向上する。その結果、光電変換素子の耐久性がより向上する。また、上記式(2)中のdが195cm(STP)・mm/(m・day・atm)より大きい場合と比べて、封止部の酸素透過能をより低減できるため、封止部と電極基板との接着面の酸化、及び、封止部と対向基板との接着面の酸化がより十分に抑制される。このため、封止部と電極基板との接着性、および、封止部と対向基板との接着性の低下がより十分に抑制される。その結果、光電変換素子の耐久性がより向上する。 In this case, the width w of the sealing portion is sufficiently increased as compared with the case where the oxygen permeation coefficient d in the above formula (2) is less than 46 cm 3 (STP) · mm / (m 2 · day · atm). This makes it possible to increase the adhesive area between the sealing portion and the electrode substrate and the adhesive area between the sealing portion and the opposing substrate, so that the adhesiveness between the sealing portion and the electrode substrate and the sealing can be increased. The adhesiveness between the stop and the facing substrate is further improved. As a result, the durability of the photoelectric conversion element is further improved. Further, since the oxygen permeability of the sealing portion can be further reduced as compared with the case where d in the above formula (2) is larger than 195 cm 3 (STP) · mm / (m 2 · day · atm), the sealing portion Oxidation of the adhesive surface between the electrode substrate and the electrode substrate and oxidation of the adhesive surface between the sealing portion and the opposing substrate are more sufficiently suppressed. Therefore, the deterioration of the adhesiveness between the sealing portion and the electrode substrate and the adhesiveness between the sealing portion and the opposing substrate is more sufficiently suppressed. As a result, the durability of the photoelectric conversion element is further improved.

なお、本発明において、「cm(STP)」とは、封止部を透過する酸素の体積が標準状態、すなわち、0℃、1atmの条件で測定された体積であることを示す。 In the present invention, "cm 3 (STP)" indicates that the volume of oxygen permeating the sealing portion is the standard state, that is, the volume measured under the conditions of 0 ° C. and 1 atm.

また、本発明において、「封止部における酸素の透過面積」とは、環状の封止部の外周の周長と封止部の高さとの積を言う。ここで、「封止部の外周の周長」とは、「封止部と電極基板との界面(以下、「第1界面」と呼ぶ)における封止部の外周の周長」及び「封止部と対向基板との界面(以下、「第2界面」と呼ぶ)における封止部の外周の周長」のうち、より短い方の周長を言い、「第1界面における封止部の外周の周長」及び「第2界面における封止部の外周の周長」が同一の長さである場合にはその周長を言う。また、「封止部の高さ」とは、第1界面から第2界面までの距離を言う。 Further, in the present invention, the "oxygen permeation area in the sealing portion" means the product of the peripheral length of the outer circumference of the annular sealing portion and the height of the sealing portion. Here, the "peripheral length of the outer circumference of the sealing portion" means "the peripheral length of the outer circumference of the sealing portion at the interface between the sealing portion and the electrode substrate (hereinafter, referred to as" first interface ")" and "sealing". The shorter of the "perimeter of the outer circumference of the sealing portion at the interface between the stop portion and the facing substrate (hereinafter referred to as" the second interface ")", which is the shorter circumference of the sealing portion at the first interface. When the "perimeter of the outer circumference" and the "perimeter of the outer circumference of the sealing portion at the second interface" are the same length, the circumference is referred to. Further, the "height of the sealing portion" means the distance from the first interface to the second interface.

また本発明において、「封止部の幅」とは、「第1界面における環状の封止部の幅」及び「第2界面における環状の封止部の幅」のうち、より短い方の幅を言い、「第1界面における環状の封止部の幅」及び「第2界面における環状の封止部の幅」が同一の幅である場合にはその幅を言う。 Further, in the present invention, the "width of the sealing portion" is the shorter of the "width of the annular sealing portion at the first interface" and the "width of the annular sealing portion at the second interface". When the "width of the annular sealing portion at the first interface" and the "width of the annular sealing portion at the second interface" are the same width, the width is referred to.

本発明によれば、電解質中のポリハロゲン化物イオンの濃度が低い場合に優れた耐久性を有する光電変換素子が提供される。 According to the present invention, there is provided a photoelectric conversion element having excellent durability when the concentration of polyhalide ions in the electrolyte is low.

本発明の光電変換素子の第1実施形態を示す切断面端面図である。It is a cut surface end view which shows 1st Embodiment of the photoelectric conversion element of this invention. 本発明の光電変換素子の第2実施形態を示す切断面端面図である。It is a cut surface end view which shows the 2nd Embodiment of the photoelectric conversion element of this invention.

以下、本発明の光電変換素子の第1実施形態について図1を参照しながら詳細に説明する。図1は、本発明の光電変換素子の第1実施形態を示す切断面端面図である。 Hereinafter, the first embodiment of the photoelectric conversion element of the present invention will be described in detail with reference to FIG. FIG. 1 is a cut surface end view showing a first embodiment of the photoelectric conversion element of the present invention.

図1に示すように、光電変換素子100は1つの光電変換セル50を備えている。光電変換セル50は、電極基板10と、電極基板10に対向する対向基板20と、電極基板10上に設けられる酸化物半導体層13と、酸化物半導体層13に吸着される色素と、電極基板10及び対向基板20を接合する環状の封止部30と、電極基板10、対向基板20及び封止部30によって形成されるセル空間に充填される電解質40とを備える。 As shown in FIG. 1, the photoelectric conversion element 100 includes one photoelectric conversion cell 50. The photoelectric conversion cell 50 includes an electrode substrate 10, an opposing substrate 20 facing the electrode substrate 10, an oxide semiconductor layer 13 provided on the electrode substrate 10, a dye adsorbed on the oxide semiconductor layer 13, and an electrode substrate. An annular sealing portion 30 for joining the 10 and the facing substrate 20 and an electrolyte 40 filled in the cell space formed by the electrode substrate 10, the facing substrate 20 and the sealing portion 30 are provided.

電解質40はハロゲン化物イオン及びポリハロゲン化物イオンからなる酸化還元対を含み、電解質40中のポリハロゲン化物イオンの濃度が0.05M以下となっている。 The electrolyte 40 contains a redox pair composed of a halide ion and a polyhalide ion, and the concentration of the polyhalide ion in the electrolyte 40 is 0.05 M or less.

また、光電変換素子100においては、下記式(1)で表されるRが、0.00040〜0.00200cm(STP)/(day・mL)となっている。

R=v/m (1)
(上記式(1)中、vは下記式(2)で表される封止部30の酸素透過速度(cm(STP)/day)を表し、mは電解質の量(mL)を表す)

v=d×C×a/w (2)
(上記式(2)中、dは封止部30の酸素透過係数(cm(STP)・mm/(m・day・atm))を表し、aは封止部30における酸素の透過面積(m)を表し、Cはセル空間の内部における酸素分圧とセル空間の外部における酸素分圧との差の絶対値(atm)を表し、wは封止部30の幅(mm)を表す)
Further, in the photoelectric conversion element 100, R represented by the following formula (1) is 0.00040 to 0.00200 cm 3 (STP) / (day · mL).

R = v / m (1)
(In the above formula (1), v represents the oxygen permeation rate (cm 3 (STP) / day) of the sealing portion 30 represented by the following formula (2), and m represents the amount of electrolyte (mL)).

v = d × C × a / w (2)
(In the above formula (2), d represents the oxygen permeation coefficient (cm 3 (STP) · mm / (m 2 · day · atm)) of the sealing portion 30, and a is the oxygen permeation area in the sealing portion 30. (M 2 ) is represented, C represents the absolute value (atm) of the difference between the oxygen partial pressure inside the cell space and the oxygen partial pressure outside the cell space, and w represents the width (mm) of the sealing portion 30. Represent)

この光電変換素子100は、電解質40中のポリハロゲン化物イオンの濃度が低い場合に優れた耐久性を有することが可能となる。 The photoelectric conversion element 100 can have excellent durability when the concentration of polyhalide ions in the electrolyte 40 is low.

次に、電極基板10、対向基板20、酸化物半導体層13、封止部30、電解質40及び色素について詳細に説明する。 Next, the electrode substrate 10, the counter substrate 20, the oxide semiconductor layer 13, the sealing portion 30, the electrolyte 40, and the dye will be described in detail.

<電極基板>
電極基板10は、透明基板11と、透明基板11の上に設けられる透明導電層12とを備えている(図1参照)。
<Electrode substrate>
The electrode substrate 10 includes a transparent substrate 11 and a transparent conductive layer 12 provided on the transparent substrate 11 (see FIG. 1).

透明基板11を構成する材料は、透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、及び、ポリエーテルスルフォン(PES)などの絶縁材料が挙げられる。透明基板11の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50〜40000μmの範囲にすればよい。 The material constituting the transparent substrate 11 may be a transparent material, and examples of such a transparent material include borosilicate glass, soda lime glass, white plate glass, glass such as quartz glass, polyethylene terephthalate (PET), and the like. Insulating materials such as polyethylene naphthalate (PEN), polycarbonate (PC), and polyether sulfone (PES) can be mentioned. The thickness of the transparent substrate 11 is appropriately determined according to the size of the photoelectric conversion element 100, and is not particularly limited, but may be, for example, in the range of 50 to 40,000 μm.

透明導電層12を構成する材料としては、例えばスズ添加酸化インジウム(ITO)、酸化スズ(SnO)、及び、フッ素添加酸化スズ(FTO)などの導電性金属酸化物が挙げられる。透明導電層12は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電層12が単層で構成される場合、透明導電層12は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。透明導電層12の厚さは例えば0.01〜2μmの範囲にすればよい。 Examples of the material constituting the transparent conductive layer 12 include conductive metal oxides such as tin-added indium oxide (ITO), tin oxide (SnO 2 ), and fluorine-added tin oxide (FTO). The transparent conductive layer 12 may be a single layer or may be composed of a laminate of a plurality of layers composed of different conductive metal oxides. When the transparent conductive layer 12 is composed of a single layer, the transparent conductive layer 12 is preferably composed of FTO because it has high heat resistance and chemical resistance. The thickness of the transparent conductive layer 12 may be, for example, in the range of 0.01 to 2 μm.

<対向基板>
対向基板20は、本実施形態では、導電性基板21と、導電性の触媒層22とを備える(図1参照)。
<Opposite board>
In the present embodiment, the facing substrate 20 includes a conductive substrate 21 and a conductive catalyst layer 22 (see FIG. 1).

導電性基板21は、例えばチタン、ニッケル、白金、モリブデン、タングステン、アルミニウム、ステンレス等の金属材料で構成される。この場合、導電性基板21は、基板と電極を兼ねることになる。また、導電性基板21は、基板と電極を分けて、上述した絶縁性の透明基板11に電極としてITO、FTO等の導電性酸化物からなる透明導電層を形成した積層体で構成されてもよい。 The conductive substrate 21 is made of a metal material such as titanium, nickel, platinum, molybdenum, tungsten, aluminum, and stainless steel. In this case, the conductive substrate 21 serves both as a substrate and an electrode. Further, the conductive substrate 21 may be composed of a laminate in which the substrate and the electrode are separated and a transparent conductive layer made of a conductive oxide such as ITO or FTO is formed as an electrode on the above-mentioned insulating transparent substrate 11. Good.

導電性基板21の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.005〜4mmとすればよい。 The thickness of the conductive substrate 21 is appropriately determined according to the size of the photoelectric conversion element 100, and is not particularly limited, but may be, for example, 0.005 to 4 mm.

触媒層22は、白金、炭素系材料又は導電性高分子などから構成される。ここで、炭素系材料としては、カーボンナノチューブが好適に用いられる。なお、対向基板20は、導電性基板21が触媒機能を有する場合(例えばカーボンなどを含有する場合)には触媒層22を有していなくてもよい。 The catalyst layer 22 is made of platinum, a carbon-based material, a conductive polymer, or the like. Here, carbon nanotubes are preferably used as the carbon-based material. The facing substrate 20 does not have to have the catalyst layer 22 when the conductive substrate 21 has a catalytic function (for example, when it contains carbon or the like).

<酸化物半導体層>
酸化物半導体層13は酸化物半導体粒子で構成されている。酸化物半導体粒子は、例えば酸化チタン(TiO)、酸化ケイ素(SiO)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)、酸化スズ(SnO)又はこれらの2種以上で構成される。
<Oxide semiconductor layer>
The oxide semiconductor layer 13 is composed of oxide semiconductor particles. Oxide semiconductor particles include, for example, titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), strontium titanate (SrTiO 3 ). , Tin oxide (SnO 2 ) or two or more of these.

酸化物半導体層13の厚さは特に制限されるものではないが、通常は2〜40μmであり、好ましくは10〜30μmである。 The thickness of the oxide semiconductor layer 13 is not particularly limited, but is usually 2 to 40 μm, preferably 10 to 30 μm.

<封止部>
封止部30を構成する材料は、特に限定されるものではないが、封止部30を構成する材料としては、例えば変性ポリオレフィン樹脂、ビニルアルコール重合体などの熱可塑性樹脂、及び、紫外線硬化樹脂などの樹脂が挙げられる。変性ポリオレフィン樹脂としては、例えばアイオノマー、無水マレイン酸変性ポリオレフィン、エチレン−ビニル酢酸無水物共重合体、エチレン−メタクリル酸共重合体およびエチレン−ビニルアルコール共重合体などが挙げられる。中でも、無水マレイン酸変性ポリオレフィンが好ましい。この場合、電極基板10及び対向基板20に対して、より高い接着強度が得られる。
<Sealing part>
The material constituting the sealing portion 30 is not particularly limited, but the material constituting the sealing portion 30 includes, for example, a modified polyolefin resin, a thermoplastic resin such as a vinyl alcohol polymer, and an ultraviolet curable resin. Resins such as. Examples of the modified polyolefin resin include ionomer, maleic anhydride-modified polyolefin, ethylene-vinyl acetate anhydride copolymer, ethylene-methacrylate copolymer and ethylene-vinyl alcohol copolymer. Of these, maleic anhydride-modified polyolefin is preferable. In this case, higher adhesive strength can be obtained with respect to the electrode substrate 10 and the opposing substrate 20.

封止部30の酸素透過速度vは上記式(2)で表され、特に限定されるものではないが、0.000016〜0.00027cm(STP)/dayであることが好ましい。この場合、酸化物半導体層13を電極基板10側から平面視した場合の面(発電面)内における出力密度のムラがより生じにくくなる。 The oxygen permeation rate v of the sealing portion 30 is represented by the above formula (2) and is not particularly limited, but is preferably 0.000016 to 0.00027 cm 3 (STP) / day. In this case, unevenness of the output density in the surface (power generation surface) when the oxide semiconductor layer 13 is viewed from the electrode substrate 10 side in a plan view is less likely to occur.

また、上記式(2)中のCは、セル空間の内部における酸素分圧とセル空間の外部における酸素分圧との差の絶対値である。例えば大気圧下では、通常、セル空間の外部における酸素分圧が0.209atmであり、この酸素分圧は通常、セル空間の内部における酸素分圧よりも十分に大きいため、Cは0.209(atm)と近似できる。なお、セル空間の外部における酸素分圧が変化すれば、Cの値も変化する。 Further, C in the above equation (2) is an absolute value of the difference between the oxygen partial pressure inside the cell space and the oxygen partial pressure outside the cell space. For example, under atmospheric pressure, the oxygen partial pressure outside the cell space is usually 0.209 atm, and this oxygen partial pressure is usually sufficiently larger than the oxygen partial pressure inside the cell space, so that C is 0.209. Can be approximated to (atm). If the oxygen partial pressure outside the cell space changes, the value of C also changes.

また上記式(2)中の透過面積aは、封止部30の高さ(厚さ)と封止部30の外周の周長との積を表す。 Further, the permeation area a in the above formula (2) represents the product of the height (thickness) of the sealing portion 30 and the peripheral length of the outer circumference of the sealing portion 30.

また上記式(2)中の幅wは、封止部30の幅を表し、封止部30における酸素の透過距離に相当する。 Further, the width w in the above formula (2) represents the width of the sealing portion 30, and corresponds to the permeation distance of oxygen in the sealing portion 30.

上記式(2)中の透過面積aと幅wとの比(a/w)は、特に限定されるものではないが、a/wは0.0005〜0.0070であることが好ましい。この場合、封止部30の形状安定性がより向上することにより、光電変換素子100の耐久性をより向上させることができる。 The ratio (a / w) of the transmission area a and the width w in the above formula (2) is not particularly limited, but a / w is preferably 0.0005 to 0.0070. In this case, the durability of the photoelectric conversion element 100 can be further improved by further improving the shape stability of the sealing portion 30.

また上記式(2)中の酸素透過係数dは特に限定されるものではないが、46〜195cm(STP)・mm/(m・day・atm)であることが好ましい。この場合、上記式(2)中の酸素透過係数dが、46cm(STP)・mm/(m・day・atm)未満である場合と比べて、封止部30の幅wを十分に大きくすることが可能となり、封止部30と電極基板10との接着面積、および、封止部30と対向基板20との接着面積を増加させることができるため、封止部30と電極基板10との接着性、および、封止部30と対向基板20との接着性がより向上する。その結果、光電変換素子100の耐久性がより向上する。また、上記式(2)中のdが195cm(STP)・mm/(m・day・atm)より大きい場合と比べて、封止部30の酸素透過能をより低減できるため、封止部30と電極基板10との接着面の酸化、及び、封止部30と対向基板20との接着面の酸化がより十分に抑制される。このため、封止部30と電極基板10との接着性、および、封止部30と対向基板20との接着性の低下がより十分に抑制される。その結果、光電変換素子100の耐久性がより向上する。 The oxygen permeability coefficient d in the above formula (2) is not particularly limited, but is preferably 46 to 195 cm 3 (STP) · mm / (m 2 · day · atm). In this case, the width w of the sealing portion 30 is sufficiently larger than that in the case where the oxygen permeation coefficient d in the above formula (2) is less than 46 cm 3 (STP) · mm / (m 2 · day · atm). Since it is possible to increase the size and increase the adhesive area between the sealing portion 30 and the electrode substrate 10 and the adhesive area between the sealing portion 30 and the opposing substrate 20, the sealing portion 30 and the electrode substrate 10 can be increased. The adhesiveness between the sealing portion 30 and the facing substrate 20 is further improved. As a result, the durability of the photoelectric conversion element 100 is further improved. Further, the oxygen permeability of the sealing portion 30 can be further reduced as compared with the case where d in the above formula (2) is larger than 195 cm 3 (STP) · mm / (m 2 · day · atm), so that the sealing portion 30 can be sealed. Oxidation of the adhesive surface between the portion 30 and the electrode substrate 10 and oxidation of the adhesive surface between the sealing portion 30 and the opposing substrate 20 are more sufficiently suppressed. Therefore, the deterioration of the adhesiveness between the sealing portion 30 and the electrode substrate 10 and the adhesiveness between the sealing portion 30 and the opposing substrate 20 is more sufficiently suppressed. As a result, the durability of the photoelectric conversion element 100 is further improved.

上記式(2)中の酸素透過係数dは60〜160cm(STP)・mm/(m・day・atm)であることがより好ましい。この場合、封止部30を構成する材料をあらかじめ減圧下に置いて、封止部30を構成する材料中に含まれる酸素を除去した材料を用いることができる。これにより、酸素透過能をより低減でき、酸素の透過による光電変換素子100の耐久性の低下をより十分に抑制できる。 The oxygen permeability coefficient d in the above formula (2) is more preferably 60 to 160 cm 3 (STP) · mm / (m 2 · day · atm). In this case, the material constituting the sealing portion 30 may be placed under reduced pressure in advance, and a material from which oxygen contained in the material constituting the sealing portion 30 has been removed can be used. As a result, the oxygen permeation ability can be further reduced, and the decrease in durability of the photoelectric conversion element 100 due to the permeation of oxygen can be more sufficiently suppressed.

封止部30の高さは特に制限されるものではないが、40μm以下であることが好ましい。この場合、封止部30の高さが40μmを超える場合に比べて、セル空間の内部に多量の酸素が侵入しにくくなり、光電変換素子100に光が照射される際、侵入した酸素の活性化に次ぐハロゲン化物イオンからポリハロゲン化物イオンへの酸化反応の進行による最大出力動作電流の低下がより十分に抑制される。その結果、光電変換素子100の出力の低下がより十分に抑制され、光電変換素子100がより優れた耐久性を有することが可能となる。封止部30の高さは、25μm以下であることが好ましい。但し、電極基板10及び対向基板20に対する封止部30の接着性を考慮すると、封止部30の高さは、10μm以上であることが好ましい。 The height of the sealing portion 30 is not particularly limited, but is preferably 40 μm or less. In this case, as compared with the case where the height of the sealing portion 30 exceeds 40 μm, a large amount of oxygen is less likely to penetrate into the cell space, and when the photoelectric conversion element 100 is irradiated with light, the activity of the penetrated oxygen is reduced. The decrease in the maximum output operating current due to the progress of the oxidation reaction from the halide ion to the polyhalide ion following the conversion is more sufficiently suppressed. As a result, the decrease in the output of the photoelectric conversion element 100 is more sufficiently suppressed, and the photoelectric conversion element 100 can have more excellent durability. The height of the sealing portion 30 is preferably 25 μm or less. However, considering the adhesiveness of the sealing portion 30 to the electrode substrate 10 and the opposing substrate 20, the height of the sealing portion 30 is preferably 10 μm or more.

<電解質>
電解質40は、上述したように、ハロゲン化物イオン及びポリハロゲン化物イオンからなる酸化還元対を含み、電解質40中のポリハロゲン化物イオンの濃度は0.05M以下である。電解質40中のポリハロゲン化物イオンの濃度が0.05Mを超えると、Rの値にかかわらず、光電変換素子100の出力が低下しにくくなる。但し、電解質40中のポリハロゲン化物イオンの濃度は0.002M以上であることが好ましい。この場合、電解質40中のポリハロゲン化物イオンの濃度が0.002M未満である場合に比べて、照度が高い環境下でより高い発電性能が得られる。
<Electrolyte>
As described above, the electrolyte 40 contains a redox pair composed of a halide ion and a polyhalide ion, and the concentration of the polyhalide ion in the electrolyte 40 is 0.05 M or less. When the concentration of the polyhalide ion in the electrolyte 40 exceeds 0.05 M, the output of the photoelectric conversion element 100 is less likely to decrease regardless of the value of R. However, the concentration of the polyhalide ion in the electrolyte 40 is preferably 0.002M or more. In this case, higher power generation performance can be obtained in an environment with high illuminance as compared with the case where the concentration of the polyhalide ion in the electrolyte 40 is less than 0.002M.

酸化還元対は、ハロゲン化物イオン及びポリハロゲン化物イオンからなるものであればよい。このような酸化還元対としては、ヨウ化物イオン及びポリヨウ化物イオン、臭化物イオン(臭素イオン)及びポリ臭化物イオンなどのレドックス対が挙げられる。なお、ヨウ化物イオン及びポリヨウ化物イオンは、ヨウ素(I)と、アニオンとしてのアイオダイド(I)を含む塩(イオン性液体や固体塩)とによって形成することができる。アニオンとしてアイオダイドを有するイオン性液体を用いる場合には、ヨウ素のみ添加すればよく、有機溶媒や、アニオンとしてアイオダイド以外のイオン性液体を用いる場合には、LiIやテトラブチルアンモニウムアイオダイドなどのアニオンとしてアイオダイド(I)を含む塩を添加すればよい。 The redox pair may be any one composed of a halide ion and a polyhalide ion. Examples of such redox pairs include redox pairs such as iodide ion and polyiodide ion, bromide ion (bromine ion) and polybromide ion. The iodide ion and the polyiodide ion can be formed by iodine (I 2 ) and a salt (ionic liquid or solid salt) containing iodide (I −) as an anion. When using an ionic liquid having iodide as an anion, only iodine needs to be added, and when using an organic solvent or an ionic liquid other than iodide as an anion, it is used as an anion such as LiI or tetrabutylammonium iodide. iodide (I -) may be added salt containing.

また電解質40は、通常、有機溶媒を含んでいる。電解質40に含まれる有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン、バレロニトリル、ピバロニトリルなどを用いることができる。 The electrolyte 40 usually contains an organic solvent. As the organic solvent contained in the electrolyte 40, acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, valeronitrile, pivalonitrile and the like can be used.

また電解質40は、有機溶媒に代えて、イオン液体を用いてもよい。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば、1−ヘキシル−3−メチルイミダゾリウムアイオダイド、1−エチル−3−プロピルイミダゾリウムアイオダイド、1−エチル−3−メチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイド、1−ブチル−3−メチルイミダゾリウムアイオダイド、又は、1−メチル−3−プロピルイミダゾリウムアイオダイドが好適に用いられる。 Further, as the electrolyte 40, an ionic liquid may be used instead of the organic solvent. As the ionic liquid, for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, which is a room temperature molten salt that is in a molten state near room temperature is used. Examples of such a room temperature molten salt include 1-hexyl-3-methylimidazolium iodide, 1-ethyl-3-propylimidazolium iodide, 1-ethyl-3-methylimidazolium iodide, 1,2. −Dimethyl-3-propyl imidazolium iodide, 1-butyl-3-methyl imidazolium iodide, or 1-methyl-3-propyl imidazolium iodide is preferably used.

また電解質40は、上記有機溶媒に代えて、上記イオン液体と上記有機溶媒との混合物を用いてもよい。 Further, as the electrolyte 40, a mixture of the ionic liquid and the organic solvent may be used instead of the organic solvent.

また電解質40には添加剤を加えることができる。添加剤としては、LiI、4−t−ブチルピリジン、グアニジウムチオシアネート、1−メチルベンゾイミダゾール、1−ブチルベンゾイミダゾールなどが挙げられる。 Further, an additive can be added to the electrolyte 40. Examples of the additive include LiI, 4-t-butylpyridine, guanidiam thiocyanate, 1-methylbenzimidazole, 1-butylbenzimidazole and the like.

さらに電解質40としては、上記電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化した電解質を用いてもよい。 Further, as the electrolyte 40, a nanocomposite gel electrolyte which is a pseudo-solid electrolyte obtained by kneading nanoparticles such as SiO 2 , TiO 2 and carbon nanotubes into the electrolyte to form a gel may be used, or polyvinylidene fluoride. , An electrolyte gelled with an organic gelling agent such as a polyethylene oxide derivative or an amino acid derivative may be used.

電解質40の量mと封止部30の酸素透過速度vとの比、すなわち、上記式(1)で表されるRは0.00040〜0.00200cm(STP)/(day・mL)である。この場合、上記式(1)で表されるRが上記範囲を外れる場合と比べて、最大出力動作電流の低下が起こりにくくなり、その結果、光電変換素子100の最大出力の低下がより十分に抑制される。従って、光電変換素子100は、電解質40中のポリハロゲン化物イオンの濃度が低い場合に優れた耐久性を有することが可能になる。 The ratio of the amount m of the electrolyte 40 to the oxygen permeation rate v of the sealing portion 30, that is, R represented by the above formula (1) is 0.00040 to 0.00200 cm 3 (STP) / (day · mL). is there. In this case, the decrease in the maximum output operating current is less likely to occur as compared with the case where R represented by the above equation (1) is out of the above range, and as a result, the decrease in the maximum output of the photoelectric conversion element 100 is more sufficient. It is suppressed. Therefore, the photoelectric conversion element 100 can have excellent durability when the concentration of the polyhalide ion in the electrolyte 40 is low.

上記式(1)のRは0.00090〜0.00150cm(STP)/(day・mL)であることが好ましい。この場合、酸化物半導体層13を電極基板10側から平面視した場合の面(発電面)内における出力密度のムラがより生じにくくなる。 The R of the above formula (1) is preferably 0.00090 to 0.00150 cm 3 (STP) / (day · mL). In this case, unevenness of the output density in the surface (power generation surface) when the oxide semiconductor layer 13 is viewed from the electrode substrate 10 side in a plan view is less likely to occur.

<色素>
色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体、ポルフィリン、エオシン、ローダニン、メロシアニンなどの有機色素などの光増感色素や、ハロゲン化鉛系ペロブスカイト結晶などの有機−無機複合色素などが挙げられる。ハロゲン化鉛系ペロブスカイトとしては、例えばCHNHPbX(X=Cl、Br、I)が用いられる。ここで、色素として光増感色素を用いる場合には、光電変換素子100は色素増感光電変換素子となり、光電変換セル50は色素増感光電変換セルとなる。
<Dye>
Examples of the dye include a ruthenium complex having a ligand containing a bipyridine structure, a terpyridine structure, and the like, a photosensitizing dye such as an organic dye such as porphyrin, eosin, rodanine, and merocyanin, and an organic dye such as a lead halide perovskite crystal. Examples include inorganic composite dyes. As the lead-halogenated perovskite, for example, CH 3 NH 3 PbX 3 (X = Cl, Br, I) is used. Here, when a photosensitizing dye is used as the dye, the photoelectric conversion element 100 becomes a dye-sensitized electric conversion element, and the photoelectric conversion cell 50 becomes a dye-sensitized electric conversion cell.

上記色素の中でも、ビピリジン構造又はターピリジン構造を含む配位子を有するルテニウム錯体からなる光増感色素が好ましい。この場合、光電変換素子100の光電変換特性をより向上させることができる。 Among the above dyes, a photosensitizing dye composed of a ruthenium complex having a ligand containing a bipyridine structure or a terpyridine structure is preferable. In this case, the photoelectric conversion characteristics of the photoelectric conversion element 100 can be further improved.

本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、電極基板10が透明基板11を有し、透明基板11上に透明導電層12を介して酸化物半導体層13が設けられているが、酸化物半導体層13が対向基板20の導電性基板21上に設けられていてもよい。但し、この場合、触媒層22は電極基板10の透明導電層12上に設けられることとなる。 The present invention is not limited to the above embodiment. For example, in the above embodiment, the electrode substrate 10 has a transparent substrate 11, and the oxide semiconductor layer 13 is provided on the transparent substrate 11 via the transparent conductive layer 12, but the oxide semiconductor layer 13 is the opposed substrate 20. It may be provided on the conductive substrate 21 of the above. However, in this case, the catalyst layer 22 is provided on the transparent conductive layer 12 of the electrode substrate 10.

また上記実施形態では、導電性基板21と触媒層22とが対向基板20を構成しているが、図2に示す光電変換素子200のように、光電変換セル250が、対向基板として、対向基板20に代えて、絶縁性基板220を用いてもよい。この場合、絶縁性基板220と封止部30と電極基板10との間の空間には構造体202が配置される。構造体202は、電極基板10のうち絶縁性基板220側の面上に設けられている。構造体202は、電極基板10側から順に、酸化物半導体層13、多孔質絶縁層203及び対極201で構成される。また上記空間には電解質40が配置されている。電解質40は、酸化物半導体層13及び多孔質絶縁層203の内部にまで含浸されている。ここで、絶縁性基板220としては、例えばガラス基板又は樹脂フィルムなどを用いることができる。また対極201としては、対向基板20と同様のものを用いることができる。あるいは、対極201は、例えばカーボン等を含む多孔質の単一の層で構成されてもよい。多孔質絶縁層203は、主として、酸化物半導体層13と対向基板220との物理的接触を防ぎ、電解質40を内部に含浸させるためのものである。このような多孔質絶縁層203としては、例えば酸化物の焼成体を用いることができる。なお、図2に示す光電変換素子200においては、封止部30と電極基板10と絶縁性基板220との間の空間に構造体202が1つのみ設けられているが、構造体202は複数設けられていてもよい。また、多孔質絶縁層203は、酸化物半導体層13と対極201との間に設けられているが、酸化物半導体層13を囲むように、電極基板10と対極201との間に設けてもよい。この構成でも、酸化物半導体層13と対極201との物理的接触を防ぐことができる。 Further, in the above embodiment, the conductive substrate 21 and the catalyst layer 22 form the opposing substrate 20, but as in the photoelectric conversion element 200 shown in FIG. 2, the photoelectric conversion cell 250 serves as the opposing substrate. Insulating substrate 220 may be used instead of 20. In this case, the structure 202 is arranged in the space between the insulating substrate 220, the sealing portion 30, and the electrode substrate 10. The structure 202 is provided on the surface of the electrode substrate 10 on the insulating substrate 220 side. The structure 202 is composed of an oxide semiconductor layer 13, a porous insulating layer 203, and a counter electrode 201 in this order from the electrode substrate 10 side. Further, the electrolyte 40 is arranged in the above space. The electrolyte 40 is impregnated into the oxide semiconductor layer 13 and the porous insulating layer 203. Here, as the insulating substrate 220, for example, a glass substrate or a resin film can be used. Further, as the counter electrode 201, the same one as that of the facing substrate 20 can be used. Alternatively, the counter electrode 201 may be composed of a single porous layer containing, for example, carbon. The porous insulating layer 203 is mainly for preventing physical contact between the oxide semiconductor layer 13 and the opposing substrate 220 and impregnating the inside with the electrolyte 40. As such a porous insulating layer 203, for example, a fired oxide body can be used. In the photoelectric conversion element 200 shown in FIG. 2, only one structure 202 is provided in the space between the sealing portion 30, the electrode substrate 10, and the insulating substrate 220, but there are a plurality of structures 202. It may be provided. Further, although the porous insulating layer 203 is provided between the oxide semiconductor layer 13 and the counter electrode 201, it may be provided between the electrode substrate 10 and the counter electrode 201 so as to surround the oxide semiconductor layer 13. Good. Even with this configuration, physical contact between the oxide semiconductor layer 13 and the counter electrode 201 can be prevented.

また、上記実施形態では、光電変換素子100は、1つの光電変換セル50を備えているが、光電変換素子は、光電変換セル50を複数備えていてもよい。 Further, in the above embodiment, the photoelectric conversion element 100 includes one photoelectric conversion cell 50, but the photoelectric conversion element may include a plurality of photoelectric conversion cells 50.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
まず、4.1cm×9.1cm×厚さ20μmのフィルムに四角形状の開口を形成し、封止部を形成するための環状の封止部形成体を得た。このとき、封止部形成体の構成材料としては、無水マレイン酸変性ポリエチレン(無水マレイン酸変性PE)1(商品名:バイネル4164、デュポン社製、密度:0.92g/cm、酸素透過係数d:195cm(STP)・mm/(m・day・atm))を用いた。
(Example 1)
First, a quadrangular opening was formed in a film having a size of 4.1 cm × 9.1 cm × a thickness of 20 μm to obtain an annular sealing portion forming body for forming a sealing portion. At this time, as the constituent material of the sealing portion forming body, maleic anhydride-modified polyethylene (maleic anhydride-modified PE) 1 (trade name: Binel 4164, manufactured by DuPont, density: 0.92 g / cm 3 , oxygen permeability coefficient). d: 195 cm 3 (STP) · mm / (m 2 · day · atm)) was used.

次に、ガラスからなる5.5cm×11cm×2.2mmの透明基板の上に、0.6μmのFTOからなる透明導電層を形成してなる積層体を準備した。 Next, a laminate was prepared in which a transparent conductive layer made of 0.6 μm FTO was formed on a transparent substrate having a size of 5.5 cm × 11 cm × 2.2 mm made of glass.

次に、透明導電層の上に、酸化物半導体層の前駆体を形成した。酸化物半導体層の前駆体は、透明導電層上に酸化チタンナノペーストを印刷した後、460℃で90分間加熱して焼成することにより2.5cm×7.5cm×厚さ20μmの四角形状の酸化チタン多孔質膜からなる酸化物半導体層を得た。こうして構造体を得た。 Next, a precursor of the oxide semiconductor layer was formed on the transparent conductive layer. The precursor of the oxide semiconductor layer is a square oxide of 2.5 cm × 7.5 cm × thickness 20 μm by printing titanium oxide nanopaste on a transparent conductive layer, heating at 460 ° C. for 90 minutes and firing. An oxide semiconductor layer made of a titanium porous film was obtained. The structure was obtained in this way.

一方、t−ブタノールとアセトニトリルとの混合溶媒にZ907からなる光増感色素を溶解させて色素溶液を得た。 On the other hand, a photosensitizing dye made of Z907 was dissolved in a mixed solvent of t-butanol and acetonitrile to obtain a dye solution.

そして、上記のようにして得られた構造体を上記色素溶液中に一晩浸漬することにより、酸化物半導体層の表面に光増感色素を吸着させた。そして、透明導電層上に酸化物半導体層を包囲するように、上記のようにして用意した環状の封止部形成体を配置した。 Then, the structure obtained as described above was immersed in the dye solution overnight to adsorb the photosensitizing dye on the surface of the oxide semiconductor layer. Then, the annular sealing portion forming body prepared as described above was arranged on the transparent conductive layer so as to surround the oxide semiconductor layer.

次に、酸化物半導体層上に電解質を0.125mL滴下した。電解質は、アルゴン雰囲気下、3−メトキシプロピオニトリルからなる溶媒中に、ヨウ素と、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドを添加することにより得た。このとき、電解質中のI の濃度は0.01Mとした。 Next, 0.125 mL of the electrolyte was added dropwise onto the oxide semiconductor layer. The electrolyte was obtained by adding iodine and 1,2-dimethyl-3-propylimidazolium iodide to a solvent composed of 3-methoxypropionitrile under an argon atmosphere. At this time, the concentration of I 3 in the electrolyte was set to 0.01 M.

一方、厚さ0.04mmのチタン箔上に白金を、その厚さが5nmとなるようにスパッタして得られる対向基板であって4.1cm×9.1cm×0.04mmの対向基板を用意した。このとき、チタン箔の表面において、封止部を形成する予定の周縁部には、触媒層が成膜されないようにマスキングを施した。そして、対向基板のチタン箔のうち触媒層が成膜されていない周縁部に、上記のようにして得られた封止部形成体を配置し、熱ラミネート法によって接着させた。こうして、封止部形成体を形成した対向基板を用意した。 On the other hand, a facing substrate having a thickness of 4.1 cm × 9.1 cm × 0.04 mm, which is an opposed substrate obtained by sputtering platinum on a titanium foil having a thickness of 0.04 mm so as to have a thickness of 5 nm, is prepared. did. At this time, on the surface of the titanium foil, masking was applied so that the catalyst layer was not formed on the peripheral edge portion where the sealing portion was to be formed. Then, the sealing portion forming body obtained as described above was placed on the peripheral portion of the titanium foil of the opposing substrate on which the catalyst layer was not formed, and bonded by the thermal laminating method. In this way, the opposed substrate on which the sealing portion forming body was formed was prepared.

そして、封止部形成体を形成した対向基板を封止部形成体を介して上記構造体に対向するように配置し、封止形成体を190℃で加熱しながらプレスして透明導電層と対向基板とを接着させた。このとき、封止部形成体に十分な応力をかけることにより、厚さ(高さ)10μm、幅8mmの環状の封止部を得た。ここで、封止部の外周長を26.4cmとし、封止部の厚さ(高さ)を10μmとすることにより、封止部の高さと封止部の外周の周長との積である透過面積aを0.026mとした。こうして光電変換素子を得た。 Then, the opposing substrate on which the sealing portion forming body is formed is arranged so as to face the structure via the sealing portion forming body, and the sealing forming body is pressed while heating at 190 ° C. to form a transparent conductive layer. It was adhered to the facing substrate. At this time, by applying sufficient stress to the sealing portion forming body, an annular sealing portion having a thickness (height) of 10 μm and a width of 8 mm was obtained. Here, by setting the outer peripheral length of the sealing portion to 26.4 cm and the thickness (height) of the sealing portion to 10 μm, the product of the height of the sealing portion and the peripheral length of the outer circumference of the sealing portion is obtained. A certain transmission area a was set to 0.026 m 2 . In this way, a photoelectric conversion element was obtained.

上記のようにして得られた光電変換素子について、下記式(1)で表される電解質の量mと封止部の酸素透過速度vとの比R、及び、下記式(2)で表される酸素透過速度vを求めた。結果を表1に示す。なお、式(2)中、Cの値としては、セル空間の外部における酸素分圧が0.209atmであり、セル空間の内部における酸素分圧が約0atmであるため、0.209(atm)を用いた。

R=v/m (1)
(上記式(1)中、vは下記式(2)で表される封止部の酸素透過速度(cm(STP)/day)を表し、mは電解質の量(mL)を表す)

v=d×C×a/w (2)
(上記式(2)中、dは封止部の酸素透過係数(cm(STP)・mm/(m・day・atm))を表し、aは封止部における酸素の透過面積(m)を表し、Cはセル空間の内部における酸素分圧とセル空間の外部における酸素分圧との差の絶対値(atm)を表し、wは封止部の幅(mm)を表す)
The photoelectric conversion element obtained as described above is represented by the ratio R of the amount m of the electrolyte represented by the following formula (1) and the oxygen permeation velocity v of the sealing portion, and the following formula (2). The oxygen permeation rate v was determined. The results are shown in Table 1. In the formula (2), the value of C is 0.209 (atm) because the oxygen partial pressure outside the cell space is 0.209 atm and the oxygen partial pressure inside the cell space is about 0 atm. Was used.

R = v / m (1)
(In the above formula (1), v represents the oxygen permeation rate (cm 3 (STP) / day) of the sealing portion represented by the following formula (2), and m represents the amount of electrolyte (mL)).

v = d × C × a / w (2)
(In the above formula (2), d represents the oxygen permeation coefficient of the sealing portion (cm 3 (STP) · mm / (m 2 · day · atm)), and a represents the oxygen permeation area (m) in the sealing portion. 2 ), C represents the absolute value (atm) of the difference between the oxygen partial pressure inside the cell space and the oxygen partial pressure outside the cell space, and w represents the width (mm) of the sealing portion).

(実施例2〜19、比較例1〜16、及び参考例1〜4)
封止部の構成材料、酸素透過係数d、外周の周長、高さ、透過面積a、幅w、電解質の量m及びI 濃度を表1〜3に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Examples 2 to 19, Comparative Examples 1 to 16, and Reference Examples 1 to 4)
Implemented except that the constituent materials of the sealing part, oxygen permeability coefficient d, outer peripheral circumference, height, permeation area a, width w, electrolyte amount m and I 3 - concentration are as shown in Tables 1 to 3. A photoelectric conversion element was manufactured in the same manner as in Example 1.

なお、比較例7〜9及び実施例13〜14では、封止部を構成する樹脂として、エチレン−ビニルアルコール共重合体(EVOH,商品名:エバール、クラレ社製、酸素透過係数d:1cm(STP)・mm/(m・day・atm))を用い、比較例10〜12及び実施例15では、封止部を構成する樹脂として、無水マレイン酸変性ポリエチレン(無水マレイン酸変性PE)2(商品名:AMPLIFY GR 204、ダウ・ケミカル・カンパニー社製、密度:0.96g/cm、酸素透過係数d:46cm(STP)・mm/(m・day・atm))を用いた。
In Comparative Examples 7 to 9 and Examples 13 to 14, an ethylene-vinyl alcohol copolymer (EVOH, trade name: EVAL, manufactured by Kuraray Co., Ltd., oxygen permeation coefficient d: 1 cm 3) was used as the resin constituting the sealing portion. (STP) · mm / (m 2 · day · atm)) was used, and in Comparative Examples 10 to 12 and Example 15, maleic anhydride-modified polyethylene (maleic anhydride-modified PE) was used as the resin constituting the sealing portion. For 2 (trade name: AMPLIFY GR 204, manufactured by Dow Chemical Company, density: 0.96 g / cm 3 , oxygen permeation coefficient d: 46 cm 3 (STP) · mm / (m 2 · day · atm)) There was.

<耐久性>
上記のようにして得られた実施例1〜19、比較例1〜16及び参考例1〜4の光電変換素子について、作製直後に200ルクスの白色光を照射した状態でIV曲線を測定し、このIV曲線から算出される最大出力動作電力Pm(μW)を「出力1」として算出した。なお、IV曲線の測定に用いた光源、照度計および電源は以下の通りとした。

光源:白色LED(製品名「LEL−SL5N−F」、東芝ライテック社製)
照度計:製品名「デジタル照度計51013」、横河メータ&インスツルメンツ社製
電源:電圧/電流 発生器(製品名「R6246I」、ADVANTEST製)
<Durability>
The IV curves of the photoelectric conversion elements of Examples 1 to 19, Comparative Examples 1 to 16 and Reference Examples 1 to 4 obtained as described above were measured in a state of being irradiated with white light of 200 lux immediately after production. The maximum output operating power Pm 0 (μW) calculated from this IV curve was calculated as “output 1”. The light source, illuminometer, and power supply used to measure the IV curve were as follows.

Light source: White LED (product name "LEL-SL5N-F", manufactured by Toshiba Lighting & Technology Corporation)
Illuminance meter: Product name "Digital illuminance meter 51013", Yokogawa Meter & Instruments Power supply: Voltage / current generator (Product name "R6246I", ADVANTEST)

そして、20000ルクスの白色光照射下で2000時間置いた後、上記光電変換素子を再度200ルクスの上記の白色光を照射した状態でIV曲線を測定し、このIV曲線から算出される最大出力動作電力PW(μW)を「出力2」として算出した。そして、下記式に基づいて出力維持率を算出した。結果を表1〜3に示す。

出力維持率=出力2/出力1

なお、耐久性の合格基準は以下の通りとした。
(合格基準)出力維持率が0.85以上であること

Figure 0006863858
Figure 0006863858
Figure 0006863858
Then, after leaving the photoelectric conversion element under white light irradiation of 20000 lux for 2000 hours, the IV curve is measured with the photoelectric conversion element irradiated with the white light of 200 lux again, and the maximum output operation calculated from this IV curve is performed. The power PW (μW) was calculated as “output 2”. Then, the output maintenance rate was calculated based on the following formula. The results are shown in Tables 1-3.

Output retention rate = output 2 / output 1

The acceptance criteria for durability are as follows.
(Pass criteria) Output maintenance rate must be 0.85 or higher

Figure 0006863858
Figure 0006863858
Figure 0006863858

表1〜3に示すように、実施例1〜19の光電変換素子は、耐久性の点で合格基準を満たすことが分かった。これに対し、比較例1〜16の光電変換素子は、耐久性の点で合格基準を満たさないことが分かった。なお、参考例1〜5の結果より、ポリハロゲン化物イオンの濃度が0.05Mを超えると、式(1)で表されるRの値にかかわらず、光電変換素子の耐久性は大きく変わらなかった。 As shown in Tables 1 to 3, the photoelectric conversion elements of Examples 1 to 19 were found to satisfy the acceptance criteria in terms of durability. On the other hand, it was found that the photoelectric conversion elements of Comparative Examples 1 to 16 did not satisfy the acceptance criteria in terms of durability. From the results of Reference Examples 1 to 5, when the concentration of the polyhalide ion exceeds 0.05 M, the durability of the photoelectric conversion element does not change significantly regardless of the value of R represented by the formula (1). Ion.

以上の結果から、本発明の光電変換素子は、電解質中のポリハロゲン化物イオンの濃度が低い場合に優れた耐久性を有することが確認された。 From the above results, it was confirmed that the photoelectric conversion element of the present invention has excellent durability when the concentration of polyhalide ions in the electrolyte is low.

10…電極基板
13…酸化物半導体層
20…対向基板
30…封止部
40…電解質
50,250…光電変換セル
100,200…光電変換素子
220…絶縁性基板(対向基板)
10 ... Electrode substrate 13 ... Oxide semiconductor layer 20 ... Opposing substrate 30 ... Sealing part 40 ... Electrolyte 50, 250 ... Photoelectric conversion cell 100, 200 ... Photoelectric conversion element 220 ... Insulating substrate (opposing substrate)

Claims (2)

少なくとも1つの光電変換セルを備え、
前記光電変換セルが、
電極基板と、
前記電極基板に対向する対向基板と、
前記電極基板又は前記対向基板に設けられる酸化物半導体層と、
前記電極基板及び前記対向基板を接合する環状の封止部と、
前記電極基板、前記対向基板及び前記封止部によって形成されるセル空間に充填される電解質とを備え、
前記電解質がハロゲン化物イオン及びポリハロゲン化物イオンからなる酸化還元対を含み、
前記電解質中の前記ポリハロゲン化物イオンの濃度が0.05M以下であり、
下記式(1)で表されるRが0.00040〜0.00200cm(STP)/(day・mL)である、光電変換素子。

R=v/m (1)
(上記式(1)中、vは下記式(2)で表される前記封止部の酸素透過速度(cm(STP)/day)を表し、mは前記電解質の量(mL)を表す)

v=d×C×a/w (2)
(上記式(2)中、dは前記封止部の酸素透過係数(cm(STP)・mm/(m・day・atm))を表し、aは前記封止部における酸素の透過面積a(m)を表し、Cは前記セル空間の内部における酸素分圧と前記セル空間の外部における酸素分圧との差の絶対値(atm)を表し、wは前記封止部の幅(mm)を表す)
With at least one photoelectric conversion cell
The photoelectric conversion cell
With the electrode substrate
Opposing substrate facing the electrode substrate and
With the oxide semiconductor layer provided on the electrode substrate or the facing substrate,
An annular sealing portion for joining the electrode substrate and the opposing substrate, and
The electrode substrate, the facing substrate, and the electrolyte filled in the cell space formed by the sealing portion are provided.
The electrolyte contains a redox pair consisting of a halide ion and a polyhalide ion.
The concentration of the polyhalide ion in the electrolyte is 0.05 M or less, and the concentration is 0.05 M or less.
A photoelectric conversion element having an R represented by the following formula (1) of 0.00040 to 0.00200 cm 3 (STP) / (day · mL).

R = v / m (1)
(In the above formula (1), v represents the oxygen permeation rate (cm 3 (STP) / day) of the sealing portion represented by the following formula (2), and m represents the amount (mL) of the electrolyte. )

v = d × C × a / w (2)
(In the above formula (2), d represents the oxygen permeation coefficient (cm 3 (STP) · mm / (m 2 · day · atm)) of the sealing portion, and a is the oxygen permeation area in the sealing portion. It represents a (m 2 ), C represents the absolute value (atm) of the difference between the oxygen partial pressure inside the cell space and the oxygen partial pressure outside the cell space, and w represents the width of the sealing portion (atm). Represents mm)
前記式(2)中の酸素透過係数dが46〜195cm(STP)・mm/(m・day・atm)である、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the oxygen permeability coefficient d in the formula (2) is 46 to 195 cm 3 (STP) · mm / (m 2 · day · atm).
JP2017160633A 2016-08-30 2017-08-23 Photoelectric conversion element Active JP6863858B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016167644 2016-08-30
JP2016167644 2016-08-30

Publications (2)

Publication Number Publication Date
JP2018037654A JP2018037654A (en) 2018-03-08
JP6863858B2 true JP6863858B2 (en) 2021-04-21

Family

ID=61567685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017160633A Active JP6863858B2 (en) 2016-08-30 2017-08-23 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP6863858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014656B2 (en) * 2018-03-23 2022-02-01 株式会社フジクラ Photoelectric conversion element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187844A (en) * 2008-02-07 2009-08-20 Panasonic Electric Works Co Ltd Method of manufacturing photoelectric conversion element
JP2009199782A (en) * 2008-02-19 2009-09-03 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and manufacturing method therefor
JP2013201099A (en) * 2012-03-26 2013-10-03 Fujikura Ltd Dye-sensitized solar cell for low illuminance
JP5969844B2 (en) * 2012-07-18 2016-08-17 株式会社フジクラ Dye-sensitized solar cell and method for producing the same
JP6285673B2 (en) * 2013-09-12 2018-02-28 株式会社フジクラ Dye-sensitized solar cell element
JP5897741B1 (en) * 2015-02-04 2016-03-30 株式会社フジクラ Photoelectric conversion element
JP5897742B1 (en) * 2015-02-04 2016-03-30 株式会社フジクラ Photoelectric conversion element

Also Published As

Publication number Publication date
JP2018037654A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
EP2683020B1 (en) Dye-sensitized solar cell module
JP6863858B2 (en) Photoelectric conversion element
JP6263242B1 (en) Photoelectric conversion element
WO2018012392A1 (en) Photoelectric conversion element
JP4759646B1 (en) Electronic device and manufacturing method thereof
WO2012046796A1 (en) Dye-sensitized solar cell
JP2011222140A (en) Electronic device and manufacturing method thereof
JP5897741B1 (en) Photoelectric conversion element
JP5897742B1 (en) Photoelectric conversion element
JP7014656B2 (en) Photoelectric conversion element
JP2016086032A (en) Manufacturing method of dye-sensitized photoelectric conversion element
JP6259878B1 (en) Photoelectric conversion element
JP2019192839A (en) Photoelectric conversion element
JP6371194B2 (en) Method for producing dye-sensitized photoelectric conversion element
JP6598710B2 (en) Input device
JP5839748B1 (en) Dye-sensitized photoelectric conversion element
JP6120926B2 (en) Dye-sensitized photoelectric conversion element
JP6439035B1 (en) Photoelectric conversion element
JP6694341B2 (en) Photoelectric conversion element
JP5905619B1 (en) Method for producing dye-sensitized photoelectric conversion element
JP6718322B2 (en) Photoelectric conversion element
JP2018037555A (en) Method for manufacturing photoelectric conversion element
JP6539081B2 (en) Photoelectric conversion element
JP2018037553A (en) Photoelectric conversion element
JP2013004178A (en) Dye-sensitized solar battery, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R151 Written notification of patent or utility model registration

Ref document number: 6863858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151