JP2011222140A - Electronic device and manufacturing method thereof - Google Patents

Electronic device and manufacturing method thereof Download PDF

Info

Publication number
JP2011222140A
JP2011222140A JP2010086594A JP2010086594A JP2011222140A JP 2011222140 A JP2011222140 A JP 2011222140A JP 2010086594 A JP2010086594 A JP 2010086594A JP 2010086594 A JP2010086594 A JP 2010086594A JP 2011222140 A JP2011222140 A JP 2011222140A
Authority
JP
Japan
Prior art keywords
sealing portion
resin sealing
base material
electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010086594A
Other languages
Japanese (ja)
Other versions
JP4759647B1 (en
Inventor
Katsuhiro Doi
克浩 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2010086594A priority Critical patent/JP4759647B1/en
Priority to CN201180013035.3A priority patent/CN102792517B/en
Priority to PCT/JP2011/058230 priority patent/WO2011125843A1/en
Priority to EP11765743.7A priority patent/EP2555315A4/en
Application granted granted Critical
Publication of JP4759647B1 publication Critical patent/JP4759647B1/en
Publication of JP2011222140A publication Critical patent/JP2011222140A/en
Priority to US13/632,580 priority patent/US10020120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an electronic device and manufacturing method thereof which can sufficiently maintain durability even when placed under an environment with a large temperature change.SOLUTION: An electronic device 100 includes a first substrate 1, a second substrate 2 disposed opposite to the first substrate 1, a part 3 to be sealed disposed between the first substrate 1 and the second substrate 2, and a sealing part 4 joining the first substrate 1 and the second substrate 2 together and provided in a periphery of the part 3 to be sealed, having outer resin sealing parts 4a by which at least a part along the periphery of the part 3 to be sealed of the sealing part 4 is fixed to each of the first substrate 1 and the second substrate 2, and an intermediate resin sealing part 4b disposed so as to be interposed by the outer resin sealing parts 4a between the first substrate 1 and the second substrate 2. The outer resin sealing parts 4a and the intermediate resin sealing part 4b contain resin, and a melt flow rate of the intermediate resin sealing part 4b is larger than a melt flow rate of the outer resin sealing parts 4a.

Description

本発明は、電子機器及びその製造方法に関する。   The present invention relates to an electronic device and a method for manufacturing the same.

電子機器として、色素増感太陽電池や有機薄膜太陽電池などの光電変換素子や、液晶表示装置、EL表示装置などの表示素子などが知られている。   Known electronic devices include photoelectric conversion elements such as dye-sensitized solar cells and organic thin film solar cells, and display elements such as liquid crystal display devices and EL display devices.

このような電子機器として、一対の基体の間に絶縁性のスペーサを配置し、絶縁性スペーサを一対の基体に対し封止材で接合することによって、封止性能が良好でショートが生じ難い機能デバイスが提案されている(例えば特許文献1参照)。この特許文献1では、絶縁性スペーサとしてガラス、アルミナ、石英等の無機材料や、ポリエチレン等の有機材料を用い、封止材としてアクリル樹脂、ガラスフリット等を用いることが開示されている(実施例)。   As such an electronic device, an insulating spacer is disposed between a pair of bases, and the insulating spacer is bonded to the pair of bases with a sealing material so that the sealing performance is good and a short circuit is hardly caused. Devices have been proposed (see, for example, Patent Document 1). In this Patent Document 1, it is disclosed that an inorganic material such as glass, alumina, quartz or the like, or an organic material such as polyethylene is used as an insulating spacer, and an acrylic resin, glass frit or the like is used as a sealing material (Example) ).

特開2007−194075号公報JP 2007-194075 A

しかし、上記特許文献1に記載の機能デバイスは、以下に示す課題を有していた。   However, the functional device described in Patent Document 1 has the following problems.

即ち特許文献1に記載の機能デバイスは、昼と夜とで温度が大きく異なる屋外などの温度変化の大きい環境下に置かれることがある。特に太陽電池のような機能デバイスにあっては、屋外などの温度変化の大きい環境下に置かれる可能性が高い。このとき、一対の基体、封止材及びスペーサは熱膨張や熱収縮を繰り返す。ここで、スペーサがガラスなどの無機材料で構成されると、封止材と基体との線膨張係数は通常異なるため、封止材とスペーサとの界面、あるいは封止材と基体との界面に過大な応力がかかる。またスペーサが樹脂で構成される場合でも、封止材とスペーサとの界面、あるいは封止材と基体との界面に過大な応力がかかる場合がある。このため、封止材とスペーサとの密着性及び接着性が低下する結果、機能デバイスの封止性能が低下し、耐久性を維持することができなくなる。   In other words, the functional device described in Patent Document 1 may be placed in an environment where the temperature changes greatly, such as outdoors, where temperatures vary greatly between day and night. In particular, a functional device such as a solar cell is highly likely to be placed in an environment with a large temperature change such as outdoors. At this time, the pair of substrates, the sealing material, and the spacer repeat thermal expansion and thermal contraction. Here, when the spacer is made of an inorganic material such as glass, the linear expansion coefficient between the sealing material and the base is usually different, so that the interface between the sealing material and the spacer or the interface between the sealing material and the base is different. Excessive stress is applied. Even when the spacer is made of resin, an excessive stress may be applied to the interface between the sealing material and the spacer or the interface between the sealing material and the substrate. For this reason, as a result of a decrease in the adhesion and adhesion between the sealing material and the spacer, the sealing performance of the functional device is reduced, and the durability cannot be maintained.

そこで、本発明は、温度変化の大きい環境下に置かれる場合でも耐久性を十分に維持できる電子機器及びその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide an electronic device that can sufficiently maintain durability even when placed in an environment with a large temperature change, and a manufacturing method thereof.

本発明者は、上記課題を解決するため温度変化の大きい環境下に置かれる場合でも電子機器の耐久性を十分に維持できない原因について鋭意研究を重ねた結果、一対の基体の間に配置される絶縁性スペーサが封止材よりも硬いことが、温度変化の大きい環境下に置かれる場合でも電子機器の耐久性を十分に維持できない原因ではないかと考えた。即ち、スペーサが封止材よりも硬いことで温度変化に伴って電子機器内に生じる応力が封止材とスペーサとの界面に集中するのではないかと本発明者は考えた。そこで、本発明者はさらに検討を重ね、以下の発明により上記課題を解決しうることを見出した。   In order to solve the above problems, the present inventor has conducted extensive research on the cause of failure to sufficiently maintain the durability of an electronic device even when placed in an environment with a large temperature change. As a result, the inventor is disposed between a pair of substrates. It was thought that the fact that the insulating spacer is harder than the sealing material may not sufficiently maintain the durability of the electronic device even when placed in an environment with a large temperature change. That is, the present inventor considered that the spacer is harder than the sealing material, so that stress generated in the electronic device with temperature change may be concentrated on the interface between the sealing material and the spacer. Therefore, the present inventors have further studied and found that the above-described problems can be solved by the following invention.

即ち本発明は、第1基材と、前記第1基材に対向配置される第2基材と、前記第1基材及び前記第2基材の間に配置される被封止部と、前記第1基材及び前記第2基材を連結し、前記被封止部の周囲に設けられる封止部とを備えており、前記封止部のうち前記被封止部の周囲に沿った少なくとも一部が、前記第1基材及び前記第2基材の各々に固定される外側樹脂封止部と、前記第1基材及び前記第2基材の間で、前記外側樹脂封止部に挟まれるように配置される中間樹脂封止部とを有し、前記外側樹脂封止部及び前記中間樹脂封止部が樹脂を含み、前記中間樹脂封止部のメルトフローレートが前記外側樹脂封止部のメルトフローレートよりも大きいことを特徴とする光電変換装置である。   That is, the present invention includes a first base material, a second base material disposed opposite to the first base material, a sealed portion disposed between the first base material and the second base material, The first base material and the second base material are connected to each other, and a sealing part provided around the sealed part is provided, and the sealing part is provided along the periphery of the sealed part. At least a part between the first base material and the second base material, and the outer side resin seal part fixed between the first base material and the second base material. An intermediate resin sealing portion disposed so as to be sandwiched between the outer resin sealing portion and the intermediate resin sealing portion, and the melt flow rate of the intermediate resin sealing portion is the outer resin. It is a photoelectric conversion device characterized by being larger than the melt flow rate of a sealing part.

この電子機器によれば、中間樹脂封止部のメルトフローレートが前記外側樹脂封止部のメルトフローレートよりも大きいため、中間樹脂封止部は外側樹脂封止部よりも軟らかくなる。このため、電子機器が温度変化の大きい環境下に置かれる場合に、封止部にて外側樹脂封止部と中間樹脂封止部との界面に応力がかかっても、その応力が軟らかい中間樹脂封止部で吸収されて十分に緩和される。従って、本発明の電子機器によれば、外側樹脂封止部と中間樹脂封止部との密着性及び接着性が低下することを十分に抑制することができ、被封止部の漏洩又は外部からの被封止部への水分の浸入を十分に抑制することができる。よって、電子機器が温度変化の大きい環境下に置かれる場合でも、耐久性を維持することができる。   According to this electronic device, since the melt flow rate of the intermediate resin sealing portion is larger than the melt flow rate of the outer resin sealing portion, the intermediate resin sealing portion is softer than the outer resin sealing portion. For this reason, when an electronic device is placed in an environment with a large temperature change, even if stress is applied to the interface between the outer resin sealing portion and the intermediate resin sealing portion in the sealing portion, the intermediate resin is soft. It is absorbed by the sealing part and sufficiently relaxed. Therefore, according to the electronic device of the present invention, it is possible to sufficiently suppress the decrease in the adhesion and adhesion between the outer resin sealing portion and the intermediate resin sealing portion, and the leakage of the sealed portion or the outside It is possible to sufficiently suppress the intrusion of moisture into the portion to be sealed. Therefore, durability can be maintained even when the electronic device is placed in an environment with a large temperature change.

前記中間樹脂封止部は、酸変性ポリオレフィンを含むことが好ましい。   The intermediate resin sealing part preferably contains an acid-modified polyolefin.

この場合、中間樹脂封止部と外側樹脂封止部との接着が強固になり、外側樹脂封止部と中間樹脂封止部との界面において、被封止部の漏洩又は外部からの被封止部への水分の浸入をより十分に抑制できる。   In this case, the adhesion between the intermediate resin sealing portion and the outer resin sealing portion becomes strong, and at the interface between the outer resin sealing portion and the intermediate resin sealing portion, leakage of the sealed portion or external sealing Infiltration of moisture into the stop can be more sufficiently suppressed.

前記中間樹脂封止部は、酸変性ポリエチレンを含むことが好ましい。酸変性ポリエチレンは他の酸変性ポリオレフィンに比べて比較的低融点であるため、他の酸変性ポリオレフィンを用いた場合に比べて、外側樹脂封止部よりも一層軟らかくなる。このため、電子機器が温度変化の大きい環境下に置かれる場合に、封止部にて外側樹脂封止部と中間樹脂封止部との界面に応力がかかっても、その応力がより十分に緩和される。   The intermediate resin sealing part preferably contains acid-modified polyethylene. Since acid-modified polyethylene has a relatively low melting point compared to other acid-modified polyolefins, it becomes softer than the outer resin-encapsulated portion compared to the case where other acid-modified polyolefins are used. For this reason, when an electronic device is placed in an environment with a large temperature change, even if stress is applied to the interface between the outer resin sealing portion and the intermediate resin sealing portion in the sealing portion, the stress is more sufficiently Alleviated.

前記中間樹脂封止部は、ポリビニルアルコール及びエチレン−ビニルアルコール共重合体からなる群より選ばれる少なくとも1種を含んでもよい。   The intermediate resin sealing portion may include at least one selected from the group consisting of polyvinyl alcohol and an ethylene-vinyl alcohol copolymer.

これらの樹脂は気体バリア性が高いために、中間樹脂封止部中において、被封止部の漏洩又は外部からの被封止部への水分の浸入をより十分に抑制できる。   Since these resins have a high gas barrier property, leakage of the sealed portion or entry of moisture from the outside into the sealed portion can be more sufficiently suppressed in the intermediate resin sealing portion.

前記外側樹脂封止部は、酸変性ポリオレフィン及び紫外線硬化性樹脂からなる群より選ばれる少なくとも1種を含むことが好ましい。   The outer resin sealing portion preferably contains at least one selected from the group consisting of acid-modified polyolefins and ultraviolet curable resins.

この場合、第1基材および第2基材と、外側樹脂封止部との接着が強固になり、それぞれの界面において、被封止部の漏洩又は外部からの被封止部への水分の浸入をより十分に抑制できる。   In this case, the adhesion between the first base material and the second base material and the outer resin sealing portion becomes strong, and at each interface, leakage of the sealed portion or moisture from the outside to the sealed portion. Infiltration can be more sufficiently suppressed.

前記外側樹脂封止部は、酸変性ポリエチレンを含むことが好ましい。酸変性ポリエチレンは、酸変性ポリオレフィンの中でも比較的融点が低い。このため、外側樹脂封止部として、酸変性ポリエチレン以外の酸変性ポリオレフィンを用いる場合に比べて、外側樹脂封止部と第1基材又は第2基材との界面に生じる応力をより一層緩和することができる。   The outer resin sealing portion preferably contains acid-modified polyethylene. Acid-modified polyethylene has a relatively low melting point among acid-modified polyolefins. For this reason, compared with the case where acid-modified polyolefin other than acid-modified polyethylene is used as the outer resin sealing portion, the stress generated at the interface between the outer resin sealing portion and the first base material or the second base material is further alleviated. can do.

前記外側樹脂封止部は、ポリビニルアルコール及びエチレン−ビニルアルコール共重合体からなる群より選択される少なくとも1種を含むものであってもよい。   The outer resin sealing portion may include at least one selected from the group consisting of polyvinyl alcohol and ethylene-vinyl alcohol copolymer.

これらの樹脂は気体バリア性が高いために、外側樹脂封止部中において、被封止部の漏洩又は外部からの被封止部への水分の浸入をより十分に抑制できる。   Since these resins have a high gas barrier property, leakage of the sealed portion or entry of moisture from the outside into the sealed portion can be more sufficiently suppressed in the outer resin sealing portion.

上記電子機器は、前記封止部に対して前記被封止部と反対側に、前記第1基材および前記封止部の境界、前記第2基材および前記封止部の境界、前記中間樹脂封止部及び前記外側樹脂封止部の境界を少なくとも覆う被覆部をさらに備え、前記被覆部が第2の樹脂を含むことが好ましい。   The electronic device has a boundary between the first base material and the sealing portion, a boundary between the second base material and the sealing portion, the intermediate portion on a side opposite to the sealed portion with respect to the sealing portion. It is preferable that a covering portion that covers at least a boundary between the resin sealing portion and the outer resin sealing portion is further provided, and the covering portion includes a second resin.

この場合、被封止部の漏洩又は外部からの被封止部への水分の浸入が、封止部のみならず被覆部によっても抑制されることになる。特に、封止部と第1基材との界面、封止部と第2基材との界面、及び中間樹脂封止部と外側樹脂封止部との界面を通る被封止部の界面漏洩又は外部からの被封止部への水分の浸入が被覆部によって効果的に抑制される。   In this case, leakage of the sealed portion or entry of moisture from the outside into the sealed portion is suppressed not only by the sealed portion but also by the covering portion. In particular, the interface leakage between the sealing part and the first base material, the interface between the sealing part and the second base material, and the sealed part passing through the interface between the intermediate resin sealing part and the outer resin sealing part. Or the penetration | invasion of the water | moisture content to the to-be-sealed part from the outside is effectively suppressed by the coating | coated part.

上記電子機器においては、前記第1基材が第1電極であり、前記第2基材が第2電極であってもよい。   In the electronic device, the first base material may be a first electrode, and the second base material may be a second electrode.

前記第1基材が第1電極で、前記第2基材が第2電極である電子機器においては、前記第1電極は、多孔質酸化物半導体層と、前記多孔質酸化物半導体層が形成される導電膜と、前記導電膜上に突出するように設けられ、前記外側樹脂封止部と前記導電膜との間に挟まれるように配置される突出部とを有し、前記突出部が無機材料からなり、前記被封止部が電解質であることが好ましい。   In an electronic device in which the first base material is a first electrode and the second base material is a second electrode, the first electrode is formed of a porous oxide semiconductor layer and the porous oxide semiconductor layer And a protruding portion that is provided so as to protrude above the conductive film and is disposed so as to be sandwiched between the outer resin sealing portion and the conductive film. It is preferable that the portion to be sealed is made of an inorganic material and is an electrolyte.

この場合、無機材料からなる突出部が、導電膜上に突出するように設けられているため、突出部が封止部とともに被封止部としての電解質を封止する機能を果たす。しかも、突出部は、無機材料からなるため、樹脂を含む外側樹脂封止部及び中間樹脂封止部よりも高い封止能を有する。このため、第1電極が突出部を有しない場合に比べて、電解質の漏洩又は外部からの被封止部への水分の浸入をより十分に抑制することができる。   In this case, since the protruding portion made of an inorganic material is provided so as to protrude on the conductive film, the protruding portion functions to seal the electrolyte as the sealed portion together with the sealing portion. And since a protrusion part consists of inorganic materials, it has higher sealing ability than the outer side resin sealing part and intermediate resin sealing part containing resin. For this reason, compared with the case where the 1st electrode does not have a projection part, the leakage of an electrolyte or the penetration | invasion of the water | moisture content to the to-be-sealed part from the exterior can be suppressed more fully.

ここで、前記突出部が、前記導電膜上に固定される配線部で構成され、前記配線部が、無機材料で構成され、前記導電膜上に設けられる集電配線と、前記集電配線を覆う配線保護層とを有することが好ましい。   Here, the projecting portion is constituted by a wiring portion fixed on the conductive film, the wiring portion is made of an inorganic material, and the current collecting wiring provided on the conductive film, and the current collecting wiring It is preferable to have a wiring protective layer to cover.

この電子機器においては、突出部が外側樹脂封止部と導電膜との間に挟まれるように配置される。そして、突起部が配線部を有し、配線部が、集電配線と、集電配線を覆う配線保護層とを有する。つまり、集電配線は、配線保護層により電解質から保護された状態で、第1電極と第2電極とを結ぶ方向に沿って封止部と重なるように配置されている。このように、集電配線が封止部の外側に設けられておらず、さらに、集電配線が封止部の内側にも設けられていないので、第1電極の光入射面において集電配線と封止部とが占める面積を最小限にすることができ、集電配線と封止部とにより遮蔽される入射光を最小限に留めることができる。従って、受光面積を拡大することができ、高い光電変換効率を得ることができる。   In this electronic apparatus, the protruding portion is disposed so as to be sandwiched between the outer resin sealing portion and the conductive film. And a projection part has a wiring part, and a wiring part has a current collection wiring and the wiring protective layer which covers current collection wiring. That is, the current collection wiring is arranged so as to overlap the sealing portion along the direction connecting the first electrode and the second electrode in a state protected from the electrolyte by the wiring protective layer. Thus, since the current collection wiring is not provided outside the sealing portion, and further, the current collection wiring is not provided inside the sealing portion, the current collection wiring is provided on the light incident surface of the first electrode. And the area occupied by the sealing portion can be minimized, and incident light shielded by the current collecting wiring and the sealing portion can be minimized. Therefore, the light receiving area can be enlarged and high photoelectric conversion efficiency can be obtained.

前記第1基材が第1電極で、前記第2基材が第2電極である電子機器においては、前記第2電極は、対極基板と、前記対極基板上に設けられる触媒膜と、前記触媒膜上に突出するように設けられ、前記外側樹脂封止部と前記触媒膜との間に挟まれるように配置される突出部とを有し、前記突出部が無機材料からなり、前記被封止部が電解質であることが好ましい。   In the electronic device in which the first base material is the first electrode and the second base material is the second electrode, the second electrode includes a counter electrode substrate, a catalyst film provided on the counter electrode substrate, and the catalyst. A projection provided on the membrane so as to be sandwiched between the outer resin sealing portion and the catalyst membrane, the projection made of an inorganic material, The stop is preferably an electrolyte.

この場合、無機材料からなる突出部が、触媒膜上に突出するように設けられているため、突出部が外側樹脂封止部とともに被封止部としての電解質を封止する機能を果たす。しかも、突出部は、無機材料からなるため、樹脂を含む外側樹脂封止部及び中間樹脂封止部よりも高い封止能を有する。このため、第2電極が突出部を有しない場合に比べて、電解質の漏洩又は外部からの被封止部への水分の浸入をより十分に抑制することができる。   In this case, since the protruding portion made of an inorganic material is provided so as to protrude on the catalyst film, the protruding portion functions to seal the electrolyte as the sealed portion together with the outer resin sealing portion. And since a protrusion part consists of inorganic materials, it has higher sealing ability than the outer side resin sealing part and intermediate resin sealing part containing resin. For this reason, compared with the case where a 2nd electrode does not have a protrusion part, the leakage of an electrolyte or the penetration | invasion of the water | moisture content to the to-be-sealed part from the exterior can be suppressed more fully.

また本発明は、第1基材及び第2基材を準備する準備工程と、前記第1基材における第1環状部位に、外側樹脂封止部を含む第1封止部を形成する第1封止部形成工程と、前記第2基材における第2環状部位に、外側樹脂封止部を含む第2封止部を形成する第2封止部形成工程と、前記第1基材及び前記第2基材を貼り合せ、前記第1基材及び前記第2基材の間に前記第1封止部と前記第2封止部とを接着させてなる封止部を形成するとともに前記封止部、前記第1基材および前記第2基材によって囲まれるように被封止部を配置する封止部形成工程とを含み、前記第1封止部及び前記第2封止部の少なくとも一方が、前記外側樹脂封止部の上に設けられる中間樹脂封止部を有し、前記中間樹脂封止部および前記外側樹脂封止部が樹脂を含み、前記中間樹脂封止部のメルトフローレートが前記外側樹脂封止部のメルトフローレートよりも大きいことを特徴とする光電変換装置の製造方法である。   Moreover, this invention is the 1st which forms the 1st sealing part containing an outer side resin sealing part in the 1st cyclic | annular site | part in the said 1st base material which prepares a 1st base material and a 2nd base material. A sealing portion forming step, a second sealing portion forming step of forming a second sealing portion including an outer resin sealing portion in a second annular portion of the second base material, the first base material, and the A second base material is bonded, and a sealing part is formed by adhering the first sealing part and the second sealing part between the first base material and the second base material, and the sealing is performed. A sealing portion forming step of disposing a sealing portion so as to be surrounded by the stopper, the first base material, and the second base material, and at least one of the first sealing portion and the second sealing portion One has an intermediate resin sealing portion provided on the outer resin sealing portion, and the intermediate resin sealing portion and the outer resin sealing portion include a resin. Wherein a method for producing an intermediate resin sealing portion photoelectric conversion device melt flow rate being greater than the melt flow rate of the outer resin sealing portion.

この製造方法によれば、中間樹脂封止部のメルトフローレートが前記外側樹脂封止部のメルトフローレートよりも大きい。このため、中間樹脂封止部は外側樹脂封止部よりも軟らかくなる。このため、得られる電子機器が温度変化の大きい環境下に置かれる場合に、封止部にて外側樹脂封止部と中間樹脂封止部との界面に応力がかかっても、その応力が軟らかい中間樹脂封止部で吸収されて十分に緩和される。従って、本発明の電子機器の製造方法によれば、外側樹脂封止部と中間樹脂封止部との密着性及び接着性の低下が十分に抑制され、被封止部の漏洩又は外部からの被封止部への水分の浸入が十分に抑制され、ひいては温度変化の大きい環境下に置かれる場合でも耐久性を維持できる電子機器を得ることができる。また中間樹脂封止部のメルトフローレートが外側樹脂封止部のメルトフローレートよりも高いため、封止部形成工程において、第1封止部及び第2封止部を接着させるに際し、中間樹脂封止部の方が外側樹脂封止部よりも流動性が高くなる。このため、第1封止部及び第2封止部を接着させる際に、第1封止部や第2封止部に夾雑物などの異物が付着していても、第1封止部および第2封止部は、中間樹脂封止部によって夾雑物を含包しながらも容易に接着される。このため、第1封止部と第2封止部との間の接着を強固とすることが可能となる。   According to this manufacturing method, the melt flow rate of the intermediate resin sealing portion is larger than the melt flow rate of the outer resin sealing portion. For this reason, the intermediate resin sealing portion is softer than the outer resin sealing portion. Therefore, when the obtained electronic device is placed in an environment with a large temperature change, even if stress is applied to the interface between the outer resin sealing portion and the intermediate resin sealing portion in the sealing portion, the stress is soft. It is absorbed by the intermediate resin sealing portion and sufficiently relaxed. Therefore, according to the method for manufacturing an electronic device of the present invention, a decrease in adhesion and adhesion between the outer resin sealing portion and the intermediate resin sealing portion is sufficiently suppressed, and leakage of the sealed portion or from the outside is prevented. Intrusion of moisture into the sealed portion is sufficiently suppressed, and as a result, an electronic device that can maintain durability even when placed in an environment with a large temperature change can be obtained. In addition, since the melt flow rate of the intermediate resin sealing portion is higher than the melt flow rate of the outer resin sealing portion, the intermediate resin is bonded to the first sealing portion and the second sealing portion in the sealing portion forming step. The fluidity of the sealing part is higher than that of the outer resin sealing part. For this reason, when the first sealing portion and the second sealing portion are bonded, even if foreign matters such as foreign matters adhere to the first sealing portion and the second sealing portion, the first sealing portion and the second sealing portion The second sealing portion is easily bonded while containing impurities by the intermediate resin sealing portion. For this reason, it becomes possible to strengthen the adhesion between the first sealing portion and the second sealing portion.

前記封止部形成工程は減圧空間内で行われることが好ましい。   The sealing portion forming step is preferably performed in a reduced pressure space.

この場合、得られる電子機器を減圧空間から大気中に取り出した際に、被封止部が外気に対して陰圧状態となる。その結果、電子機器は外部から大気圧を受けることになり、封止部に対して第1基材及び第2基材が押圧力を加えた状態が維持され、被封止部中の揮発成分の漏洩がより十分に抑制される。   In this case, when the obtained electronic device is taken out from the decompression space to the atmosphere, the sealed portion is in a negative pressure state with respect to the outside air. As a result, the electronic device receives atmospheric pressure from the outside, and the state in which the first base material and the second base material exert a pressing force on the sealing portion is maintained, and the volatile component in the sealed portion Leakage is sufficiently suppressed.

上記電子機器の製造方法においては、前記第1基材が第1電極であり、前記第2基材が第2電極であってもよい。   In the method for manufacturing an electronic device, the first base material may be a first electrode, and the second base material may be a second electrode.

ここで、前記第1電極が多孔質酸化物半導体層を含み、前記被封止部が電解質であり、上記製造方法が、前記準備工程と前記封止部形成工程との間に、前記多孔質酸化物半導体層に光増感色素を担持させる色素担持工程と、前記第1電極上であって前記第1封止部の内側、又は前記第2電極上であって前記第2封止部の内側に前記電解質を配置して電解質層を形成する電解質層形成工程とをさらに含み、前記電解質層形成工程は、前記第1封止部形成工程及び前記第2封止部形成工程の少なくとも一方の後に行われ、前記封止部形成工程において、前記封止部は、前記第1封止部及び前記第2封止部を加圧しながら溶融させることによって形成されることが好ましい。   Here, the first electrode includes a porous oxide semiconductor layer, the sealed portion is an electrolyte, and the manufacturing method includes the porous layer between the preparation step and the sealing portion forming step. A dye carrying step for carrying a photosensitizing dye on the oxide semiconductor layer; and on the first electrode and inside the first sealing part or on the second electrode and on the second sealing part. An electrolyte layer forming step of forming an electrolyte layer by disposing the electrolyte inside, wherein the electrolyte layer forming step includes at least one of the first sealing portion forming step and the second sealing portion forming step. It is performed later, and in the sealing portion forming step, the sealing portion is preferably formed by melting the first sealing portion and the second sealing portion while applying pressure.

上記製造方法によれば、第1封止部形成工程及び第2封止部形成工程の少なくとも一方は、電解質層形成工程の前に行われる。このため、例えば第1封止部形成工程及び第2封止部形成工程のうち第1封止部形成工程のみが電解質層形成工程の前に行われる場合、第1封止部を第1電極における第1環状部位に形成する際、その第1環状部位に電解質中の揮発成分が付着しておらず、その表面の濡れ性が低下していない。従って、樹脂は第1環状部位に強固に接着し、第1封止部が第1環状部位に強固に固定される。   According to the manufacturing method, at least one of the first sealing portion forming step and the second sealing portion forming step is performed before the electrolyte layer forming step. For this reason, for example, when only the first sealing portion forming step is performed before the electrolyte layer forming step among the first sealing portion forming step and the second sealing portion forming step, the first sealing portion is defined as the first electrode. When forming in the 1st cyclic | annular site | part in, the volatile component in electrolyte is not adhering to the 1st cyclic | annular site | part, and the wettability of the surface is not falling. Therefore, the resin adheres firmly to the first annular portion, and the first sealing portion is firmly fixed to the first annular portion.

一方、封止部形成工程は電解質層形成工程の後に行われる。このため、通常であれば、第1封止部及び第2封止部を溶融させることに伴い、電解質の一部が蒸発し、第1封止部と第2封止部との間の濡れ性が低下すると考えられる。また、電解質層形成工程中に電解質が第1封止部と第2封止部上に付着し、第1封止部と第2封止部との間の濡れ性が低下することも考えられる。   On the other hand, the sealing part forming step is performed after the electrolyte layer forming step. For this reason, normally, with melting of the first sealing portion and the second sealing portion, a part of the electrolyte evaporates, and wetting between the first sealing portion and the second sealing portion. It is thought that the nature is lowered. In addition, it is considered that the electrolyte adheres on the first sealing portion and the second sealing portion during the electrolyte layer forming step, and wettability between the first sealing portion and the second sealing portion is lowered. .

しかし、上述したように、中間樹脂封止部のメルトフローレートが外側樹脂封止部のメルトフローレートよりも高いため、封止部形成工程において、第1封止部及び第2封止部を接着させるに際し、中間樹脂封止部の方が外側樹脂封止部よりも流動性が高くなる。このため、第1封止部及び第2封止部を接着させる際に、第1封止部や第2封止部に夾雑物などの異物が付着していても、第1封止部及び第2封止部が中間樹脂封止部にその夾雑物を含包して接着される。このため、第1封止部と第2封止部は、侠雑物を含包した中間樹脂封止部によって、第1封止部と第2封止部との間の接着を強固とすることが可能となる。   However, as described above, since the melt flow rate of the intermediate resin sealing portion is higher than the melt flow rate of the outer resin sealing portion, in the sealing portion forming step, the first sealing portion and the second sealing portion are In bonding, the intermediate resin sealing portion has higher fluidity than the outer resin sealing portion. Therefore, when the first sealing portion and the second sealing portion are adhered, even if foreign matters such as foreign matters are attached to the first sealing portion and the second sealing portion, The second sealing portion includes the impurities in the intermediate resin sealing portion and is bonded. For this reason, the 1st sealing part and the 2nd sealing part strengthen the adhesion between the 1st sealing part and the 2nd sealing part by the intermediate resin sealing part which included impurities. It becomes possible.

このように、上記製造方法によれば、第1封止部は、第1電極の第1環状部位に強固に固定され、第2封止部が第2電極の第2環状部位に強固に固定される。また第1封止部及び第2封止部同士も強固に接着される。従って、得られる電子機器においては、電解質中の揮発成分の漏洩がより十分に抑制される。さらに、外部からの電解質への水分の浸入をより十分に抑制できる。よって、本発明に係る電子機器の製造方法によれば、光電変換効率の経時的な低下を十分に抑制できる電子機器を製造することが可能となる。   Thus, according to the manufacturing method, the first sealing portion is firmly fixed to the first annular portion of the first electrode, and the second sealing portion is firmly fixed to the second annular portion of the second electrode. Is done. Further, the first sealing portion and the second sealing portion are also firmly bonded to each other. Therefore, in the obtained electronic device, leakage of volatile components in the electrolyte is more sufficiently suppressed. Furthermore, it is possible to more sufficiently suppress moisture from entering the electrolyte from the outside. Therefore, according to the method for manufacturing an electronic device according to the present invention, it is possible to manufacture an electronic device that can sufficiently suppress a temporal decrease in photoelectric conversion efficiency.

前記電解質層形成工程において、前記電解質層は、前記電解質を、前記第1電極上であって前記第1封止部の内側、又は前記第2電極上であって前記第2封止部の内側に注入し、前記第1封止部又は前記第2封止部を超えて前記第1封止部又は前記第2封止部の外側に溢れさせることにより形成されることが好ましい。   In the electrolyte layer forming step, the electrolyte layer includes the electrolyte on the first electrode and inside the first sealing portion, or on the second electrode and inside the second sealing portion. It is preferable that the first sealing portion or the second sealing portion is overflowed and overflowed to the outside of the first sealing portion or the second sealing portion.

この場合、第1封止部又は第2封止部の内側に電解質を十分に注入することが可能となる。また第1封止部と第2封止部とを接着して封止部を形成するに際し、第1電極と第2電極と封止部とによって囲まれる空間から空気を十分に排除することができる。その結果、光電変換効率の経時的な低下を十分に抑制することができる。   In this case, the electrolyte can be sufficiently injected into the first sealing portion or the second sealing portion. Further, when forming the sealing portion by bonding the first sealing portion and the second sealing portion, air can be sufficiently removed from the space surrounded by the first electrode, the second electrode, and the sealing portion. it can. As a result, a decrease in photoelectric conversion efficiency over time can be sufficiently suppressed.

前記電解質層形成工程においては、前記電解質層が、前記第1電極上であって前記第1封止部の内側に形成されることが好ましい。   In the electrolyte layer forming step, the electrolyte layer is preferably formed on the first electrode and inside the first sealing portion.

この場合、多孔質酸化物半導体層の多孔質の細部にまで電解質が十分に行き渡った後に封止工程が行われることとなる。このため、多孔質酸化物半導体層中の空気が気泡となって現れることが十分に抑制され、光電変換効率の経時的な低下を十分に抑制することができる。   In this case, the sealing step is performed after the electrolyte has sufficiently spread to the porous details of the porous oxide semiconductor layer. For this reason, air in the porous oxide semiconductor layer is sufficiently suppressed from appearing as bubbles, and a decrease in photoelectric conversion efficiency with time can be sufficiently suppressed.

上記製造方法において、前記第1電極は、多孔質酸化物半導体層と、前記多孔質酸化物半導体層が形成される導電膜と、前記導電膜上に突出するように設けられ、前記第1環状部位をなす突出部とを有し、前記突出部が無機材料からなり、前記被封止部が電解質である、ことが好ましい。   In the manufacturing method, the first electrode is provided so as to protrude from a porous oxide semiconductor layer, a conductive film in which the porous oxide semiconductor layer is formed, and the conductive film, and the first annular shape. It is preferable that the protruding portion is made of an inorganic material, and the sealed portion is an electrolyte.

この場合、無機材料からなる突出部が、導電膜上に突出するように設けられているため、突出部が封止部とともに被封止部としての電解質層を封止する機能を果たす。しかも、突出部は、無機材料からなるため、樹脂を含む第1封止部及び第2封止部よりも高い封止能を有する。このため、第1電極が突出部を有しない場合に比べて、電解質の漏洩又は外部からの電解質への水分の浸入をより十分に抑制することができる。   In this case, since the protruding portion made of an inorganic material is provided so as to protrude on the conductive film, the protruding portion functions to seal the electrolyte layer as the sealed portion together with the sealing portion. And since a protrusion part consists of inorganic materials, it has higher sealing ability than the 1st sealing part and 2nd sealing part containing resin. For this reason, compared with the case where a 1st electrode does not have a protrusion part, the leakage of an electrolyte or the penetration | invasion of the water | moisture content to the electrolyte from the exterior can be suppressed more fully.

上記製造方法において、前記第2電極は、対極基板と、前記対極基板上に設けられる触媒膜と、前記触媒膜上に突出するように設けられ、前記第2環状部位をなす突出部とを有し、前記突出部が無機材料からなり、前記被封止部が電解質であることが好ましい。   In the above manufacturing method, the second electrode has a counter electrode substrate, a catalyst film provided on the counter electrode substrate, and a protruding portion that is provided so as to protrude on the catalyst film and forms the second annular portion. And it is preferable that the said protrusion part consists of inorganic materials, and the said to-be-sealed part is an electrolyte.

この場合、無機材料からなる突出部が、触媒膜上に突出するように設けられているため、突出部が封止部とともに被封止部としての電解質層を封止する機能を果たす。しかも、突出部は、無機材料からなるため、樹脂を含む第1封止部及び第2封止部よりも高い封止能を有する。このため、第2電極が突出部を有しない場合に比べて、電解質の漏洩をより十分に抑制することができる。   In this case, since the protruding portion made of an inorganic material is provided so as to protrude on the catalyst film, the protruding portion functions to seal the electrolyte layer as the sealed portion together with the sealing portion. And since a protrusion part consists of inorganic materials, it has higher sealing ability than the 1st sealing part and 2nd sealing part containing resin. For this reason, compared with the case where a 2nd electrode does not have a protrusion part, the leakage of electrolyte can be suppressed more fully.

上記製造方法においては、前記第1電極及び前記第2電極のうち少なくとも一方が可撓性を有することが好ましい。   In the manufacturing method, it is preferable that at least one of the first electrode and the second electrode has flexibility.

この場合、第1電極及び第2電極のいずれも可撓性を有しない場合に比べて、減圧空間から取り出されて大気圧下に配置された場合に、第1電極及び第2電極のうち可撓性を有する電極が大気圧によって撓み、第1電極と第2電極との間隔を狭めることが可能となる。その結果、第1電極及び第2電極のいずれも可撓性を有しない場合に比べて、特性がより向上する。   In this case, compared with the case where neither the first electrode nor the second electrode has flexibility, when the first electrode and the second electrode are taken out from the reduced pressure space and placed under the atmospheric pressure, the first electrode and the second electrode can be used. The flexible electrode is deflected by the atmospheric pressure, and the distance between the first electrode and the second electrode can be reduced. As a result, the characteristics are further improved as compared with the case where neither the first electrode nor the second electrode has flexibility.

なお、本発明においてメルトフローレート(以下、「MFR」と略称する)の値は、ASTM D1238に従い、190℃、2.16kgsの条件下で測定された値を言うものとする。但し、190℃の条件下でMFRの正確な測定が困難である場合には、210℃の条件下で測定された値を言うものとする。   In the present invention, the value of the melt flow rate (hereinafter abbreviated as “MFR”) is a value measured under conditions of 190 ° C. and 2.16 kgs in accordance with ASTM D1238. However, when accurate measurement of MFR is difficult under the condition of 190 ° C., the value measured under the condition of 210 ° C. shall be said.

本発明によれば、温度変化の大きい環境下に置かれる場合でも耐久性を十分に維持できる電子機器及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the electronic device which can fully maintain durability, even when it puts in the environment with a large temperature change, and its manufacturing method are provided.

本発明に係る電子機器の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electronic device which concerns on this invention. 図1の第1電極を示す断面図である。It is sectional drawing which shows the 1st electrode of FIG. 図1の第2電極を示す断面図である。It is sectional drawing which shows the 2nd electrode of FIG. 図2の第1電極を示す平面図である。It is a top view which shows the 1st electrode of FIG. 本発明に係る電子機器の製造方法の一実施形態の一工程を示す断面図である。It is sectional drawing which shows 1 process of one Embodiment of the manufacturing method of the electronic device which concerns on this invention. 図3の第2電極を示す平面図である。It is a top view which shows the 2nd electrode of FIG. 本発明に係る電子機器の製造方法の一実施形態の他の工程を示す断面図である。It is sectional drawing which shows the other process of one Embodiment of the manufacturing method of the electronic device which concerns on this invention. 本発明に係る電子機器の製造方法の一実施形態のさらに他の工程を示す断面図である。It is sectional drawing which shows the further process of one Embodiment of the manufacturing method of the electronic device which concerns on this invention. 本発明に係る電子機器の製造方法の一実施形態のさらにまた他の工程を示す断面図である。It is sectional drawing which shows the further another process of one Embodiment of the manufacturing method of the electronic device which concerns on this invention. 本発明に係る電子機器の製造方法の他の実施形態の一工程を示す断面図である。It is sectional drawing which shows 1 process of other embodiment of the manufacturing method of the electronic device which concerns on this invention. 図1の第1電極の変形例を示す断面図である。It is sectional drawing which shows the modification of the 1st electrode of FIG. 図1の第2電極の変形例を示す断面図である。It is sectional drawing which shows the modification of the 2nd electrode of FIG.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<第1実施形態>
まず本発明に係る電子機器の第1実施形態について図1〜図9を用いて説明する。図1は本発明に係る電子機器の一実施形態である色素増感太陽電池を示す断面図である。図2は、図1の第1電極を示す断面図、図3は、図1の第2電極を示す断面図、図4は、図2の第1電極を示す平面図、図5及び図7〜図9はそれぞれ、本実施形態の製造方法の一工程を示す断面図である。図6は、図3の第2電極を示す平面図である。
<First Embodiment>
First, a first embodiment of an electronic apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a dye-sensitized solar cell which is an embodiment of an electronic apparatus according to the invention. 2 is a sectional view showing the first electrode of FIG. 1, FIG. 3 is a sectional view showing the second electrode of FIG. 1, FIG. 4 is a plan view showing the first electrode of FIG. 2, and FIGS. FIG. 9 to FIG. 9 are cross-sectional views each showing one step of the manufacturing method of the present embodiment. FIG. 6 is a plan view showing the second electrode of FIG.

図1に示すように、色素増感太陽電池100は、作用極1と、作用極1に対向配置される対極2とを備えている。作用極1には光増感色素が担持されている。作用極1と対極2とは封止部4によって連結されている。そして、作用極1と対極2と封止部4とによって包囲されるセル空間内には電解質が充填され、この電解質により電解質層3が形成されている。電解質層3は作用極1と対極2との間に配置され、封止部4は電解質層3の周囲に設けられている。なお、本実施形態において、作用極1は、第1基材であり且つ第1電極でもある。また対極2は第2基材であり且つ第2電極でもある。また電解質層3は被封止部に対応するものである。   As shown in FIG. 1, the dye-sensitized solar cell 100 includes a working electrode 1 and a counter electrode 2 disposed to face the working electrode 1. The working electrode 1 carries a photosensitizing dye. The working electrode 1 and the counter electrode 2 are connected by a sealing portion 4. The cell space surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4 is filled with an electrolyte, and the electrolyte layer 3 is formed by this electrolyte. The electrolyte layer 3 is disposed between the working electrode 1 and the counter electrode 2, and the sealing portion 4 is provided around the electrolyte layer 3. In the present embodiment, the working electrode 1 is a first base material and also a first electrode. The counter electrode 2 is a second base material and also a second electrode. The electrolyte layer 3 corresponds to the portion to be sealed.

作用極1は、透明基板6と、透明基板6の対極2側に設けられる透明導電膜7と、透明導電膜7の上に設けられる多孔質酸化物半導体層8とを備えている。光増感色素は作用極1のうちの多孔質酸化物半導体層8に担持されている。対極2は、対極基板9と、対極基板9のうち作用極1側に設けられて対極2の表面における還元反応を促進する導電性の触媒膜10とを備えている。   The working electrode 1 includes a transparent substrate 6, a transparent conductive film 7 provided on the counter electrode 2 side of the transparent substrate 6, and a porous oxide semiconductor layer 8 provided on the transparent conductive film 7. The photosensitizing dye is supported on the porous oxide semiconductor layer 8 in the working electrode 1. The counter electrode 2 includes a counter electrode substrate 9 and a conductive catalyst film 10 that is provided on the working electrode 1 side of the counter electrode substrate 9 and promotes a reduction reaction on the surface of the counter electrode 2.

封止部4は、作用極1と対極2とを連結しており、作用極1に固定される外側樹脂封止部4aと、対極2に固定される外側樹脂封止部4aと、これら外側樹脂封止部4aの間に挟まれるように配置される中間樹脂封止部4bとで構成されている。作用極1側の外側樹脂封止部4aは作用極1の多孔質酸化物半導体層8側の表面上、即ち透明導電膜7の表面上に固定されている。対極2側の外側樹脂封止部4aは対極2の触媒膜10の表面上に固定されている。外側樹脂封止部4a及び中間樹脂封止部4bはいずれも樹脂を含んでおり、中間樹脂封止部4bのMFRが外側樹脂封止部4aのMFRよりも大きくなっている。   The sealing part 4 connects the working electrode 1 and the counter electrode 2, an outer resin sealing part 4 a fixed to the working electrode 1, an outer resin sealing part 4 a fixed to the counter electrode 2, and these outer sides It is comprised with the intermediate | middle resin sealing part 4b arrange | positioned so that it may be pinched | interposed between the resin sealing parts 4a. The outer resin sealing portion 4 a on the working electrode 1 side is fixed on the surface of the working electrode 1 on the porous oxide semiconductor layer 8 side, that is, on the surface of the transparent conductive film 7. The outer resin sealing portion 4 a on the counter electrode 2 side is fixed on the surface of the catalyst film 10 of the counter electrode 2. Both the outer resin sealing portion 4a and the intermediate resin sealing portion 4b contain resin, and the MFR of the intermediate resin sealing portion 4b is larger than the MFR of the outer resin sealing portion 4a.

この色素増感太陽電池100によれば、中間樹脂封止部4bのMFRが外側樹脂封止部4aのMFRよりも大きいため、中間樹脂封止部4bは外側樹脂封止部4aよりも軟らかくなる。このため、色素増感太陽電池100が温度変化の大きい環境下に置かれる場合に、封止部4にて外側樹脂封止部4aと中間樹脂封止部4bとの界面に応力がかかっても、その応力が軟らかい中間樹脂封止部4bで吸収されて十分に緩和される。従って、色素増感太陽電池100によれば、外側樹脂封止部4aと中間樹脂封止部4bとの密着性及び接着性が低下することを十分に抑制することができ、電解質の漏洩及び外部からの水分の侵入を十分に抑制することができる。よって、色素増感太陽電池100が温度変化の大きい環境下に置かれる場合でも、耐久性を維持することができる。   According to this dye-sensitized solar cell 100, since the MFR of the intermediate resin sealing portion 4b is larger than the MFR of the outer resin sealing portion 4a, the intermediate resin sealing portion 4b is softer than the outer resin sealing portion 4a. . For this reason, when the dye-sensitized solar cell 100 is placed in an environment with a large temperature change, even if stress is applied to the interface between the outer resin sealing portion 4a and the intermediate resin sealing portion 4b in the sealing portion 4. The stress is absorbed by the soft intermediate resin sealing portion 4b and sufficiently relaxed. Therefore, according to the dye-sensitized solar cell 100, it can fully suppress that the adhesiveness and adhesiveness of the outer side resin sealing part 4a and the intermediate resin sealing part 4b fall, and electrolyte leakage and external Invasion of moisture from can be sufficiently suppressed. Therefore, durability can be maintained even when the dye-sensitized solar cell 100 is placed in an environment with a large temperature change.

次に、上述した色素増感太陽電池100の製造方法について説明する。   Next, the manufacturing method of the dye-sensitized solar cell 100 described above will be described.

[準備工程]
まず作用極(第1電極)1及び対極(第2電極)2を準備する。
[Preparation process]
First, a working electrode (first electrode) 1 and a counter electrode (second electrode) 2 are prepared.

(作用極)
作用極1は、以下のようにして得ることができる(図2)。
(Working electrode)
The working electrode 1 can be obtained as follows (FIG. 2).

はじめに透明基板6の上に透明導電膜7を形成して積層体を形成する。透明導電膜7の形成方法としては、スパッタ法、蒸着法、スプレー熱分解法(SPD:Spray Pyrolysis Deposition)及びCVD法などが用いられる。これらのうちスプレー熱分解法が装置コストの点から好ましい。   First, a transparent conductive film 7 is formed on the transparent substrate 6 to form a laminate. As a method for forming the transparent conductive film 7, a sputtering method, a vapor deposition method, a spray pyrolysis (SPD) method, a CVD method, or the like is used. Of these, the spray pyrolysis method is preferable from the viewpoint of apparatus cost.

透明基板6を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリエーテルスルフォン(PES)などが挙げられる。透明基板6の厚さは、色素増感太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50μm〜10000μmの範囲にすればよい。   The material which comprises the transparent substrate 6 should just be a transparent material, for example, As such a transparent material, glass, such as borosilicate glass, soda lime glass, white plate glass, quartz glass, polyethylene terephthalate (PET), for example , Polyethylene naphthalate (PEN), polycarbonate (PC), polyethersulfone (PES) and the like. The thickness of the transparent substrate 6 is appropriately determined according to the size of the dye-sensitized solar cell 100 and is not particularly limited, but may be in the range of 50 μm to 10000 μm, for example.

透明導電膜7を構成する材料としては、例えばスズ添加酸化インジウム(Indium−Tin−Oxide:ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(Fluorine−doped−Tin−Oxide:FTO)などの導電性金属酸化物が挙げられる。透明導電膜7は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電膜7が単層で構成される場合、透明導電膜7は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。また透明導電膜7として、複数の層で構成される積層体を用いると、各層の特性を反映させることが可能となることから好ましい。中でも、ITOで構成される層と、FTOで構成される層との積層体を用いることが好ましい。この場合、高い導電性、耐熱性及び耐薬品性を持つ透明導電膜7が実現できる。透明導電膜7の厚さは例えば0.01μm〜2μmの範囲にすればよい。 Examples of the material constituting the transparent conductive film 7 include tin-doped indium oxide (Indium-Tin-Oxide: ITO), tin oxide (SnO 2 ), and fluorine-doped tin oxide (Fluorine-doped-Tin-Oxide: FTO). Examples include conductive metal oxides. The transparent conductive film 7 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides. When the transparent conductive film 7 is composed of a single layer, the transparent conductive film 7 is preferably composed of FTO because it has high heat resistance and chemical resistance. Moreover, it is preferable to use a laminated body composed of a plurality of layers as the transparent conductive film 7 because the characteristics of each layer can be reflected. Among these, it is preferable to use a laminate of a layer made of ITO and a layer made of FTO. In this case, the transparent conductive film 7 having high conductivity, heat resistance and chemical resistance can be realized. The thickness of the transparent conductive film 7 may be in the range of 0.01 μm to 2 μm, for example.

次に、上記のようにして得られた透明導電膜7上に、多孔質酸化物半導体層形成用ペーストを印刷する。多孔質酸化物半導体層形成用ペーストは、上述した酸化物半導体粒子のほか、ポリエチレングリコールなどの樹脂及び、テレピネオールなどの溶媒を含む。多孔質酸化物半導体層形成用ペーストの印刷方法としては、例えばスクリーン印刷法、ドクターブレード法、バーコート法などを用いることができる。   Next, a paste for forming a porous oxide semiconductor layer is printed on the transparent conductive film 7 obtained as described above. The porous oxide semiconductor layer forming paste includes a resin such as polyethylene glycol and a solvent such as terpineol in addition to the oxide semiconductor particles described above. As a printing method of the paste for forming the porous oxide semiconductor layer, for example, a screen printing method, a doctor blade method, a bar coating method, or the like can be used.

次に、多孔質酸化物半導体層形成用ペーストを焼成して透明導電膜7上に多孔質酸化物半導体層8を形成する。焼成温度は酸化物半導体粒子により異なるが、通常は350℃〜600℃であり、焼成時間も、酸化物半導体粒子により異なるが、通常は1〜5時間である。   Next, the porous oxide semiconductor layer forming paste is baked to form the porous oxide semiconductor layer 8 on the transparent conductive film 7. The firing temperature varies depending on the oxide semiconductor particles, but is usually 350 ° C. to 600 ° C., and the firing time also varies depending on the oxide semiconductor particles, but is usually 1 to 5 hours.

上記酸化物半導体粒子としては、例えば酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化タングステン(WO3)、酸化ニオブ(Nb25)、チタン酸ストロンチウム(SrTiO3)、酸化スズ(SnO2)、酸化インジウム(In)、酸化ジルコニウム(ZrO)、酸化タリウム(Ta)、酸化ランタン(La)、酸化イットリウム(Y)、酸化ホルミウム(Ho)、酸化ビスマス(Bi)、酸化セリウム(CeO)、酸化アルミニウム(Al)又はこれらの2種以上で構成される酸化物半導体粒子が挙げられる。これら酸化物半導体粒子の平均粒径は1〜1000nmであることが、色素で覆われた酸化物半導体の表面積が大きくなり、即ち光電変換を行う場が広くなり、より多くの電子を生成することができることから好ましい。ここで、多孔質酸化物半導体層8が、粒度分布の異なる酸化物半導体粒子を積層させてなる積層体で構成されることが好ましい。この場合、積層体内で繰り返し光の反射を起こさせることが可能となり、入射光を積層体の外部へ逃がすことなく効率よく光を電子に変換することができる。多孔質酸化物半導体層8の厚さは、例えば0.5〜50μmとすればよい。なお、多孔質酸化物半導体層8は、異なる材料からなる複数の半導体層の積層体で構成することもできる。 Examples of the oxide semiconductor particles include titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), strontium titanate (SrTiO 3 ), tin oxide (SnO). 2 ), indium oxide (In 3 O 3 ), zirconium oxide (ZrO 2 ), thallium oxide (Ta 2 O 5 ), lanthanum oxide (La 2 O 3 ), yttrium oxide (Y 2 O 3 ), holmium oxide (Ho) 2 O 3 ), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 ), aluminum oxide (Al 2 O 3 ), or oxide semiconductor particles composed of two or more of these. The average particle diameter of these oxide semiconductor particles is 1-1000 nm, the surface area of the oxide semiconductor covered with the dye is increased, that is, the field for photoelectric conversion is increased, and more electrons are generated. Is preferable. Here, it is preferable that the porous oxide semiconductor layer 8 is configured by a stacked body in which oxide semiconductor particles having different particle size distributions are stacked. In this case, it becomes possible to cause reflection of light repeatedly in the laminated body, and light can be efficiently converted into electrons without escaping incident light to the outside of the laminated body. The thickness of the porous oxide semiconductor layer 8 may be, for example, 0.5 to 50 μm. In addition, the porous oxide semiconductor layer 8 can also be comprised with the laminated body of the several semiconductor layer which consists of a different material.

(対極)
一方、対極2は、以下のようにして得ることができる(図3)。
(Counter electrode)
On the other hand, the counter electrode 2 can be obtained as follows (FIG. 3).

即ちまず対極基板9を準備する。そして、対極基板9の上に触媒膜10を形成する。触媒膜10の形成方法としては、スパッタ法、蒸着法などが用いられる。これらのうちスパッタ法が膜の均一性の点から好ましい。   That is, first, the counter electrode substrate 9 is prepared. Then, the catalyst film 10 is formed on the counter electrode substrate 9. As a method for forming the catalyst film 10, a sputtering method, a vapor deposition method, or the like is used. Of these, sputtering is preferred from the viewpoint of film uniformity.

対極基板9は、例えばチタン、ニッケル、白金、モリブデン、タングステン等の耐食性の金属材料や、ITO、FTO等の導電性酸化物や、炭素、導電性高分子で構成される。対極基板9の厚さは、色素増感太陽電池100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.005mm〜0.1mmとすればよい。   The counter electrode substrate 9 is made of, for example, a corrosion-resistant metal material such as titanium, nickel, platinum, molybdenum, or tungsten, a conductive oxide such as ITO or FTO, carbon, or a conductive polymer. The thickness of the counter electrode substrate 9 is appropriately determined according to the size of the dye-sensitized solar cell 100 and is not particularly limited, but may be, for example, 0.005 mm to 0.1 mm.

触媒膜10は、白金、炭素系材料又は導電性高分子などから構成される。   The catalyst film 10 is made of platinum, a carbon-based material, a conductive polymer, or the like.

[第1封止部形成工程]
次に、図4及び図5に示すように、作用極1のうち透明導電膜7の表面上の部位であって多孔質酸化物半導体層8を包囲する第1環状部位C1に第1封止部4Aを形成する。第1封止部4Aは、透明導電膜7の第1環状部位C1に固定される外側樹脂封止部4aと、その上に設けられる中間樹脂封止部4bとから構成されている。ここで、外側樹脂封止部4a及び中間樹脂封止部4bはいずれも樹脂を含んでおり、中間樹脂封止部4bとしては、外側樹脂封止部4bのMFRよりも大きいMFRを有するものを用いる。
[First sealing portion forming step]
Next, as shown in FIGS. 4 and 5, the first sealing is performed on the first annular portion C1 of the working electrode 1 on the surface of the transparent conductive film 7 and surrounding the porous oxide semiconductor layer 8. Part 4A is formed. 4 A of 1st sealing parts are comprised from the outer side resin sealing part 4a fixed to the 1st cyclic | annular site | part C1 of the transparent conductive film 7, and the intermediate | middle resin sealing part 4b provided on it. Here, both the outer resin sealing portion 4a and the intermediate resin sealing portion 4b contain a resin, and the intermediate resin sealing portion 4b has an MFR larger than the MFR of the outer resin sealing portion 4b. Use.

[第2封止部形成工程]
一方、図6及び図7に示すように、対極2のうち触媒膜10の表面上の部位である第2環状部位C2に第2封止部4Bを形成する。第2封止部4Bは、触媒膜10の第2環状部位C2に固定される外側樹脂封止部4aから構成されている。
[Second sealing portion forming step]
On the other hand, as shown in FIGS. 6 and 7, the second sealing portion 4 </ b> B is formed in the second annular portion C <b> 2 that is a portion on the surface of the catalyst film 10 in the counter electrode 2. The second sealing portion 4B is composed of an outer resin sealing portion 4a that is fixed to the second annular portion C2 of the catalyst film 10.

外側樹脂封止部4aに含まれる樹脂は、樹脂であればいかなるものでもよいが、このような樹脂としては、例えば酸変性ポリオレフィン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体または紫外線硬化樹脂を用いることができる。これらは単独で又は2種以上を組み合わせて使用することができる。   The resin contained in the outer resin sealing portion 4a may be any resin as long as it is a resin. For example, an acid-modified polyolefin, polyvinyl alcohol, an ethylene-vinyl alcohol copolymer, or an ultraviolet curable resin is used as such a resin. be able to. These can be used alone or in combination of two or more.

(外側樹脂封止部)
外側樹脂封止部4aが酸変性ポリオレフィン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体などの熱可塑性樹脂である場合には、外側樹脂封止部4aは、上記樹脂からなる環状のシートを作用極1の第1環状部位C1又は対極2の第2環状部位C2に配置した後、溶融して接着することで形成することができる。外側樹脂封止部4aが紫外線硬化樹脂である場合には、外側樹脂封止部4aは、紫外線硬化樹脂の前駆体を作用極1の第1環状部位C1又は対極2の第2環状部位C2に塗布した後、紫外線を照射して硬化させることで形成することができる。
(Outside resin sealing part)
When the outer resin sealing portion 4a is a thermoplastic resin such as acid-modified polyolefin, polyvinyl alcohol, or ethylene-vinyl alcohol copolymer, the outer resin sealing portion 4a uses a ring-shaped sheet made of the resin as a working electrode. It can form by arrange | positioning in the 1st 1st cyclic | annular site | part C1 or the 2nd cyclic | annular site | part C2 of the counter electrode 2, and fuse | melting and adhere | attaching. When the outer resin sealing portion 4a is an ultraviolet curable resin, the outer resin sealing portion 4a has the precursor of the ultraviolet curable resin as the first annular portion C1 of the working electrode 1 or the second annular portion C2 of the counter electrode 2. After coating, it can be formed by irradiating and curing with ultraviolet rays.

外側樹脂封止部4aの樹脂としては、上記樹脂のうち酸変性ポリオレフィンまたは紫外線硬化樹脂が好ましい。外側樹脂封止部4aに含まれる樹脂として、酸変性ポリオレフィンまたは紫外線硬化樹脂を用いた場合、作用極1の透明導電膜7又は対極2との接着が強固になり、それぞれの界面において、電解質の漏洩及び外部からの電解質への水分の浸入をより十分に抑制できる。酸変性ポリオレフィンの中でも酸変性ポリエチレンが好ましい。酸変性ポリエチレンは、酸変性ポリオレフィンの中でも比較的融点が低い。このため、外側樹脂封止部4aとして、酸変性ポリエチレン以外の酸変性ポリオレフィンを用いる場合に比べて、外側樹脂封止部4aと作用極1又は対極2との界面に生じる応力をより一層緩和することができる。また酸変性ポリオレフィンの中でも酸変性ポリエチレンは、特に電解質に対する安定性が高い。このため、外側樹脂封止部4aは、長期間にわたって外側樹脂封止部4aに含まれる樹脂の柔軟性や接着性などの物性を維持できる。   As the resin of the outer resin sealing portion 4a, acid-modified polyolefin or ultraviolet curable resin is preferable among the above resins. When an acid-modified polyolefin or an ultraviolet curable resin is used as the resin contained in the outer resin sealing portion 4a, the adhesion between the working electrode 1 and the transparent conductive film 7 or the counter electrode 2 becomes strong, and at each interface, the electrolyte Leakage and entry of moisture from the outside into the electrolyte can be more sufficiently suppressed. Among the acid-modified polyolefins, acid-modified polyethylene is preferable. Acid-modified polyethylene has a relatively low melting point among acid-modified polyolefins. For this reason, compared with the case where acid-modified polyolefin other than acid-modified polyethylene is used as the outer resin sealing portion 4a, the stress generated at the interface between the outer resin sealing portion 4a and the working electrode 1 or the counter electrode 2 is further alleviated. be able to. Among acid-modified polyolefins, acid-modified polyethylene has particularly high stability to electrolytes. For this reason, the outer side resin sealing part 4a can maintain physical properties, such as the softness | flexibility and adhesiveness of resin which are contained in the outer side resin sealing part 4a over a long period of time.

また外側樹脂封止部4aに含まれる樹脂は、ポリビニルアルコールまたはエチレン−ビニルアルコール共重合体であってもよい。これらは気体バリア性が高いために、外側樹脂封止部4a中において、電解質の漏洩及び外部からの電解質への水分の浸入をより十分に抑制できる。上述した樹脂は単独で外側樹脂封止部4aの樹脂として用いてもよいが、2種以上を混合または積層したものであってもよい。   Further, the resin contained in the outer resin sealing portion 4a may be polyvinyl alcohol or an ethylene-vinyl alcohol copolymer. Since these have high gas barrier properties, leakage of the electrolyte and entry of moisture from the outside into the electrolyte can be more sufficiently suppressed in the outer resin sealing portion 4a. The above-described resins may be used alone as the resin for the outer resin sealing portion 4a, but may be a mixture or laminate of two or more.

(中間樹脂封止部)
中間樹脂封止部4bに含まれる樹脂としては、外側樹脂封止部4aよりも高いMFRを有する樹脂であればいかなるものであってもよく、例えば酸変性ポリオレフィン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体の中から適宜選択することができる。
(Intermediate resin sealing part)
The resin contained in the intermediate resin sealing part 4b may be any resin as long as it has a higher MFR than the outer resin sealing part 4a. For example, acid-modified polyolefin, polyvinyl alcohol, ethylene-vinyl alcohol It can be appropriately selected from polymers.

中間樹脂封止部4bが酸変性ポリオレフィン、ポリビニルアルコール、エチレン−ビニルアルコール共重合体などの熱可塑性樹脂である場合には、中間樹脂封止部4bは、外側樹脂封止部4aの上に上記樹脂からなる環状のシートを配置した後、溶融して接着することで形成することができる。   When the intermediate resin sealing portion 4b is a thermoplastic resin such as acid-modified polyolefin, polyvinyl alcohol, or ethylene-vinyl alcohol copolymer, the intermediate resin sealing portion 4b is formed on the outer resin sealing portion 4a. It can be formed by arranging an annular sheet made of resin and then melting and bonding.

中間樹脂封止部4bに含まれる樹脂としては、酸変性ポリオレフィンが好ましい。この場合、外側樹脂封止部4aとの接着が強固になり、外側樹脂封止部4aと中間樹脂封止部4bとの界面において、電解質の漏洩及び外部からの電解質への水分の浸入をより十分に抑制できる。また、前記した理由に加えて、酸変性ポリオレフィンが、電解質に対して非常に安定であるため、長期間にわたって中間樹脂封止部4bに含まれる樹脂の柔軟性や接着性などの物性を維持できる。さらに酸変性ポリオレフィンはポリビニルアルコールまたはエチレン−ビニルアルコール共重合体に比べて比較的低融点であるため、以下の利点も有する。即ち酸変性ポリオレフィンは他の酸変性ポリオレフィンに比べて比較的低融点であるため、中間樹脂封止部4bはポリビニルアルコールまたはエチレン−ビニルアルコール共重合体に比べて、外側樹脂封止部4aよりもより一層軟らかくなる。このため、色素増感太陽電池100が温度変化の大きい環境下に置かれる場合に、封止部4にて外側樹脂封止部4aと中間樹脂封止部4bとの界面に応力がかかっても、中間樹脂封止部4bとしてポリビニルアルコールまたはエチレン−ビニルアルコール共重合体を用いた場合に比べて、その応力がより十分に緩和される。また酸変性ポリオレフィンがポリビニルアルコールまたはエチレン−ビニルアルコール共重合体に比べて比較的低融点であるため、外側樹脂封止部4aと中間樹脂封止部4bの樹脂とが比較的低温で溶融接着しやすくなる。なお、酸変性ポリオレフィンとは、オレフィンに酸をランダム共重合、交互共重合、ブロック共重合、グラフト共重合させたもの、またはこれらを金属イオンで中和したものを意味する。酸変性ポリオレフィンとしては例えばエチレン−メタクリル酸共重合体、アイオノマー、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレンを用いることができる。ここで、例えば無水マレイン酸変性ポリプロピレンは、無水マレイン酸をグラフト共重合させた酸変性オレフィンである。   As the resin contained in the intermediate resin sealing portion 4b, acid-modified polyolefin is preferable. In this case, the adhesion with the outer resin sealing portion 4a is strengthened, and at the interface between the outer resin sealing portion 4a and the intermediate resin sealing portion 4b, the leakage of the electrolyte and the intrusion of moisture into the electrolyte from the outside It can be suppressed sufficiently. In addition to the reasons described above, since the acid-modified polyolefin is very stable with respect to the electrolyte, the physical properties such as flexibility and adhesiveness of the resin contained in the intermediate resin sealing portion 4b can be maintained over a long period of time. . Furthermore, since acid-modified polyolefin has a relatively low melting point compared to polyvinyl alcohol or ethylene-vinyl alcohol copolymer, it also has the following advantages. That is, since the acid-modified polyolefin has a relatively low melting point compared to other acid-modified polyolefins, the intermediate resin sealing portion 4b is more than the outer resin sealing portion 4a compared to polyvinyl alcohol or an ethylene-vinyl alcohol copolymer. It becomes even softer. For this reason, when the dye-sensitized solar cell 100 is placed in an environment with a large temperature change, even if stress is applied to the interface between the outer resin sealing portion 4a and the intermediate resin sealing portion 4b in the sealing portion 4. As compared with the case where polyvinyl alcohol or ethylene-vinyl alcohol copolymer is used as the intermediate resin sealing portion 4b, the stress is more relaxed. Further, since the acid-modified polyolefin has a relatively low melting point compared to polyvinyl alcohol or ethylene-vinyl alcohol copolymer, the outer resin sealing portion 4a and the resin of the intermediate resin sealing portion 4b are melt-bonded at a relatively low temperature. It becomes easy. The acid-modified polyolefin means one obtained by random copolymerization, alternating copolymerization, block copolymerization, or graft copolymerization of an olefin with an acid, or one obtained by neutralizing these with a metal ion. As the acid-modified polyolefin, for example, ethylene-methacrylic acid copolymer, ionomer, maleic anhydride-modified polyethylene, and maleic anhydride-modified polypropylene can be used. Here, for example, maleic anhydride-modified polypropylene is an acid-modified olefin obtained by graft copolymerization of maleic anhydride.

中間樹脂封止部4bに含まれる樹脂は酸変性ポリエチレンであることがより好ましい。酸変性ポリエチレンは他の酸変性ポリオレフィンに比べて比較的低融点であるため、中間樹脂封止部4bは他の酸変性ポリオレフィンに比べて、外側樹脂封止部4aよりもより一層軟らかくなる。このため、色素増感太陽電池100が温度変化の大きい環境下に置かれる場合に、封止部4にて外側樹脂封止部4aと中間樹脂封止部4bとの界面に応力がかかっても、中間樹脂封止部4bとして他の酸変性ポリオレフィンを用いた場合に比べて、その応力がより十分に緩和される。   The resin contained in the intermediate resin sealing portion 4b is more preferably acid-modified polyethylene. Since acid-modified polyethylene has a relatively low melting point compared to other acid-modified polyolefins, the intermediate resin sealing part 4b is much softer than the outer resin sealing part 4a compared to other acid-modified polyolefins. For this reason, when the dye-sensitized solar cell 100 is placed in an environment with a large temperature change, even if stress is applied to the interface between the outer resin sealing portion 4a and the intermediate resin sealing portion 4b in the sealing portion 4. As compared with the case where other acid-modified polyolefin is used as the intermediate resin sealing portion 4b, the stress is more relaxed.

また中間樹脂封止部4bに含まれる樹脂は、ポリビニルアルコール又はエチレン−ビニルアルコール共重合体であってもよい。これらの樹脂は気体バリア性が高いために、中間樹脂封止部4b中において、電解質の漏洩及び外部からの電解質への水分の浸入をより十分に抑制できる。   Further, the resin contained in the intermediate resin sealing portion 4b may be polyvinyl alcohol or an ethylene-vinyl alcohol copolymer. Since these resins have high gas barrier properties, leakage of the electrolyte and entry of moisture from the outside into the electrolyte can be more sufficiently suppressed in the intermediate resin sealing portion 4b.

外側樹脂封止部4aと中間樹脂封止部4bの樹脂は、異種の酸変性ポリオレフィンであることが好ましい。この場合、外側樹脂封止部4aと中間樹脂封止部4bは、お互いの分子中に同種の不飽和炭素鎖を有するため、相性が良く、後述する封止部形成工程で第1封止部4Aと第2封止部4Bとの間での接着性及び密着性に優れる。   The resin of the outer resin sealing part 4a and the intermediate resin sealing part 4b is preferably a different acid-modified polyolefin. In this case, since the outer resin sealing portion 4a and the intermediate resin sealing portion 4b have the same kind of unsaturated carbon chain in each molecule, the compatibility is good, and the first sealing portion is formed in the sealing portion forming step described later. It is excellent in adhesiveness and adhesiveness between 4A and the 2nd sealing part 4B.

外側樹脂封止部4a及び中間樹脂封止部4bの樹脂は上記酸変性ポリオレフィンの群から選ばれる同じ樹脂であることがより望ましい。例えば外側樹脂封止部4aを構成する樹脂と中間樹脂封止部4bを構成する樹脂が同じアイオノマーからなる組み合わせ、又は、外側樹脂封止部4aを構成する樹脂と中間樹脂封止部4bを構成する樹脂が同じ無水マレイン酸変性ポリプロピレンからなる組み合わせなどが望ましい。   The resin of the outer resin sealing portion 4a and the intermediate resin sealing portion 4b is more preferably the same resin selected from the group of acid-modified polyolefins. For example, the resin constituting the outer resin sealing portion 4a and the resin constituting the intermediate resin sealing portion 4b are composed of the same ionomer, or the resin constituting the outer resin sealing portion 4a and the intermediate resin sealing portion 4b are configured. A combination of the same resins made of the same maleic anhydride-modified polypropylene is desirable.

さらに、中間樹脂封止部4b及び外側樹脂封止部4aに含まれる樹脂は酸変性ポリエチレンであることがより好ましい。この場合、酸変性ポリエチレンは、酸変性ポリオレフィンの中でも特に電解質に対する安定性が高い。このため、中間樹脂封止部4b及び外側樹脂封止部4aは、長期間にわたって中間樹脂封止部4b及び外側樹脂封止部4aに含まれる樹脂の柔軟性や接着性などの物性を維持できる。さらに、酸変性ポリエチレンは他の酸変性ポリオレフィンに比べて比較的低融点であるため、外側樹脂封止部4aと中間樹脂封止部4bの樹脂とが比較的低温で溶融接着しやすい。また、外側樹脂封止部4aと中間樹脂封止部4bの樹脂が異種の酸変性ポリエチレンであると、お互いのモノマーがエチレンであるため相性が良く、後述する封止部形成工程で第1封止部4Aと第2封止部4Bとの間での接着性及び密着性に優れる。   Further, the resin contained in the intermediate resin sealing portion 4b and the outer resin sealing portion 4a is more preferably acid-modified polyethylene. In this case, acid-modified polyethylene is particularly stable with respect to electrolyte among acid-modified polyolefins. For this reason, the intermediate resin sealing part 4b and the outer resin sealing part 4a can maintain physical properties such as flexibility and adhesiveness of the resin contained in the intermediate resin sealing part 4b and the outer resin sealing part 4a over a long period of time. . Furthermore, since acid-modified polyethylene has a relatively low melting point compared to other acid-modified polyolefins, the resin of the outer resin sealing portion 4a and the resin of the intermediate resin sealing portion 4b are easily melted and bonded at a relatively low temperature. Further, when the resin of the outer resin sealing portion 4a and the intermediate resin sealing portion 4b are different types of acid-modified polyethylene, since the respective monomers are ethylene, the compatibility is good, and the first sealing is performed in the sealing portion forming step described later. It is excellent in adhesiveness and adhesiveness between the stop portion 4A and the second sealing portion 4B.

ここで、酸変性ポリエチレンとは、ポリエチレンに酸をランダム共重合、交互共重合、ブロック共重合、グラフト共重合させたもの、またはこれらを金属イオンで中和したものを意味する。一例としては、エチレンメタクリル酸共重合体は、エチレンとメタクリル酸とを共重合させたもので、酸変性ポリエチレンであり、エチレンメタクリル酸共重合体を金属イオンで中和したアイオノマーも酸変性ポリエチレンとなる。   Here, the acid-modified polyethylene means one obtained by random copolymerization, alternating copolymerization, block copolymerization, or graft copolymerization of an acid with polyethylene, or one obtained by neutralizing these with metal ions. As an example, an ethylene methacrylic acid copolymer is obtained by copolymerizing ethylene and methacrylic acid, and is an acid-modified polyethylene. An ionomer obtained by neutralizing an ethylene methacrylic acid copolymer with a metal ion is also an acid-modified polyethylene. Become.

外側樹脂封止部4a及び中間樹脂封止部4bの樹脂は上記酸変性ポリエチレンの群から選ばれる同じ樹脂であることがより望ましい。例えば外側樹脂封止部4aを構成する樹脂と中間樹脂封止部4bを構成する樹脂が同じアイオノマーからなる組み合わせ、又は、外側樹脂封止部4aを構成する樹脂と中間樹脂封止部4bを構成する樹脂が同じ無水マレイン酸変性ポリエチレンからなる組み合わせなどが望ましい。   The resin of the outer resin sealing portion 4a and the intermediate resin sealing portion 4b is more preferably the same resin selected from the group of acid-modified polyethylene. For example, the resin constituting the outer resin sealing portion 4a and the resin constituting the intermediate resin sealing portion 4b are composed of the same ionomer, or the resin constituting the outer resin sealing portion 4a and the intermediate resin sealing portion 4b are configured. A combination of the same resin made of the same maleic anhydride-modified polyethylene is desirable.

ここで、同じ樹脂とは、ポリエチレンを変性する酸モノマーのエチレン繰返し単位に対するモル比が同一である樹脂はもちろん、このモル比が異なる樹脂をも含む。例えば酸モノマーのエチレン繰返し単位に対するモル比率が5%のエチレンメタクリル酸共重合体と、酸モノマーのエチレン繰返し単位に対するモル比率が10%のエチレンメタクリル酸共重合体とは同じ樹脂となる。この場合、使用する樹脂の融点、MFR、その他の様々な熱的性質が近いため、同じタイミングでお互いが溶融接着しやすい。そのため、融点やMFRが大きく異なる樹脂を用いる場合と比較して、溶融加熱時間をコントロールしやすく、後述する封止部形成工程を容易に行うことができる。   Here, the same resin includes resins having different molar ratios as well as resins having the same molar ratio of acid monomers for modifying polyethylene to ethylene repeating units. For example, an ethylene methacrylic acid copolymer having a molar ratio of acid monomer to ethylene repeating units of 5% and an ethylene methacrylic acid copolymer having a molar ratio of acid monomer to ethylene repeating units of 10% are the same resin. In this case, since the melting point, MFR, and other various thermal properties of the resin used are close, it is easy to melt and bond each other at the same timing. Therefore, compared with the case of using resins having significantly different melting points and MFRs, it is easy to control the melting and heating time, and the sealing part forming step described later can be easily performed.

具体的に、外側樹脂封止部4a及び中間樹脂封止部4bの組合せとしては、以下のものが挙げられる。例えば外側樹脂封止部4aに含まれる樹脂が無水マレイン酸変性ポリエチレンであるバイネルからなり、中間樹脂封止部4bに含まれる樹脂がエチレン−メタクリル酸共重合体であるニュクレルからなる組み合わせ、又は、外側樹脂封止部4aに含まれる樹脂がアイオノマーであるハイミランからなり、中間樹脂封止部4bに含まれる樹脂がエチレン−メタクリル酸共重合体であるニュクレルからなる組み合わせなどが挙げられる。   Specifically, the following are mentioned as a combination of the outer side resin sealing part 4a and the intermediate | middle resin sealing part 4b. For example, the resin contained in the outer resin sealing portion 4a is made of a binel that is maleic anhydride-modified polyethylene, and the resin contained in the intermediate resin sealing portion 4b is made of a nucleurel that is an ethylene-methacrylic acid copolymer, or Examples thereof include a combination in which the resin contained in the outer resin sealing portion 4a is made of high Milan, which is an ionomer, and the resin contained in the intermediate resin sealing portion 4b is made of nucleol, which is an ethylene-methacrylic acid copolymer.

なお、外側樹脂封止部4aに含まれる樹脂が、ポリビニルアルコールまたはエチレン−ビニルアルコール共重合体の少なくとも1種を含有し、中間樹脂封止部4bに含まれる樹脂がポリビニルアルコール、またはエチレン−ビニルアルコール共重合体の少なくとも1種を含有する場合には、外側樹脂封止部4aと中間樹脂封止部4bとの界面に微量の水を存在させることで、両者が界面付近で溶解接着するために、より一層、電解質の漏洩及び外部からの電解質への水分の浸入を抑制できる。   The resin contained in the outer resin sealing portion 4a contains at least one of polyvinyl alcohol or ethylene-vinyl alcohol copolymer, and the resin contained in the intermediate resin sealing portion 4b is polyvinyl alcohol or ethylene-vinyl. In the case of containing at least one kind of alcohol copolymer, since a very small amount of water is present at the interface between the outer resin sealing portion 4a and the intermediate resin sealing portion 4b, both are dissolved and bonded in the vicinity of the interface. In addition, leakage of the electrolyte and entry of moisture from the outside into the electrolyte can be further suppressed.

中間樹脂封止部4bと外側樹脂封止部4aは、両者のMFRの差が、好ましくは1g/10min以上あり、両者のMFRの差が、より好ましくは2.5g/10min以上、25g/10min以下となる組合せである。中間樹脂封止部4bと外側樹脂封止部4aとのMFRの差が上記範囲内にあると、以下の利点が得られる。即ち、両者のMFRの差が、1g/10min以上あると、1g/10min未満である場合に比べて、熱サイクル時における中間樹脂封止部4bと外側樹脂封止部4aの間での応力緩和がより効果的に起こる。また、両者のMFRの差が2.5〜25g/10minであることで、上記範囲を外れた場合に比べて、上記応力緩和効果がより顕著になる。   In the intermediate resin sealing portion 4b and the outer resin sealing portion 4a, the difference in MFR between them is preferably 1 g / 10 min or more, and the difference in both MFR is more preferably 2.5 g / 10 min or more, 25 g / 10 min. The combination is as follows. When the difference in MFR between the intermediate resin sealing portion 4b and the outer resin sealing portion 4a is within the above range, the following advantages are obtained. That is, when the difference in MFR between the two is 1 g / 10 min or more, the stress relaxation between the intermediate resin sealing portion 4 b and the outer resin sealing portion 4 a during the heat cycle is compared to the case where the difference is less than 1 g / 10 min. Happens more effectively. Moreover, when the difference between the two MFRs is 2.5 to 25 g / 10 min, the stress relaxation effect becomes more conspicuous as compared to the case where the above range is not satisfied.

なお、外側樹脂封止部4a及び中間樹脂封止部4bに含まれる樹脂は樹脂のみで構成されてもよいし、樹脂と無機フィラーとで構成されていてもよい。   In addition, the resin contained in the outer resin sealing portion 4a and the intermediate resin sealing portion 4b may be composed only of a resin, or may be composed of a resin and an inorganic filler.

[色素担持工程]
次に、作用極1の多孔質酸化物半導体層8に光増感色素を担持させる。このためには、作用極1を、光増感色素を含有する溶液の中に浸漬させ、その色素を多孔質酸化物半導体層8に吸着させた後に上記溶液の溶媒成分で余分な色素を洗い流し、乾燥させることで、光増感色素を多孔質酸化物半導体層8に吸着させればよい。但し、光増感色素を含有する溶液を多孔質酸化物半導体層8に塗布した後、乾燥させることによって光増感色素を酸化物半導体多孔膜に吸着させても、光増感色素を多孔質酸化物半導体層8に担持させることが可能である。
[Dye support process]
Next, a photosensitizing dye is supported on the porous oxide semiconductor layer 8 of the working electrode 1. For this purpose, the working electrode 1 is immersed in a solution containing a photosensitizing dye, the dye is adsorbed on the porous oxide semiconductor layer 8, and then the excess dye is washed away with the solvent component of the solution. The photosensitizing dye may be adsorbed on the porous oxide semiconductor layer 8 by drying. However, even if the photosensitizing dye is adsorbed to the porous oxide semiconductor film by applying a solution containing the photosensitizing dye to the porous oxide semiconductor layer 8 and then drying, the photosensitizing dye is porous. It can be supported on the oxide semiconductor layer 8.

光増感色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体や、ポルフィリン、エオシン、ローダミン、メロシアニンなどの有機色素が挙げられる。   Examples of the photosensitizing dye include a ruthenium complex having a ligand containing a bipyridine structure, a terpyridine structure, and the like, and organic dyes such as porphyrin, eosin, rhodamine, and merocyanine.

[電解質層形成工程]
次に、図8に示すように、作用極1上であって第1封止部4Aの内側に電解質を配置し、電解質層3を形成する。電解質層3は、電解質を、作用極1上であって第1封止部4Aの内側に注入したり、印刷したりすることによって得ることができる。
[Electrolyte layer forming step]
Next, as shown in FIG. 8, the electrolyte is disposed on the working electrode 1 and inside the first sealing portion 4 </ b> A to form the electrolyte layer 3. The electrolyte layer 3 can be obtained by injecting or printing the electrolyte on the working electrode 1 and inside the first sealing portion 4A.

ここで、電解質が液状である場合は、電解質を、第1封止部4Aを超えて第1封止部4Aの外側に溢れるまで注入することが好ましい。この場合、第1封止部4Aの内側に電解質を十分に注入することが可能となる。また第1封止部4Aと第2封止部4Bとを接着して封止部4を形成するに際し、作用極1と対極2と封止部4とによって囲まれるセル空間から空気を十分に排除することができ、光電変換効率を十分に向上させることができる。なお、電解質が第1封止部4Aを超えて第1封止部4Aの外側に溢れるまで注入されることにより第1封止部4Aの接着部位が電解質で濡れても、第1封止部4Aの中間樹脂封止部4bのMFRが外側樹脂封止部4aのMFRよりも大きくなっており、より高い流動性を有するため、第1封止部4Aと第2封止部4Bとを溶融接着する際に、中間樹脂封止部4bが、電解質や夾雑物を含包しやすい。このため、第1封止部4A及び第2封止部4Bの接着に際し、第1封止部4Aと第2封止部4Bとの界面に電解質が存在しにくくなり、第1封止部4A及び第2封止部4Bは強固に接着する。   Here, when the electrolyte is liquid, it is preferable to inject the electrolyte until it overflows beyond the first sealing portion 4A and outside the first sealing portion 4A. In this case, the electrolyte can be sufficiently injected inside the first sealing portion 4A. In addition, when the sealing portion 4 is formed by bonding the first sealing portion 4A and the second sealing portion 4B, air is sufficiently supplied from the cell space surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4. This can be eliminated, and the photoelectric conversion efficiency can be sufficiently improved. In addition, even if the adhesion part of 1st sealing part 4A gets wet with electrolyte by inject | pouring until electrolyte overflows outside the 1st sealing part 4A exceeding 1st sealing part 4A, 1st sealing part Since the MFR of the intermediate resin sealing portion 4b of 4A is larger than the MFR of the outer resin sealing portion 4a and has higher fluidity, the first sealing portion 4A and the second sealing portion 4B are melted. At the time of bonding, the intermediate resin sealing portion 4b easily includes an electrolyte and impurities. For this reason, when the first sealing portion 4A and the second sealing portion 4B are bonded, it is difficult for an electrolyte to exist at the interface between the first sealing portion 4A and the second sealing portion 4B, and the first sealing portion 4A. And the 2nd sealing part 4B adhere | attaches firmly.

電解質は通常、電解液で構成され、この電解液は例えばI/I などの酸化還元対と有機溶媒とを含んでいる。有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトンなどを用いることができる。酸化還元対としては、例えばI/I のほか、臭素/臭化物イオンなどの対が挙げられる。色素増感太陽電池100は、酸化還元対としてI/I のような揮発性溶質及び、高温下で揮発しやすいアセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリルのような有機溶媒を含む電解液を電解質として用いた場合に特に有効である。この場合、色素増感太陽電池100の周囲の環境温度の変化によりセル空間の内圧の変化が特に大きくなり、封止部4と対極2との界面、および封止部4と作用極1との界面から電解質が漏洩しやすくなるからである。なお、上記揮発性溶媒にはゲル化剤を加えてもよい。また電解質は、イオン液体と揮発性成分との混合物からなるイオン液体電解質で構成されてもよい。この場合も、色素増感太陽電池100の周囲の環境温度の変化によりセル空間の内圧の変化が大きくなるためである。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミドが好適に用いられる。また揮発性成分としては、上記の有機溶媒や、1−メチル−3−メチルイミダゾリウムヨーダイド、LiI、I、4−t−ブチルピリジンなどが挙げられる。さらに電解質3としては、上記イオン液体電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットイオンゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化したイオン液体電解質を用いてもよい。 The electrolyte is usually composed of an electrolytic solution, and the electrolytic solution includes an oxidation-reduction pair such as I / I 3 and an organic solvent. As the organic solvent, acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, and the like can be used. Examples of the redox pair include I / I 3 and bromine / bromide ion pairs. The dye-sensitized solar cell 100 is an electrolytic solution that includes a volatile solute such as I / I 3 as an oxidation-reduction pair and an organic solvent such as acetonitrile, methoxyacetonitrile, and methoxypropionitrile that easily volatilizes at high temperatures. This is particularly effective when used as an electrolyte. In this case, the change in the internal pressure of the cell space is particularly large due to the change in the ambient temperature around the dye-sensitized solar cell 100, and the interface between the sealing part 4 and the counter electrode 2, and the sealing part 4 and the working electrode 1. This is because the electrolyte easily leaks from the interface. A gelling agent may be added to the volatile solvent. The electrolyte may be composed of an ionic liquid electrolyte composed of a mixture of an ionic liquid and a volatile component. Also in this case, the change in the internal pressure of the cell space increases due to the change in the ambient temperature around the dye-sensitized solar cell 100. As the ionic liquid, for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used. As such a room temperature molten salt, for example, 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide is preferably used. As the volatile component, the above and an organic solvent, 1-methyl-3-methyl imidazolium iodide, LiI, and the like I 2, 4-t-butylpyridine. Further, as the electrolyte 3, a nanocomposite ionic gel electrolyte, which is a pseudo-solid electrolyte formed by kneading nanoparticles such as SiO 2 , TiO 2 , and carbon nanotubes in the ionic liquid electrolyte, may be used. An ionic liquid electrolyte gelled using an organic gelling agent such as vinylidene chloride, polyethylene oxide derivative, or amino acid derivative may be used.

[封止部形成工程]
次に、図9に示すように、作用極1と対極2とを対向させて、第1封止部4Aと第2封止部4Bとを重ね合わせる。そして、第1封止部4A及び第2封止部4Bを加圧しながら溶融させることによって第1封止部4Aと第2封止部4Bとを接着させる。このとき、中間樹脂封止部4bが作用極1側の外側樹脂封止部4aおよび対極2側の外側樹脂封止部4aに接着される。こうして、作用極1と対極2とを貼り合せ、作用極1と対極2との間に封止部4を形成するとともに、作用極1と対極2と封止部4とによって囲まれるように電解質層3を形成する(図1参照)。本実施形態では、第1封止部4Aと第2封止部4Bとを大気圧下で貼り合せる。
[Sealing part forming step]
Next, as shown in FIG. 9, the working electrode 1 and the counter electrode 2 are opposed to each other, and the first sealing portion 4A and the second sealing portion 4B are overlapped. Then, the first sealing portion 4A and the second sealing portion 4B are bonded to each other by melting the first sealing portion 4A and the second sealing portion 4B while applying pressure. At this time, the intermediate resin sealing portion 4b is bonded to the outer resin sealing portion 4a on the working electrode 1 side and the outer resin sealing portion 4a on the counter electrode 2 side. Thus, the working electrode 1 and the counter electrode 2 are bonded together to form the sealing portion 4 between the working electrode 1 and the counter electrode 2, and the electrolyte is surrounded by the working electrode 1, the counter electrode 2, and the sealing portion 4. Layer 3 is formed (see FIG. 1). In the present embodiment, the first sealing portion 4A and the second sealing portion 4B are bonded together under atmospheric pressure.

このとき、第1封止部4A及び第2封止部4Bの加圧は通常、1〜50MPaで行い、好ましくは2〜30MPa、より好ましくは3〜20MPaで行う。   At this time, pressurization of the first sealing portion 4A and the second sealing portion 4B is usually performed at 1 to 50 MPa, preferably 2 to 30 MPa, more preferably 3 to 20 MPa.

また第1封止部4A及び第2封止部4Bを溶融させるときの温度は、第1封止部4A及び第2封止部4Bを形成する外側樹脂封止部4a及び中間樹脂封止部4bの融点以上とする。上記温度が外側樹脂封止部4a及び中間樹脂封止部4bの融点未満では、外側樹脂封止部4a及び中間樹脂封止部4bが溶融しないため、外側樹脂封止部4a及び中間樹脂封止部4b同士を接着させて封止部4を形成させることができなくなる。   Moreover, the temperature at which the first sealing portion 4A and the second sealing portion 4B are melted is the outer resin sealing portion 4a and the intermediate resin sealing portion that form the first sealing portion 4A and the second sealing portion 4B. The melting point is 4b or higher. When the temperature is lower than the melting point of the outer resin sealing portion 4a and the intermediate resin sealing portion 4b, the outer resin sealing portion 4a and the intermediate resin sealing portion 4b are not melted. The sealing part 4 cannot be formed by bonding the parts 4b.

但し、外側樹脂封止部4a及び中間樹脂封止部4bを溶融させるときの温度は、(外側樹脂封止部4aに含まれる樹脂の融点+200℃)以下であることが好ましい。上記温度が(外側樹脂封止部4aに含まれる樹脂の融点+200℃)を超えると、外側樹脂封止部4a及び中間樹脂封止部4bに含まれる樹脂が熱によって分解するおそれがある。   However, the temperature at which the outer resin sealing portion 4a and the intermediate resin sealing portion 4b are melted is preferably equal to or lower than (the melting point of the resin contained in the outer resin sealing portion 4a + 200 ° C.). If the temperature exceeds (the melting point of the resin contained in the outer resin sealing portion 4a + 200 ° C.), the resin contained in the outer resin sealing portion 4a and the intermediate resin sealing portion 4b may be decomposed by heat.

こうして色素増感太陽電池100が得られ、色素増感太陽電池100の製造が完了する。   Thus, the dye-sensitized solar cell 100 is obtained, and the manufacture of the dye-sensitized solar cell 100 is completed.

上述した色素増感太陽電池100の製造方法によれば、中間樹脂封止部4bのMFRが外側樹脂封止部4aのMFRよりも大きい。このため、中間樹脂封止部4bは外側樹脂封止部4aよりも軟らかくなる。このため、得られる色素増感太陽電池100が温度変化の大きい環境下に置かれる場合に、封止部4にて外側樹脂封止部4aと中間樹脂封止部4bとの界面に応力がかかっても、その応力が軟らかい中間樹脂封止部4bで吸収されて十分に緩和される。従って、色素増感太陽電池100の製造方法によれば、外側樹脂封止部4aと中間樹脂封止部4bとの密着性及び接着性の低下が十分に抑制され、電解質の漏洩及び外部からの電解質への水分の浸入が十分に抑制され、ひいては温度変化の大きい環境下に置かれる場合でも耐久性を維持することができる色素増感太陽電池100を得ることができる。   According to the method for manufacturing the dye-sensitized solar cell 100 described above, the MFR of the intermediate resin sealing portion 4b is larger than the MFR of the outer resin sealing portion 4a. For this reason, the intermediate resin sealing portion 4b is softer than the outer resin sealing portion 4a. For this reason, when the obtained dye-sensitized solar cell 100 is placed in an environment with a large temperature change, stress is applied to the interface between the outer resin sealing portion 4a and the intermediate resin sealing portion 4b in the sealing portion 4. However, the stress is absorbed by the soft intermediate resin sealing portion 4b and sufficiently relaxed. Therefore, according to the method of manufacturing the dye-sensitized solar cell 100, the decrease in the adhesion and adhesiveness between the outer resin sealing portion 4a and the intermediate resin sealing portion 4b is sufficiently suppressed, and the leakage of the electrolyte and from the outside It is possible to obtain the dye-sensitized solar cell 100 in which the penetration of moisture into the electrolyte is sufficiently suppressed, and as a result, durability can be maintained even when placed in an environment with a large temperature change.

また本実施形態では、第1封止部4A及び第2封止部4Bが、電解質層3を形成する前に形成される。このため、第1封止部4Aを作用極1の第1環状部位C1に形成する際、その第1環状部位C1に電解質中の揮発成分が付着しておらず、その表面の濡れ性が低下していない。従って、熱可塑性樹脂は第1環状部位C1に強固に接着され、第1封止部4Aが第1環状部位C1に強固に固定される。また第2封止部4Bを触媒膜10の第2環状部位C2に形成する際にも、触媒膜10の表面上に電解質中の揮発成分が付着しておらず、その表面の濡れ性が低下していない。従って、熱可塑性樹脂は触媒膜10の第2環状部位C2に強固に接着され、第2封止部4Bが触媒膜10の第2環状部位C2に強固に固定される。   In the present embodiment, the first sealing portion 4A and the second sealing portion 4B are formed before the electrolyte layer 3 is formed. For this reason, when forming the 1st sealing part 4A in the 1st cyclic | annular part C1 of the working electrode 1, the volatile component in electrolyte is not adhering to the 1st cyclic | annular part C1, and the wettability of the surface falls. Not done. Therefore, the thermoplastic resin is firmly bonded to the first annular portion C1, and the first sealing portion 4A is firmly fixed to the first annular portion C1. Further, even when the second sealing portion 4B is formed in the second annular portion C2 of the catalyst film 10, the volatile component in the electrolyte is not attached on the surface of the catalyst film 10, and the wettability of the surface is reduced. Not done. Therefore, the thermoplastic resin is firmly bonded to the second annular portion C2 of the catalyst film 10, and the second sealing portion 4B is firmly fixed to the second annular portion C2 of the catalyst film 10.

一方、封止部4は電解質層3を形成する前に形成される。このため、通常であれば、第1封止部4A及び第2封止部4Bを溶融させることに伴い、電解質の一部が蒸発し、第1封止部4Aと第2封止部4Bとの間の濡れ性が低下すると考えられる。また、電解質層形成工程中に電解質が第1封止部4Aと第2封止部4B上に付着し、第1封止部4Aと第2封止部4Bとの間の濡れ性が低下することも考えられる。   On the other hand, the sealing portion 4 is formed before the electrolyte layer 3 is formed. For this reason, normally, with melting the first sealing portion 4A and the second sealing portion 4B, a part of the electrolyte is evaporated, and the first sealing portion 4A and the second sealing portion 4B It is considered that the wettability between the two decreases. In addition, the electrolyte adheres on the first sealing portion 4A and the second sealing portion 4B during the electrolyte layer forming step, and the wettability between the first sealing portion 4A and the second sealing portion 4B decreases. It is also possible.

しかし、上述したように、中間樹脂封止部4bのMFRが外側樹脂封止部4aのMFRよりも高いため、封止部形成工程において、第1封止部4A及び第2封止部4Bを接着させるに際し、中間樹脂封止部4bの方が外側樹脂封止部4aよりも流動性が高くなる。このため、第1封止部4A及び第2封止部4Bを接着させる際に、第1封止部4Aや第2封止部4Bに夾雑物などの異物(例えば電解質)が付着していても、中間樹脂封止部4bがその夾雑物を含包しながら容易に第2封止部4Aの外側樹脂封止部4aと接着される。このため、第1封止部4Aと第2封止部4Bとの接着を強固とすることが可能となる   However, as described above, since the MFR of the intermediate resin sealing portion 4b is higher than the MFR of the outer resin sealing portion 4a, in the sealing portion forming step, the first sealing portion 4A and the second sealing portion 4B are In bonding, the intermediate resin sealing portion 4b has higher fluidity than the outer resin sealing portion 4a. For this reason, when bonding the first sealing portion 4A and the second sealing portion 4B, foreign matters (for example, an electrolyte) such as impurities are attached to the first sealing portion 4A and the second sealing portion 4B. In addition, the intermediate resin sealing portion 4b is easily bonded to the outer resin sealing portion 4a of the second sealing portion 4A while containing the impurities. For this reason, it becomes possible to strengthen the adhesion between the first sealing portion 4A and the second sealing portion 4B.

このように、色素増感太陽電池100の製造方法によれば、第1封止部4Aは、作用極1の第1環状部位C1に強固に固定され、第2封止部4Bが対極2の第2環状部位C2に強固に固定される。また第1封止部4A及び第2封止部4B同士も強固に接着される。従って、得られる色素増感太陽電池100においては、電解質中の揮発成分の漏洩がより十分に抑制される。さらに、外部からの電解質への水分の浸入をより十分に抑制できる。よって、色素増感太陽電池100の製造方法によれば、光電変換効率の経時的な低下を十分に抑制できる色素増感太陽電池を製造することが可能となる。   Thus, according to the method for manufacturing the dye-sensitized solar cell 100, the first sealing portion 4A is firmly fixed to the first annular portion C1 of the working electrode 1, and the second sealing portion 4B is the counter electrode 2. It is firmly fixed to the second annular portion C2. Further, the first sealing portion 4A and the second sealing portion 4B are also firmly bonded. Therefore, in the obtained dye-sensitized solar cell 100, leakage of volatile components in the electrolyte is more sufficiently suppressed. Furthermore, it is possible to more sufficiently suppress moisture from entering the electrolyte from the outside. Therefore, according to the method for manufacturing the dye-sensitized solar cell 100, it is possible to manufacture a dye-sensitized solar cell that can sufficiently suppress a temporal decrease in photoelectric conversion efficiency.

また本実施形態では、電解質層形成工程において、電解質層3が、作用極1上であって第1封止部4Aの内側に形成されている。このため、多孔質酸化物半導体層8の多孔質の細部にまで電解質が十分に行き渡った後に封止部4が形成されることとなる。このため、多孔質酸化物半導体層8中の空気が気泡となって現れることが十分に抑制され、光電変換効率をより十分に向上させることができる。   In the present embodiment, in the electrolyte layer forming step, the electrolyte layer 3 is formed on the working electrode 1 and inside the first sealing portion 4A. For this reason, the sealing portion 4 is formed after the electrolyte has sufficiently spread to the porous details of the porous oxide semiconductor layer 8. For this reason, air in the porous oxide semiconductor layer 8 is sufficiently suppressed from appearing as bubbles, and the photoelectric conversion efficiency can be more sufficiently improved.

<第2実施形態>
次に、本発明に係る色素増感太陽電池の製造方法の第2実施形態について図面を参照して説明する。
Second Embodiment
Next, 2nd Embodiment of the manufacturing method of the dye-sensitized solar cell which concerns on this invention is described with reference to drawings.

本実施形態の製造方法は、上記の第1封止部4Aおよび第2封止部4Bの接着が減圧空間内で行われる点で、第1封止部4Aおよび第2封止部4Bの接着が大気圧下で行われる第1実施形態の製造方法とは異なる。なお、第1実施形態と同一又は同等の構成要素には同一符号を付し、重複する説明を省略する。   The manufacturing method according to the present embodiment is such that the first sealing portion 4A and the second sealing portion 4B are bonded in the reduced pressure space. Is different from the manufacturing method of the first embodiment, which is performed under atmospheric pressure. In addition, the same code | symbol is attached | subjected to the component same or equivalent to 1st Embodiment, and the overlapping description is abbreviate | omitted.

この場合、得られる色素増感太陽電池100を大気中に取り出した際に、電解質層3を外気に対して陰圧状態とすることができる。このため、色素増感太陽電池100は外部から大気圧を受けることになり、封止部4に対して作用極1及び対極2が押圧力を加えた状態が維持される。その結果、電解質層3中の揮発成分の漏洩をより十分に抑制することができる。   In this case, when the resulting dye-sensitized solar cell 100 is taken out into the atmosphere, the electrolyte layer 3 can be in a negative pressure state with respect to the outside air. For this reason, the dye-sensitized solar cell 100 receives atmospheric pressure from the outside, and the state where the working electrode 1 and the counter electrode 2 apply pressing force to the sealing portion 4 is maintained. As a result, leakage of volatile components in the electrolyte layer 3 can be more sufficiently suppressed.

上記の減圧空間は例えば以下のようにして形成することができる。   The decompression space can be formed as follows, for example.

即ちまず開口を有する減圧用容器内に、その開口から、第1封止部4Aを設けた作用極1を収容する。続いて、第1封止部4Aの内側に電解質を注入して電解質層3を形成する。その後、減圧用容器内に、第2封止部4Bを設けた対極2をさらに収容し、減圧用容器内で作用極1と対極2とを対向させて、第1封止部4Aと第2封止部4Bとを重ね合わせる。次に、減圧用容器の開口を例えばPETなどの樹脂からなる可撓性シートで塞ぎ、減圧用容器内に密閉空間を形成する。そして、密閉空間を、減圧用容器に形成された排気孔(図示せず)を通して、例えば真空ポンプにより減圧する。こうして減圧空間が形成される。   That is, first, the working electrode 1 provided with the first sealing portion 4A is housed in a decompression vessel having an opening. Subsequently, an electrolyte is injected into the first sealing portion 4 </ b> A to form the electrolyte layer 3. Thereafter, the counter electrode 2 provided with the second sealing portion 4B is further accommodated in the decompression container, the working electrode 1 and the counter electrode 2 are opposed to each other in the decompression container, and the first sealing portion 4A and the second sealing portion 4 The sealing part 4B is overlaid. Next, the opening of the decompression container is closed with a flexible sheet made of a resin such as PET, and a sealed space is formed in the decompression container. Then, the sealed space is decompressed by, for example, a vacuum pump through an exhaust hole (not shown) formed in the decompression container. Thus, a decompression space is formed.

このようにして減圧空間を形成すると、上記可撓性シートによって対極2が押圧される。これに伴って、作用極1と対極2とによって第1封止部4A及び第2封止部4Bが挟まれて加圧される。このとき、減圧用容器を加熱し、第1封止部4A及び第2封止部4Bを加圧しながら溶融させると、第1封止部4Aと第2封止部4Bとが接着され、封止部4が形成される。   When the decompression space is formed in this way, the counter electrode 2 is pressed by the flexible sheet. Along with this, the first sealing portion 4A and the second sealing portion 4B are sandwiched and pressurized by the working electrode 1 and the counter electrode 2. At this time, when the decompression container is heated and the first sealing portion 4A and the second sealing portion 4B are melted while being pressurized, the first sealing portion 4A and the second sealing portion 4B are bonded and sealed. A stop 4 is formed.

その際、減圧空間の圧力は通常、50Pa以上1013hPa未満の範囲であり、50〜800Paとすることが好ましく、300〜800Paとすることがより好ましい。   At that time, the pressure in the reduced pressure space is usually in the range of 50 Pa or more and less than 1013 hPa, preferably 50 to 800 Pa, and more preferably 300 to 800 Pa.

特に、電解質に含まれる有機溶媒が揮発性溶媒である場合には、減圧空間内の圧力は700〜1000Paであることが好ましく、700〜800Paであることがより好ましい。圧力が上記範囲内にあると、圧力が上記範囲を外れる場合と比較して、電解質層3を第1封止部4Aの内側に形成する際、有機溶媒の揮発がより抑制されるとともに、得られる色素増感太陽電池100において作用極1、対極2及び封止部4が互いにより強固に固定され、電解質層3の漏洩が起こりにくくなる。   In particular, when the organic solvent contained in the electrolyte is a volatile solvent, the pressure in the reduced pressure space is preferably 700 to 1000 Pa, and more preferably 700 to 800 Pa. When the pressure is within the above range, the volatilization of the organic solvent is further suppressed when the electrolyte layer 3 is formed inside the first sealing portion 4A as compared with the case where the pressure is outside the above range, and In the dye-sensitized solar cell 100, the working electrode 1, the counter electrode 2 and the sealing portion 4 are more firmly fixed to each other, and the electrolyte layer 3 is less likely to leak.

また電解質がイオン液体を含む場合には、イオン液体は揮発しないため、電解質が揮発性溶媒を含む場合のように電解質の揮発を考慮して減圧空間の圧力を高くする必要がない。このため、減圧空間内の圧力は50〜700Paであればよい。   In addition, when the electrolyte includes an ionic liquid, the ionic liquid does not volatilize. Therefore, unlike the case where the electrolyte includes a volatile solvent, it is not necessary to increase the pressure in the decompression space in consideration of volatilization of the electrolyte. For this reason, the pressure in decompression space should just be 50-700Pa.

さらに電解質がゲル電解質を含む場合には、ゲル化させる前駆体の主成分が揮発系である場合とイオン液体系である場合とで異なり、前駆体の主成分が揮発系である場合には600〜800Pa,イオン液体系である場合には50〜700Paであることが好ましい。従って電解質層3がゲル電解質を含む場合には、減圧空間内の圧力は50〜800Paとすることが好ましい。   Further, when the electrolyte includes a gel electrolyte, the case where the main component of the precursor to be gelled is a volatile system and the case where the main component of the precursor is a volatile system is different. It is preferably 50 to 700 Pa in the case of ˜800 Pa and an ionic liquid system. Therefore, when the electrolyte layer 3 contains a gel electrolyte, the pressure in the reduced pressure space is preferably 50 to 800 Pa.

また上記のように封止部4の形成を減圧空間内で行う場合は、作用極1及び対極2のうち少なくとも一方が可撓性を有することが好ましい。   Moreover, when forming the sealing part 4 in a decompression space as mentioned above, it is preferable that at least one of the working electrode 1 and the counter electrode 2 has flexibility.

この場合、作用極1及び対極2のいずれも可撓性を有しない場合に比べて、減圧空間から取り出されて大気圧下に配置された場合に、作用極1及び対極2のうち可撓性を有する電極が大気圧によって撓み、作用極1と対極2との間隔を狭めることが可能となる。その結果、作用極1及び対極2のいずれも可撓性を有しない場合に比べて、光電変換効率がより効率よく行われ、光電変換効率がより向上する。   In this case, compared to the case where neither the working electrode 1 nor the counter electrode 2 has flexibility, the flexibility of the working electrode 1 and the counter electrode 2 when the working electrode 1 and the counter electrode 2 are taken out from the reduced pressure space and placed under atmospheric pressure. It becomes possible to bend the electrode between the working electrode 1 and the counter electrode 2 to be narrowed by the atmospheric pressure. As a result, compared with the case where neither the working electrode 1 nor the counter electrode 2 has flexibility, the photoelectric conversion efficiency is performed more efficiently and the photoelectric conversion efficiency is further improved.

本発明は、上記実施形態に限定されるものではない。例えば上記実施形態においては、電解質層3が、作用極1に設けた第1封止部4Aの内側に形成されているが、電解質層3は、図10に示すように、対極2上であって、対極2に設けた第2封止部4Bの内側に形成されてもよい。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the electrolyte layer 3 is formed inside the first sealing portion 4A provided on the working electrode 1, but the electrolyte layer 3 is on the counter electrode 2 as shown in FIG. Then, it may be formed inside the second sealing portion 4B provided on the counter electrode 2.

さらに上記実施形態では、電解質層3を形成する前に、第1封止部4A及び第2封止部4Bが形成されているが、第2封止部4Bは、電解質層3を形成するのと同時に行われてもよく、電解質層3を形成した後に行われてもよい。但し、対極2に設けた第2封止部4Bの内側に電解質層3が形成される場合には、第2封止部4Bの形成は、電解質層3を形成する前に行う必要がある。この場合、第1封止部4Aは、電解質層3を形成する前に形成される必要はなく、電解質層3と同時に形成されてもよいし、電解質層3を形成した後であって封止部4を形成する前に形成されてもよい。このとき、色素担持工程も封止部4を形成する前に行われる。   Further, in the above embodiment, the first sealing portion 4A and the second sealing portion 4B are formed before the electrolyte layer 3 is formed. However, the second sealing portion 4B forms the electrolyte layer 3. It may be performed at the same time or after the electrolyte layer 3 is formed. However, when the electrolyte layer 3 is formed inside the second sealing portion 4B provided on the counter electrode 2, the second sealing portion 4B needs to be formed before the electrolyte layer 3 is formed. In this case, the first sealing portion 4A need not be formed before the electrolyte layer 3 is formed, and may be formed simultaneously with the electrolyte layer 3, or after the electrolyte layer 3 is formed and sealed. It may be formed before the portion 4 is formed. At this time, the dye carrying step is also performed before the sealing portion 4 is formed.

また上記実施形態では、作用極1に代えて、図11に示すように、透明導電膜7上に突出するように無機材料からなる突出部13Aをさらに有する作用極101を用いてもよい。この突出部13Aは第1封止部4Aが形成される部位であり、第1環状部位C1をなすことになる。   Moreover, in the said embodiment, it may replace with the working electrode 1 and may use the working electrode 101 which further has the protrusion part 13A which consists of an inorganic material so that it may protrude on the transparent conductive film 7, as shown in FIG. This protruding portion 13A is a portion where the first sealing portion 4A is formed, and forms a first annular portion C1.

この場合、無機材料からなる突出部13Aが、透明導電膜7上に突出するように設けられているため、封止部4とともに電解質層3を封止する機能を果たす。しかも、突出部13Aは無機材料からなるため、熱可塑性樹脂からなる第1封止部4A及び第2封止部4Bよりも高い封止能を有する。このため、作用極1が突出部13Aを有しない場合に比べて、電解質の漏洩をより十分に抑制することができる。   In this case, since the protruding portion 13 </ b> A made of an inorganic material is provided so as to protrude on the transparent conductive film 7, it functions to seal the electrolyte layer 3 together with the sealing portion 4. Moreover, since the protruding portion 13A is made of an inorganic material, it has a higher sealing ability than the first sealing portion 4A and the second sealing portion 4B made of a thermoplastic resin. For this reason, compared with the case where the working electrode 1 does not have the protruding portion 13A, the leakage of the electrolyte can be more sufficiently suppressed.

また上記実施形態では、図12に示すように、触媒膜10上に突出するように、無機材料からなる突出部13Bをさらに有する対極102を用いることもできる。この突出部13Bは第2封止部4Bが形成される部位であり、第2環状部位C2をなすことになる。   Moreover, in the said embodiment, as shown in FIG. 12, the counter electrode 102 which further has the protrusion part 13B which consists of inorganic materials so that it may protrude on the catalyst film | membrane 10 can also be used. The protruding portion 13B is a portion where the second sealing portion 4B is formed, and forms a second annular portion C2.

この場合、無機材料からなる突出部13Bが、触媒膜10上に突出するように設けられているため、封止部4とともに電解質層3を封止する機能を果たす。しかも、突出部13Bは、無機材料からなるため、熱可塑性樹脂からなる第1封止部4A及び第2封止部4Bよりも高い封止能を有する。このため、対極2が突出部13Bを有しない場合に比べて、電解質の漏洩をより十分に抑制することができる。   In this case, since the protruding portion 13 </ b> B made of an inorganic material is provided so as to protrude on the catalyst film 10, it functions to seal the electrolyte layer 3 together with the sealing portion 4. Moreover, since the protruding portion 13B is made of an inorganic material, it has a higher sealing ability than the first sealing portion 4A and the second sealing portion 4B made of a thermoplastic resin. For this reason, compared with the case where the counter electrode 2 does not have the protrusion part 13B, the leakage of electrolyte can be suppressed more fully.

突出部13A,13Bを構成する無機材料としては、例えば非鉛系の透明な低融点ガラスフリットなどの無機絶縁材料や、銀などの金属材料を用いることができる。特に、作用極1上に一般に形成される配線部が突出部13Aを兼ねることが好ましい。この場合、電解質が作用極1と対極2との間に配置される。そして、突出部13Aが配線部を有し、配線部が、集電配線と、集電配線を覆う配線保護層とを有する。つまり、集電配線は、配線保護層により電解質から保護された状態で、作用極1と対極2とを結ぶ方向に沿って封止部4と重なるように配置されている。このように、集電配線が封止部4の外側に設けられておらず、さらに、集電配線が封止部4の内側にも設けられていないので、作用極の光入射面において集電配線と封止部4とが占める面積を最小限にすることができ、集電配線と封止部4とにより遮蔽される入射光を最小限に留めることができる。従って、受光面積を拡大することができ、高い光電変換効率を得ることができる。ここで、集電配線は、銀などの金属材料で形成され、配線保護層は、低融点ガラスフリットなどの無機絶縁材料で構成されるものである。   As the inorganic material constituting the protruding portions 13A and 13B, for example, an inorganic insulating material such as a lead-free transparent low-melting glass frit, or a metal material such as silver can be used. In particular, it is preferable that the wiring portion generally formed on the working electrode 1 also serves as the protruding portion 13A. In this case, the electrolyte is disposed between the working electrode 1 and the counter electrode 2. And 13 A of protrusion parts have a wiring part, and a wiring part has a current collection wiring and the wiring protective layer which covers current collection wiring. That is, the current collecting wiring is arranged so as to overlap the sealing portion 4 along the direction connecting the working electrode 1 and the counter electrode 2 in a state protected from the electrolyte by the wiring protective layer. As described above, the current collecting wiring is not provided outside the sealing portion 4, and further, the current collecting wiring is not provided inside the sealing portion 4. The area occupied by the wiring and the sealing portion 4 can be minimized, and incident light shielded by the current collecting wiring and the sealing portion 4 can be minimized. Therefore, the light receiving area can be enlarged and high photoelectric conversion efficiency can be obtained. Here, the current collecting wiring is made of a metal material such as silver, and the wiring protective layer is made of an inorganic insulating material such as a low melting point glass frit.

さらに、上記実施形態では、第2封止部4Bが、外側樹脂封止部4aのみから構成され、中間樹脂封止部4bを含んでいないが、第2封止部4Bは中間樹脂封止部4bを含んでいてもよい。   Furthermore, in the said embodiment, although the 2nd sealing part 4B is comprised only from the outer side resin sealing part 4a, and does not contain the intermediate resin sealing part 4b, the 2nd sealing part 4B is an intermediate resin sealing part. 4b may be included.

さらにまた、上記実施形態では、中間樹脂封止部4bが1層のみとなっているが、中間樹脂封止部4bは、MFRの異なる複数の中間樹脂封止部の積層体であってもよい。この場合、中間樹脂封止部は作用極1と対極2とを結ぶ方向に沿って積層される。ここで、中間樹脂封止部の積層体における各層のMFRは、例えば対極2側から順次高くなるように配置することが、中間樹脂封止部間の各界面での応力を効果的に低減できるため好ましい。   Furthermore, in the above embodiment, the intermediate resin sealing portion 4b has only one layer, but the intermediate resin sealing portion 4b may be a laminate of a plurality of intermediate resin sealing portions having different MFRs. . In this case, the intermediate resin sealing portion is laminated along the direction connecting the working electrode 1 and the counter electrode 2. Here, it is possible to effectively reduce the stress at each interface between the intermediate resin sealing portions by, for example, arranging the MFR of each layer in the laminated body of the intermediate resin sealing portions so as to increase sequentially from the counter electrode 2 side, for example. Therefore, it is preferable.

また上記実施形態では、封止部4と対極2との境界、および、封止部4と作用極1との境界を覆う被覆部が電解質層3と反対側に設けられていてもよい。この場合、被覆部は第2の樹脂を含む。第2の樹脂としては、酸変性ポリオレフィン、紫外線硬化樹脂、ポリビニルアルコールまたはエチレン−ビニルアルコール共重合体を用いることができる。第2の樹脂として、酸変性ポリオレフィンまたは紫外線硬化樹脂を用いた場合、作用極1、対極2、封止部4との接着が強固になり、それぞれの界面において、電解質の漏洩及び外部からの電解質への水分の浸入をより十分に抑制できる。   Further, in the above embodiment, a covering portion that covers the boundary between the sealing portion 4 and the counter electrode 2 and the boundary between the sealing portion 4 and the working electrode 1 may be provided on the side opposite to the electrolyte layer 3. In this case, the covering portion includes the second resin. As the second resin, acid-modified polyolefin, ultraviolet curable resin, polyvinyl alcohol, or ethylene-vinyl alcohol copolymer can be used. When an acid-modified polyolefin or an ultraviolet curable resin is used as the second resin, adhesion with the working electrode 1, the counter electrode 2, and the sealing portion 4 becomes strong, and electrolyte leakage and electrolyte from the outside occur at each interface. Invasion of moisture into the water can be more sufficiently suppressed.

また上記実施形態では、色素への熱的ダメージを低減する観点から色素担持工程が第1封止部形成工程の後に行われているが、色素担持工程は、第1封止部形成工程の前に行われてもよい。   Moreover, in the said embodiment, although a pigment | dye carrying | support process is performed after a 1st sealing part formation process from a viewpoint of reducing the thermal damage to a pigment | dye, a pigment | dye carrying | support process is performed before a 1st sealing part formation process. May be done.

さらに上記実施形態では、本発明の電子機器の例として色素増感太陽電池が挙げられているが、本発明の電子機器は、色素増感太陽電池に限らず、EL表示装置、液晶表示装置、有機薄膜太陽電池、2次電池やシンチレータパネルにも適用することが可能である。なお、例えばEL表示装置では、電極とEL層とを含む積層体が被封止部であり、液晶表示装置では、液晶が被封止部である。   Furthermore, in the said embodiment, although the dye-sensitized solar cell is mentioned as an example of the electronic device of this invention, the electronic device of this invention is not restricted to a dye-sensitized solar cell, EL display apparatus, a liquid crystal display device, The present invention can also be applied to organic thin film solar cells, secondary batteries, and scintillator panels. For example, in an EL display device, a stacked body including an electrode and an EL layer is a sealed portion. In a liquid crystal display device, liquid crystal is a sealed portion.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、表1〜表6において、MFRを190℃で測定することが困難である場合には、MFRのおおよその範囲を示し、210℃で測定したMFRの値を併記した。また、表1〜表6において、ハイミラン、ニュクレル、バイネル、05L04、05L05、ソアノール、エクセバール及び31x−101と表記したものはそれぞれ以下の通りである。
(1)ハイミラン
三井・デユポンポリケミカル(株)製アイオノマー
(2)ニュクレル
三井・デユポンポリケミカル(株)製エチレン−メタクリル酸共重合体
(3)バイネル
無水マレイン酸変性オレフィンで、無水マレイン酸変性ポリエチレンと無水マレイン酸変性ポリプロピレン
(4)05L04
東ソー(株)製酸変性ポリエチレン(分子構造が05L05に比べ分岐状である)
(5)05L05
東ソー(株)製酸変性ポリエチレン(分子構造が05L04に比べ直鎖状である)
(6)ソアノール
日本合成化学工業(株)製エチレン−ビニルアルコール共重合体
(7)エクセバール
(株)クラレ製ポリビニルアルコール
(8)31x−101
(株)スリーボンド製紫外線硬化性樹脂
Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples. In Tables 1 to 6, when it was difficult to measure the MFR at 190 ° C., an approximate range of the MFR was shown, and the MFR value measured at 210 ° C. was also shown. Further, in Tables 1 to 6, what is denoted as High Milan, Nuclerel, Binell, 05L04, 05L05, Soarnol, Exval, and 31x-101 are as follows.
(1) Ionomer made by High Milan Mitsui-DuPont Polychemical Co., Ltd. (2) Ethylene-methacrylic acid copolymer made by Nucleel Mitsui-DuPont Polychemical Co., Ltd. And maleic anhydride modified polypropylene (4) 05L04
Acid-modified polyethylene manufactured by Tosoh Corporation (molecular structure is branched compared to 05L05)
(5) 05L05
Acid-modified polyethylene manufactured by Tosoh Corporation (molecular structure is linear compared to 05L04)
(6) Soarnol Nippon Synthetic Chemical Industry Co., Ltd. ethylene-vinyl alcohol copolymer (7) EXEVAL Co., Ltd. Kuraray polyvinyl alcohol (8) 31x-101
Three bond UV curable resin

(実施例1)
はじめに、10cm×10cm×4mmのFTO基板を準備した。続いて、FTO基板の上に、ドクターブレード法によって酸化チタンペースト(Solaronix社製、Ti nanoixide T/sp)を、その厚さが10μmとなるように塗布した後、熱風循環タイプのオーブンに入れて150℃で3時間焼成し、FTO基板上に多孔質酸化物半導体層を形成し、5cm×5cmの作用極を得た。
(Example 1)
First, a 10 cm × 10 cm × 4 mm FTO substrate was prepared. Subsequently, after applying a titanium oxide paste (Solaronix, Ti nanoixide T / sp) on the FTO substrate by a doctor blade method so that the thickness becomes 10 μm, it is put in a hot air circulation type oven. Firing was performed at 150 ° C. for 3 hours to form a porous oxide semiconductor layer on the FTO substrate to obtain a working electrode of 5 cm × 5 cm.

一方、作用極と同様のFTO基板を対極基板として準備した。そして、対極基板上に、スパッタリング法により、厚さ10nmの白金触媒膜を形成し、対極を得た。   On the other hand, the same FTO substrate as the working electrode was prepared as a counter electrode substrate. Then, a platinum catalyst film having a thickness of 10 nm was formed on the counter electrode substrate by sputtering to obtain a counter electrode.

こうして作用極及び対極を準備した。   Thus, a working electrode and a counter electrode were prepared.

次に、アイオノマーであるハイミラン(融点:98℃)からなる6cm×6cm×100μmのシートの中央に、5cm×5cm×100μmの開口を形成した四角環状の樹脂シートを準備した。そして、この樹脂シートを、作用極の多孔質酸化物半導体層を包囲する環状の部位に配置した。この樹脂シートを120℃の溶融温度(以下、「溶融温度1」と呼ぶ)で5分間加熱し溶融させることによって環状部位に接着し、環状部位に外側樹脂封止部を固定した。   Next, a square annular resin sheet in which an opening of 5 cm × 5 cm × 100 μm was formed in the center of a 6 cm × 6 cm × 100 μm sheet made of ionomer Himiran (melting point: 98 ° C.) was prepared. And this resin sheet was arrange | positioned in the cyclic | annular site | part surrounding the porous oxide semiconductor layer of a working electrode. The resin sheet was heated and melted at a melting temperature of 120 ° C. (hereinafter referred to as “melting temperature 1”) for 5 minutes to adhere to the annular portion, and the outer resin sealing portion was fixed to the annular portion.

続いて、エチレン−メタクリル酸共重合体であるニュクレル(融点:97℃)からなる6cm×6cm×100μmのシートの中央に、5cm×5cm×100μmの開口を形成した四角環状の樹脂シートを準備した。   Subsequently, a square annular resin sheet having an opening of 5 cm × 5 cm × 100 μm formed at the center of a 6 cm × 6 cm × 100 μm sheet made of nucleol (melting point: 97 ° C.) which is an ethylene-methacrylic acid copolymer was prepared. .

そして、このニュクレルからなる四角環状の樹脂シートを、ハイミランからなる四角環状の樹脂シートの直上に、110℃の溶融温度(以下、「溶融温度2」と呼ぶ)で貼り付けた。こうして外側樹脂封止部の上に中間樹脂封止部を形成し、第1封止部を形成した。   Then, this square annular resin sheet made of nucler was attached at a melting temperature of 110 ° C. (hereinafter referred to as “melting temperature 2”) immediately above the square annular resin sheet made of high Milan. Thus, the intermediate resin sealing portion was formed on the outer resin sealing portion, and the first sealing portion was formed.

次に、この作用極を、光増感色素であるN719色素を0.2mM溶かした脱水エタノール液中に一昼夜浸漬して作用極に光増感色素を担持させた。   Next, the working electrode was immersed in a dehydrated ethanol solution in which 0.2 mM of N719 dye, which is a photosensitizing dye, was dissolved for 24 hours to support the photosensitizing dye on the working electrode.

一方、対極の白金触媒膜上に、アイオノマーであるハイミランからなる6cm×6cm×100μmのシートの中央に、5cm×5cm×100μmの開口を形成した四角環状の樹脂シートを準備した。そして、この樹脂シートを対極の白金触媒膜上における環状の部位に配置した。そして、この樹脂シートを110℃の溶融温度(以下、「溶融温度3」と呼ぶ)で5分間加熱し溶融させることによって環状部位に接着し、外側樹脂封止部を固定した。   On the other hand, a square annular resin sheet having an opening of 5 cm × 5 cm × 100 μm formed in the center of a 6 cm × 6 cm × 100 μm sheet made of high Milan as an ionomer was prepared on the platinum catalyst film of the counter electrode. And this resin sheet was arrange | positioned in the cyclic | annular site | part on the platinum catalyst film | membrane of a counter electrode. The resin sheet was heated and melted at a melting temperature of 110 ° C. (hereinafter referred to as “melting temperature 3”) for 5 minutes to adhere to the annular portion, and the outer resin sealing portion was fixed.

続いて、エチレン−メタクリル酸共重合体であるニュクレルからなる6cm×6cm×100μmのシートの中央に、5cm×5cm×100μmの開口を形成した四角環状の樹脂シートを準備した。   Subsequently, a square annular resin sheet was prepared in which an opening of 5 cm × 5 cm × 100 μm was formed in the center of a 6 cm × 6 cm × 100 μm sheet made of nucleol which is an ethylene-methacrylic acid copolymer.

そして、このニュクレルからなる四角環状の樹脂シートを、ハイミランからなる四角環状の樹脂シートの直上に、110℃の溶融温度(以下、「溶融温度4」と呼ぶ)で貼り付けた。こうして外側樹脂封止部の上に中間樹脂封止部を形成し、第2封止部を形成した。   Then, this square annular resin sheet made of nucler was attached at a melting temperature of 110 ° C. (hereinafter referred to as “melting temperature 4”) immediately above the square annular resin sheet made of high Milan. Thus, the intermediate resin sealing portion was formed on the outer resin sealing portion, and the second sealing portion was formed.

次いで、第1封止部を設けた作用極を、FTO基板の多孔質酸化物半導体層側の表面が水平になるように配置し、第1封止部の内側に、アセトニトリルからなる揮発性溶媒を主溶媒とし、ヨウ化リチウムを0.05M、ヨウ化リチウムを0.1M、1,2−ジメチルー3−プロピルイミダゾリウムアイオダイド(DMPII)を0.6M、4−tert−ブチルピリジンを0.5M含む電解質(表1及び表2において「A」と称する)を注入し、電解質層を形成した。   Next, the working electrode provided with the first sealing portion is arranged so that the surface of the FTO substrate on the porous oxide semiconductor layer side is horizontal, and a volatile solvent made of acetonitrile is provided inside the first sealing portion. As a main solvent, 0.05M of lithium iodide, 0.1M of lithium iodide, 0.6M of 1,2-dimethyl-3-propylimidazolium iodide (DMPII), and 0.02 of 4-tert-butylpyridine. An electrolyte containing 5M (referred to as “A” in Tables 1 and 2) was injected to form an electrolyte layer.

次に、第2封止部を設けた対極を、作用極に対向させ、500hPa程度の減圧環境下に置き、第1封止部と第2封止部とを重ね合わせた。そして、減圧環境下で、封止部と同じ大きさの真鍮製の枠を加熱し、前記真鍮製の枠を対極の第2封止部とは反対側に配置し、プレス機を用いて、5MPaで第1封止部及び第2封止部を加圧しながら160℃の温度(以下、「封止温度」と呼ぶ)で局所加熱して溶融させて封止部を形成し、積層体を得た。その後、この積層体を大気圧下に取り出した。こうして色素増感太陽電池を得た。   Next, the counter electrode provided with the second sealing portion was opposed to the working electrode, placed in a reduced pressure environment of about 500 hPa, and the first sealing portion and the second sealing portion were overlapped. Then, under a reduced pressure environment, the brass frame having the same size as the sealing part is heated, the brass frame is arranged on the side opposite to the second sealing part of the counter electrode, and using a press machine, While the first sealing portion and the second sealing portion are pressurized at 5 MPa, they are locally heated and melted at a temperature of 160 ° C. (hereinafter referred to as “sealing temperature”) to form a sealing portion. Obtained. Then, this laminated body was taken out under atmospheric pressure. Thus, a dye-sensitized solar cell was obtained.

(実施例2〜14)
第1封止部の外側樹脂封止部および中間樹脂封止部を構成する樹脂およびそのMFR、第2封止部の外側樹脂封止部および中間樹脂封止部を構成する樹脂およびそのMFR、並びに、溶融温度1〜4及び封止温度を表1に示す通りに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Examples 2 to 14)
The resin constituting the outer resin sealing portion and the intermediate resin sealing portion of the first sealing portion and the MFR thereof, the resin constituting the outer resin sealing portion and the intermediate resin sealing portion of the second sealing portion and the MFR thereof, In addition, a dye-sensitized solar cell was produced in the same manner as in Example 1 except that the melting temperatures 1 to 4 and the sealing temperature were changed as shown in Table 1.

(実施例15〜20)
第1封止部の外側樹脂封止部および中間樹脂封止部を構成する樹脂およびそのMFR、第2封止部の外側樹脂封止部および中間樹脂封止部を構成する樹脂およびそのMFR、並びに、溶融温度1〜4及び封止温度を表1及び表2に示す通りに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Examples 15 to 20)
The resin constituting the outer resin sealing portion and the intermediate resin sealing portion of the first sealing portion and the MFR thereof, the resin constituting the outer resin sealing portion and the intermediate resin sealing portion of the second sealing portion and the MFR thereof, In addition, a dye-sensitized solar cell was produced in the same manner as in Example 1 except that the melting temperatures 1 to 4 and the sealing temperature were changed as shown in Tables 1 and 2.

なお、第1封止部及び第2封止部の外側樹脂封止部として使用した31x−101は、紫外線硬化性樹脂であり、この紫外線硬化性樹脂を、作用極及び対極の環状部位に接着するに際しては、環状部位に塗布した後、紫外線硬化性樹脂を低酸素環境下で紫外線(UV)照射して硬化させることにより環状部位に接着させた。このため、表1及び表2において、溶融温度1及び3については「−」と示してある。   In addition, 31x-101 used as the outer resin sealing portion of the first sealing portion and the second sealing portion is an ultraviolet curable resin, and this ultraviolet curable resin is bonded to the annular portion of the working electrode and the counter electrode. In carrying out, after apply | coating to a cyclic | annular site | part, the ultraviolet curable resin was adhere | attached on the cyclic | annular site | part by making it harden | cure by irradiating an ultraviolet-ray (UV) in a low oxygen environment. For this reason, in Tables 1 and 2, the melting temperatures 1 and 3 are indicated as “−”.

(実施例21〜26)
第1封止部の外側樹脂封止部および中間樹脂封止部を構成する樹脂およびそのMFR、第2封止部の外側樹脂封止部および中間樹脂封止部を構成する樹脂およびそのMFR、並びに、溶融温度1〜4及び封止温度を表2に示す通りに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。
(Examples 21 to 26)
The resin constituting the outer resin sealing portion and the intermediate resin sealing portion of the first sealing portion and the MFR thereof, the resin constituting the outer resin sealing portion and the intermediate resin sealing portion of the second sealing portion and the MFR thereof, In addition, a dye-sensitized solar cell was produced in the same manner as in Example 1 except that the melting temperatures 1 to 4 and the sealing temperature were changed as shown in Table 2.

(比較例1〜5) 第1封止部の外側樹脂封止部および中間樹脂封止部を構成する樹脂およびそのMFR、第2封止部の外側樹脂封止部および中間樹脂封止部を構成する樹脂およびそのMFR、並びに、溶融温度1〜4及び封止温度を表2に示す通りに変更したこと以外は実施例1と同様にして色素増感太陽電池を作製した。   (Comparative Examples 1 to 5) The resin constituting the outer resin sealing portion and the intermediate resin sealing portion of the first sealing portion and its MFR, the outer resin sealing portion and the intermediate resin sealing portion of the second sealing portion A dye-sensitized solar cell was produced in the same manner as in Example 1 except that the resin and its MFR, the melting temperature 1 to 4 and the sealing temperature were changed as shown in Table 2.

(比較例6)
まず実施例1と同様にして作用極を準備し、色素を担持させた。一方、実施例1と同様にして対極を準備した。そして、作用極の環状部位に紫外線硬化樹脂の前駆体である31x−101を塗布し、紫外線を照射して硬化させ、環状の第1封止部(外側樹脂封止部)を得た。続いて、第1封止部の内側に実施例1と同様にして電解質を配置した。一方、対極の環状部位に31x−101を塗布し、これを第1封止部と重ね合わるように作用極と対極とを対峙させた後、31x−101に紫外線を照射して第2封止部(外側樹脂封止部)を形成した。こうして色素増感太陽電池を作製した。
(Comparative Example 6)
First, a working electrode was prepared in the same manner as in Example 1, and a dye was supported. On the other hand, a counter electrode was prepared in the same manner as in Example 1. And 31x-101 which is a precursor of a ultraviolet curable resin was apply | coated to the cyclic | annular part of a working electrode, and it hardened | cured by irradiating an ultraviolet-ray, and obtained the cyclic | annular 1st sealing part (outside resin sealing part). Subsequently, an electrolyte was disposed in the same manner as in Example 1 inside the first sealing portion. On the other hand, 31x-101 is applied to the annular portion of the counter electrode, the working electrode and the counter electrode are opposed to each other so as to overlap the first sealing portion, and then the second sealing is performed by irradiating 31x-101 with ultraviolet rays. Part (outside resin sealing part) was formed. In this way, a dye-sensitized solar cell was produced.

(実施例27〜52及び比較例7〜12)
表3及び表4に示すように、電解質を、メトキシプロピオニトリルからなる揮発性溶媒を主溶媒とし、ヨウ化リチウムを0.1M、ヨウ素を0.05M、4−tert−ブチルピリジンを0.5M含む揮発系電解質(表3及び表4において「B」と称する)に変更したこと以外は実施例1〜26、比較例1〜6のそれぞれと同様にして色素増感太陽電池を作製した。
(Examples 27-52 and Comparative Examples 7-12)
As shown in Tables 3 and 4, the electrolyte is a volatile solvent composed of methoxypropionitrile as a main solvent, lithium iodide is 0.1M, iodine is 0.05M, and 4-tert-butylpyridine is 0.00. Dye-sensitized solar cells were produced in the same manner as in Examples 1 to 26 and Comparative Examples 1 to 6, except that the volatile electrolyte containing 5M was used (referred to as “B” in Tables 3 and 4).

(実施例53〜78及び比較例13〜18)
表5及び表6に示すように、電解質を、メトキシプロピオニトリルからなる揮発性溶媒に、ヨウ化リチウムを0.1M、ヨウ素を0.05M、4−tert−ブチルピリジンを0.5M加えたものの総重量に対して、5%の平均粒径15nmのシリカ微粒子を加え、ゲル化させたゲル状電解質(表5及び表6において「C」と称する)に変更したこと以外は実施例1〜26、比較例1〜6のそれぞれと同様にして色素増感太陽電池を作製した。
(Examples 53 to 78 and Comparative Examples 13 to 18)
As shown in Table 5 and Table 6, the electrolyte was added to a volatile solvent composed of methoxypropionitrile, 0.1M lithium iodide, 0.05M iodine, and 0.5M 4-tert-butylpyridine. Example 1 except that 5% silica fine particles having an average particle diameter of 15 nm were added to the total weight of the product to change to a gelled electrolyte (referred to as “C” in Tables 5 and 6). 26, dye-sensitized solar cells were prepared in the same manner as in Comparative Examples 1 to 6, respectively.

[特性評価]
実施例1〜78及び比較例1〜18の色素増感太陽電池について、以下のようにして耐久性試験を行うことにより特性評価を行った。即ち耐久試験は、実施例1〜78及び比較例1〜18の色素増感太陽電池に対し、JIS C8917に従って、周囲の温度を−40℃まで低下させた後90℃まで上昇させる熱サイクルを1サイクルとして200サイクル行った。そして、光電変換効率の維持率を、下記式:

Figure 2011222140
に従って算出した。なお、光電変換効率の維持率が100%を超えるものは、耐久試験後の変換効率が初期の変換効率よりも高いことを意味する。結果を表1〜6に示す。


Figure 2011222140

Figure 2011222140
Figure 2011222140
Figure 2011222140
Figure 2011222140
Figure 2011222140
[Characteristic evaluation]
About the dye-sensitized solar cell of Examples 1-78 and Comparative Examples 1-18, the characteristic evaluation was performed by conducting a durability test as follows. That is, in the durability test, the thermal cycle in which the ambient temperature is lowered to −40 ° C. and then raised to 90 ° C. according to JIS C8917 is applied to the dye-sensitized solar cells of Examples 1 to 78 and Comparative Examples 1 to 18. As a cycle, 200 cycles were performed. And the maintenance rate of photoelectric conversion efficiency is expressed by the following formula:
Figure 2011222140
Calculated according to In addition, the thing whose maintenance rate of photoelectric conversion efficiency exceeds 100% means that the conversion efficiency after an endurance test is higher than the initial conversion efficiency. The results are shown in Tables 1-6.


Figure 2011222140

Figure 2011222140
Figure 2011222140
Figure 2011222140
Figure 2011222140
Figure 2011222140

表1〜6に示す結果より、実施例1〜78の色素増感太陽電池は、電解質の種類にかかわらず、比較例1〜18の色素増感太陽電池に比べて、耐久性の点で優れていることが分かった。   From the results shown in Tables 1 to 6, the dye-sensitized solar cells of Examples 1 to 78 are superior in terms of durability compared to the dye-sensitized solar cells of Comparative Examples 1 to 18 regardless of the type of electrolyte. I found out.

よって、本発明の電子機器によれば、温度変化の大きい環境下に置かれる場合でも耐久性を十分に維持できることが確認された。   Therefore, according to the electronic device of the present invention, it was confirmed that the durability could be sufficiently maintained even when placed in an environment with a large temperature change.

1,101…作用極(第1電極、第1基材)
2…対極(第2電極、第2基材)
3…電解質層(被封止部)
4A…第1封止部
4B…第2封止部
4…封止部
7…透明導電膜(導電膜)
8…多孔質酸化物半導体層
9…対極基板
10…触媒膜
13A,13B…突出部
100…色素増感太陽電池
C1…第1環状部位
C2…第2環状部位。
1,101 ... Working electrode (first electrode, first substrate)
2 ... Counter electrode (second electrode, second substrate)
3 ... electrolyte layer (sealed part)
4A ... 1st sealing part 4B ... 2nd sealing part 4 ... Sealing part 7 ... Transparent conductive film (conductive film)
DESCRIPTION OF SYMBOLS 8 ... Porous oxide semiconductor layer 9 ... Counter electrode substrate 10 ... Catalyst film 13A, 13B ... Projection part 100 ... Dye-sensitized solar cell C1 ... 1st cyclic | annular site | part C2 ... 2nd cyclic | annular site | part.

即ち本発明は、第1基材と、前記第1基材に対向配置される第2基材と、前記第1基材及び前記第2基材の間に配置される被封止部と、前記第1基材及び前記第2基材を連結し、前記被封止部の周囲に設けられる封止部とを備えており、前記封止部のうち前記被封止部の周囲に沿った少なくとも一部が、前記第1基材及び前記第2基材の各々に固定される外側樹脂封止部と、前記第1基材及び前記第2基材の間で、前記外側樹脂封止部に挟まれるように配置される中間樹脂封止部とを有し、前記外側樹脂封止部及び前記中間樹脂封止部が樹脂を含み、前記中間樹脂封止部のメルトフローレートが前記外側樹脂封止部のメルトフローレートよりも大きいことを特徴とする電子機器である。
That is, the present invention includes a first base material, a second base material disposed opposite to the first base material, a sealed portion disposed between the first base material and the second base material, The first base material and the second base material are connected to each other, and a sealing part provided around the sealed part is provided, and the sealing part is provided along the periphery of the sealed part. At least a part between the first base material and the second base material, and the outer side resin seal part fixed between the first base material and the second base material. An intermediate resin sealing portion disposed so as to be sandwiched between the outer resin sealing portion and the intermediate resin sealing portion, and the melt flow rate of the intermediate resin sealing portion is the outer resin. It is an electronic device characterized by being larger than the melt flow rate of the sealing part.

また本発明は、第1基材及び第2基材を準備する準備工程と、前記第1基材における第1環状部位に、外側樹脂封止部を含む第1封止部を形成する第1封止部形成工程と、前記第2基材における第2環状部位に、外側樹脂封止部を含む第2封止部を形成する第2封止部形成工程と、前記第1基材及び前記第2基材を貼り合せ、前記第1基材及び前記第2基材の間に前記第1封止部と前記第2封止部とを接着させてなる封止部を形成するとともに前記封止部、前記第1基材および前記第2基材によって囲まれるように被封止部を配置する封止部形成工程とを含み、前記第1封止部及び前記第2封止部の少なくとも一方が、前記外側樹脂封止部の上に設けられる中間樹脂封止部を有し、前記中間樹脂封止部および前記外側樹脂封止部が樹脂を含み、前記中間樹脂封止部のメルトフローレートが前記外側樹脂封止部のメルトフローレートよりも大きいことを特徴とする電子機器の製造方法である。 Moreover, this invention is the 1st which forms the 1st sealing part containing an outer side resin sealing part in the 1st cyclic | annular site | part in the said 1st base material which prepares a 1st base material and a 2nd base material. A sealing portion forming step, a second sealing portion forming step of forming a second sealing portion including an outer resin sealing portion in a second annular portion of the second base material, the first base material, and the A second base material is bonded, and a sealing part is formed by adhering the first sealing part and the second sealing part between the first base material and the second base material, and the sealing is performed. A sealing portion forming step of disposing a sealing portion so as to be surrounded by the stopper, the first base material, and the second base material, and at least one of the first sealing portion and the second sealing portion One has an intermediate resin sealing portion provided on the outer resin sealing portion, and the intermediate resin sealing portion and the outer resin sealing portion include a resin. The melt flow rate of the intermediate resin sealing portion is a manufacturing method of an electronic device being greater than the melt flow rate of the outer resin sealing portion.

即ち本発明は、第1基材と、前記第1基材に対向配置される第2基材と、前記第1基材及び前記第2基材の間に配置される被封止部と、前記第1基材及び前記第2基材を連結し、前記被封止部の周囲に設けられる封止部とを備えており、前記封止部のうち前記被封止部の周囲に沿った少なくとも一部が、前記第1基材及び前記第2基材の各々に固定される外側樹脂封止部と、前記第1基材及び前記第2基材の間で、前記外側樹脂封止部に挟まれるように配置される中間樹脂封止部とを有し、前記外側樹脂封止部及び前記中間樹脂封止部が樹脂を含み、前記中間樹脂封止部のメルトフローレートが前記外側樹脂封止部のメルトフローレートよりも大きい電子機器であって、前記電子機器が、色素増感太陽電池、有機薄膜太陽電池、EL表示装置又は液晶表示装置であることを特徴とする電子機器である。
That is, the present invention includes a first base material, a second base material disposed opposite to the first base material, a sealed portion disposed between the first base material and the second base material, The first base material and the second base material are connected to each other, and a sealing part provided around the sealed part is provided, and the sealing part is provided along the periphery of the sealed part. At least a part between the first base material and the second base material, and the outer side resin seal part fixed between the first base material and the second base material. An intermediate resin sealing portion disposed so as to be sandwiched between the outer resin sealing portion and the intermediate resin sealing portion, and the melt flow rate of the intermediate resin sealing portion is the outer resin. a big electronic device than the melt flow rate of the sealing portion, wherein the electronic device is a dye-sensitized solar cells, organic thin-film solar cells, EL display devices Is an electronic device, which is a liquid crystal display device.

また本発明は、第1基材及び第2基材を準備する準備工程と、前記第1基材における第1環状部位に、外側樹脂封止部を含む第1封止部を形成する第1封止部形成工程と、前記第2基材における第2環状部位に、外側樹脂封止部を含む第2封止部を形成する第2封止部形成工程と、前記第1基材及び前記第2基材を貼り合せ、前記第1基材及び前記第2基材の間に前記第1封止部と前記第2封止部とを接着させてなる封止部を形成するとともに前記封止部、前記第1基材および前記第2基材によって囲まれるように被封止部を配置する封止部形成工程とを含み、前記第1封止部及び前記第2封止部の少なくとも一方が、前記外側樹脂封止部の上に設けられる中間樹脂封止部を有し、前記中間樹脂封止部および前記外側樹脂封止部が樹脂を含み、前記中間樹脂封止部のメルトフローレートが前記外側樹脂封止部のメルトフローレートよりも大きいことを特徴とする電子機器の製造方法であって、前記電子機器が、色素増感太陽電池、有機薄膜太陽電池、EL表示装置又は液晶表示装置である電子機器の製造方法である。 Moreover, this invention is the 1st which forms the 1st sealing part containing an outer side resin sealing part in the 1st cyclic | annular site | part in the said 1st base material which prepares a 1st base material and a 2nd base material. A sealing portion forming step, a second sealing portion forming step of forming a second sealing portion including an outer resin sealing portion in a second annular portion of the second base material, the first base material, and the A second base material is bonded, and a sealing part is formed by adhering the first sealing part and the second sealing part between the first base material and the second base material, and the sealing is performed. A sealing portion forming step of disposing a sealing portion so as to be surrounded by the stopper, the first base material, and the second base material, and at least one of the first sealing portion and the second sealing portion One has an intermediate resin sealing portion provided on the outer resin sealing portion, and the intermediate resin sealing portion and the outer resin sealing portion include a resin. Wherein the intermediate resin sealing portion of the melt flow rate is a manufacturing method of an electronic device being greater than the melt flow rate of the outer resin sealing portion, the electronic apparatus, the dye-sensitized solar cells, organic It is a manufacturing method of an electronic device which is a thin film solar cell, an EL display device, or a liquid crystal display device .

Claims (20)

第1基材と、
前記第1基材に対向配置される第2基材と、
前記第1基材及び前記第2基材の間に配置される被封止部と、
前記第1基材及び前記第2基材を連結し、前記被封止部の周囲に設けられる封止部とを備えており、
前記封止部のうち前記被封止部の周囲に沿った少なくとも一部が、
前記第1基材及び前記第2基材の各々に固定される外側樹脂封止部と、
前記第1基材及び前記第2基材の間で、前記外側樹脂封止部に挟まれるように配置される中間樹脂封止部とを有し、
前記外側樹脂封止部及び前記中間樹脂封止部が樹脂を含み、
前記中間樹脂封止部のメルトフローレートが前記外側樹脂封止部のメルトフローレートよりも大きいことを特徴とする光電変換装置。
A first substrate;
A second substrate disposed opposite to the first substrate;
A sealed portion disposed between the first base material and the second base material;
Connecting the first base material and the second base material, and having a sealing portion provided around the sealed portion,
At least a part of the sealing portion along the periphery of the sealed portion is
An outer resin sealing portion fixed to each of the first base material and the second base material;
An intermediate resin sealing portion disposed between the first base material and the second base material so as to be sandwiched between the outer resin sealing portions;
The outer resin sealing portion and the intermediate resin sealing portion include a resin,
The photoelectric conversion device, wherein a melt flow rate of the intermediate resin sealing portion is larger than a melt flow rate of the outer resin sealing portion.
前記中間樹脂封止部は、酸変性ポリオレフィンを含む請求項1に記載の電子機器。   The electronic device according to claim 1, wherein the intermediate resin sealing portion includes an acid-modified polyolefin. 前記中間樹脂封止部は、酸変性ポリエチレンを含む請求項1に記載の電子機器。   The electronic device according to claim 1, wherein the intermediate resin sealing portion includes acid-modified polyethylene. 前記中間樹脂封止部は、ポリビニルアルコール及びエチレン−ビニルアルコール共重合体からなる群より選ばれる少なくとも1種を含む請求項1に記載の電子機器。   The electronic device according to claim 1, wherein the intermediate resin sealing portion includes at least one selected from the group consisting of polyvinyl alcohol and an ethylene-vinyl alcohol copolymer. 前記外側樹脂封止部が酸変性ポリオレフィン及び紫外線硬化性樹脂からなる群より選ばれる少なくとも1種を含む請求項1〜4のいずれか一項に記載の電子機器。   The electronic device according to any one of claims 1 to 4, wherein the outer resin sealing portion includes at least one selected from the group consisting of an acid-modified polyolefin and an ultraviolet curable resin. 前記外側樹脂封止部が酸変性ポリエチレンを含む請求項1〜4のいずれか一項に記載の電子機器。   The electronic apparatus according to claim 1, wherein the outer resin sealing portion includes acid-modified polyethylene. 前記外側樹脂封止部がポリビニルアルコール及びエチレン−ビニルアルコール共重合体からなる群より選ばれる少なくとも1種を含む請求項1〜4のいずれか一項に記載の電子機器。   The electronic device according to any one of claims 1 to 4, wherein the outer resin sealing portion includes at least one selected from the group consisting of polyvinyl alcohol and an ethylene-vinyl alcohol copolymer. 前記封止部に対して前記被封止部と反対側に、前記第1基材および前記封止部の境界、前記第2基材および前記封止部の境界、前記中間樹脂封止部及び前記外側樹脂封止部の境界を少なくとも覆う被覆部をさらに備え、前記被覆部が第2の樹脂を含む請求項1〜7のいずれか一項に記載の電子機器。   On the opposite side to the sealed portion with respect to the sealing portion, the boundary between the first base material and the sealing portion, the boundary between the second base material and the sealing portion, the intermediate resin sealing portion, and The electronic device according to claim 1, further comprising a covering portion that covers at least a boundary of the outer resin sealing portion, wherein the covering portion includes a second resin. 前記第1基材が第1電極であり、前記第2基材が第2電極である、請求項1〜8のいずれか一項に記載の電子機器。   The electronic device according to any one of claims 1 to 8, wherein the first base material is a first electrode and the second base material is a second electrode. 前記第1電極は、多孔質酸化物半導体層と、前記多孔質酸化物半導体層が形成される導電膜と、前記導電膜上に突出するように設けられ、前記外側樹脂封止部と前記導電膜との間に配置される突出部とを有し、前記突出部が無機材料からなり、前記被封止部が電解質である請求項9に記載の電子機器。   The first electrode is provided so as to protrude from a porous oxide semiconductor layer, a conductive film on which the porous oxide semiconductor layer is formed, and the conductive film. The electronic device according to claim 9, further comprising: a protrusion disposed between the film and the film, wherein the protrusion is made of an inorganic material, and the sealed portion is an electrolyte. 前記突出部が、前記導電膜上に固定される配線部で構成され、前記配線部が、無機材料で構成され、前記導電膜上に設けられる集電配線と、前記集電配線を覆う配線保護層とを有する請求項10に記載の電子機器。   The projecting portion is composed of a wiring portion fixed on the conductive film, the wiring portion is composed of an inorganic material, and current collecting wiring provided on the conductive film and wiring protection covering the current collecting wiring The electronic device according to claim 10, further comprising a layer. 前記第2電極は、対極基板と、前記対極基板上に設けられる触媒膜と、前記触媒膜上に突出するように設けられ、前記外側樹脂封止部と前記触媒膜との間に挟まれるように配置される突出部とを有し、前記突出部が無機材料からなり、前記被封止部が電解質である請求項9〜11のいずれか一項に記載の電子機器。   The second electrode is provided so as to protrude on the counter electrode substrate, the catalyst film provided on the counter electrode substrate, and the catalyst film, and sandwiched between the outer resin sealing portion and the catalyst film. The electronic device according to any one of claims 9 to 11, wherein the protruding portion is made of an inorganic material, and the sealed portion is an electrolyte. 第1基材及び第2基材を準備する準備工程と、
前記第1基材における第1環状部位に、外側樹脂封止部を含む第1封止部を形成する第1封止部形成工程と、
前記第2基材における第2環状部位に、外側樹脂封止部を含む第2封止部を形成する第2封止部形成工程と、
前記第1基材及び前記第2基材を貼り合せ、前記第1基材及び前記第2基材の間に前記第1封止部と前記第2封止部とを接着させてなる封止部を形成するとともに前記封止部、前記第1基材および前記第2基材によって囲まれるように被封止部を配置する封止部形成工程とを含み、
前記第1封止部及び前記第2封止部の少なくとも一方が、前記外側樹脂封止部の上に設けられる中間樹脂封止部を有し、
前記中間樹脂封止部および前記外側樹脂封止部が樹脂を含み、
前記中間樹脂封止部のメルトフローレートが前記外側樹脂封止部のメルトフローレートよりも大きいことを特徴とする電子機器の製造方法。
A preparation step of preparing a first substrate and a second substrate;
A first sealing portion forming step of forming a first sealing portion including an outer resin sealing portion in the first annular portion of the first base material;
A second sealing portion forming step of forming a second sealing portion including an outer resin sealing portion in the second annular portion of the second base material;
Sealing formed by bonding the first base material and the second base material, and bonding the first sealing portion and the second sealing portion between the first base material and the second base material. And a sealing part forming step of arranging a sealed part so as to be surrounded by the sealing part, the first base material, and the second base material,
At least one of the first sealing portion and the second sealing portion has an intermediate resin sealing portion provided on the outer resin sealing portion,
The intermediate resin sealing portion and the outer resin sealing portion include a resin,
The method for manufacturing an electronic device, wherein a melt flow rate of the intermediate resin sealing portion is larger than a melt flow rate of the outer resin sealing portion.
前記第1基材が第1電極であり、前記第2基材が第2電極である、請求項13に記載の電子機器の製造方法。   The method for manufacturing an electronic device according to claim 13, wherein the first base material is a first electrode and the second base material is a second electrode. 前記第1電極が多孔質酸化物半導体層を含み、
前記被封止部が電解質であり、
前記準備工程と前記封止部形成工程との間に、
前記多孔質酸化物半導体層に光増感色素を担持させる色素担持工程と、
前記第1電極上であって前記第1封止部の内側、又は前記第2電極上であって前記第2封止部の内側に前記電解質を配置して電解質層を形成する電解質層形成工程とをさらに含み、
前記電解質層形成工程は、前記第1封止部形成工程及び前記第2封止部形成工程の少なくとも一方の後に行われ、
前記封止部形成工程において、前記封止部は、前記第1封止部及び前記第2封止部を加圧しながら溶融させることによって形成される請求項14に記載の電子機器の製造方法。
The first electrode includes a porous oxide semiconductor layer;
The sealed portion is an electrolyte;
Between the preparation step and the sealing portion formation step,
A dye carrying step of carrying a photosensitizing dye on the porous oxide semiconductor layer;
An electrolyte layer forming step of forming an electrolyte layer by disposing the electrolyte on the first electrode and inside the first sealing portion or on the second electrode and inside the second sealing portion. And further including
The electrolyte layer forming step is performed after at least one of the first sealing portion forming step and the second sealing portion forming step,
The method of manufacturing an electronic device according to claim 14, wherein in the sealing portion forming step, the sealing portion is formed by melting the first sealing portion and the second sealing portion while applying pressure.
前記電解質層形成工程において、前記電解質層は、前記電解質を、前記第1電極上であって前記第1封止部の内側、又は前記第2電極上であって前記第2封止部の内側に注入し、前記第1封止部又は前記第2封止部を超えて前記第1封止部又は前記第2封止部の外側に溢れさせることにより形成される請求項15に記載の電子機器の製造方法。   In the electrolyte layer forming step, the electrolyte layer includes the electrolyte on the first electrode and inside the first sealing portion, or on the second electrode and inside the second sealing portion. The electron according to claim 15, wherein the electron is formed by injecting into a liquid and overflowing beyond the first sealing portion or the second sealing portion to the outside of the first sealing portion or the second sealing portion. Device manufacturing method. 前記電解質層形成工程においては、前記電解質層が、前記第1電極上であって前記第1封止部の内側に形成される請求項15又は16に記載の電子機器の製造方法。   The method for manufacturing an electronic device according to claim 15 or 16, wherein, in the electrolyte layer forming step, the electrolyte layer is formed on the first electrode and inside the first sealing portion. 前記第1電極は、
前記多孔質酸化物半導体層と、
前記多孔質酸9化物半導体層が形成される導電膜と、
前記導電膜上に突出するように設けられ、前記第1環状部位をなす突出部とを有し、前記突出部が無機材料からなり、前記被封止部が電解質である請求項14〜17のいずれか一項に記載の電子機器の製造方法。
The first electrode is
The porous oxide semiconductor layer;
A conductive film on which the porous acid non-oxide semiconductor layer is formed;
The projection part which is provided so that it may protrude on the said electrically conductive film, and makes the said 1st cyclic | annular site | part, the said protrusion part consists of inorganic materials, and the said to-be-sealed part is electrolyte. The manufacturing method of the electronic device as described in any one.
前記第2電極は、
対極基板と、
前記対極基板上に設けられる触媒膜と、
前記触媒膜上に突出するように設けられ、前記第2環状部位をなす突出部とを有し、前記突出部が無機材料からなり、前記被封止部が電解質である請求項14〜18のいずれか一項に記載の電子機器の製造方法。
The second electrode is
A counter electrode substrate;
A catalyst film provided on the counter electrode substrate;
The projection part which is provided so that it may protrude on the said catalyst film, and makes the said 2nd cyclic | annular site | part, the said protrusion part consists of inorganic materials, and the said to-be-sealed part is electrolyte. The manufacturing method of the electronic device as described in any one.
前記第1電極及び前記第2電極のうち少なくとも一方が可撓性を有する請求項14〜19のいずれか一項に記載の電子機器の製造方法。
The method for manufacturing an electronic device according to claim 14, wherein at least one of the first electrode and the second electrode has flexibility.
JP2010086594A 2010-04-02 2010-04-02 Electronic device and manufacturing method thereof Expired - Fee Related JP4759647B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010086594A JP4759647B1 (en) 2010-04-02 2010-04-02 Electronic device and manufacturing method thereof
CN201180013035.3A CN102792517B (en) 2010-04-02 2011-03-31 Electronic device and manufacture method thereof
PCT/JP2011/058230 WO2011125843A1 (en) 2010-04-02 2011-03-31 Electronic device and method for manufacturing same
EP11765743.7A EP2555315A4 (en) 2010-04-02 2011-03-31 Electronic device and method for manufacturing same
US13/632,580 US10020120B2 (en) 2010-04-02 2012-10-01 Electronic device and manufacturing method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086594A JP4759647B1 (en) 2010-04-02 2010-04-02 Electronic device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP4759647B1 JP4759647B1 (en) 2011-08-31
JP2011222140A true JP2011222140A (en) 2011-11-04

Family

ID=44597179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086594A Expired - Fee Related JP4759647B1 (en) 2010-04-02 2010-04-02 Electronic device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4759647B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258555A (en) * 2010-06-11 2011-12-22 Samsung Mobile Display Co Ltd Organic light emitting display device and method for manufacturing the same
JP2013131482A (en) * 2011-11-21 2013-07-04 Rohm Co Ltd Dye-sensitized solar cell and method of manufacturing the same
JP5296904B1 (en) * 2012-05-22 2013-09-25 株式会社フジクラ Dye-sensitized solar cell and method for producing the same
JP2016191819A (en) * 2015-03-31 2016-11-10 大日本印刷株式会社 Flexible display device substrate and flexible display device having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214063A (en) * 2003-01-06 2004-07-29 Hitachi Maxell Ltd Photoelectric conversion element and photoelectric conversion module
JP2005158709A (en) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd Photoelectric conversion element and photoelectric conversion module
JP2007194075A (en) * 2006-01-19 2007-08-02 Sony Corp Functional device
JP2009245782A (en) * 2008-03-31 2009-10-22 Tdk Corp Dye-sensitized solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214063A (en) * 2003-01-06 2004-07-29 Hitachi Maxell Ltd Photoelectric conversion element and photoelectric conversion module
JP2005158709A (en) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd Photoelectric conversion element and photoelectric conversion module
JP2007194075A (en) * 2006-01-19 2007-08-02 Sony Corp Functional device
JP2009245782A (en) * 2008-03-31 2009-10-22 Tdk Corp Dye-sensitized solar cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258555A (en) * 2010-06-11 2011-12-22 Samsung Mobile Display Co Ltd Organic light emitting display device and method for manufacturing the same
JP2013131482A (en) * 2011-11-21 2013-07-04 Rohm Co Ltd Dye-sensitized solar cell and method of manufacturing the same
JP5296904B1 (en) * 2012-05-22 2013-09-25 株式会社フジクラ Dye-sensitized solar cell and method for producing the same
WO2013175823A1 (en) * 2012-05-22 2013-11-28 株式会社フジクラ Dye-sensitized solar cell and manufacturing method thereof
JPWO2013175823A1 (en) * 2012-05-22 2016-01-12 株式会社フジクラ Dye-sensitized solar cell and method for producing the same
US9355788B2 (en) 2012-05-22 2016-05-31 Fujikura Ltd. Dye-sensitized solar cell and method of manufacturing the same
JP2016191819A (en) * 2015-03-31 2016-11-10 大日本印刷株式会社 Flexible display device substrate and flexible display device having the same

Also Published As

Publication number Publication date
JP4759647B1 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4504456B1 (en) Method for producing dye-sensitized solar cell
JP5320405B2 (en) Photoelectric conversion device
US10020120B2 (en) Electronic device and manufacturing method for same
JP4759647B1 (en) Electronic device and manufacturing method thereof
JP4759646B1 (en) Electronic device and manufacturing method thereof
JP5465783B2 (en) Dye-sensitized solar cell electrode, method for producing the same, and dye-sensitized solar cell
JP4793953B1 (en) Dye-sensitized solar cell
JP4793954B1 (en) Dye-sensitized solar cell
JP5465446B2 (en) Photoelectric conversion element
WO2012046796A1 (en) Dye-sensitized solar cell
JP5422225B2 (en) Photoelectric conversion element
JP5785618B2 (en) Electronics
JP2012186032A (en) Dye-sensitized solar battery
JP6371194B2 (en) Method for producing dye-sensitized photoelectric conversion element
JP5689773B2 (en) Photoelectric conversion element electrode, photoelectric conversion element, and silver paste used for manufacturing photoelectric conversion element electrode
JP6076016B2 (en) Dye-sensitized solar cell
JP2013004178A (en) Dye-sensitized solar battery, and method of manufacturing the same
JP2016192498A (en) Method of manufacturing dye sensitization photoelectric conversion element
JP2018081987A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Ref document number: 4759647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees