JP7014656B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP7014656B2
JP7014656B2 JP2018056721A JP2018056721A JP7014656B2 JP 7014656 B2 JP7014656 B2 JP 7014656B2 JP 2018056721 A JP2018056721 A JP 2018056721A JP 2018056721 A JP2018056721 A JP 2018056721A JP 7014656 B2 JP7014656 B2 JP 7014656B2
Authority
JP
Japan
Prior art keywords
sealing portion
electrode substrate
photoelectric conversion
electrolyte
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018056721A
Other languages
Japanese (ja)
Other versions
JP2019169628A (en
Inventor
健治 勝亦
圭介 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2018056721A priority Critical patent/JP7014656B2/en
Publication of JP2019169628A publication Critical patent/JP2019169628A/en
Application granted granted Critical
Publication of JP7014656B2 publication Critical patent/JP7014656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光電変換素子に関する。 The present invention relates to a photoelectric conversion element.

光電変換素子として、安価で、高い光電変換効率が得られることから、色素を用いた光電変換素子が注目されており、色素を用いた光電変換素子に関して種々の開発が行われている。 As a photoelectric conversion element, a photoelectric conversion element using a dye has been attracting attention because it is inexpensive and high photoelectric conversion efficiency can be obtained, and various developments have been made on a photoelectric conversion element using a dye.

このような色素を用いた光電変換素子としては、例えば下記特許文献1の光電変換素子が知られている。下記特許文献1には、導電性基板と、導電性基板に対向し、触媒層を有する対極と、導電性基板上に設けられる酸化物半導体層と、導電性基板及び対極の間に設けられる電解質と、酸化物半導体層に吸着される色素とを有する光電変換セルを備え、電解質がイミダゾール化合物を含む光電変換素子が開示されており、電解質中のイミダゾール化合物の濃度を0.01~0.2Mとすることで漏れ電流を抑制できることが開示されている。 As a photoelectric conversion element using such a dye, for example, the photoelectric conversion element of Patent Document 1 below is known. The following Patent Document 1 describes an electrolyte provided between a conductive substrate, a counter electrode facing the conductive substrate and having a catalyst layer, an oxide semiconductor layer provided on the conductive substrate, and the conductive substrate and the counter electrode. A photoelectric conversion element having a photoelectric conversion cell having a dye adsorbed on an oxide semiconductor layer and an electrolyte containing an imidazole compound is disclosed, and the concentration of the imidazole compound in the electrolyte is 0.01 to 0.2 M. It is disclosed that the leakage current can be suppressed by the above.

特開2016-134479号公報Japanese Unexamined Patent Publication No. 2016-134479

ところで、色素を用いた光電変換素子においては、電解質中への酸素の侵入による光電変換素子の劣化を抑制して酸素による発電性能の低下抑制効果(以下、「耐酸素性」と呼ぶ)を高めるために、封止部の酸素透過速度を小さくすることが望ましい。 By the way, in a photoelectric conversion element using a dye, in order to suppress deterioration of the photoelectric conversion element due to intrusion of oxygen into the electrolyte and to enhance the effect of suppressing deterioration of power generation performance due to oxygen (hereinafter referred to as "oxygen resistance"). In addition, it is desirable to reduce the oxygen permeation rate of the sealing portion.

しかし、上述した特許文献1に記載の光電変換素子は、対極の触媒層として、白金等の触媒金属を用いた状態で封止部の酸素透過速度を小さくすると、耐酸素性は高められるものの、20000ルクス以上の高照度下に置かれた場合に、光に対する発電性能の低下抑制効果(以下、「耐光性」と呼ぶ)の点で改善の余地を有していた。 However, in the photoelectric conversion element described in Patent Document 1 described above, if the oxygen permeation rate of the sealing portion is reduced in a state where a catalyst metal such as platinum is used as the counter electrode catalyst layer, the oxygen resistance is improved, but the oxygen resistance is 20000. When placed under high illuminance of lux or higher, there was room for improvement in terms of the effect of suppressing deterioration of power generation performance with respect to light (hereinafter referred to as "light resistance").

本発明は上記事情に鑑みてなされたものであり、高照度下に置かれた場合でも、優れた耐酸素性を有しつつ、優れた耐光性を有する光電変換素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a photoelectric conversion element having excellent light resistance while having excellent oxygen resistance even when placed under high illuminance. ..

本発明者らは、上記課題を解決するため鋭意検討を行った結果、以下の発明により上記課題を解決するに至った。 As a result of diligent studies to solve the above-mentioned problems, the present inventors have come to solve the above-mentioned problems by the following inventions.

すなわち、本発明は、少なくとも1つの光電変換セルを備え、前記光電変換セルが、第1電極基板と、前記第1電極基板に対向する第2電極基板と、前記第1電極基板又は前記第2電極基板に設けられる酸化物半導体層と、前記第1電極基板及び前記第2電極基板を接合する封止部と、前記第1電極基板、前記第2電極基板及び前記封止部によって形成されるセル空間に充填される電解質とを備え、前記第2電極基板が、触媒金属を含む触媒層を有し、前記電解質がイミダゾール化合物を含み、前記電解質中の前記イミダゾール化合物の濃度が0.2Mより高く2M以下であり、下記式(1)で表される酸素透過速度比rが0.00040~0.00150cm(STP)/(day・mL)である、光電変換素子である。

酸素透過速度比r=v/m (1)
(上記式(1)中、vは下記式(2)で表される前記封止部の酸素透過速度(cm(STP)/day)を表し、mは前記電解質の量(mL)を表す)

v=d×C×a/w (2)
(上記式(2)中、dは前記封止部の酸素透過係数(cm(STP)・mm/(m・day・atm))を表し、aは前記封止部における酸素の透過面積(m)を表し、Cは前記セル空間の内部における酸素分圧と前記セル空間の外部における酸素分圧との差の絶対値(atm)を表し、wは前記封止部の幅(mm)を表す)
That is, the present invention includes at least one photoelectric conversion cell, wherein the photoelectric conversion cell includes a first electrode substrate, a second electrode substrate facing the first electrode substrate, the first electrode substrate, or the second electrode substrate. It is formed by an oxide semiconductor layer provided on an electrode substrate, a sealing portion for joining the first electrode substrate and the second electrode substrate, and the first electrode substrate, the second electrode substrate, and the sealing portion. The second electrode substrate has a catalyst layer containing a catalyst metal, the electrolyte contains an imidazole compound, and the concentration of the imidazole compound in the electrolyte is 0.2 M or more. It is a photoelectric conversion element having a high value of 2 M or less and an oxygen permeation rate ratio r represented by the following formula (1) of 0.00040 to 0.00150 cm 3 (STP) / (day · mL).

Oxygen permeation rate ratio r = v / m (1)
(In the above formula (1), v represents the oxygen permeation rate (cm 3 (STP) / day) of the sealing portion represented by the following formula (2), and m represents the amount (mL) of the electrolyte. )

v = d × C × a / w (2)
(In the above formula (2), d represents the oxygen permeation coefficient (cm 3 (STP) · mm / (m 2 · day · atm)) of the sealing portion, and a is the oxygen permeation area in the sealing portion. (M 2 ) is represented, C represents the absolute value (atm) of the difference between the oxygen partial pressure inside the cell space and the oxygen partial pressure outside the cell space, and w is the width (mm) of the sealing portion. ) Represents)

本発明の光電変換素子は、高照度下に置かれた場合でも、優れた耐酸素性を有しつつ、優れた耐光性を有することが可能となる。 The photoelectric conversion element of the present invention can have excellent light resistance while having excellent oxygen resistance even when placed under high illuminance.

なお、本発明者らは、本発明の光電変換素子によって上記の効果が得られる理由について以下のように推察している。 The present inventors infer the reason why the above effect can be obtained by the photoelectric conversion element of the present invention as follows.

すなわち、本発明の光電変換素子においては、第2電極基板の触媒層に触媒金属が含まれると、この触媒金属が電解質中に極微量溶解する。この状態で光電変換素子が高照度下に置かれると、第1電極基板で励起された電子が電解質中に溶解した触媒金属を還元して第1電極基板の表面に析出させ、漏れ電流を増加させようとする。このとき、封止部を通して電解質中に侵入する酸素の量が多いと、触媒金属が析出しても、この触媒金属が酸素により酸化されて電解質に溶解し、漏れ電流が流れにくい状態が保持される。しかし、優れた耐酸素性を光電変換素子に付与するために、封止部を通して電解質中に侵入する酸素の量を少なくすると、析出した触媒金属の酸素による電解質への溶解が起こりにくくなり、漏れ電流が流れやすい状態となる。これに対し、電解質中にイミダゾール化合物が含まれると、イミダゾール化合物が触媒金属に吸着し、触媒金属からの漏れ電流が抑制される。このとき、電解質中のイミダゾール化合物の濃度が0.2Mより高く2M以下であると、漏れ電流が効果的に抑制される。こうして、本発明の光電変換素子により上記効果が得られたのではないかと本発明者らは推察している。 That is, in the photoelectric conversion element of the present invention, when the catalyst layer of the second electrode substrate contains the catalyst metal, the catalyst metal is dissolved in the electrolyte in a very small amount. When the photoelectric conversion element is placed under high illuminance in this state, the electrons excited by the first electrode substrate reduce the catalytic metal dissolved in the electrolyte and deposit it on the surface of the first electrode substrate, increasing the leakage current. Try to make it. At this time, if the amount of oxygen that penetrates into the electrolyte through the sealing portion is large, even if the catalyst metal is deposited, the catalyst metal is oxidized by the oxygen and dissolved in the electrolyte, and the state in which the leakage current is difficult to flow is maintained. To. However, if the amount of oxygen that penetrates into the electrolyte through the sealing portion is reduced in order to impart excellent oxygen resistance to the photoelectric conversion element, it becomes difficult for the precipitated catalyst metal to dissolve in the electrolyte due to oxygen, and leakage current occurs. Becomes easy to flow. On the other hand, when the imidazole compound is contained in the electrolyte, the imidazole compound is adsorbed on the catalyst metal and the leakage current from the catalyst metal is suppressed. At this time, if the concentration of the imidazole compound in the electrolyte is higher than 0.2 M and 2 M or less, the leakage current is effectively suppressed. In this way, the present inventors speculate that the above-mentioned effect may have been obtained by the photoelectric conversion element of the present invention.

上記光電変換素子においては、前記イミダゾール化合物がベンゾイミダゾール化合物を含むことが好ましい。 In the photoelectric conversion element, it is preferable that the imidazole compound contains a benzimidazole compound.

この場合、イミダゾール化合物がベンゾイミダゾール化合物以外のイミダゾール化合物を用いる場合に比べて、漏れ電流をより十分に抑制できる。 In this case, the leakage current can be suppressed more sufficiently than when the imidazole compound uses an imidazole compound other than the benzimidazole compound.

なお、本発明において、「cm(STP)」とは、封止部を透過する酸素の体積が標準状態、すなわち、0℃、1atmの条件で測定された体積であることを示す。 In the present invention, "cm 3 (STP)" indicates that the volume of oxygen permeating the sealing portion is the standard state, that is, the volume measured under the conditions of 0 ° C. and 1 atm.

また、本発明において、「封止部における酸素の透過面積」とは、封止部の外周の周長と封止部の高さとの積を言う。ここで、「封止部の外周の周長」とは、「封止部と第1電極基板との界面(以下、「第1界面」と呼ぶ)における封止部の外周の周長」及び「封止部と第2電極基板との界面(以下、「第2界面」と呼ぶ)における封止部の外周の周長」のうち、より短い方の周長を言い、「第1界面における封止部の外周の周長」及び「第2界面における封止部の外周の周長」が同一の長さである場合にはその周長を言う。また、「封止部の高さ」とは、第1界面から第2界面までの距離を言う。 Further, in the present invention, the "oxygen permeation area in the sealing portion" means the product of the peripheral length of the outer circumference of the sealing portion and the height of the sealing portion. Here, the "perimeter of the outer circumference of the sealing portion" means "the circumference of the outer circumference of the sealing portion at the interface between the sealing portion and the first electrode substrate (hereinafter referred to as" first interface ")" and The shorter peripheral length of the "perimeter of the outer circumference of the sealing portion at the interface between the sealing portion and the second electrode substrate (hereinafter referred to as" second interface ")" is referred to as "at the first interface". When the "perimeter of the outer circumference of the sealing portion" and the "perimeter of the outer circumference of the sealing portion at the second interface" are the same length, the circumference is referred to. Further, the "height of the sealing portion" means the distance from the first interface to the second interface.

また本発明において、「封止部の幅」とは、「第1界面における封止部の幅」及び「第2界面における封止部の幅」のうち、より短い方の幅を言い、「第1界面における封止部の幅」及び「第2界面における封止部の幅」が同一の幅である場合にはその幅を言う。 Further, in the present invention, the "width of the sealing portion" refers to the shorter of the "width of the sealing portion at the first interface" and the "width of the sealing portion at the second interface", and is referred to as "the width of the sealing portion". When the "width of the sealing portion at the first interface" and the "width of the sealing portion at the second interface" are the same width, the width is referred to.

本発明によれば、高照度下に置かれた場合でも、優れた耐酸素性を有しつつ、優れた耐光性を有する光電変換素子が提供される。 According to the present invention, there is provided a photoelectric conversion element having excellent light resistance while having excellent oxygen resistance even when placed under high illuminance.

本発明の光電変換素子の実施形態を示す切断面端面図である。It is a cut surface end view which shows the embodiment of the photoelectric conversion element of this invention.

以下、本発明の光電変換素子の実施形態について図1を参照しながら詳細に説明する。図1は、本発明の光電変換素子の実施形態を示す切断面端面図である。 Hereinafter, embodiments of the photoelectric conversion element of the present invention will be described in detail with reference to FIG. FIG. 1 is a cut surface end view showing an embodiment of the photoelectric conversion element of the present invention.

図1に示すように、光電変換素子100は1つの光電変換セル50を備えている。光電変換セル50は、第1電極基板10と、第1電極基板10に対向する第2電極基板20と、第1電極基板10上に設けられる酸化物半導体層13と、酸化物半導体層13に吸着される色素と、第1電極基板10及び第2電極基板20を接合する封止部30と、第1電極基板10、第2電極基板20及び封止部30によって形成されるセル空間に充填される電解質40とを備える。第2電極基板20は、本実施形態では、導電性基板21と、導電性の触媒層22とを有しており、触媒層22は触媒金属を含む。 As shown in FIG. 1, the photoelectric conversion element 100 includes one photoelectric conversion cell 50. The photoelectric conversion cell 50 is formed on the first electrode substrate 10, the second electrode substrate 20 facing the first electrode substrate 10, the oxide semiconductor layer 13 provided on the first electrode substrate 10, and the oxide semiconductor layer 13. The cell space formed by the sealing portion 30 for joining the adsorbed dye, the first electrode substrate 10 and the second electrode substrate 20, and the first electrode substrate 10, the second electrode substrate 20, and the sealing portion 30 is filled. The electrolyte 40 is provided. In the present embodiment, the second electrode substrate 20 has a conductive substrate 21 and a conductive catalyst layer 22, and the catalyst layer 22 contains a catalyst metal.

電解質40はイミダゾール化合物を含み、電解質40中のイミダゾール化合物の濃度は0.2Mより高く2M以下となっている。 The electrolyte 40 contains an imidazole compound, and the concentration of the imidazole compound in the electrolyte 40 is higher than 0.2 M and 2 M or less.

また、光電変換素子100においては、下記式(1)で表される酸素透過速度比rが、0.00040~0.00150cm(STP)/(day・mL)となっている。

酸素透過速度比r=v/m (1)
(上記式(1)中、vは下記式(2)で表される封止部30の酸素透過速度(cm(STP)/day)を表し、mは電解質の量(mL)を表す)

v=d×C×a/w (2)
(上記式(2)中、dは封止部30の酸素透過係数(cm(STP)・mm/(m・day・atm))を表し、aは封止部30における酸素の透過面積(m)を表し、Cはセル空間の内部における酸素分圧とセル空間の外部における酸素分圧との差の絶対値(atm)を表し、wは封止部30の幅(mm)を表す)
Further, in the photoelectric conversion element 100, the oxygen permeation rate ratio r represented by the following formula (1) is 0.00040 to 0.00150 cm 3 (STP) / (day · mL).

Oxygen permeation rate ratio r = v / m (1)
(In the above formula (1), v represents the oxygen permeation rate (cm 3 (STP) / day) of the sealing portion 30 represented by the following formula (2), and m represents the amount of electrolyte (mL)).

v = d × C × a / w (2)
(In the above formula (2), d represents the oxygen permeation coefficient (cm 3 (STP) · mm / (m 2 · day · atm)) of the sealing portion 30, and a is the oxygen permeation area in the sealing portion 30. (M 2 ) is represented, C represents the absolute value (atm) of the difference between the oxygen partial pressure inside the cell space and the oxygen partial pressure outside the cell space, and w represents the width (mm) of the sealing portion 30. show)

この光電変換素子100は、高照度下に置かれた場合でも、優れた耐酸素性を有しつつ、優れた耐光性を有することが可能となる。 The photoelectric conversion element 100 can have excellent light resistance while having excellent oxygen resistance even when placed under high illuminance.

次に、第1電極基板10、第2電極基板20、酸化物半導体層13、封止部30、電解質40及び色素について詳細に説明する。 Next, the first electrode substrate 10, the second electrode substrate 20, the oxide semiconductor layer 13, the sealing portion 30, the electrolyte 40, and the dye will be described in detail.

<第1電極基板>
第1電極基板10は、透明基板11と、透明基板11の上に設けられる電極としての透明導電層12とを備えている(図1参照)。
<First electrode substrate>
The first electrode substrate 10 includes a transparent substrate 11 and a transparent conductive layer 12 as an electrode provided on the transparent substrate 11 (see FIG. 1).

透明基板11を構成する材料は、透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、及び、ポリエーテルスルフォン(PES)などの絶縁材料が挙げられる。透明基板11の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば50μm~40mmの範囲にすればよい。 The material constituting the transparent substrate 11 may be a transparent material, and such transparent materials include, for example, borosilicate glass, soda lime glass, white plate glass, glass such as quartz glass, polyethylene terephthalate (PET), and the like. Insulating materials such as polyethylene naphthalate (PEN), polycarbonate (PC), and polyether sulfone (PES) can be mentioned. The thickness of the transparent substrate 11 is appropriately determined according to the size of the photoelectric conversion element 100, and is not particularly limited, but may be, for example, in the range of 50 μm to 40 mm.

透明導電層12を構成する材料としては、例えばスズ添加酸化インジウム(ITO)、酸化スズ(SnO)、及び、フッ素添加酸化スズ(FTO)などの導電性金属酸化物が挙げられる。透明導電層12は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電層12が単層で構成される場合、透明導電層12は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。透明導電層12の厚さは例えば0.01~2μmの範囲にすればよい。 Examples of the material constituting the transparent conductive layer 12 include conductive metal oxides such as tin-added indium oxide (ITO), tin oxide (SnO 2 ), and fluorine-added tin oxide (FTO). The transparent conductive layer 12 may be a single layer or may be composed of a laminate of a plurality of layers composed of different conductive metal oxides. When the transparent conductive layer 12 is composed of a single layer, the transparent conductive layer 12 is preferably composed of FTO because it has high heat resistance and chemical resistance. The thickness of the transparent conductive layer 12 may be, for example, in the range of 0.01 to 2 μm.

<第2電極基板>
第2電極基板20は、本実施形態では、導電性基板21と、導電性の触媒層22とを備える(図1参照)。
<Second electrode substrate>
In the present embodiment, the second electrode substrate 20 includes a conductive substrate 21 and a conductive catalyst layer 22 (see FIG. 1).

導電性基板21は、例えばチタン、ニッケル、白金、モリブデン、タングステン、アルミニウム、ステンレス等の金属材料で構成される。この場合、導電性基板21は、基板と電極を兼ねることになる。また、導電性基板21は、基板と電極を分けて、上述した絶縁性の透明基板11に電極としてITO、FTO等の導電性酸化物からなる透明導電層を形成した積層体で構成されてもよい。 The conductive substrate 21 is made of a metal material such as titanium, nickel, platinum, molybdenum, tungsten, aluminum, and stainless steel. In this case, the conductive substrate 21 serves both as a substrate and an electrode. Further, the conductive substrate 21 may be composed of a laminate in which the substrate and the electrode are separated and a transparent conductive layer made of a conductive oxide such as ITO or FTO is formed as an electrode on the above-mentioned insulating transparent substrate 11. good.

導電性基板21の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば5μm~4mmとすればよい。 The thickness of the conductive substrate 21 is appropriately determined according to the size of the photoelectric conversion element 100, and is not particularly limited, but may be, for example, 5 μm to 4 mm.

触媒層22は触媒金属を含む。触媒金属としては、例えば白金、金、銀、パラジウム、ロジウムなどが挙げられる。なお、導電性基板21が触媒金属からなる場合には、第2電極基板20は必ずしも触媒層22を有していなくてもよい。この場合、導電性基板21が触媒層22を兼ねることになる。 The catalyst layer 22 contains a catalyst metal. Examples of the catalyst metal include platinum, gold, silver, palladium, rhodium and the like. When the conductive substrate 21 is made of a catalyst metal, the second electrode substrate 20 does not necessarily have to have the catalyst layer 22. In this case, the conductive substrate 21 also serves as the catalyst layer 22.

<酸化物半導体層>
酸化物半導体層13は酸化物半導体粒子で構成されている。酸化物半導体粒子は、例えば酸化チタン(TiO)、酸化ケイ素(SiO)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)、酸化スズ(SnO)又はこれらの2種以上で構成される。
<Oxide semiconductor layer>
The oxide semiconductor layer 13 is composed of oxide semiconductor particles. Oxide semiconductor particles include, for example, titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), strontium titanate (SrTiO 3 ). , Tin oxide (SnO 2 ) or two or more of these.

酸化物半導体層13の厚さは特に制限されるものではないが、通常は2~40μmであり、好ましくは10~30μmである。 The thickness of the oxide semiconductor layer 13 is not particularly limited, but is usually 2 to 40 μm, preferably 10 to 30 μm.

<封止部>
封止部30は、封止部30の厚さ方向に封止部30を見た場合に無端状となっており、内側に開口を有する。開口の形状は、特に制限されるものではなく、開口の形状としては、例えば円形状、及び、四角形などの多角形状が挙げられる。
<Sealing part>
The sealing portion 30 has an endless shape when the sealing portion 30 is viewed in the thickness direction of the sealing portion 30, and has an opening inside. The shape of the opening is not particularly limited, and examples of the shape of the opening include a circular shape and a polygonal shape such as a quadrangle.

封止部30を構成する材料は、特に限定されるものではないが、封止部30を構成する材料としては、例えば変性ポリオレフィン樹脂、ビニルアルコール重合体などの熱可塑性樹脂、及び、紫外線硬化樹脂などの樹脂が挙げられる。変性ポリオレフィン樹脂としては、例えばアイオノマー、無水マレイン酸変性ポリオレフィン、エチレン-ビニル酢酸無水物共重合体、エチレン-メタクリル酸共重合体およびエチレン-ビニルアルコール共重合体などが挙げられる。中でも、無水マレイン酸変性ポリオレフィンが好ましい。この場合、第1電極基板10及び第2電極基板20に対して、より高い接着強度が得られる。 The material constituting the sealing portion 30 is not particularly limited, but the material constituting the sealing portion 30 includes, for example, a modified polyolefin resin, a thermoplastic resin such as a vinyl alcohol polymer, and an ultraviolet curable resin. Resins such as. Examples of the modified polyolefin resin include ionomer, maleic anhydride-modified polyolefin, ethylene-vinylacetic acid anhydride copolymer, ethylene-methacrylate copolymer and ethylene-vinyl alcohol copolymer. Of these, maleic anhydride-modified polyolefin is preferable. In this case, higher adhesive strength can be obtained with respect to the first electrode substrate 10 and the second electrode substrate 20.

封止部30の酸素透過速度vは上記式(2)で表され、特に限定されるものではないが、0.00006~0.00030cm(STP)/dayであることが好ましい。この場合、酸化物半導体層13を第1電極基板10側から平面視した場合の面(発電面)内における出力密度のムラがより生じにくくなる。 The oxygen permeation rate v of the sealing portion 30 is represented by the above formula (2) and is not particularly limited, but is preferably 0.00006 to 0.00030 cm 3 (STP) / day. In this case, unevenness in the output density in the surface (power generation surface) when the oxide semiconductor layer 13 is viewed from the first electrode substrate 10 side in a plan view is less likely to occur.

また、上記式(2)中のCは、セル空間の内部における酸素分圧とセル空間の外部における酸素分圧との差の絶対値である。例えば大気圧下では、通常、セル空間の外部における酸素分圧が0.209atmであり、この酸素分圧は通常、セル空間の内部における酸素分圧よりも十分に大きいため、Cは0.209(atm)と近似できる。なお、セル空間の外部における酸素分圧が変化すれば、Cの値も変化する。 Further, C in the above equation (2) is an absolute value of the difference between the oxygen partial pressure inside the cell space and the oxygen partial pressure outside the cell space. For example, under atmospheric pressure, the oxygen partial pressure outside the cell space is usually 0.209 atm, and this oxygen partial pressure is usually sufficiently larger than the oxygen partial pressure inside the cell space, so that C is 0.209. It can be approximated to (atm). If the oxygen partial pressure outside the cell space changes, the value of C also changes.

また上記式(2)中の酸素透過面積aは、封止部30の高さ(厚さ)と封止部30の外周の周長との積を表す。 Further, the oxygen permeation area a in the above formula (2) represents the product of the height (thickness) of the sealing portion 30 and the peripheral length of the outer periphery of the sealing portion 30.

また上記式(2)中の幅wは、封止部30の幅を表し、封止部30における酸素の透過距離に相当する。 Further, the width w in the above formula (2) represents the width of the sealing portion 30, and corresponds to the permeation distance of oxygen in the sealing portion 30.

上記式(2)中の酸素透過面積aと幅wとの比(a/w)は、特に限定されるものではないが、a/wは0.0012~0.0070であることが好ましい。この場合、封止部30の形状安定性がより向上することにより、光電変換素子100の耐酸素性をより向上させることができる。 The ratio (a / w) of the oxygen permeation area a and the width w in the above formula (2) is not particularly limited, but a / w is preferably 0.0012 to 0.0070. In this case, the oxygen resistance of the photoelectric conversion element 100 can be further improved by further improving the shape stability of the sealing portion 30.

また上記式(2)中の酸素透過係数dは特に限定されるものではないが、0.03~300cm(STP)・mm/(m・day・atm)であることが好ましい。この場合、上記式(2)中の酸素透過係数dが、0.03cm(STP)・mm/(m・day・atm)未満である場合と比べて、封止部30からの酸素透過速度vを極端に小さくせずに済み、酸素透過速度比rを一定範囲(0.00040~0.00150cm(STP)/(day・mL))に収めるために封止部30の幅wを極端に小さくせずに済み、封止部30と第1電極基板10との間、および、封止部30と第2電極基板20との間でより十分な接着強度が得られる。また、上記式(2)中のdが300cm(STP)・mm/(m・day・atm)より大きい場合と比べて、封止部30の酸素透過能をより低減できるため、封止部30からの酸素透過による電解質40の劣化をより十分に抑制できる。その結果、光電変換素子100の耐酸素性がより向上する。 The oxygen permeability coefficient d in the above formula (2) is not particularly limited, but is preferably 0.03 to 300 cm 3 (STP) · mm / (m 2 · day · atm). In this case, oxygen permeation from the sealing portion 30 is compared with the case where the oxygen permeability coefficient d in the above formula (2) is less than 0.03 cm 3 (STP) · mm / (m 2 · day · atm). The width w of the sealing portion 30 is set in order to keep the oxygen permeation rate ratio r within a certain range (0.00040 to 0.00150 cm 3 (STP) / (day · mL)) without making the velocity v extremely small. It is not necessary to make it extremely small, and more sufficient adhesive strength can be obtained between the sealing portion 30 and the first electrode substrate 10 and between the sealing portion 30 and the second electrode substrate 20. Further, the oxygen permeation ability of the sealing portion 30 can be further reduced as compared with the case where d in the above formula (2) is larger than 300 cm 3 (STP) · mm / (m 2 · day · atm), and thus sealed. Deterioration of the electrolyte 40 due to oxygen permeation from the portion 30 can be more sufficiently suppressed. As a result, the oxygen resistance of the photoelectric conversion element 100 is further improved.

上記式(2)中の酸素透過係数dは0.15~300cm(STP)・mm/(m・day・atm)であることがより好ましい。この場合、封止部30を構成する材料をあらかじめ減圧下に置いて、封止部30を構成する材料中に含まれる酸素を除去した材料を用いることができる。これは、酸素透過係数dが0.15cm(STP)・mm/(m・day・atm)以上であると、酸素透過係数dが0.15cm(STP)・mm/(m・day・atm)未満である場合に比べて、減圧下で酸素がより除去しやすくなるためである。このため、酸素透過能をより低減でき、光電変換素子100の耐酸素性の低下をより十分に抑制できる。 The oxygen permeability coefficient d in the above formula (2) is more preferably 0.15 to 300 cm 3 (STP) · mm / (m 2 · day · atm). In this case, the material constituting the sealing portion 30 may be placed under reduced pressure in advance, and a material from which oxygen contained in the material constituting the sealing portion 30 has been removed can be used. This is because when the oxygen permeability coefficient d is 0.15 cm 3 (STP) · mm / (m 2 · day · atm) or more, the oxygen permeability coefficient d is 0.15 cm 3 (STP) · mm / (m 2 ·). This is because oxygen is more easily removed under reduced pressure as compared with the case where it is less than day · atm). Therefore, the oxygen permeation ability can be further reduced, and the deterioration of the oxygen resistance of the photoelectric conversion element 100 can be more sufficiently suppressed.

封止部30の高さは特に制限されるものではないが、60μm以下であることが好ましい。この場合、封止部30の高さが60μmを超える場合に比べて、セル空間の内部に多量の酸素が侵入しにくくなり、光電変換素子100の出力の低下がより十分に抑制され、光電変換素子100がより優れた耐酸素性を有することが可能となる。但し、第1電極基板10及び第2電極基板20に対する封止部30の接着性を考慮すると、封止部30の高さは、8μm以上であることが好ましい。 The height of the sealing portion 30 is not particularly limited, but is preferably 60 μm or less. In this case, as compared with the case where the height of the sealing portion 30 exceeds 60 μm, a large amount of oxygen is less likely to enter the inside of the cell space, the decrease in the output of the photoelectric conversion element 100 is more sufficiently suppressed, and the photoelectric conversion is performed. The element 100 can have better oxygen resistance. However, considering the adhesiveness of the sealing portion 30 to the first electrode substrate 10 and the second electrode substrate 20, the height of the sealing portion 30 is preferably 8 μm or more.

<電解質>
電解質40は酸化還元対と、有機溶媒と、イミダゾール化合物とを含む。
<Electrolyte>
The electrolyte 40 contains a redox pair, an organic solvent, and an imidazole compound.

酸化還元対としては、例えばヨウ化物イオン/ポリヨウ化物イオン(例えばI/I )、臭化物イオン/ポリ臭化物イオンなどのハロゲン原子を含む酸化還元対のほか、亜鉛錯体、鉄錯体、コバルト錯体などのレドックス対が挙げられる。なお、ヨウ化物イオン/ポリヨウ化物イオンは、ヨウ素(I)と、アニオンとしてのアイオダイド(I)を含む塩(イオン性液体や固体塩)とによって形成することができる。アニオンとしてアイオダイドを有するイオン性液体を用いる場合には、ヨウ素のみ添加すればよく、有機溶媒や、アニオンとしてアイオダイド以外のイオン性液体を用いる場合には、LiIやテトラブチルアンモニウムアイオダイドなどのアニオンとしてアイオダイド(I)を含む塩を添加すればよい。 The oxidation-reduction pair includes an oxidation-reduction pair containing a halogen atom such as an iodide ion / polyiodide ion (for example, I / I 3- ) , a bromide ion / poly bromide ion, and a zinc complex, an iron complex, and a cobalt complex. Redox pairs such as. The iodide ion / polyiodide ion can be formed by iodine (I 2 ) and a salt (ionic liquid or solid salt) containing iodide (I ) as an anion. When using an ionic liquid having iodide as an anion, only iodine may be added, and when using an organic solvent or an ionic liquid other than iodide as an anion, as an anion such as LiI or tetrabutylammonium iodide. A salt containing anionide (I ) may be added.

また電解質40は、通常、有機溶媒を含んでいる。電解質40に含まれる有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ-ブチロラクトン、バレロニトリル、ピバロニトリルなどを用いることができる。 Further, the electrolyte 40 usually contains an organic solvent. As the organic solvent contained in the electrolyte 40, acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, valeronitrile, pivalonitrile and the like can be used.

また電解質40は、有機溶媒に代えて、イオン液体を用いてもよい。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば、1-ヘキシル-3-メチルイミダゾリウムアイオダイド、1-エチル-3-プロピルイミダゾリウムアイオダイド、1-エチル-3-メチルイミダゾリウムアイオダイド、1,2-ジメチル-3-プロピルイミダゾリウムアイオダイド、1-ブチル-3-メチルイミダゾリウムアイオダイド、又は、1-メチル-3-プロピルイミダゾリウムアイオダイドが好適に用いられる。 Further, as the electrolyte 40, an ionic liquid may be used instead of the organic solvent. As the ionic liquid, for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, which is a room temperature molten salt that is in a molten state near room temperature is used. Examples of such a room temperature molten salt include 1-hexyl-3-methylimidazolium iodide, 1-ethyl-3-propylimidazolium iodide, 1-ethyl-3-methylimidazolium iodide, 1,2. -Dimethyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide, or 1-methyl-3-propylimidazolium iodide is preferably used.

また電解質40は、上記有機溶媒に代えて、上記イオン液体と上記有機溶媒との混合物を用いてもよい。 Further, as the electrolyte 40, a mixture of the ionic liquid and the organic solvent may be used instead of the organic solvent.

(イミダゾール化合物)
電解質40はイミダゾール化合物を含む。電解質40に含まれるイミダゾール化合物としては、例えばベンゾイミダゾール化合物又は下記(1)式で表されるイミダゾール化合物(以下、「イミダゾール化合物A」と呼ぶ)などを用いることができる。

Figure 0007014656000001
(上記式(1)中、R~Rはそれぞれ独立に、水素原子、炭素数1~4の炭化水素基、-SR又は-ORを表す。R及びRはそれぞれ独立に、水素原子又は脂肪族炭化水素基を表す。) (Imidazole compound)
Electrolyte 40 contains an imidazole compound. As the imidazole compound contained in the electrolyte 40, for example, a benzimidazole compound or an imidazole compound represented by the following formula (1) (hereinafter referred to as “imidazole compound A”) can be used.
Figure 0007014656000001
(In the above formula (1), R 1 to R 4 independently represent a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, -SR 5 or -OR 6 , and R 5 and R 6 are independent of each other. Represents a hydrogen atom or an aliphatic hydrocarbon group.)

ベンゾイミダゾール化合物は、無置換のベンゾイミダゾール化合物でも置換基を有する置換されたベンゾイミダゾール化合物でもよい。上記置換基としては、炭化水素基、ニトリル基、スルフォニル基及びフォスフォニル基などが挙げられる。 The benzimidazole compound may be an unsubstituted benzimidazole compound or a substituted benzimidazole compound having a substituent. Examples of the substituent include a hydrocarbon group, a nitrile group, a sulfonyl group, a phosphonyl group and the like.

ベンゾイミダゾール化合物において、置換基である炭化水素基としては、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基が挙げられるが、漏れ電流をより十分に抑制する観点からは脂肪族炭化水素基が好ましい。脂肪族炭化水素基の炭素数は特に制限されるものではないが、1~4であることが好ましい。脂肪族炭化水素基は、直鎖状又は分岐状のいずれでもよいが、他の分子に対する分子間力がより大きく、漏れ電流を抑制するバリア層をより緻密に形成しやすいという理由から、直鎖状であることが好ましい。さらに脂肪族炭化水素基は、飽和脂肪族炭化水素基でも不飽和炭化水素基でもよいが、電解質40中の酸化還元対と反応しにくいことから飽和脂肪族炭化水素基であることが好ましい。 In the benzoimidazole compound, examples of the hydrocarbon group as a substituent include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group, but fat is used from the viewpoint of more sufficiently suppressing leakage current. Group hydrocarbon groups are preferred. The number of carbon atoms of the aliphatic hydrocarbon group is not particularly limited, but is preferably 1 to 4. The aliphatic hydrocarbon group may be linear or branched, but it is linear because it has a larger intramolecular force against other molecules and it is easier to form a barrier layer that suppresses leakage current more densely. It is preferably in the form of a shape. Further, the aliphatic hydrocarbon group may be a saturated aliphatic hydrocarbon group or an unsaturated hydrocarbon group, but it is preferably a saturated aliphatic hydrocarbon group because it does not easily react with the oxidation-reduction pair in the electrolyte 40.

さらに、置換基である炭化水素基は、ベンゼン環の炭素原子に結合する水素原子を置換するものでも、イミダゾール環に結合する水素原子を置換するものでもよいが、イミダゾール環に結合する水素原子を置換するものであることが好ましい。この場合、置換基である炭化水素基が、ベンゼン環の水素原子を置換するものである場合に比べて、漏れ電流をより十分に抑制することができる。 Further, the hydrocarbon group as a substituent may be one that replaces a hydrogen atom bonded to a carbon atom of a benzene ring or one that replaces a hydrogen atom bonded to an imidazole ring, but a hydrogen atom bonded to the imidazole ring may be used. It is preferable to replace it. In this case, the leakage current can be suppressed more sufficiently than in the case where the hydrocarbon group as the substituent replaces the hydrogen atom of the benzene ring.

ベンゾイミダゾール化合物の具体例としては、例えば1-ブチルベンゾイミダゾール(NBB)、1-メチルベンゾイミダゾ-ル(NMB)、トリメチルベンゾイミダゾール、1-プロピルベンゾイミダゾール及び1,2-ジメチルベンゾイミダゾールなどが挙げられる。これらは1種類を単独で用いても、2種類以上を組み合わせて用いてもよい。 Specific examples of the benzimidazole compound include, for example, 1-butylbenzimidazole (NBB), 1-methylbenzimidazole (NMB), trimethylbenzoimidazole, 1-propylbenzimidazole and 1,2-dimethylbenzimidazole. Will be. These may be used alone or in combination of two or more.

イミダゾール化合物Aは上記式(1)で表される。 The imidazole compound A is represented by the above formula (1).

上記式(1)において、R~Rで表される炭化水素基としては、脂肪族炭化水素基及び芳香族炭化水素基が挙げられる。脂肪族炭化水素基は、直鎖状又は分岐状のいずれでもよい。さらに脂肪族炭化水素基は、飽和脂肪族炭化水素基でも不飽和炭化水素基でもよい。 In the above formula (1), examples of the hydrocarbon group represented by R 1 to R 4 include an aliphatic hydrocarbon group and an aromatic hydrocarbon group. The aliphatic hydrocarbon group may be linear or branched. Further, the aliphatic hydrocarbon group may be a saturated aliphatic hydrocarbon group or an unsaturated hydrocarbon group.

及びRで表される脂肪族炭化水素基の炭素数は、特に制限されるものではないが、例えば1~3である。 The carbon number of the aliphatic hydrocarbon group represented by R5 and R6 is not particularly limited, but is, for example, 1 to 3 .

イミダゾール化合物Aの具体例としては、例えば1-メチルイミダゾール(MI)、イソプロピルイミダゾール(IPI)、ジメチルイミダゾール、エチルメチルイミダゾール、ジメチルプロピルイミダゾール、ブチルメチルイミダゾール、メチルプロピルイミダゾール及びメチルベンゾイミダゾールなどが挙げられる。これらは1種類を単独で用いても、2種類以上を組み合わせて用いてもよい。 Specific examples of the imidazole compound A include 1-methylimidazole (MI), isopropylimidazole (IPI ), dimethylimidazole , ethylmethylimidazole, dimethylpropylimidazole, butylmethylimidazole, methylpropylimidazole and methylbenzoimidazole. Will be. These may be used alone or in combination of two or more.

またイミダゾール化合物は、1種類のイミダゾール化合物で構成されてもよく、複数種類のイミダゾール化合物で構成されてもよい。 Further, the imidazole compound may be composed of one kind of imidazole compound or may be composed of a plurality of kinds of imidazole compounds.

イミダゾール化合物としては、ベンゾイミダゾール化合物が好ましい。この場合、イミダゾール化合物がベンゾイミダゾール化合物以外のイミダゾール化合物である場合に比べて、漏れ電流をより十分に抑制することができる。 As the imidazole compound, a benzimidazole compound is preferable. In this case, the leakage current can be suppressed more sufficiently than in the case where the imidazole compound is an imidazole compound other than the benzimidazole compound.

また、電解質40中のイミダゾール化合物の濃度は0.3~1.8Mであることが好ましい。 The concentration of the imidazole compound in the electrolyte 40 is preferably 0.3 to 1.8 M.

電解質40中のイミダゾール化合物の濃度が上記範囲内にあると、電解質40中のイミダゾール化合物の濃度が上記範囲を外れる場合に比べて、漏れ電流をより十分に抑制できる。 When the concentration of the imidazole compound in the electrolyte 40 is within the above range, the leakage current can be suppressed more sufficiently than when the concentration of the imidazole compound in the electrolyte 40 is outside the above range.

電解質40中のイミダゾール化合物の濃度は0.5~1.65Mであることがさらに好ましい。 The concentration of the imidazole compound in the electrolyte 40 is more preferably 0.5 to 1.65 M.

また電解質40には添加剤を加えることができる。添加剤としては、4-t-ブチルピリジン、グアニジウムチオシアネートなどが挙げられる。 Further, an additive can be added to the electrolyte 40. Examples of the additive include 4-t-butylpyridine, guanidium thiocyanate and the like.

さらに電解質40としては、上記電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化した電解質を用いてもよい。 Further, as the electrolyte 40, a nanocomposite gel electrolyte, which is a pseudo-solid electrolyte obtained by kneading nanoparticles such as SiO 2 , TiO 2 and carbon nanotubes with the above electrolyte to form a gel, may be used, or polyvinylidene fluoride. , An electrolyte gelled with an organic gelling agent such as a polyethylene oxide derivative or an amino acid derivative may be used.

電解質40の量mと封止部30の酸素透過速度vとの比、すなわち、上記式(1)で表される酸素透過速度比rは0.00040~0.00150cm(STP)/(day・mL)である。この場合、上記式(1)で表されるrが上記範囲を外れる場合と比べて、光電変換素子100が、より優れた耐酸素性を有することが可能となる。 The ratio of the amount m of the electrolyte 40 to the oxygen permeation rate v of the sealing portion 30, that is, the oxygen permeation rate ratio r represented by the above formula (1) is 0.00040 to 0.00150 cm 3 (STP) / (day).・ ML). In this case, the photoelectric conversion element 100 can have better oxygen resistance than the case where r represented by the above formula (1) is out of the above range.

上記式(1)のrは0.00005~0.00100cm(STP)/(day・mL)であることが好ましい。この場合、酸化物半導体層13を第1電極基板10側から平面視した場合の面(発電面)内における出力密度のムラがより生じにくくなる。 The r of the above formula (1) is preferably 0.00005 to 0.00100 cm 3 (STP) / (day · mL). In this case, unevenness in the output density in the surface (power generation surface) when the oxide semiconductor layer 13 is viewed from the first electrode substrate 10 side in a plan view is less likely to occur.

<色素>
色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体、ポルフィリン、エオシン、ローダニン、メロシアニンなどの有機色素などの光増感色素や、ハロゲン化鉛系ペロブスカイト結晶などの有機-無機複合色素などが挙げられる。ハロゲン化鉛系ペロブスカイトとしては、例えばCHNHPbX(X=Cl、Br、I)が用いられる。ここで、色素として光増感色素を用いる場合には、光電変換素子100は色素増感光電変換素子となり、光電変換セル50は色素増感光電変換セルとなる。
<Dye>
Examples of the dye include a ruthenium complex having a ligand including a bipyridine structure and a terpyridine structure, a photosensitizing dye such as an organic dye such as porphyrin, eosin, rhodinin, and merocyanin, and an organic dye such as a lead halide perovskite crystal. Examples include inorganic composite dyes. As the lead-halogenated perovskite, for example, CH 3 NH 3 PbX 3 (X = Cl, Br, I) is used. Here, when a photosensitizing dye is used as the dye, the photoelectric conversion element 100 becomes a dye-sensitized electric conversion element, and the photoelectric conversion cell 50 becomes a dye-enhanced photosensitive electric conversion cell.

上記色素の中でも、ビピリジン構造又はターピリジン構造を含む配位子を有するルテニウム錯体からなる光増感色素が好ましい。この場合、光電変換素子100の光電変換特性をより向上させることができる。 Among the above dyes, a photosensitizing dye composed of a ruthenium complex having a bipyridine structure or a ligand containing a terpyridine structure is preferable. In this case, the photoelectric conversion characteristics of the photoelectric conversion element 100 can be further improved.

本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、第1電極基板10が透明基板11を有し、透明基板11上に透明導電層12を介して酸化物半導体層13が設けられているが、酸化物半導体層13が第2電極基板20の導電性基板21上に設けられていてもよい。但し、この場合、触媒層22は第1電極基板10の透明導電層12上に設けられることとなる。 The present invention is not limited to the above embodiment. For example, in the above embodiment, the first electrode substrate 10 has a transparent substrate 11, and the oxide semiconductor layer 13 is provided on the transparent substrate 11 via the transparent conductive layer 12, but the oxide semiconductor layer 13 is the first. It may be provided on the conductive substrate 21 of the two-electrode substrate 20. However, in this case, the catalyst layer 22 is provided on the transparent conductive layer 12 of the first electrode substrate 10.

また、上記実施形態では、光電変換素子100は、1つの光電変換セル50を備えているが、光電変換素子は、光電変換セル50を複数備えていてもよい。 Further, in the above embodiment, the photoelectric conversion element 100 includes one photoelectric conversion cell 50, but the photoelectric conversion element may include a plurality of photoelectric conversion cells 50.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
まず、5.4cm×5.4cmのフィルムに四角形状の開口を形成し、封止部を形成するための封止部形成体を得た。このとき、封止部形成体の構成材料としては、無水マレイン酸変性ポリエチレン(商品名:バイネル4164、デュポン社製、酸素透過係数d:195cm(STP)・mm/(m・day・atm))を用いた。
(Example 1)
First, a quadrangular opening was formed in a film of 5.4 cm × 5.4 cm to obtain a sealing portion forming body for forming a sealing portion. At this time, the constituent material of the sealing portion forming body is maleic anhydride-modified polyethylene (trade name: Binel 4164, manufactured by DuPont, oxygen permeability coefficient d: 195 cm 3 (STP) · mm / (m 2 · day · atm). )) Was used.

次に、ガラスからなる10cm×10cm×2.2mmの透明基板の上に、0.6μmのFTOからなる透明導電層を形成してなる積層体を準備した。 Next, a laminate formed by forming a transparent conductive layer made of 0.6 μm FTO on a transparent substrate of 10 cm × 10 cm × 2.2 mm made of glass was prepared.

次に、透明導電層の上に、酸化物半導体層の前駆体を形成した。酸化物半導体層の前駆体は、透明導電層上に酸化チタンナノペーストを印刷した後、460℃で90分間加熱して焼成することにより5cm×5cm×厚さ10μmの四角形状の酸化チタン多孔質膜からなる酸化物半導体層を得た。こうして構造体を得た。 Next, a precursor of the oxide semiconductor layer was formed on the transparent conductive layer. The precursor of the oxide semiconductor layer is a rectangular titanium oxide porous film having a thickness of 5 cm × 5 cm × 10 μm by printing titanium oxide nanopaste on a transparent conductive layer and then heating and firing at 460 ° C. for 90 minutes. An oxide semiconductor layer made of the above was obtained. In this way, the structure was obtained.

一方、t-ブタノールとアセトニトリルとの混合溶媒にZ907からなる光増感色素を溶解させて色素溶液を得た。 On the other hand, a photosensitizing dye made of Z907 was dissolved in a mixed solvent of t-butanol and acetonitrile to obtain a dye solution.

そして、上記のようにして得られた構造体を上記色素溶液中に一晩浸漬することにより、酸化物半導体層の表面に光増感色素を吸着させた。そして、透明導電層上に酸化物半導体層を包囲するように、上記のようにして用意した封止部形成体を配置した。 Then, the structure obtained as described above was immersed in the dye solution overnight to adsorb the photosensitizing dye on the surface of the oxide semiconductor layer. Then, the sealing portion forming body prepared as described above was arranged on the transparent conductive layer so as to surround the oxide semiconductor layer.

次に、酸化物半導体層上に電解質を0.15mL滴下した。電解質は、アルゴン雰囲気下、3-メトキシプロピオニトリルからなる溶媒中に、ヨウ素と、1,2-ジメチル-3-プロピルイミダゾリウムアイオダイドと、1-ブチルベンゾイミダゾール(NBB)とを添加することにより得た。このとき、電解質中のヨウ素、1,2-ジメチル-3-プロピルイミダゾリウムアイオダイド及びNBBの濃度がそれぞれ0.01M、0.6M、0.25Mとなるようにした。 Next, 0.15 mL of the electrolyte was added dropwise onto the oxide semiconductor layer. As the electrolyte, iodine, 1,2-dimethyl-3-propylimidazolium iodide, and 1-butylbenzimidazole (NBB) are added to a solvent composed of 3-methoxypropionitrile under an argon atmosphere. Obtained by. At this time, the concentrations of iodine, 1,2-dimethyl-3-propylimidazolium iodide and NBB in the electrolyte were set to 0.01M, 0.6M and 0.25M, respectively.

一方、厚さ0.04mmのチタン箔上に白金を、その厚さが5nmとなるようにスパッタして得られる対向基板であって5.4cm×5.4cm×0.04mmの第2電極基板を用意した。このとき、チタン箔の表面において、封止部を形成する予定の周縁部には、触媒層が成膜されないようにマスキングを施した。そして、第2電極基板のチタン箔のうち触媒層が成膜されていない周縁部に、上記のようにして得られた封止部形成体を配置し、熱ラミネート法によって接着させた。こうして、封止部形成体を形成した第2電極基板を用意した。 On the other hand, it is a facing substrate obtained by sputtering platinum on a titanium foil having a thickness of 0.04 mm so as to have a thickness of 5 nm, and is a second electrode substrate having a thickness of 5.4 cm × 5.4 cm × 0.04 mm. I prepared. At this time, on the surface of the titanium foil, the peripheral edge portion where the sealing portion was to be formed was masked so that the catalyst layer was not formed. Then, the sealing portion forming body obtained as described above was placed on the peripheral portion of the titanium foil of the second electrode substrate on which the catalyst layer was not formed, and bonded by the thermal laminating method. In this way, the second electrode substrate on which the sealing portion forming body was formed was prepared.

そして、封止部形成体を形成した第2電極基板を、封止部形成体を介して上記構造体に対向するように配置し、封止形成体を190℃で加熱しながらプレスして透明導電層と第2電極基板とを接着させた。このとき、封止部形成体に十分な応力をかけることにより、厚さ(高さ)0.0050cm(50μm)、幅2mmの封止部を得た。ここで、封止部の外周長を21cmとし、封止部の厚さ(高さ)を0.0050cm(50μm)とすることにより、封止部の高さと封止部の外周の周長との積である酸素透過面積aを0.105×10-4とした。こうして光電変換素子を得た。 Then, the second electrode substrate on which the sealing portion forming body is formed is arranged so as to face the above structure via the sealing portion forming body, and the sealing forming body is pressed while heating at 190 ° C. to be transparent. The conductive layer and the second electrode substrate were adhered to each other. At this time, by applying sufficient stress to the sealing portion forming body, a sealing portion having a thickness (height) of 0.0050 cm (50 μm) and a width of 2 mm was obtained. Here, by setting the outer peripheral length of the sealing portion to 21 cm and the thickness (height) of the sealing portion to 0.0050 cm (50 μm), the height of the sealed portion and the peripheral length of the outer circumference of the sealed portion are set. The oxygen permeation area a, which is the product of the above, was 0.105 × 10 -4 m 2 . In this way, a photoelectric conversion element was obtained.

上記のようにして得られた光電変換素子について、下記式(1)で表される電解質の量m(mL)と封止部の酸素透過速度v(cm(STP)/day)との比である酸素透過速度比r(cm(STP)/(day・mL))、及び、下記式(2)で表される酸素透過速度v(cm(STP)/day)を求めた。結果を表1に示す。なお、式(2)中、Cの値としては、セル空間の外部における酸素分圧が0.209atmであり、セル空間の内部における酸素分圧が約0atmであるため、0.209(atm)を用いた。

酸素透過速度比r=v/m (1)
(上記式(1)中、vは下記式(2)で表される封止部の酸素透過速度(cm(STP)/day)を表し、mは電解質の量(mL)を表す)

v=d×C×a/w (2)
(上記式(2)中、dは封止部の酸素透過係数(cm(STP)・mm/(m・day・atm))を表し、aは封止部における酸素の透過面積(m)を表し、Cはセル空間の内部における酸素分圧とセル空間の外部における酸素分圧との差の絶対値(atm)を表し、wは封止部の幅(mm)を表す)
For the photoelectric conversion element obtained as described above, the ratio of the amount m (mL) of the electrolyte represented by the following formula (1) to the oxygen permeation rate v (cm 3 (STP) / day) of the sealing portion. The oxygen permeation rate ratio r (cm 3 (STP) / (day · mL)) and the oxygen permeation rate v (cm 3 (STP) / day) represented by the following formula (2) were determined. The results are shown in Table 1. In the formula (2), the value of C is 0.209 (atm) because the oxygen partial pressure outside the cell space is 0.209 atm and the oxygen partial pressure inside the cell space is about 0 atm. Was used.

Oxygen permeation rate ratio r = v / m (1)
(In the above formula (1), v represents the oxygen permeation rate (cm 3 (STP) / day) of the sealed portion represented by the following formula (2), and m represents the amount of electrolyte (mL)).

v = d × C × a / w (2)
(In the above formula (2), d represents the oxygen permeation coefficient of the sealing portion (cm 3 (STP) · mm / (m 2 · day · atm)), and a represents the oxygen permeation area (m) in the sealing portion. 2 ), C represents the absolute value (atm) of the difference between the oxygen partial pressure inside the cell space and the oxygen partial pressure outside the cell space, and w represents the width (mm) of the sealing portion).

(実施例2~4及び比較例1~4)
電解質中のイミダゾール化合物濃度、電解質量m、封止部の酸素透過係数d、高さh、外周長、高さh×外周長、酸素透過面積a、幅w、大気中の酸素分圧p、酸素透過速度v、及び酸素透過速度比rを表1に示す通りとしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Examples 2 to 4 and Comparative Examples 1 to 4)
Imidazole compound concentration in electrolyte, electrolytic mass m, oxygen permeation coefficient d of sealing part, height h, outer circumference length, height h × outer circumference length, oxygen permeation area a, width w, oxygen partial pressure p in the atmosphere, A photoelectric conversion element was produced in the same manner as in Example 1 except that the oxygen permeation rate v and the oxygen permeation rate ratio r were as shown in Table 1.

<耐光性>
上記のようにして得られた実施例1~4及び比較例1~4の光電変換素子について、作製直後に1sunの擬似太陽光を10時間照射した後、直ちに200ルクスの白色光を照射した状態でI-V測定を行い、出力値を算出した。そして、実施例1~4及び比較例1~4の出力値を、比較例1の出力値を100とした相対値である出力比R1として算出した。この出力比R1を耐光性の指標とした。結果を表1に示す。なお、比較例1の出力値を100(基準)としたのは、電解質中のベンゾイミダゾール化合物の濃度が低いほど耐光性が低いと考えられるところ、比較例1における電解質中のベンゾイミダゾール化合物の濃度が実施例1~4及び比較例1~4のうち最低であるからである。また、IV測定に用いた光源、照度計および電源は以下の通りとした。

光源:白色LED(製品名「LEL-SL5N-F」、東芝ライテック社製)
照度計:製品名「デジタル照度計51013」、横河メータ&インスツルメンツ社製
電源:電圧/電流 発生器(製品名「R6246I」、ADVANTEST製)

耐光性の合格基準は以下の通りとした。
(合格基準)出力比R1が100より大きいこと
<Light resistance>
The photoelectric conversion elements of Examples 1 to 4 and Comparative Examples 1 to 4 obtained as described above were irradiated with 1 sun of pseudo-sunlight for 10 hours immediately after production, and then immediately irradiated with 200 lux of white light. The IV measurement was performed in 1 and the output value was calculated. Then, the output values of Examples 1 to 4 and Comparative Examples 1 to 4 were calculated as an output ratio R1 which is a relative value with the output value of Comparative Example 1 as 100. This output ratio R1 was used as an index of light resistance. The results are shown in Table 1. The output value of Comparative Example 1 was set to 100 (reference) because it is considered that the lower the concentration of the benzimidazole compound in the electrolyte, the lower the light resistance. Therefore, the concentration of the benzimidazole compound in the electrolyte in Comparative Example 1 is considered to be lower. Is the lowest among Examples 1 to 4 and Comparative Examples 1 to 4. The light source, illuminance meter, and power supply used for IV measurement are as follows.

Light source: White LED (product name "LEL-SL5N-F", manufactured by Toshiba Lighting & Technology Corporation)
Illuminance meter: Product name "Digital Illuminance Meter 51013", Yokogawa Meter & Instruments Power Supply: Voltage / Current Generator (Product name "R6246I", ADVANTEST)

The acceptance criteria for light resistance are as follows.
(Pass criteria) Output ratio R1 is larger than 100

<耐酸素性>
上記実施例1~4及び比較例1~4の光電変換素子を別途用意し、これらの光電変換素子について、乾燥空気中の85℃のオーブンで1000時間加熱した後、20℃の暗所に24時間静置し、続いて、200ルクスの白色光を照射した状態でI-V測定を行い、出力値を算出した。そして、実施例1~4及び比較例1~4の出力値を、比較例2の出力値を100とした相対値である出力比R2として算出した。この出力比R2を耐酸素性の指標とした。結果を表1に示す。なお、比較例2の出力値を100(基準)としたのは、封止部の酸素透過速度比rが大きいほど耐酸素性が低いところ、比較例2における酸素透過速度比rが実施例1~4及び比較例1~4のうち最大であるからである。また、IV測定に用いた光源、照度計および電源としては、出力比R1の測定に用いたときの光源、照度計および電源と同じものを使用した。また、表1中、「-」は、封止部に剥がれが発生したため、出力を算出できなかったことを示す。

耐酸素性の合格基準は以下の通りとした。
(合格基準)出力比R2が100より大きいか、又は「-」でないこと


Figure 0007014656000002
<Oxygen resistance>
The photoelectric conversion elements of Examples 1 to 4 and Comparative Examples 1 to 4 are separately prepared, and these photoelectric conversion elements are heated in an oven at 85 ° C. in dry air for 1000 hours and then placed in a dark place at 20 ° C. 24. After allowing to stand for a while, IV measurement was performed in a state of irradiating with white light of 200 lux, and an output value was calculated. Then, the output values of Examples 1 to 4 and Comparative Examples 1 to 4 were calculated as an output ratio R2 which is a relative value with the output value of Comparative Example 2 as 100. This output ratio R2 was used as an index of oxygen resistance. The results are shown in Table 1. The output value of Comparative Example 2 was set to 100 (reference) because the larger the oxygen permeation rate ratio r of the sealed portion, the lower the oxygen resistance, and the oxygen permeation rate ratio r in Comparative Example 2 was from Example 1 to Example 1. This is because it is the largest of 4 and Comparative Examples 1 to 4. Further, as the light source, the illuminance meter and the power source used for the IV measurement, the same light source, the illuminance meter and the power source as those used for the measurement of the output ratio R1 were used. Further, in Table 1, "-" indicates that the output could not be calculated because the sealing portion was peeled off.

The acceptance criteria for oxygen resistance are as follows.
(Pass criteria) Output ratio R2 is greater than 100 or not "-"


Figure 0007014656000002

表1に示すように、実施例1~4の光電変換素子は、耐酸素性及び耐光性の点で合格基準を満たすことが分かった。これに対し、比較例1~4の光電変換素子は、耐酸素性及び耐光性の少なくとも1つの点で合格基準を満たさないことが分かった。 As shown in Table 1, it was found that the photoelectric conversion elements of Examples 1 to 4 satisfy the acceptance criteria in terms of oxygen resistance and light resistance. On the other hand, it was found that the photoelectric conversion elements of Comparative Examples 1 to 4 did not satisfy the acceptance criteria in at least one of oxygen resistance and light resistance.

以上の結果から、本発明の光電変換素子は、高照度下に置かれた場合でも、優れた耐酸素性を有しつつ、優れた耐光性を有することが確認された。 From the above results, it was confirmed that the photoelectric conversion element of the present invention has excellent light resistance while having excellent oxygen resistance even when placed under high illuminance.

10…第1電極基板
13…酸化物半導体層
20…第2電極基板
22…触媒層
30…封止部
40…電解質
50…光電変換セル
100…光電変換素子
10 ... 1st electrode substrate 13 ... Oxide semiconductor layer 20 ... 2nd electrode substrate 22 ... Catalyst layer 30 ... Sealing part 40 ... Electrolyte 50 ... Photoelectric conversion cell 100 ... Photoelectric conversion element

Claims (2)

少なくとも1つの光電変換セルを備え、
前記光電変換セルが、
第1電極基板と、
前記第1電極基板に対向する第2電極基板と、
前記第1電極基板又は前記第2電極基板に設けられる酸化物半導体層と、
前記第1電極基板及び前記第2電極基板を接合する封止部と、
前記第1電極基板、前記第2電極基板及び前記封止部によって形成されるセル空間に充填される電解質とを備え、
前記第2電極基板が、触媒金属を含む触媒層を有し、
前記電解質がイミダゾール化合物を含み、
前記電解質中の前記イミダゾール化合物の濃度が0.2Mより高く2M以下であり、
下記式(1)で表される酸素透過速度比rが0.00040~0.00150cm(STP)/(day・mL)である、光電変換素子。

酸素透過速度比r=v/m (1)
(上記式(1)中、vは下記式(2)で表される前記封止部の酸素透過速度(cm(STP)/day)を表し、mは前記電解質の量(mL)を表す)

v=d×C×a/w (2)
(上記式(2)中、dは前記封止部の酸素透過係数(cm(STP)・mm/(m・day・atm))を表し、aは前記封止部における酸素の透過面積a(m)を表し、Cは前記セル空間の内部における酸素分圧と前記セル空間の外部における酸素分圧との差の絶対値(atm)を表し、wは前記封止部の幅(mm)を表す)
With at least one photoelectric conversion cell
The photoelectric conversion cell
The first electrode substrate and
The second electrode substrate facing the first electrode substrate and
With the oxide semiconductor layer provided on the first electrode substrate or the second electrode substrate,
A sealing portion for joining the first electrode substrate and the second electrode substrate, and
The first electrode substrate, the second electrode substrate, and the electrolyte filled in the cell space formed by the sealing portion are provided.
The second electrode substrate has a catalyst layer containing a catalyst metal and has a catalyst layer.
The electrolyte contains an imidazole compound and contains
The concentration of the imidazole compound in the electrolyte is higher than 0.2 M and 2 M or less.
A photoelectric conversion element having an oxygen permeation rate ratio r represented by the following formula (1) of 0.00040 to 0.00150 cm 3 (STP) / (day · mL).

Oxygen permeation rate ratio r = v / m (1)
(In the above formula (1), v represents the oxygen permeation rate (cm 3 (STP) / day) of the sealing portion represented by the following formula (2), and m represents the amount (mL) of the electrolyte. )

v = d × C × a / w (2)
(In the above formula (2), d represents the oxygen permeation coefficient (cm 3 (STP) · mm / (m 2 · day · atm)) of the sealing portion, and a is the oxygen permeation area in the sealing portion. It represents a (m 2 ), C represents the absolute value (atm) of the difference between the oxygen partial pressure inside the cell space and the oxygen partial pressure outside the cell space, and w represents the width of the sealing portion (atm). Represents mm)
前記イミダゾール化合物がベンゾイミダゾール化合物を含む、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the imidazole compound contains a benzimidazole compound.
JP2018056721A 2018-03-23 2018-03-23 Photoelectric conversion element Active JP7014656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018056721A JP7014656B2 (en) 2018-03-23 2018-03-23 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018056721A JP7014656B2 (en) 2018-03-23 2018-03-23 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2019169628A JP2019169628A (en) 2019-10-03
JP7014656B2 true JP7014656B2 (en) 2022-02-01

Family

ID=68108494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056721A Active JP7014656B2 (en) 2018-03-23 2018-03-23 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP7014656B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273272A (en) 2003-03-07 2004-09-30 National Institute Of Advanced Industrial & Technology Photoelectric transducer using electrolyte liquid containing benzimidazole group compound, and dye-sensitized solar cell using the same
JP2011100730A (en) 2009-11-05 2011-05-19 Everlight Usa Inc Electrolyte composition for dye-sensitized solar cell, and dye-sensitized solar cell using the same
JP2013054879A (en) 2011-09-02 2013-03-21 Japan Carlit Co Ltd:The Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
WO2015115607A1 (en) 2014-01-30 2015-08-06 株式会社フジクラ Photoelectric conversion element
WO2018012392A1 (en) 2016-07-12 2018-01-18 株式会社フジクラ Photoelectric conversion element
JP2018037654A (en) 2016-08-30 2018-03-08 株式会社フジクラ Photoelectric conversion element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273272A (en) 2003-03-07 2004-09-30 National Institute Of Advanced Industrial & Technology Photoelectric transducer using electrolyte liquid containing benzimidazole group compound, and dye-sensitized solar cell using the same
JP2011100730A (en) 2009-11-05 2011-05-19 Everlight Usa Inc Electrolyte composition for dye-sensitized solar cell, and dye-sensitized solar cell using the same
JP2013054879A (en) 2011-09-02 2013-03-21 Japan Carlit Co Ltd:The Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
WO2015115607A1 (en) 2014-01-30 2015-08-06 株式会社フジクラ Photoelectric conversion element
WO2018012392A1 (en) 2016-07-12 2018-01-18 株式会社フジクラ Photoelectric conversion element
JP2018037654A (en) 2016-08-30 2018-03-08 株式会社フジクラ Photoelectric conversion element

Also Published As

Publication number Publication date
JP2019169628A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6263242B1 (en) Photoelectric conversion element
WO2018012392A1 (en) Photoelectric conversion element
JP7014656B2 (en) Photoelectric conversion element
JP6863858B2 (en) Photoelectric conversion element
JP2019192839A (en) Photoelectric conversion element
JP5969844B2 (en) Dye-sensitized solar cell and method for producing the same
JP6598710B2 (en) Input device
US10580586B2 (en) Dye-sensitized photoelectric conversion element
JP2016086032A (en) Manufacturing method of dye-sensitized photoelectric conversion element
JP6215651B2 (en) Electrode and dye-sensitized solar cell having the same
WO2017047614A1 (en) Dye-sensitized photoelectric conversion element
WO2016076161A1 (en) Electrolyte for dye-sensitized photoelectric conversion elements for low luminance, and dye-sensitized photoelectric conversion element for low luminance using same
JP6718322B2 (en) Photoelectric conversion element
JP6576784B2 (en) Electrolyte for photoelectric conversion element and photoelectric conversion element using the same
JP6539081B2 (en) Photoelectric conversion element
US10692658B2 (en) Photoelectric conversion element
JP5905619B1 (en) Method for producing dye-sensitized photoelectric conversion element
JP6076539B2 (en) Electrolyte for dye-sensitized solar cell element, and dye-sensitized solar cell element using the same
JP6584883B2 (en) Electrolyte for dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element using the same
JP5791770B1 (en) Electrolyte for dye-sensitized solar cell element, and dye-sensitized solar cell element using the same
JP2020205348A (en) Electrolyte for photoelectric conversion element, photoelectric conversion element arranged by use thereof, and electrode structure for photoelectric conversion element
JP2014199786A (en) Electrolyte for dye-sensitized solar cell, method of manufacturing the same, and dye-sensitized solar cell
EP3226272A1 (en) Photoelectric conversion element
JP2018037555A (en) Method for manufacturing photoelectric conversion element
JP2019121669A (en) Photoelectric conversion element using dye, and electronic device using same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120