JP2018037553A - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
JP2018037553A
JP2018037553A JP2016170258A JP2016170258A JP2018037553A JP 2018037553 A JP2018037553 A JP 2018037553A JP 2016170258 A JP2016170258 A JP 2016170258A JP 2016170258 A JP2016170258 A JP 2016170258A JP 2018037553 A JP2018037553 A JP 2018037553A
Authority
JP
Japan
Prior art keywords
semiconductor layer
oxide semiconductor
photoelectric conversion
conversion element
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016170258A
Other languages
Japanese (ja)
Inventor
健治 勝亦
Kenji Katsumata
健治 勝亦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2016170258A priority Critical patent/JP2018037553A/en
Publication of JP2018037553A publication Critical patent/JP2018037553A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion element having superior durability.SOLUTION: A photoelectric conversion element comprises at least one photoelectric conversion cell. The at least one photoelectric conversion cell includes: an electrode substrate; a counter substrate opposed to the electrode substrate; an oxide semiconductor layer provided on the electrode substrate; a pigment adsorbed by the oxide semiconductor layer; an annular sealing part bonding the electrode substrate and the counter substrate to each other and surrounding the oxide semiconductor layer; and an electrolyte filling a cell space formed by the electrode substrate, the counter substrate and the sealing part. The oxide semiconductor layer has an inside portion and an annular outside portion surrounding the inside portion as in plan view of the oxide semiconductor layer from a thickness direction thereof. In plan view of the oxide semiconductor layer from the thickness direction thereof, an adsorption amount of the pigment per unit area in the outside portion is larger than an adsorption amount of the pigment per unit area in the inside portion.SELECTED DRAWING: Figure 2

Description

本発明は、光電変換素子に関する。   The present invention relates to a photoelectric conversion element.

光電変換素子として、安価で、高い光電変換効率が得られることから、色素を用いた光電変換素子が注目されており、色素を用いた光電変換素子に関して種々の開発が行われている。   As a photoelectric conversion element, since it is inexpensive and high photoelectric conversion efficiency is obtained, a photoelectric conversion element using a dye has been attracting attention, and various developments have been made on photoelectric conversion elements using a dye.

このような色素を用いた光電変換素子として、例えば下記特許文献1の色素増感光電変換素子が知られている。下記特許文献1には、第1電極と、第1電極に対向する第2電極と、第1電極上に設けられる酸化物半導体層と、第1電極及び第2電極の間に設けられる電解質とを備え、酸化物半導体層が、第1電極上で第2電極の接近部に対向する内側部分と、内側部分の周囲に設けられ、前記第2電極の前記接続部に対向する環状の外側部分とを有する色素増感光電変換素子が開示されている。   As a photoelectric conversion element using such a dye, for example, a dye-sensitized photoelectric conversion element disclosed in Patent Document 1 below is known. In the following Patent Document 1, a first electrode, a second electrode facing the first electrode, an oxide semiconductor layer provided on the first electrode, an electrolyte provided between the first electrode and the second electrode, An oxide semiconductor layer on the first electrode, the inner part facing the approaching part of the second electrode, and the annular outer part facing the connection part of the second electrode provided around the inner part A dye-sensitized photoelectric conversion element having the following formulas is disclosed.

特許第5839748号Japanese Patent No. 5893748

しかし、上述した特許文献1に記載の光電変換素子は、耐久性の点で改善の余地を有していた。   However, the photoelectric conversion element described in Patent Document 1 described above has room for improvement in terms of durability.

本発明は上記事情に鑑みてなされたものであり、優れた耐久性を有する光電変換素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a photoelectric conversion element having excellent durability.

本発明者は、上記特許文献1記載の色素増感光電変換素子において上記課題が生じる原因について検討した。その結果、上記特許文献1記載の色素増感光電変換素子では、封止部を経て酸化物半導体層に侵入する水分によって色素が酸化物半導体層から脱離し、この色素の脱離が、酸化物半導体層の内側よりも外側で特に起こりやすく、このことが光電変換素子の耐久性の低下につながっているのではないかと本発明者は考えた。そこで、本発明者はさらに鋭意検討を行った結果、下記発明によって上記課題を解決し得ることを見出した。   The inventor examined the cause of the above problem in the dye-sensitized photoelectric conversion element described in Patent Document 1. As a result, in the dye-sensitized photoelectric conversion element described in Patent Document 1, the dye is desorbed from the oxide semiconductor layer by moisture entering the oxide semiconductor layer through the sealing portion, and the desorption of the dye is the oxide. The present inventor thought that it is particularly likely to occur outside the inside of the semiconductor layer, and this may lead to a decrease in durability of the photoelectric conversion element. Therefore, as a result of further intensive studies, the present inventor has found that the above-described problems can be solved by the following invention.

すなわち、本発明は、少なくとも1つの光電変換セルを備え、前記光電変換セルが、電極基板と、前記電極基板に対向する対向基板と、前記電極基板上に設けられる酸化物半導体層と、前記酸化物半導体層に吸着される色素と、前記電極基板及び前記対向基板を接合し、前記酸化物半導体層を包囲する環状の封止部と、前記電極基板、前記対向基板及び前記封止部によって形成されるセル空間に充填される電解質とを備え、前記酸化物半導体層が、前記酸化物半導体層の厚さ方向に平面視した場合に、内側部と、前記内側部を包囲する環状の外側部とを有し、前記酸化物半導体層をその厚さ方向に平面視した場合に、前記外側部における単位面積当たりの前記色素の吸着量が、前記内側部における単位面積当たりの前記色素の吸着量よりも多い、光電変換素子である。   That is, the present invention includes at least one photoelectric conversion cell, and the photoelectric conversion cell includes an electrode substrate, a counter substrate facing the electrode substrate, an oxide semiconductor layer provided on the electrode substrate, and the oxidation Formed by a dye adsorbed on the physical semiconductor layer, an annular sealing portion that joins the electrode substrate and the counter substrate and surrounds the oxide semiconductor layer, and the electrode substrate, the counter substrate, and the sealing portion And an electrolyte that fills the cell space, and when the oxide semiconductor layer is viewed in plan in the thickness direction of the oxide semiconductor layer, an inner portion and an annular outer portion that surrounds the inner portion And the amount of the dye adsorbed per unit area in the outer portion is equal to the amount of the dye adsorbed per unit area in the inner portion when the oxide semiconductor layer is viewed in plan in the thickness direction. More than A photoelectric conversion element.

本発明の光電変換素子によれば、酸化物半導体層を酸化物半導体層の厚さ方向に平面視した場合に、酸化物半導体層の外側部における単位面積当たりの色素の吸着量が内側部における単位面積当たりの色素の吸着量よりも多くなっている。このため、水分の侵入によって外側部において色素の一部が脱離した場合でも、外側部では十分な色素の吸着量が確保されており、光吸収能が低下しにくい。その結果、光電変換素子全体としての出力の低下が十分に抑制される。従って、本発明の光電変換素子は、優れた耐久性を有することが可能となる。   According to the photoelectric conversion element of the present invention, when the oxide semiconductor layer is planarly viewed in the thickness direction of the oxide semiconductor layer, the amount of dye adsorbed per unit area in the outer portion of the oxide semiconductor layer is in the inner portion. It is larger than the amount of dye adsorbed per unit area. For this reason, even when a part of the dye is detached at the outer part due to the intrusion of moisture, a sufficient amount of dye adsorbed is secured at the outer part, and the light absorption ability is unlikely to decrease. As a result, a decrease in output as the entire photoelectric conversion element is sufficiently suppressed. Therefore, the photoelectric conversion element of the present invention can have excellent durability.

上記光電変換素子においては、下記式(1)で表されるRが1.08〜1.75であることが好ましい。

=m/m・・・(1)
(上記式(1)中、mは前記外側部における単位面積当たりの前記色素の吸着量(mol/m)を表し、mは前記内側部における単位面積当たりの前記色素の吸着量(mol/m)を表す。)
In the above photoelectric conversion element, it is preferable R 1 represented by the following formula (1) is from 1.08 to 1.75.

R 1 = m 1 / m 2 (1)
(In the formula (1), m 1 represents the adsorption amount (mol / m 2 ) of the dye per unit area in the outer portion, and m 2 represents the adsorption amount of the dye per unit area in the inner portion ( mol / m 2 ).)

この場合、Rが上記範囲を外れる場合と比べて、光電変換素子がより優れた発電性能とより優れた耐久性とを両立できる。 In this case, as compared with the case where R 1 is outside the above range, the photoelectric conversion element can be both a better durability and better power generation performance.

上記光電変換素子においては、前記外側部が、前記電極基板上に設けられ、前記内側部と同じ厚さを有する本体部と、前記本体部から前記対向基板に向かって突出する突出部とを有し、下記式(2)で表されるRが0.37〜5.51であることが好ましい。

=S/S・・・(2)
(上記式(2)中、Sは前記酸化物半導体層の厚さ方向に平面視した場合における前記外側部の面積(cm)を表し、Sは前記酸化物半導体層の厚さ方向に平面視した場合における前記内側部の面積(cm)を表す。)
In the photoelectric conversion element, the outer portion includes a main body portion provided on the electrode substrate and having the same thickness as the inner portion, and a protruding portion protruding from the main body portion toward the counter substrate. and, R 2 represented by the following formula (2) is preferably a 0.37 to 5.51.

R 2 = S 2 / S 1 (2)
(In the above formula (2), S 1 represents the area (cm 2 ) of the outer portion in plan view in the thickness direction of the oxide semiconductor layer, and S 2 represents the thickness direction of the oxide semiconductor layer. (Indicates the area (cm 2 ) of the inner part in plan view.)

この場合、外側部が突出部を有しない場合と比べて、外側部における単位体積当たりの色素の吸着量、すなわち、外側部における色素の密度が低下するため、色素が効率よく光を吸収できるようになり、光電変換特性がより向上する。また、Rが上記範囲を外れた場合と比べて、光電変換素子がより優れた発電性能とより優れた耐久性とを両立できる。 In this case, the amount of dye adsorbed per unit volume in the outer part, that is, the density of the dye in the outer part, is reduced compared to the case where the outer part does not have a protruding part, so that the dye can absorb light efficiently. Thus, the photoelectric conversion characteristics are further improved. Further, as compared with the case where R 2 is outside the above range, the photoelectric conversion element can be both a better durability and better power generation performance.

上記光電変換素子においては、下記式(3)で表されるRが0.63〜0.95であることが好ましい。

=d/d・・・(3)
(上記式(3)中、dは前記外側部の厚さ(μm)を表し、dは前記内側部の厚さ(μm)を表す。)
In the above photoelectric conversion element, it is preferable R 3 represented by the following formula (3) is 0.63 to 0.95.

R 3 = d 2 / d 1 (3)
(In the above formula (3), d 1 represents the thickness (μm) of the outer portion, and d 2 represents the thickness (μm) of the inner portion.)

この場合、Rが上記範囲を外れた場合と比べて、短絡電流密度の面内ばらつきをより小さくすることができ、照度むらによる光電変換素子の発電特性の変化を十分に抑制できる。 In this case, in-plane variation of the short-circuit current density can be further reduced as compared with the case where R 3 is out of the above range, and the change in the power generation characteristics of the photoelectric conversion element due to uneven illuminance can be sufficiently suppressed.

上記光電変換素子においては、下記式(4)で表されるRが0.17〜2.69であることが好ましい。

=S’/S・・・(4)
(上記式(4)中、S’は前記電極基板と前記酸化物半導体層との界面からの高さH(μm)において、前記外側部の前記突出部を前記界面に平行な平面で切断して得られる環状領域の面積(cm)を表し、前記高さH(μm)は下記式(5)を満たし、Sは前記内側部の面積(cm)を表す。)

H=1/2(d+d)・・・(5)
(上記式(5)中、dは前記酸化物半導体層の厚さ方向に平面視した場合における前記内側部の厚さ(μm)を表す。)
In the above photoelectric conversion element, it is preferable R 4 represented by the following formula (4) is 0.17 to 2.69.

R 4 = S ′ 1 / S 2 (4)
(In the above formula (4), S ′ 1 is a height H (μm) from the interface between the electrode substrate and the oxide semiconductor layer, and the protruding portion of the outer portion is cut along a plane parallel to the interface. and it represents the area of the annular region (cm 2) obtained by the height H ([mu] m) the following formula (5) meet, S 2 represents the area (cm 2) of the inner portion.)

H = 1/2 (d 1 + d 2 ) (5)
(In the above formula (5), d 2 represents the thickness (μm) of the inner portion in plan view in the thickness direction of the oxide semiconductor layer.)

この場合、Rが上記範囲を外れる場合と比べて、短絡電流密度の面内ばらつきをより小さくすることができ、照度むらによる光電変換素子の発電特性の変化を十分に抑制できる。 In this case, in-plane variation of the short-circuit current density can be further reduced as compared with the case where R 4 is out of the above range, and the change in the power generation characteristics of the photoelectric conversion element due to uneven illuminance can be sufficiently suppressed.

上記光電変換素子においては、前記対向基板が、前記封止部と接合する環状部と、前記環状部よりも前記酸化物半導体層に近接する近接部と、前記環状部と前記近接部とを接続する環状の接続部とを備えており、前記外側部及び前記近接部を前記酸化物半導体層の厚さ方向に見た場合に、前記外側部と前記近接部とが重なり合っていることが好ましい。   In the photoelectric conversion element, the counter substrate connects the annular portion that is joined to the sealing portion, the proximity portion that is closer to the oxide semiconductor layer than the annular portion, and the annular portion and the proximity portion. It is preferable that the outer portion and the proximity portion overlap each other when the outer portion and the proximity portion are viewed in the thickness direction of the oxide semiconductor layer.

この場合、外側部及び近接部を酸化物半導体層の厚さ方向に見た場合に、外側部と近接部とが重なり合っていない場合に比べて、より高い短絡電流値を得ることができる。   In this case, when the outer portion and the adjacent portion are viewed in the thickness direction of the oxide semiconductor layer, a higher short-circuit current value can be obtained as compared with the case where the outer portion and the adjacent portion do not overlap.

なお、本発明において、「色素の吸着量」とは、酸化物半導体層の厚さ方向において酸化物半導体層の外側部又は内側部に吸着されている色素の総吸着量を言う。   In the present invention, the “adsorption amount of the dye” refers to the total adsorption amount of the dye adsorbed on the outer side or the inner side of the oxide semiconductor layer in the thickness direction of the oxide semiconductor layer.

また、本発明において、「外側部」は、酸化物半導体層の厚さ方向に平面視した場合に、内側部から酸化物半導体層の周縁部に向かって内側部の厚さが変化し始める環状線より外側の領域、又は、酸化物半導体層の厚さ方向において酸化物半導体層に吸着している色素の量が変化し始める環状線より外側の領域を言う。   In the present invention, the “outer portion” is an annular shape in which the thickness of the inner portion starts to change from the inner portion toward the peripheral portion of the oxide semiconductor layer when viewed in plan in the thickness direction of the oxide semiconductor layer. A region outside the line or a region outside the annular line where the amount of the dye adsorbed on the oxide semiconductor layer starts to change in the thickness direction of the oxide semiconductor layer.

さらに、本発明において、「外側部の厚さ」とは、外側部の厚さが一定でない場合には、外側部の厚さの最大値を言うものとする。   Furthermore, in the present invention, “the thickness of the outer portion” refers to the maximum value of the thickness of the outer portion when the thickness of the outer portion is not constant.

本発明によれば、優れた耐久性を有する光電変換素子が提供される。   According to the present invention, a photoelectric conversion element having excellent durability is provided.

本発明の光電変換素子の一実施形態を示す切断面端面図である。It is a cut surface end view showing one embodiment of a photoelectric conversion element of the present invention. 図1のII−II線に沿った断面図である。It is sectional drawing along the II-II line of FIG. 本発明の光電変換素子の他の実施形態を示す切断面端面図である。It is a cut surface end view which shows other embodiment of the photoelectric conversion element of this invention. 図3のIV−IV線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3.

以下、本発明の光電変換素子の一実施形態について図1及び図2を参照しながら詳細に説明する。図1は、本発明の光電変換素子の一実施形態を示す切断面端面図、図2は、図1のII−II線に沿った断面図である。   Hereinafter, an embodiment of the photoelectric conversion element of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a sectional end view showing one embodiment of the photoelectric conversion element of the present invention, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG.

図1及び2に示すように、光電変換素子100は1つの光電変換セル60を備えている。光電変換セル60は、電極基板10と、電極基板10に対向する対向基板20と、電極基板10上に設けられる酸化物半導体層30と、酸化物半導体層30に吸着される色素と、電極基板10及び対向基板20を接合する環状の封止部40と、電極基板10、対向基板20及び封止部40によって形成されるセル空間に充填される電解質50とを備えている。   As shown in FIGS. 1 and 2, the photoelectric conversion element 100 includes one photoelectric conversion cell 60. The photoelectric conversion cell 60 includes an electrode substrate 10, a counter substrate 20 facing the electrode substrate 10, an oxide semiconductor layer 30 provided on the electrode substrate 10, a dye adsorbed on the oxide semiconductor layer 30, and an electrode substrate. 10 and an annular sealing portion 40 that joins the counter substrate 20, and an electrolyte 50 that fills a cell space formed by the electrode substrate 10, the counter substrate 20, and the sealing portion 40.

酸化物半導体層30は、酸化物半導体層30の厚さ方向Aに平面視した場合に、内側部31と、内側部31を包囲する環状の外側部32とを有している。   The oxide semiconductor layer 30 includes an inner portion 31 and an annular outer portion 32 that surrounds the inner portion 31 when viewed in plan in the thickness direction A of the oxide semiconductor layer 30.

外側部32は、電極基板10上に設けられ、内側部31と同じ厚さを有する本体部32bと、本体部32bから対向基板20に向かって突出する突出部32aとを有する。ここで、外側部32の厚さは、突出部32aの分だけ内側部31の厚さよりも大きくなっている。そのため、酸化物半導体層30をその厚さ方向Aに平面視した場合に、酸化物半導体層30の外側部32における単位面積当たりの色素の吸着量mが、突出部32aに吸着されている色素の分だけ酸化物半導体層30の内側部31における単位面積当たりの色素の吸着量mよりも多くなっている。 The outer portion 32 is provided on the electrode substrate 10, and has a main body portion 32 b having the same thickness as the inner portion 31, and a protruding portion 32 a that protrudes from the main body portion 32 b toward the counter substrate 20. Here, the thickness of the outer portion 32 is larger than the thickness of the inner portion 31 by the amount of the protruding portion 32a. Therefore, when the oxide semiconductor layer 30 is viewed in plan in the thickness direction A, the dye adsorption amount m 1 per unit area in the outer portion 32 of the oxide semiconductor layer 30 is adsorbed by the protruding portion 32a. which is greater than the adsorption m 2 minute only per unit area in the inner portion 31 of the oxide semiconductor layer 30 of a dye.

光電変換素子100によれば、酸化物半導体層30の厚さ方向Aに酸化物半導体層30を平面視した場合に、酸化物半導体層30の外側部32における単位面積当たりの色素の吸着量mが、内側部31における単位面積当たりの色素の吸着量mよりも多くなっている。このため、水分の侵入によって外側部32において色素の一部が脱離した場合でも、外側部32では十分な色素の吸着量が確保されており、光吸収能が低下しにくい。その結果、光電変換素子100全体としての出力の低下が十分に抑制される。従って、光電変換素子100は、優れた耐久性を有することが可能となる。 According to the photoelectric conversion element 100, when the oxide semiconductor layer 30 is viewed in plan in the thickness direction A of the oxide semiconductor layer 30, the amount of dye adsorption m per unit area in the outer portion 32 of the oxide semiconductor layer 30. 1 is larger than the adsorption amount m 2 of the dye per unit area in the inner portion 31. For this reason, even when a part of the dye is detached from the outer portion 32 due to the intrusion of moisture, the outer portion 32 has a sufficient amount of dye adsorbed, and the light absorption ability is unlikely to decrease. As a result, a decrease in output as the entire photoelectric conversion element 100 is sufficiently suppressed. Therefore, the photoelectric conversion element 100 can have excellent durability.

次に、電極基板10、色素、酸化物半導体層30、対向基板20、封止部40及び電解質50について詳細に説明する。   Next, the electrode substrate 10, the dye, the oxide semiconductor layer 30, the counter substrate 20, the sealing portion 40, and the electrolyte 50 will be described in detail.

<電極基板>
電極基板10は、透明基板11と、透明基板11の上に設けられる透明導電層12とを備えている。
<Electrode substrate>
The electrode substrate 10 includes a transparent substrate 11 and a transparent conductive layer 12 provided on the transparent substrate 11.

透明基板11を構成する材料は、例えば透明な材料であればよく、このような透明な材料としては、例えばホウケイ酸ガラス、ソーダライムガラス、白板ガラス、石英ガラスなどのガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、及び、ポリエーテルスルフォン(PES)などの絶縁材料が挙げられる。透明基板11の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.05〜40mmの範囲にすればよい。   The material which comprises the transparent substrate 11 should just be a transparent material, for example, As such a transparent material, glass, such as borosilicate glass, soda lime glass, white plate glass, quartz glass, polyethylene terephthalate (PET), for example Insulating materials such as polyethylene naphthalate (PEN), polycarbonate (PC), and polyethersulfone (PES). The thickness of the transparent substrate 11 is appropriately determined according to the size of the photoelectric conversion element 100 and is not particularly limited, but may be in a range of 0.05 to 40 mm, for example.

透明導電層12を構成する材料としては、例えばスズ添加酸化インジウム(ITO)、酸化スズ(SnO)、及び、フッ素添加酸化スズ(FTO)などの導電性金属酸化物が挙げられる。透明導電層12は、単層でも、異なる導電性金属酸化物で構成される複数の層の積層体で構成されてもよい。透明導電層12が単層で構成される場合、透明導電層12は、高い耐熱性及び耐薬品性を有することから、FTOで構成されることが好ましい。透明導電層12の厚さは例えば0.01〜2μmの範囲にすればよい。 Examples of the material constituting the transparent conductive layer 12 include conductive metal oxides such as tin-added indium oxide (ITO), tin oxide (SnO 2 ), and fluorine-added tin oxide (FTO). The transparent conductive layer 12 may be a single layer or a laminate of a plurality of layers made of different conductive metal oxides. When the transparent conductive layer 12 is composed of a single layer, the transparent conductive layer 12 is preferably composed of FTO because it has high heat resistance and chemical resistance. The thickness of the transparent conductive layer 12 may be in the range of 0.01 to 2 μm, for example.

<色素>
色素としては、例えばビピリジン構造、ターピリジン構造などを含む配位子を有するルテニウム錯体、ポルフィリン、エオシン、ローダミン、メロシアニンなどの有機色素などの光増感色素や、ハロゲン化鉛系ペロブスカイト結晶などの有機−無機複合色素などが挙げられる。ハロゲン化鉛系ペロブスカイトとしては、例えばCHNHPbX(X=Cl、Br、I)が用いられる。ここで、色素として光増感色素を用いる場合には、光電変換素子100は色素増感光電変換素子となり、光電変換セル60は色素増感光電変換セルとなる。
<Dye>
Examples of the dye include a photosensitizing dye such as a ruthenium complex having a ligand containing a bipyridine structure, a terpyridine structure, or the like, an organic dye such as porphyrin, eosin, rhodamine, or merocyanine, and an organic- Examples include inorganic composite dyes. For example, CH 3 NH 3 PbX 3 (X = Cl, Br, I) is used as the lead halide perovskite. Here, when a photosensitizing dye is used as the dye, the photoelectric conversion element 100 is a dye-sensitized photoelectric conversion element, and the photoelectric conversion cell 60 is a dye-sensitized photoelectric conversion cell.

上記色素の中でも、ビピリジン構造又はターピリジン構造を含む配位子を有するルテニウム錯体からなる光増感色素が好ましい。この場合、光電変換素子100の光電変換特性をより向上させることができる。   Among the above dyes, a photosensitizing dye composed of a ruthenium complex having a ligand containing a bipyridine structure or a terpyridine structure is preferable. In this case, the photoelectric conversion characteristics of the photoelectric conversion element 100 can be further improved.

<酸化物半導体層>
酸化物半導体層30は酸化物半導体粒子で構成されている。酸化物半導体粒子は、例えば酸化チタン(TiO)、酸化ケイ素(SiO)、酸化亜鉛(ZnO)、酸化タングステン(WO)、酸化ニオブ(Nb)、チタン酸ストロンチウム(SrTiO)、酸化スズ(SnO)又はこれらの2種以上で構成される。
<Oxide semiconductor layer>
The oxide semiconductor layer 30 is composed of oxide semiconductor particles. Examples of the oxide semiconductor particles include titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), and strontium titanate (SrTiO 3 ). , Tin oxide (SnO 2 ), or two or more thereof.

酸化物半導体層30は、上述した通り、酸化物半導体層30の厚さ方向から平面視した場合に、内側部31と、内側部31を包囲する環状の外側部32とを有している。   As described above, the oxide semiconductor layer 30 includes the inner portion 31 and the annular outer portion 32 surrounding the inner portion 31 when viewed in plan from the thickness direction of the oxide semiconductor layer 30.

ここで、外側部32は、電極基板10上に設けられ、内側部31と同じ厚さを有する本体部32bと、本体部32bから対向基板20に向かって突出する突出部32aとを有する。ここで、外側部32が突出部32aを有している分だけ、外側部32の厚さは、内側部31の厚さよりも大きくなっている。   Here, the outer portion 32 includes a main body portion 32 b provided on the electrode substrate 10 and having the same thickness as the inner portion 31, and a protruding portion 32 a that protrudes from the main body portion 32 b toward the counter substrate 20. Here, the thickness of the outer portion 32 is larger than the thickness of the inner portion 31 by the amount that the outer portion 32 has the protruding portion 32 a.

そして、酸化物半導体層30をその厚さ方向Aに平面視した場合に、酸化物半導体層30の外側部32における単位面積当たりの色素の吸着量mが、酸化物半導体層30の内側部31における単位面積当たりの色素の吸着量mよりも多くなっている。ここで、外側部32における単位面積当たりの色素の吸着量mと、内側部における単位面積当たりの色素の吸着量mとの比、すなわち下記式(1)で表されるRは1より大きければ特に限定されるものではないが、1.08〜1.75であることが好ましい。この場合、Rが上記範囲を外れた場合と比べて、光電変換素子100は、より優れた発電性能とより優れた耐久性とを両立できる。下記式(1)で表されるRの値は、1.32〜1.75であることがより好ましい。

=m/m・・・(1)
(上記式(1)中、mは外側部32における単位面積当たりの色素の吸着量(mol/m)を表し、mは内側部31における単位面積当たりの色素の吸着量(mol/m)を表す。)
When the oxide semiconductor layer 30 is viewed in plan in the thickness direction A, the dye adsorption amount m 1 per unit area in the outer portion 32 of the oxide semiconductor layer 30 is the inner portion of the oxide semiconductor layer 30. The dye adsorption amount m 2 per unit area at 31 is larger. Here, the ratio of the dye adsorption amount m 1 per unit area in the outer portion 32 to the dye adsorption amount m 2 per unit area in the inner portion, that is, R 1 represented by the following formula (1) is 1. Although it will not specifically limit if larger, it is preferable that it is 1.08-1.75. In this case, as compared with the case where R 1 is out of the above range, the photoelectric conversion element 100 can achieve both more excellent power generation performance and more excellent durability. The value of R 1 represented by the following formula (1) is more preferably 1.32 to 1.75.

R 1 = m 1 / m 2 (1)
(In the above formula (1), m 1 represents the amount of dye adsorbed per unit area (mol / m 2 ) in the outer portion 32, and m 2 represents the amount of dye adsorbed per unit area (mol / m in the inner portion 31). m 2 )

酸化物半導体層30の厚さ方向に平面視した場合、酸化物半導体層30の内側部31の面積Sと、酸化物半導体層30の外側部32の面積Sとの比、すなわち下記式(2)で表されるRは特に限定されるものではないが、0.37〜5.51であることが好ましい。この場合、外側部32が突出部32aを有しない場合と比べて、外側部32における単位体積当たりの色素の吸着量、すなわち、外側部32における色素の密度が低下するため、色素が効率よく光を吸収できるようになり、光電変換特性がより向上する。また、Rが上記範囲を外れる場合と比べて、光電変換素子100は、より優れた発電性能とより優れた耐久性とを両立できる。下記式(2)で表されるRは、2.40〜5.51であることがより好ましい。この場合、より少ない色素量で優れた耐久性を得ることができる。

=S/S・・・(2)
(上記式(2)中、Sは酸化物半導体層30の厚さ方向Aに平面視した場合における外側部32の面積(cm)を表し、Sは酸化物半導体層30の厚さ方向Aに平面視した場合における内側部31の面積(cm)を表す。)
When viewed in plan in the thickness direction of the oxide semiconductor layer 30, the oxide and the area S 2 of the inner part 31 of the semiconductor layer 30, the ratio of the area S 1 of the outer portion 32 of the oxide semiconductor layer 30, i.e. the following formula R 2 represented by (2) is not particularly limited, but is preferably 0.37 to 5.51. In this case, the amount of dye adsorbed per unit volume in the outer portion 32, that is, the density of the dye in the outer portion 32, decreases compared to the case where the outer portion 32 does not have the protruding portion 32 a. Can be absorbed, and the photoelectric conversion characteristics are further improved. Further, as compared with the case where R 2 is outside the above range, the photoelectric conversion element 100 can achieve both superior durability and superior power generation performance. R 2 represented by the following formula (2) is more preferably 2.40 to 5.51. In this case, excellent durability can be obtained with a smaller amount of dye.

R 2 = S 2 / S 1 (2)
(In the above formula (2), S 1 represents the area (cm 2 ) of the outer portion 32 in plan view in the thickness direction A of the oxide semiconductor layer 30, and S 2 is the thickness of the oxide semiconductor layer 30. (The area (cm 2 ) of the inner portion 31 when viewed in a plan view in the direction A is shown.)

酸化物半導体層30の内側部31の厚さdと、酸化物半導体層30の外側部32の厚さdとの比、すなわち下記式(3)で表されるRは、1未満であれば特に限定されるものではないが、0.63〜0.95であることが好ましい。この場合、Rが上記範囲を外れる場合と比べて、短絡電流密度の面内ばらつきをより小さくすることができ、照度むらによる光電変換素子100の発電特性の変化を十分に抑制できる。る。Rは0.75〜0.95であることがより好ましい。この場合、より優れた発電性能とより優れた耐久性とを両立できる。

=d/d・・・(3)
(上記式(3)中、dは外側部32の厚さ(μm)を表し、dは内側部31の厚さ(μm)を表す。)
The ratio between the thickness d 2 of the inner portion 31 of the oxide semiconductor layer 30 and the thickness d 1 of the outer portion 32 of the oxide semiconductor layer 30, that is, R 3 represented by the following formula (3) is less than 1. If it is, it will not specifically limit, However, It is preferable that it is 0.63-0.95. In this case, in-plane variation of the short-circuit current density can be further reduced as compared with the case where R 3 is out of the above range, and the change in the power generation characteristics of the photoelectric conversion element 100 due to uneven illuminance can be sufficiently suppressed. The R 3 is more preferably 0.75 to 0.95. In this case, it is possible to achieve both better power generation performance and better durability.

R 3 = d 2 / d 1 (3)
(In the above formula (3), d 1 represents the thickness (μm) of the outer portion 32, and d 2 represents the thickness (μm) of the inner portion 31.)

また、電極基板10と酸化物半導体層30との界面からの高さHにおいて、酸化物半導体層30の外側部32の突出部32aを上記界面に平行な平面で切断して得られる環状領域32cの面積S’と、酸化物半導体層30の厚さ方向Aに平面視した場合における酸化物半導体層30の内側部31の面積Sとの比、すなわち下記式(4)で表されるRは、特に限定されるものではないが、0.17〜2.69であることが好ましい。この場合、Rが上記範囲を外れる場合と比べて、短絡電流密度の面内ばらつきをより小さくすることができ、照度むらによる光電変換素子100の発電特性の変化を十分に抑制できる。

=S’/S・・・(4)
(上記式(4)中、S’は電極基板10と酸化物半導体層30との界面からの高さH(μm)において、外側部32の突出部32aを上記界面に平行な平面で切断して得られる環状領域32cの面積(cm)を表し、高さH(μm)は下記式(5)を満たし、Sは内側部31の面積(cm)を表す。)
H=1/2(d+d)・・・(5)
In addition, at a height H from the interface between the electrode substrate 10 and the oxide semiconductor layer 30, an annular region 32c obtained by cutting the protrusion 32a of the outer portion 32 of the oxide semiconductor layer 30 along a plane parallel to the interface. The area S 1 ′ and the area S 2 of the inner portion 31 of the oxide semiconductor layer 30 when viewed in plan in the thickness direction A of the oxide semiconductor layer 30, that is, expressed by the following formula (4) R 4 is not particularly limited, but is preferably 0.17 to 2.69. In this case, in-plane variation of the short-circuit current density can be further reduced as compared with the case where R 4 is out of the above range, and the change in the power generation characteristics of the photoelectric conversion element 100 due to uneven illuminance can be sufficiently suppressed.

R 4 = S ′ 1 / S 2 (4)
(In the above formula (4), S ′ 1 is a height H (μm) from the interface between the electrode substrate 10 and the oxide semiconductor layer 30, and the protruding portion 32 a of the outer portion 32 is cut along a plane parallel to the interface. The area (cm 2 ) of the annular region 32c obtained in this way is represented, the height H (μm) satisfies the following formula (5), and S 2 represents the area (cm 2 ) of the inner part 31.
H = 1/2 (d 1 + d 2 ) (5)

<対向基板>
対向基板20は、基板と電極を兼ねる導電性基板と、導電性の触媒層とを備える。
<Counter substrate>
The counter substrate 20 includes a conductive substrate serving as a substrate and an electrode, and a conductive catalyst layer.

導電性基板は、例えばチタン、ニッケル、白金、モリブデン、タングステン、アルミニウム、ステンレス等の耐食性の金属材料で構成される。また、導電性基板21は、基板と電極を分けて、上述した絶縁性の透明基板11に電極としてITO、FTO等の導電性酸化物からなる透明導電層を形成した積層体で構成されてもよい。   The conductive substrate is made of a corrosion-resistant metal material such as titanium, nickel, platinum, molybdenum, tungsten, aluminum, and stainless steel. Further, the conductive substrate 21 may be formed of a laminate in which the substrate and the electrode are separated and a transparent conductive layer made of a conductive oxide such as ITO or FTO is formed as an electrode on the insulating transparent substrate 11 described above. Good.

導電性基板の厚さは、光電変換素子100のサイズに応じて適宜決定され、特に限定されるものではないが、例えば0.005〜4mmとすればよい。   The thickness of the conductive substrate is appropriately determined according to the size of the photoelectric conversion element 100 and is not particularly limited, but may be, for example, 0.005 to 4 mm.

触媒層は、白金、炭素系材料又は導電性高分子などから構成される。ここで、炭素系材料としては、カーボンナノチューブが好適に用いられる。なお、対向基板20は、導電性基板が触媒機能を有する場合(例えばカーボンなどを含有する場合)には触媒層を有していなくてもよい。   The catalyst layer is composed of platinum, a carbon-based material, a conductive polymer, or the like. Here, carbon nanotubes are suitably used as the carbon-based material. Note that the counter substrate 20 may not have a catalyst layer when the conductive substrate has a catalytic function (for example, when carbon or the like is contained).

また、上述した通り、対向基板20は、封止部40と接合する環状部20aと、環状部20aよりも酸化物半導体層30に近接する近接部20cと、環状部20aと近接部20cとを接続する環状の接続部20bとを備えており、外側部32及び近接部20cを酸化物半導体層20の厚さ方向Aに見た場合に、外側部32と近接部20cとが重なり合っている。この場合、外側部32及び近接部20cを酸化物半導体層30の厚さ方向Aに見た場合に、外側部32と近接部20cとが重なり合っていない場合に比べて、より高い短絡電流値を得ることができる。   Further, as described above, the counter substrate 20 includes the annular portion 20a joined to the sealing portion 40, the proximity portion 20c closer to the oxide semiconductor layer 30 than the annular portion 20a, and the annular portion 20a and the proximity portion 20c. When the outer side portion 32 and the proximity portion 20c are viewed in the thickness direction A of the oxide semiconductor layer 20, the outer side portion 32 and the proximity portion 20c overlap each other. In this case, when the outer portion 32 and the proximity portion 20c are viewed in the thickness direction A of the oxide semiconductor layer 30, a higher short-circuit current value is obtained as compared with the case where the outer portion 32 and the proximity portion 20c do not overlap. Can be obtained.

<封止部>
封止部40を構成する材料は、特に限定されるものではないが、封止部40を構成する材料としては、例えば変性ポリオレフィン樹脂、ビニルアルコール重合体などの熱可塑性樹脂、及び、紫外線硬化樹脂などの樹脂が挙げられる。変性ポリオレフィン樹脂としては、例えばアイオノマー、無水マレイン酸変性ポリオレフィン、エチレン−ビニル酢酸無水物共重合体、エチレン−メタクリル酸共重合体およびエチレン−ビニルアルコール共重合体などが挙げられる。中でも、封止部40を構成する材料としては、無水マレイン酸変性ポリエチレンが好ましい。この場合、電極基板10及び対向基板20に対してより高い接着強度が得られる。
<Sealing part>
Although the material which comprises the sealing part 40 is not specifically limited, As a material which comprises the sealing part 40, thermoplastic resins, such as modified polyolefin resin and a vinyl alcohol polymer, and ultraviolet curable resin, for example And other resins. Examples of the modified polyolefin resin include ionomer, maleic anhydride-modified polyolefin, ethylene-vinyl acetic anhydride copolymer, ethylene-methacrylic acid copolymer, and ethylene-vinyl alcohol copolymer. Especially, as a material which comprises the sealing part 40, maleic anhydride modified polyethylene is preferable. In this case, higher adhesive strength can be obtained for the electrode substrate 10 and the counter substrate 20.

<電解質>
電解質50は酸化還元対を含んでいる。
<Electrolyte>
The electrolyte 50 includes a redox pair.

酸化還元対としては、ヨウ化物イオン及びポリヨウ化物イオン、臭化物イオン(臭素イオン)及びポリ臭化物イオンなどのレドックス対が挙げられる。なお、ヨウ化物イオン及びポリヨウ化物イオンは、ヨウ素(I)と、アニオンとしてのアイオダイド(I)を含む塩(イオン性液体や固体塩)とによって形成することができる。アニオンとしてアイオダイドを有するイオン性液体を用いる場合には、ヨウ素のみ添加すればよく、有機溶媒や、アニオンとしてアイオダイド以外のイオン性液体を用いる場合には、LiIやテトラブチルアンモニウムアイオダイドなどのアニオンとしてアイオダイド(I)を含む塩を添加すればよい。 Examples of the redox pair include redox pairs such as iodide ion and polyiodide ion, bromide ion (bromine ion), and polybromide ion. The iodide ion and the polyiodide ion can be formed by iodine (I 2 ) and a salt (ionic liquid or solid salt) containing iodide (I ) as an anion. When using an ionic liquid having an iodide as an anion, only iodine should be added. When using an ionic liquid other than an organic solvent or an anion as an anion, an anion such as LiI or tetrabutylammonium iodide is used. A salt containing iodide (I ) may be added.

また電解質50は、通常、有機溶媒を含んでいる。電解質50に含まれる有機溶媒としては、アセトニトリル、メトキシアセトニトリル、メトキシプロピオニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン、バレロニトリル、ピバロニトリルなどを用いることができる。   The electrolyte 50 usually contains an organic solvent. As an organic solvent contained in the electrolyte 50, acetonitrile, methoxyacetonitrile, methoxypropionitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, valeronitrile, pivalonitrile, or the like can be used.

また電解質50は、有機溶媒に代えて、イオン液体を用いてもよい。イオン液体としては、例えばピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩であって、室温付近で溶融状態にある常温溶融塩が用いられる。このような常温溶融塩としては、例えば、1−ヘキシル−3−メチルイミダゾリウムアイオダイド、1−エチル−3−プロピルイミダゾリウムアイオダイド、1−エチル−3−メチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイド、1−ブチル−3−メチルイミダゾリウムアイオダイド、又は、1−メチル−3−プロピルイミダゾリウムアイオダイドが好適に用いられる。   The electrolyte 50 may be an ionic liquid instead of the organic solvent. As the ionic liquid, for example, a known iodine salt such as a pyridinium salt, an imidazolium salt, or a triazolium salt, and a room temperature molten salt that is in a molten state near room temperature is used. Examples of such room temperature molten salts include 1-hexyl-3-methylimidazolium iodide, 1-ethyl-3-propylimidazolium iodide, 1-ethyl-3-methylimidazolium iodide, 1, 2 -Dimethyl-3-propylimidazolium iodide, 1-butyl-3-methylimidazolium iodide, or 1-methyl-3-propylimidazolium iodide is preferably used.

また電解質50は、上記有機溶媒に代えて、上記イオン液体と上記有機溶媒との混合物を用いてもよい。   The electrolyte 50 may be a mixture of the ionic liquid and the organic solvent instead of the organic solvent.

また電解質50には添加剤を加えることができる。添加剤としては、LiI、4−t−ブチルピリジン、グアニジウムチオシアネート、1−メチルベンゾイミダゾール、1−ブチルベンゾイミダゾールなどが挙げられる。   An additive can be added to the electrolyte 50. Examples of the additive include LiI, 4-t-butylpyridine, guanidinium thiocyanate, 1-methylbenzimidazole, 1-butylbenzimidazole and the like.

さらに電解質50としては、上記電解質にSiO、TiO、カーボンナノチューブなどのナノ粒子を混練してゲル様となった擬固体電解質であるナノコンポジットゲル電解質を用いてもよく、また、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などの有機系ゲル化剤を用いてゲル化した電解質を用いてもよい。 Furthermore, as the electrolyte 50, a nanocomposite gel electrolyte which is a pseudo-solid electrolyte obtained by kneading nanoparticles such as SiO 2 , TiO 2 , and carbon nanotubes with the above electrolyte may be used, and polyvinylidene fluoride may be used. Alternatively, an electrolyte gelled with an organic gelling agent such as a polyethylene oxide derivative or an amino acid derivative may be used.

本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、光電変換素子100が1つの光電変換セル60のみを有しているが、光電変換素子は、光電変換セル60を複数備えていてもよい。ここで、複数の光電変換セル60は直列に接続されていてもよいし、並列に接続されていてもよい。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the photoelectric conversion element 100 includes only one photoelectric conversion cell 60, but the photoelectric conversion element may include a plurality of photoelectric conversion cells 60. Here, the plurality of photoelectric conversion cells 60 may be connected in series or may be connected in parallel.

また、上記実施形態では、対向基板20が環状部20aと、近接部20cと、環状部20aと近接部20cとを接続する環状の接続部20bとで構成されているが、対向基板20は環状部20aと、電極基板10との距離が環状部20aと電極基板10との間の距離と同一である内側部分とで構成されていてもよい。すなわち、対向基板20は平板状であってもよい。   Moreover, in the said embodiment, although the opposing board | substrate 20 is comprised by the cyclic | annular part 20a, the proximity part 20c, and the cyclic | annular connection part 20b which connects the cyclic | annular part 20a and the proximity part 20c, the opposing board | substrate 20 is cyclic | annular. The distance between the portion 20a and the electrode substrate 10 may be constituted by an inner portion where the distance between the annular portion 20a and the electrode substrate 10 is the same. That is, the counter substrate 20 may be flat.

さらに上記実施形態では、電極基板10の透明導電層12上に酸化物半導体層30が設けられ、光電変換素子が、電極基板10側から受光が行われる構造を有しているが、対向基板20を構成する導電性基板21として透明基板11に電極としてITO、FTO等の導電性酸化物からなる透明導電層を形成した積層体(透明な材料)を用いる場合には、酸化物半導体層30が設けられる基材として透明基板11に代えて不透明な材料(例えば金属基板)を用い、対向基板20側から受光が行われる構造を有してもよい。さらに、対向基板20を構成する導電性基板21として、透明基板11に電極としてITO、FTO等の導電性酸化物からなる透明導電層を形成した積層体(透明な材料)を用いる場合には、光電変換素子100は、電極基板10からも対向基板20からも受光が行われる構造を有することとなる。   Further, in the above embodiment, the oxide semiconductor layer 30 is provided on the transparent conductive layer 12 of the electrode substrate 10 and the photoelectric conversion element has a structure in which light is received from the electrode substrate 10 side. In the case of using a laminate (transparent material) in which a transparent conductive layer made of a conductive oxide such as ITO or FTO is used as an electrode on the transparent substrate 11 as the conductive substrate 21 constituting the oxide semiconductor layer 30, Instead of the transparent substrate 11, an opaque material (for example, a metal substrate) may be used as the base material to be provided, and light reception may be performed from the counter substrate 20 side. Furthermore, when using the laminated body (transparent material) which formed the transparent conductive layer which consists of conductive oxides, such as ITO and FTO, as the electrode in the transparent substrate 11 as the conductive substrate 21 which comprises the opposing substrate 20, The photoelectric conversion element 100 has a structure in which light is received from both the electrode substrate 10 and the counter substrate 20.

また、上記実施形態では、光電変換素子100は、酸化物半導体層30の外側部32が、突出部32aを有しているが、図3及び4に示す光電変換素子200のように、酸化物半導体層230の外側部232は突出部32aを有していなくてもよい。すなわち、外側部232が本体部32bのみで構成されてもよい。但し、この場合、酸化物半導体層30の外側部232における単位面積当たりの色素の吸着量mが、酸化物半導体層30の内側部31の色素の吸着量mよりも多いことが必要である。 Moreover, in the said embodiment, although the outer side part 32 of the oxide semiconductor layer 30 has the protrusion part 32a in the photoelectric conversion element 100, like the photoelectric conversion element 200 shown in FIG. The outer portion 232 of the semiconductor layer 230 may not have the protruding portion 32a. That is, the outer side part 232 may be comprised only by the main-body part 32b. However, in this case, the dye adsorption amount m 1 per unit area in the outer portion 232 of the oxide semiconductor layer 30 needs to be larger than the dye adsorption amount m 2 in the inner portion 31 of the oxide semiconductor layer 30. is there.

さらに、上記実施形態では、対向基板20が導電性基板21と触媒層22とで構成されているが、対向基板20が絶縁性基板で構成されてもよい。絶縁性基板としては、例えばガラス基板又は樹脂フィルムなどを用いることができる。但し、この場合には、酸化半導体層30,230の上に対極が設けられることになる。ここで、対極としては、対向基板20と同様のものを用いることができる。あるいは、対極は、例えばカーボン等を含む多孔質の単一の層で構成されてもよい。酸化半導体層30,230と対極との間には多孔性絶縁層が設けられる。多孔質絶縁層は、主として電解質50を内部に含浸させるためのものである。このような多孔質絶縁層としては、例えば酸化物の焼成体を用いることができる。なお、多孔質絶縁層は、酸化物半導体層30を囲むように、電極基板10と対極との間に設けられてもよい。   Furthermore, in the said embodiment, although the opposing board | substrate 20 is comprised with the electroconductive board | substrate 21 and the catalyst layer 22, the opposing board | substrate 20 may be comprised with an insulating substrate. As the insulating substrate, for example, a glass substrate or a resin film can be used. However, in this case, a counter electrode is provided on the oxide semiconductor layers 30 and 230. Here, the counter electrode can be the same as the counter substrate 20. Alternatively, the counter electrode may be composed of a single porous layer containing, for example, carbon. A porous insulating layer is provided between the oxide semiconductor layers 30 and 230 and the counter electrode. The porous insulating layer is mainly for impregnating the electrolyte 50 inside. As such a porous insulating layer, for example, an oxide fired body can be used. Note that the porous insulating layer may be provided between the electrode substrate 10 and the counter electrode so as to surround the oxide semiconductor layer 30.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the content of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
まず、ガラスからなる7cm×7cm×2.2mmの透明基板の上に、0.6μmのFTOからなる透明導電層を形成してなる積層体を準備した。
Example 1
First, the laminated body formed by forming the transparent conductive layer which consists of 0.6 micrometer FTO on the transparent substrate which consists of glass 7cm x 7cmx2.2mm was prepared.

次に、透明導電層の上に、厚さ12μmの酸化物半導体層を形成した。酸化物半導体層は、透明導電層上に、酸化チタン粒子(平均粒径21nm)を含むナノ粒子膜形成用酸化チタンペーストを50mm×50mmの正方形状に印刷した後、460℃で90分間加熱して焼成することにより形成した。   Next, an oxide semiconductor layer having a thickness of 12 μm was formed on the transparent conductive layer. The oxide semiconductor layer is formed by printing a titanium oxide paste for forming a nanoparticle film containing titanium oxide particles (average particle size 21 nm) on a transparent conductive layer in a 50 mm × 50 mm square shape, and then heating at 460 ° C. for 90 minutes. It was formed by firing.

次に、上記のようにして形成した酸化物半導体層の上に厚さ3μmの反射層を形成した。反射層は、酸化物半導体層の上に酸化チタンの粗大粒子(平均粒径400nm)を含む反射層形成用酸化チタンペーストを塗布した後に、460℃で90分間加熱して焼成することにより形成した。こうして構造体を得た。   Next, a reflective layer having a thickness of 3 μm was formed on the oxide semiconductor layer formed as described above. The reflective layer was formed by applying a titanium oxide paste for forming a reflective layer containing coarse titanium oxide particles (average particle size 400 nm) on the oxide semiconductor layer, followed by heating and baking at 460 ° C. for 90 minutes. . Thus, a structure was obtained.

一方、Z907色素を、t−ブタノールとアセトニトリルとを1:1の体積比で混合した混合溶媒中に溶解させ、0.5mMの第1色素溶液を準備した。同様に、Z907色素を、t−ブタノールとアセトニトリルとを1:1の体積比で混合した混合溶媒中に溶解させ、0.2mMの第2色素溶液を準備した。   On the other hand, Z907 dye was dissolved in a mixed solvent in which t-butanol and acetonitrile were mixed at a volume ratio of 1: 1 to prepare a 0.5 mM first dye solution. Similarly, Z907 dye was dissolved in a mixed solvent in which t-butanol and acetonitrile were mixed at a volume ratio of 1: 1 to prepare a 0.2 mM second dye solution.

そして、上記のようにして得られた酸化物半導体層の4つの辺のうち一辺から2mm内側までの領域を外側部として0.5mMの第1色素溶液中に3時間浸漬した。そして、この浸漬を酸化物半導体層の4つの辺のうち残りの各辺から2mm内側までの領域に対しても行った。その後、酸化物半導体層全体を0.2mMの第2色素溶液中に一晩浸漬し、色素を吸着させた。   And it immersed in the 0.5 mM 1st pigment | dye solution for 3 hours by using as an outer part the area | region from one side to 2 mm inside among four sides of the oxide semiconductor layer obtained as mentioned above. And this immersion was performed also to the area | region from the remaining each side to 2 mm inside among four sides of an oxide semiconductor layer. Thereafter, the entire oxide semiconductor layer was immersed in a 0.2 mM second dye solution overnight to adsorb the dye.

次に、5.6cm×5.6cm×厚さ100μmのフィルムに四角形状の開口を形成し、厚さ100μm、幅2mmの環状の封止部を得た。封止部の構成材料としては、無水マレイン酸変性ポリエチレン(商品名「バイネル4164」、デュポン社製)を用いた。そして、透明導電層上に、酸化物半導体層を包囲するように、上記のようにして用意した環状の封止部を配置した。   Next, a rectangular opening was formed in a film of 5.6 cm × 5.6 cm × 100 μm thick to obtain an annular sealing portion having a thickness of 100 μm and a width of 2 mm. As a constituent material of the sealing portion, maleic anhydride-modified polyethylene (trade name “Binell 4164”, manufactured by DuPont) was used. And the cyclic | annular sealing part prepared as mentioned above was arrange | positioned so that an oxide semiconductor layer might be surrounded on a transparent conductive layer.

次に、酸化物半導体層上に電解質を滴下した。このとき、電解質としては、3−メトキシプロピオニトリルを溶媒とし、ヨウ素0.002M及び1,3−ジメチルプロピルイミダゾリウムアイオダイド0.6Mとなるように溶解させたものを用いた。   Next, an electrolyte was dropped on the oxide semiconductor layer. At this time, as the electrolyte, a solution in which 3-methoxypropionitrile was used as a solvent and iodine was 0.002M and 1,3-dimethylpropylimidazolium iodide 0.6M was used.

一方、厚さ0.04mmのチタン箔上に白金を、その厚さが0.04nmとなるようにスパッタして得られる対向基板であって7cm×7cm×0.04mmの対向基板を用意した。   On the other hand, a counter substrate of 7 cm × 7 cm × 0.04 mm, which was obtained by sputtering platinum on a 0.04 mm thick titanium foil so as to have a thickness of 0.04 nm, was prepared.

そして、この対向基板を、酸化物半導体層に対向するように配置し、封止部を190℃で加熱しながらプレスして電極基板と対向基板とを接着させた。こうして光電変換素子を得た。   Then, this counter substrate was placed so as to face the oxide semiconductor layer, and the sealing portion was pressed while being heated at 190 ° C. to adhere the electrode substrate and the counter substrate. Thus, a photoelectric conversion element was obtained.

こうして得られた光電変換素子について、酸化物半導体層の外側部における単位面積当たりの色素の吸着量m及び酸化物半導体層の内側部における単位面積当たりの色素の吸着量mを以下のようにして求めた。 With respect to the photoelectric conversion element thus obtained, the adsorption amount m 1 of the dye per unit area in the outer part of the oxide semiconductor layer and the adsorption amount m 2 of the dye per unit area in the inner part of the oxide semiconductor layer are as follows: I asked for it.

すなわち、上記のようにして形成した構造体と同形状の構造体を用意し、酸化物半導体層に上記と同様にして色素を吸着させた後、酸化物半導体層の内側部と外側部が分かれるように電極基板を切断し、外側部の酸化物半導体層に吸着した色素を、水酸化テトラブチルアンモニウムを含むN,N−ジメチルホルムアミドを用いて溶出させ、その溶液に対してUV−Vis吸収スペクトル測定を行うことにより外側部における色素の吸着量Mを求め、Mを、酸化物半導体層を酸化物半導体層の厚さ方向に平面視した場合における外側部の面積Sで除して酸化物半導体層の外側部における単位面積当たりの色素の吸着量m(=M/S)を求めた。同様にして、内側部における色素の吸着量Mを求め、Mを、酸化物半導体層を酸化物半導体層の厚さ方向に平面視した場合における内側部の面積Sで除して酸化物半導体層の内側部における単位面積当たりの色素の吸着量m(=M/S)を求めた。 That is, a structure having the same shape as the structure formed as described above is prepared, and after the dye is adsorbed to the oxide semiconductor layer as described above, the inner portion and the outer portion of the oxide semiconductor layer are separated. The electrode substrate is cut as described above, and the dye adsorbed on the outer oxide semiconductor layer is eluted with N, N-dimethylformamide containing tetrabutylammonium hydroxide, and the UV-Vis absorption spectrum for the solution By measuring the amount of dye adsorption M 1 at the outer part, M 1 is divided by the area S 1 of the outer part when the oxide semiconductor layer is viewed in plan in the thickness direction of the oxide semiconductor layer. The adsorption amount m 1 (= M 1 / S 1 ) of the dye per unit area in the outer part of the oxide semiconductor layer was determined. Similarly, the adsorption amount M 2 of the dye in the inner part is obtained, and M 2 is oxidized by dividing the oxide semiconductor layer by the area S 2 of the inner part when the oxide semiconductor layer is viewed in the thickness direction of the oxide semiconductor layer. The adsorption amount m 2 (= M 2 / S 2 ) of the dye per unit area in the inner part of the physical semiconductor layer was determined.

さらに、光電変換素子について、下記式(1)で表されるR、下記式(2)で表されるR、及び下記式(3)で表されるRについて求めた。結果を表1に示す。

=m/m・・・(1)
(上記式(1)中、mは外側部における単位面積当たりの色素の吸着量(mol/m)を表し、mは内側部における単位面積当たりの色素の吸着量(mol/m)を表す。)

=S/S・・・(2)
(上記式(2)中、Sは酸化物半導体層の厚さ方向に平面視した場合における外側部の面積(cm)を表し、Sは酸化物半導体層の厚さ方向に平面視した場合における内側部の面積(cm)を表す。)

=d/d・・・(3)
(上記式(3)中、dは外側部の厚さ(μm)を表し、dは内側部の厚さ(μm)を表す。)
Furthermore, about the photoelectric conversion element, R 1 represented by the following formula (1), R 2 represented by the following formula (2), and R 3 represented by the following formula (3) were determined. The results are shown in Table 1.

R 1 = m 1 / m 2 (1)
(In the above formula (1), m 1 represents the amount of dye adsorbed per unit area (mol / m 2 ) in the outer part, and m 2 represents the amount of dye adsorbed per unit area in the inner part (mol / m 2). )

R 2 = S 2 / S 1 (2)
(In the above formula (2), S 1 represents the area (cm 2 ) of the outer portion in plan view in the thickness direction of the oxide semiconductor layer, and S 2 in plan view in the thickness direction of the oxide semiconductor layer. Represents the area (cm 2 ) of the inner part in the case of

R 3 = d 2 / d 1 (3)
(In the above formula (3), d 1 represents the thickness (μm) of the outer portion, and d 2 represents the thickness (μm) of the inner portion.)

(実施例2〜16)
第1色素溶液の濃度、及び、第1色素溶液に酸化物半導体層の4つの辺のうち一辺から内側に浸漬する領域およびその浸漬時間を変更することにより、R及びRの値を表1に示す通りに変更したこと以外は実施例1と同様にして光電変換素子を作製した。
(Examples 2 to 16)
By changing the concentration of the first dye solution, and the region of the four sides of the oxide semiconductor layer immersed in the first dye solution from one side to the inside, and the immersion time, the values of R 1 and R 2 are expressed. A photoelectric conversion element was produced in the same manner as in Example 1 except that the change was made as shown in FIG.

(実施例17)
酸化物半導体層の厚さ方向に平面視した場合に、酸化物半導体層の4辺から1mm内側の四角形状の環状線と、酸化物半導体層の4辺から2mm内側の四角形状の環状線との間の環状領域において、厚さ12μmの本体部の上に、外側部の厚さd(厚さdは、環状の領域のピークの高さ)が表2に示す値となるように突出部を設け、R、R、R、R及びHを表2に示す通りにしたこと以外は実施例1と同様にして光電変換素子を作製した。
(Example 17)
When viewed in plan in the thickness direction of the oxide semiconductor layer, a square annular line 1 mm inside from the four sides of the oxide semiconductor layer, and a square annular line 2 mm inside from the four sides of the oxide semiconductor layer In the annular region between, the outer side thickness d 1 (thickness d 1 is the peak height of the annular region) on the main body having a thickness of 12 μm is the value shown in Table 2. A photoelectric conversion element was produced in the same manner as in Example 1 except that a protrusion was provided and R 1 , R 2 , R 3 , R 4 and H were as shown in Table 2.

なお、上記のようにして得られた実施例17の光電変換素子について、Rは下記式に基づいて算出した。

=S’/S・・・(4)
(上記式(4)中、S’は電極基板と酸化物半導体層との界面からの高さH(μm)において、外側部の突出部を上記界面に平行な平面で切断して得られる環状領域の面積(cm)を表し、高さH(μm)は下記式(5)を満たし、Sは内側部の面積(cm)を表す。)

H=1/2(d+d)・・・(5)
In addition, about the photoelectric conversion element of Example 17 obtained as described above, R 4 was calculated based on the following formula.

R 4 = S ′ 1 / S 2 (4)
(In the above formula (4), S ′ 1 is obtained by cutting the protruding portion of the outer portion along a plane parallel to the interface at a height H (μm) from the interface between the electrode substrate and the oxide semiconductor layer. The area (cm 2 ) of the annular region is represented, the height H (μm) satisfies the following formula (5), and S 2 represents the area (cm 2 ) of the inner part.

H = 1/2 (d 1 + d 2 ) (5)

(実施例18〜21)
、R、R、R及びHの値を表2に示す通りに変更したこと以外は実施例17と同様にして光電変換素子を作製した。
(Examples 18 to 21)
A photoelectric conversion element was produced in the same manner as in Example 17 except that the values of d 1 , R 1 , R 3 , R 4 and H were changed as shown in Table 2.

(実施例22)
酸化物半導体層の厚さ方向に平面視した場合に、酸化物半導体層の4辺から1mm内側の四角形状の環状線と、酸化物半導体層の4辺から4mm内側の四角形状の環状線との間の環状領域において、厚さ12μmの本体部の上に、外側部の厚さdが表2に通りとなるように突出部を設け、R、R、R、R及びHの値を表2に示す通りにしたこと以外は実施例17と同様にして光電変換素子を作製した。
(Example 22)
When viewed in plan in the thickness direction of the oxide semiconductor layer, a quadrangular annular line 1 mm inside from the four sides of the oxide semiconductor layer, and a quadrangular annular line inside 4 mm from the four sides of the oxide semiconductor layer In the annular region between, a protrusion is provided on the main body having a thickness of 12 μm so that the thickness d 1 of the outer portion is as shown in Table 2, and R 1 , R 2 , R 3 , R 4 and A photoelectric conversion element was produced in the same manner as in Example 17 except that the value of H was set as shown in Table 2.

(実施例23〜26)
、R、R、R及びHの値を表2に示す通りに変更したこと以外は実施例22と同様にして光電変換素子を作製した。
(Examples 23 to 26)
A photoelectric conversion element was produced in the same manner as in Example 22 except that the values of d 1 , R 1 , R 3 , R 4 and H were changed as shown in Table 2.

(実施例27)
酸化物半導体層の厚さ方向に平面視した場合に、酸化物半導体層の4辺から1mm内側の環状線と、酸化物半導体層の4辺から8mm内側の環状線との間の環状領域において、厚さ12μmの本体部の上に、外側部の厚さdが表2に示す通りとなるように突出部を設け、R、R、R、R及びHの値を表2に示す通りにしたこと以外は実施例17と同様にして光電変換素子を作製した。
(Example 27)
When viewed in plan in the thickness direction of the oxide semiconductor layer, in an annular region between the annular line 1 mm inside from the four sides of the oxide semiconductor layer and the annular line inside 8 mm from the four sides of the oxide semiconductor layer A protrusion is provided on the main body having a thickness of 12 μm so that the thickness d 1 of the outer portion is as shown in Table 2, and the values of R 1 , R 2 , R 3 , R 4 and H are represented. A photoelectric conversion element was produced in the same manner as in Example 17 except that the procedure was as shown in 2.

(実施例28〜31)
、R、R、R及びHの値を表2に示す通りに変更したこと以外は実施例27と同様にして光電変換素子を作製した。
(Examples 28 to 31)
A photoelectric conversion element was produced in the same manner as in Example 27 except that the values of d 1 , R 1 , R 3 , R 4 and H were changed as shown in Table 2.

(実施例32)
酸化物半導体層の厚さ方向に平面視した場合に、酸化物半導体層の4辺から1mm内側の四角形状の環状線と、酸化物半導体層の4辺から16mm内側の四角形状の環状線との間の環状領域において、厚さ12μmの本体部の上に、外側部の厚さdが表2に示す通りとなるように突出部を設け、R、R、R、R及びHの値を表2に示す通りにしたこと以外は実施例17と同様にして光電変換素子を作製した。
(Example 32)
When viewed in plan in the thickness direction of the oxide semiconductor layer, a quadrangular annular line 1 mm inside from the four sides of the oxide semiconductor layer, and a quadrangular annular line 16 mm inside from the four sides of the oxide semiconductor layer, In the annular region between, a protrusion is provided on the main body having a thickness of 12 μm so that the thickness d 1 of the outer portion is as shown in Table 2, and R 1 , R 2 , R 3 , R 4 A photoelectric conversion element was produced in the same manner as in Example 17 except that the values of H and H were as shown in Table 2.

(実施例33〜36)
、R、R、R及びHの値を表2に示す通りに変更したこと以外は実施例32と同様にして光電変換素子を作製した。
(Examples 33 to 36)
A photoelectric conversion element was produced in the same manner as in Example 32 except that the values of d 1 , R 1 , R 3 , R 4 and H were changed as shown in Table 2.

(比較例1)
酸化物半導体層に色素を吸着させる際に、酸化物半導体層を0.5mMの第1色素溶液に浸漬しなかったこと以外は実施例1と同様にして光電変換素子を作製した。
(Comparative Example 1)
A photoelectric conversion element was produced in the same manner as in Example 1 except that the oxide semiconductor layer was not immersed in the 0.5 mM first dye solution when adsorbing the dye to the oxide semiconductor layer.

<発電性能>
上記のようにして得られた実施例1〜36及び比較例1の光電変換素子について、作製直後に200ルクスの白色光を照射した状態でIV曲線を測定し、このIV曲線から算出される最大出力動作電力Pm(μW)を「出力1」として算出した。なお、IV曲線の測定に用いた光源、照度計および電源は以下の通りである。

光源:白色LED(製品名「LEL−SL5N−F」、東芝ライテック社製)
照度計:製品名「デジタル照度計51013」、横河メータ&インスツルメンツ社製
電源:電圧/電流 発生器(製品名「R6246I」、ADVANTEST製)
<Power generation performance>
With respect to the photoelectric conversion elements of Examples 1 to 36 and Comparative Example 1 obtained as described above, an IV curve was measured in a state where 200 lux white light was irradiated immediately after the production, and the maximum calculated from the IV curve. The output operating power Pm 0 (μW) was calculated as “output 1”. The light source, illuminance meter, and power source used for measuring the IV curve are as follows.

Light source: White LED (product name “LEL-SL5N-F”, manufactured by Toshiba Lighting & Technology Corp.)
Illuminance meter: Product name “Digital Illuminance Meter 51013”, Yokogawa Meter & Instruments Power Supply: Voltage / Current Generator (Product name “R6246I”, ADVANTEST)

実施例1〜36及び比較例1における出力1を比較例1の出力1で割ることで、実施例1〜36及び比較例1初期出力と比較例1の初期出力との比を算出した。結果を表1及び2に示す。   By dividing the output 1 in Examples 1 to 36 and Comparative Example 1 by the output 1 of Comparative Example 1, the ratio of the initial outputs of Examples 1 to 36 and Comparative Example 1 to the initial output of Comparative Example 1 was calculated. The results are shown in Tables 1 and 2.

<耐久性>
実施例1〜78及び比較例1の光電変換素子を相対湿度60%の室温下に1000時間置いた後、上記光電変換素子を再度200ルクスの上記の白色光を照射した状態でIV曲線を測定し、このIV曲線から算出される最大出力動作電力PW(μW)を「出力2」として算出した。そして、下記式に基づいて出力維持率を算出し、さらに、比較例1の出力維持率を1.00とした場合の出力維持率の相対値を求めた。結果を表1及び2に示す。

出力維持率=出力2/出力1
<Durability>
After placing the photoelectric conversion elements of Examples 1 to 78 and Comparative Example 1 at room temperature with a relative humidity of 60% for 1000 hours, the photoelectric conversion elements were again irradiated with 200 lux of the above-mentioned white light and the IV curve was measured. The maximum output operating power PW (μW) calculated from the IV curve was calculated as “output 2”. And the output maintenance factor was computed based on the following formula, and also the relative value of the output maintenance factor when the output maintenance factor of comparative example 1 was set to 1.00 was calculated. The results are shown in Tables 1 and 2.

Output maintenance rate = Output 2 / Output 1

<短絡電流密度面内ばらつき>
上記相対湿度60%の室温下に1000時間置いた光電変換素子について、発電面内の1mm当りの短絡電流密度の分布を、太陽電池変換効率分布測定機MAP50(Lasertec社製)を用いて測定し、発電面内の短絡電流密度の最大値および最小値を算出し、下記式に基づいて短絡電流密度面内ばらつきを算出した。

短絡電流密度面内ばらつき
=(短絡電流密度最大値-短絡電流密度最小値)/[(短絡電流密度最大値+短絡電流密度最小値)÷2]

が0.63〜0.95のとき、Rが0.17〜2.69であるとき、短絡電流密度面内ばらつきを8.0%以下に抑えることができた。

Figure 2018037553
Figure 2018037553
<Short-circuit current density in-plane variation>
Using a solar cell conversion efficiency distribution measuring instrument MAP50 (manufactured by Lasertec), the distribution of short-circuit current density per 1 mm 2 in the power generation surface of the photoelectric conversion element placed at room temperature with a relative humidity of 60% for 1000 hours is measured. Then, the maximum value and the minimum value of the short circuit current density in the power generation plane were calculated, and the short circuit current density in-plane variation was calculated based on the following formula.

Short-circuit current density in-plane variation = (maximum value of short-circuit current density-minimum value of short-circuit current density) / [(maximum value of short-circuit current density + minimum value of short-circuit current density) / 2]

When R 3 is 0.63 to 0.95 and R 4 is 0.17 to 2.69, the short-circuit current density in-plane variation can be suppressed to 8.0% or less.

Figure 2018037553
Figure 2018037553

表1及び2に示すように、実施例1〜36の光電変換素子は、比較例1の光電変換素子に比べて優れた耐久性を有することが分かった。   As shown in Tables 1 and 2, it was found that the photoelectric conversion elements of Examples 1 to 36 had superior durability compared to the photoelectric conversion element of Comparative Example 1.

よって、本発明の光電変換素子によれば、優れた耐久性を有することが確認された。   Therefore, according to the photoelectric conversion element of this invention, it was confirmed that it has the outstanding durability.

10…電極基板
20…対向基板
20a…環状部
20b…接続部
20c…近接部
30,230…酸化物半導体層
31…内側部
32,232…外側部
32a…突出部
32b…本体部
40…封止部
50…電解質
60,260…光電変換セル
100,200…光電変換素子
…外側部の厚さ
…内側部の厚さ
DESCRIPTION OF SYMBOLS 10 ... Electrode substrate 20 ... Counter substrate 20a ... Annular part 20b ... Connection part 20c ... Proximity part 30,230 ... Oxide semiconductor layer 31 ... Inner part 32,232 ... Outer part 32a ... Projection part 32b ... Main part 40 ... Sealing Part 50 ... Electrolyte 60, 260 ... Photoelectric conversion cell 100, 200 ... Photoelectric conversion element d 1 ... Thickness of outer part d 2 ... Thickness of inner part

Claims (6)

少なくとも1つの光電変換セルを備え、
前記光電変換セルが、
電極基板と、
前記電極基板に対向する対向基板と、
前記電極基板上に設けられる酸化物半導体層と、
前記酸化物半導体層に吸着される色素と、
前記電極基板及び前記対向基板を接合し、前記酸化物半導体層を包囲する環状の封止部と、
前記電極基板、前記対向基板及び前記封止部によって形成されるセル空間に充填される電解質とを備え、
前記酸化物半導体層が、前記酸化物半導体層の厚さ方向に平面視した場合に、
内側部と、
前記内側部を包囲する環状の外側部とを有し、
前記酸化物半導体層をその厚さ方向に平面視した場合に、前記外側部における単位面積当たりの前記色素の吸着量が、前記内側部における単位面積当たりの前記色素の吸着量よりも多い、光電変換素子。
Comprising at least one photoelectric conversion cell;
The photoelectric conversion cell is
An electrode substrate;
A counter substrate facing the electrode substrate;
An oxide semiconductor layer provided on the electrode substrate;
A dye adsorbed on the oxide semiconductor layer;
An annular sealing portion that joins the electrode substrate and the counter substrate and surrounds the oxide semiconductor layer;
An electrolyte that fills a cell space formed by the electrode substrate, the counter substrate, and the sealing portion;
When the oxide semiconductor layer is viewed in plan in the thickness direction of the oxide semiconductor layer,
The inner part,
An annular outer portion surrounding the inner portion;
When the oxide semiconductor layer is viewed in plan in the thickness direction, the amount of the dye adsorbed per unit area in the outer portion is larger than the amount of the dye adsorbed per unit area in the inner portion. Conversion element.
下記式(1)で表されるRが1.08〜1.75である、請求項1に記載の光電変換素子。
=m/m・・・(1)
(上記式(1)中、mは前記外側部における単位面積当たりの前記色素の吸着量(mol/m)を表し、mは前記内側部における単位面積当たりの前記色素の吸着量(mol/m)を表す。)
The photoelectric conversion element according to claim 1, wherein R 1 represented by the following formula (1) is 1.08 to 1.75.
R 1 = m 1 / m 2 (1)
(In the formula (1), m 1 represents the adsorption amount (mol / m 2 ) of the dye per unit area in the outer portion, and m 2 represents the adsorption amount of the dye per unit area in the inner portion ( mol / m 2 ).)
前記外側部が、
前記電極基板上に設けられ、前記内側部と同じ厚さを有する本体部と、
前記本体部から前記対向基板に向かって突出する突出部とを有し、
下記式(2)で表されるRが0.37〜5.51である、請求項2に記載の光電変換素子。
=S/S・・・(2)
(上記式(2)中、Sは前記酸化物半導体層の厚さ方向に平面視した場合における前記外側部の面積(cm)を表し、Sは前記酸化物半導体層の厚さ方向に平面視した場合における前記内側部の面積(cm)を表す。)
The outer portion is
A main body provided on the electrode substrate and having the same thickness as the inner part;
A projecting portion projecting from the main body portion toward the counter substrate;
The photoelectric conversion element according to claim 2, wherein R 2 represented by the following formula (2) is 0.37 to 5.51.
R 2 = S 2 / S 1 (2)
(In the above formula (2), S 1 represents the area (cm 2 ) of the outer portion in plan view in the thickness direction of the oxide semiconductor layer, and S 2 represents the thickness direction of the oxide semiconductor layer. (Indicates the area (cm 2 ) of the inner part in plan view.)
下記式(3)で表されるRが0.63〜0.95である、請求項3に記載の光電変換素子。
=d/d・・・(3)
(上記式(3)中、dは前記外側部の厚さ(μm)を表し、dは前記内側部の厚さ(μm)を表す。)
The photoelectric conversion element according to claim 3, wherein R 3 represented by the following formula (3) is 0.63 to 0.95.
R 3 = d 2 / d 1 (3)
(In the above formula (3), d 1 represents the thickness (μm) of the outer portion, and d 2 represents the thickness (μm) of the inner portion.)
下記式(4)で表されるRが0.17〜2.69である、請求項3又は4に記載の光電変換素子。
=S’/S・・・(4)
(上記式(4)中、S’は前記電極基板と前記酸化物半導体層との界面からの高さH(μm)において、前記外側部の前記突出部を前記界面に平行な平面で切断して得られる環状領域の面積(cm)を表し、前記高さH(μm)は下記式(5)を満たし、Sは前記酸化物半導体層の厚さ方向に平面視した場合における前記内側部の面積(cm)を表す。)
H=1/2(d+d)・・・(5)
(上記式(5)中、dは前記酸化物半導体層の厚さ方向に平面視した場合における前記内側部の厚さ(μm)を表す。)
The photoelectric conversion element according to claim 3 or 4, wherein R 4 represented by the following formula (4) is 0.17 to 2.69.
R 4 = S ′ 1 / S 2 (4)
(In the above formula (4), S ′ 1 is a height H (μm) from the interface between the electrode substrate and the oxide semiconductor layer, and the protruding portion of the outer portion is cut along a plane parallel to the interface. Represents the area (cm 2 ) of the annular region obtained as described above, the height H (μm) satisfies the following formula (5), and S 2 is a plan view in the thickness direction of the oxide semiconductor layer. (Inner area (cm 2 ) is indicated.)
H = 1/2 (d 1 + d 2 ) (5)
(In the above formula (5), d 2 represents the thickness (μm) of the inner portion in plan view in the thickness direction of the oxide semiconductor layer.)
前記対向基板が、
前記封止部と接合する環状部と、
前記環状部よりも前記酸化物半導体層に近接する近接部と、
前記環状部と前記近接部とを接続する環状の接続部とを備えており、
前記外側部及び前記近接部を前記酸化物半導体層の厚さ方向に見た場合に、前記外側部と前記近接部とが重なり合っている、請求項1〜5のいずれか一項に記載の光電変換素子。
The counter substrate is
An annular portion joined to the sealing portion;
A proximity portion closer to the oxide semiconductor layer than the annular portion;
An annular connecting portion that connects the annular portion and the proximity portion;
The photoelectric device according to any one of claims 1 to 5, wherein the outer portion and the proximity portion overlap when the outer portion and the proximity portion are viewed in a thickness direction of the oxide semiconductor layer. Conversion element.
JP2016170258A 2016-08-31 2016-08-31 Photoelectric conversion element Pending JP2018037553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016170258A JP2018037553A (en) 2016-08-31 2016-08-31 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016170258A JP2018037553A (en) 2016-08-31 2016-08-31 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2018037553A true JP2018037553A (en) 2018-03-08

Family

ID=61567673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016170258A Pending JP2018037553A (en) 2016-08-31 2016-08-31 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2018037553A (en)

Similar Documents

Publication Publication Date Title
CN102414910B (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
EP2683020B1 (en) Dye-sensitized solar cell module
JP5144986B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2012064485A (en) Dye-sensitized photoelectric conversion device
JP6263242B1 (en) Photoelectric conversion element
JP4334960B2 (en) Carbon electrode and electrode and dye-sensitized solar cell comprising the same
JP2014199788A (en) Dye-sensitized solar cell element
WO2018012392A1 (en) Photoelectric conversion element
JP7295957B2 (en) Dye-sensitized solar cell
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP6863858B2 (en) Photoelectric conversion element
JP6598710B2 (en) Input device
JP2018037553A (en) Photoelectric conversion element
JP6120926B2 (en) Dye-sensitized photoelectric conversion element
JP2017162938A (en) Photoelectric converter
JP2019192839A (en) Photoelectric conversion element
JP2016143822A (en) Photoelectric conversion element
JP6215651B2 (en) Electrode and dye-sensitized solar cell having the same
JP7014656B2 (en) Photoelectric conversion element
JP5802819B1 (en) Electrolyte for dye-sensitized photoelectric conversion element for low illuminance, and dye-sensitized photoelectric conversion element for low illuminance using the same
JP6773859B1 (en) Electrolyte for photoelectric conversion element and photoelectric conversion element
JP2013157201A (en) Photoelectric conversion element module
JP6576784B2 (en) Electrolyte for photoelectric conversion element and photoelectric conversion element using the same
WO2016080440A1 (en) Dye-sensitized photoelectric conversion element
JP6584883B2 (en) Electrolyte for dye-sensitized photoelectric conversion element and dye-sensitized photoelectric conversion element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201013