JP6863135B2 - Fluid sterilizer - Google Patents

Fluid sterilizer Download PDF

Info

Publication number
JP6863135B2
JP6863135B2 JP2017127964A JP2017127964A JP6863135B2 JP 6863135 B2 JP6863135 B2 JP 6863135B2 JP 2017127964 A JP2017127964 A JP 2017127964A JP 2017127964 A JP2017127964 A JP 2017127964A JP 6863135 B2 JP6863135 B2 JP 6863135B2
Authority
JP
Japan
Prior art keywords
flow path
light source
fluid
flow
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017127964A
Other languages
Japanese (ja)
Other versions
JP2019010609A (en
Inventor
貴章 田中
貴章 田中
亮彦 田内
亮彦 田内
剛雄 加藤
剛雄 加藤
純 藤岡
純 藤岡
弘喜 日野
弘喜 日野
公人 櫻井
公人 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2017127964A priority Critical patent/JP6863135B2/en
Priority to CN201820309824.0U priority patent/CN208087261U/en
Priority to TW107108524A priority patent/TWI753132B/en
Publication of JP2019010609A publication Critical patent/JP2019010609A/en
Application granted granted Critical
Publication of JP6863135B2 publication Critical patent/JP6863135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

本発明の実施形態は、流体殺菌装置に関する。 Embodiments of the present invention relate to a fluid sterilizer.

光源の発光素子が発する紫外線を、例えば、水、気体等の流体が流れる流路部材の流路内へ照射することで、流体を殺菌する流体殺菌装置が知られている。 A fluid sterilizer that sterilizes a fluid by irradiating the flow path of a flow path member through which a fluid such as water or gas flows with ultraviolet rays emitted by a light emitting element of a light source is known.

特開2014−233646号公報Japanese Unexamined Patent Publication No. 2014-233646

流体殺菌装置としては、流路部材の流路内へ紫外線を照射する光源が、流路部材の一端に設けられており、光源が、流路部材の、流体の流れ方向に直交する流路断面に対向して配置された構成が提案されている。このような流体殺菌装置では、紫外線が照射される流路を有する流路部材の両端が、流路部材の上流側流路及び下流側流路と接続部材を介してそれぞれ連結されている。一方の接続部材の内部には、光源が設けられており、光源の周囲に沿って流れる流路が形成されている。 As the fluid sterilizer, a light source for irradiating the flow path of the flow path member with ultraviolet rays is provided at one end of the flow path member, and the light source is a flow path cross section of the flow path member orthogonal to the flow direction of the fluid. A configuration is proposed in which the components are arranged to face each other. In such a fluid sterilizer, both ends of a flow path member having a flow path irradiated with ultraviolet rays are connected to the upstream side flow path and the downstream side flow path of the flow path member via a connecting member, respectively. A light source is provided inside one of the connecting members, and a flow path that flows along the periphery of the light source is formed.

上述の流体殺菌装置が有する接続部材の内部には、発光素子を収容する収容凹部が設けられており、収容凹部の開口が、紫外線透過性を有するカバー部材で塞がれている。これにより、光源の発光素子は、光源の周囲を流れる流体から保護されている。そのため、収容凹部内に配置された発光素子が発する光のうち、カバー部材の外周部側へ入射した光は、収容凹部の内壁で遮られてしまい、流路部材の流路内へ到達せず、流体に対する紫外線の照射効率を低下させている。 Inside the connecting member of the above-mentioned fluid sterilizer, a housing recess for accommodating the light emitting element is provided, and the opening of the housing recess is closed with a cover member having ultraviolet light transmission. As a result, the light emitting element of the light source is protected from the fluid flowing around the light source. Therefore, among the light emitted by the light emitting element arranged in the accommodating recess, the light incident on the outer peripheral side of the cover member is blocked by the inner wall of the accommodating recess and does not reach the inside of the flow path of the flow path member. , The efficiency of irradiating the fluid with ultraviolet rays is reduced.

そこで、本発明は、流路内の流体に対する紫外線の照射効率を高めることができる流体殺菌装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a fluid sterilizer capable of increasing the irradiation efficiency of ultraviolet rays on a fluid in a flow path.

実施形態に係る流体殺菌装置は、流体を流すための第1の流路を有する流路部材と、前記第1の流路の、前記流体の流れ方向に交差する流路断面に対向して配置され、前記第1の流路内へ紫外線を照射する発光素子を有する光源と、前記流路部材の一端に接続されると共に前記光源が設けられ、前記光源の周囲に配置されて前記第1の流路に連通する第2の流路と、前記発光素子を支持する支持部と、を有する接続部材と、前記光源を流体から保護するカバー部材と、を具備し、前記光源は、前記発光素子が載置される載置面を有し、前記載置面が前記第1の流路内に位置し、前記カバー部材は、前記載置面に沿う方向から見たときに、前記光源の最大出射角の境界線に沿って進む紫外線を透過させる。 The fluid sterilizer according to the embodiment is arranged so as to face a flow path member having a first flow path for flowing a fluid and a flow path cross section of the first flow path that intersects the flow direction of the fluid. A light source having a light emitting element that irradiates ultraviolet rays into the first flow path, and the light source connected to one end of the flow path member and provided around the light source are arranged around the first flow path. A connecting member having a second flow path communicating with the flow path, a support portion for supporting the light emitting element, and a cover member for protecting the light source from fluid are provided, and the light source is the light source. The cover member has a mounting surface on which the light source is mounted, the previously described mounting surface is located in the first flow path, and the cover member is the maximum of the light source when viewed from a direction along the previously described mounting surface. It transmits ultraviolet rays that travel along the boundary of the emission angle.

本発明によれば、流路内の流体に対する紫外線の照射効率を高めることができる。 According to the present invention, it is possible to increase the efficiency of irradiating the fluid in the flow path with ultraviolet rays.

第1の実施形態に係る流体殺菌装置全体を示す模式図である。It is a schematic diagram which shows the whole fluid sterilizer which concerns on 1st Embodiment. 第1の実施形態に係る流体殺菌装置の要部を示す断面図である。It is sectional drawing which shows the main part of the fluid sterilizer which concerns on 1st Embodiment. 第1の実施形態に係る流体殺菌装置が有する光源部を拡大して示す断面図である。It is sectional drawing which enlarges and shows the light source part which the fluid sterilizer which concerns on 1st Embodiment has. 第1の実施形態に係る流体殺菌装置が有する発光素子と反射膜の反射面との位置関係を説明するための模式図である。It is a schematic diagram for demonstrating the positional relationship between the light emitting element of the fluid sterilizer which concerns on 1st Embodiment, and the reflective surface of a reflective film. 第1の実施形態に係る流体殺菌装置の要部において流路部材を流体が流れる方向を示す断面図である。It is sectional drawing which shows the direction which the fluid flows through the flow path member in the main part of the fluid sterilizer which concerns on 1st Embodiment. 第1の実施形態に係る流体殺菌装置の要部において、流路部材を流体が流れる方向に直交するI−I断面をA方向から見た断面図である。FIG. 5 is a cross-sectional view of an I-I cross section orthogonal to a fluid flow direction in a main part of a fluid sterilizer according to a first embodiment, as viewed from the A direction. 第1の実施形態に係る流体殺菌装置の要部において、流路部材を流体が流れる方向に直交するI−I断面をB方向から見た断面図である。FIG. 5 is a cross-sectional view of an I-I cross section orthogonal to a fluid flow direction in a main part of a fluid sterilizer according to a first embodiment, as viewed from the B direction. 第1の実施形態に係る流体殺菌装置が有するカバー部材の変形例を示す模式図である。It is a schematic diagram which shows the modification of the cover member which the fluid sterilizer which concerns on 1st Embodiment has. 第2の実施形態に係る流体殺菌装置の要部を示す断面図である。It is sectional drawing which shows the main part of the fluid sterilizer which concerns on 2nd Embodiment. 第3の実施形態に係る流体殺菌装置の要部を示す断面図である。It is sectional drawing which shows the main part of the fluid sterilizer which concerns on 3rd Embodiment. 第4の実施形態に係る流体殺菌装置の要部を示す断面図である。It is sectional drawing which shows the main part of the fluid sterilizer which concerns on 4th Embodiment. 第5の実施形態に係る流体殺菌装置の要部を示す断面図である。It is sectional drawing which shows the main part of the fluid sterilizer which concerns on 5th Embodiment.

以下で説明する実施形態に係る流体殺菌装置は、流路部材と、光源と、接続部材と、カバー部材と、を備える。流路部材は、流体を流すための第1の流路を有する。光源は、第1の流路の、流体の流れ方向に交差する流路断面に対向して配置されている。光源は、第1の流路内へ紫外線を照射する発光素子を有する。接続部材は、流路部材の一端に接続されると共に光源が設けられている。接続部材は、第2の流路と、支持部と、を有する。第2の流路は、光源の周囲に配置されている。第2の流路は、第1の流路に連通する。支持部は、発光素子を支持する。カバー部材は、光源を流体から保護する。光源は、発光素子が載置される載置面を有する。載置面は、第1の流路内に位置している。カバー部材は、載置面に沿う方向から見たときに、光源の最大出射角の境界線に沿って進む紫外線を透過させる。 The fluid sterilizer according to the embodiment described below includes a flow path member, a light source, a connecting member, and a cover member. The flow path member has a first flow path for flowing a fluid. The light source is arranged so as to face the cross section of the first flow path that intersects the flow direction of the fluid. The light source has a light emitting element that irradiates ultraviolet rays into the first flow path. The connecting member is connected to one end of the flow path member and is provided with a light source. The connecting member has a second flow path and a support portion. The second flow path is arranged around the light source. The second flow path communicates with the first flow path. The support portion supports the light emitting element. The cover member protects the light source from fluid. The light source has a mounting surface on which the light emitting element is mounted. The mounting surface is located in the first flow path. The cover member transmits ultraviolet rays traveling along the boundary line of the maximum emission angle of the light source when viewed from the direction along the mounting surface.

また、以下で説明する実施形態に係る流体殺菌装置における流路部材の外周面には、反射面が設けられている。反射面は、発光素子が第1の流路内へ照射する紫外線を、第1の流路内へ反射する。載置面に沿う方向から見たときに、反射面は、流路部材の外周面に沿って、光源の最大出射角の境界線と第1の流路の内面とが交差する位置よりも、光源側へ延びている。 Further, a reflective surface is provided on the outer peripheral surface of the flow path member in the fluid sterilizer according to the embodiment described below. The reflecting surface reflects the ultraviolet rays that the light emitting element irradiates into the first flow path into the first flow path. When viewed from the direction along the mounting surface, the reflective surface is located along the outer peripheral surface of the flow path member rather than the position where the boundary line of the maximum emission angle of the light source and the inner surface of the first flow path intersect. It extends to the light source side.

また、以下で説明する実施形態に係る流体殺菌装置における第2の流路は、連結路を有する。連結路は、第1の流路の一端に連結されている。連結路の流れ方向は、第1の流路の流れ方向に対して鈍角をなして傾斜している。 In addition, the second flow path in the fluid sterilizer according to the embodiment described below has a connecting path. The connecting path is connected to one end of the first flow path. The flow direction of the connecting path is obtuse with respect to the flow direction of the first flow path.

また、以下で説明する実施形態に係る流体殺菌装置における第2の流路は、連結路を有する。連結路は、第1の流路の一端に連結されている。連結路の流れ方向は、第1の流路の流れ方向と等しい。 In addition, the second flow path in the fluid sterilizer according to the embodiment described below has a connecting path. The connecting path is connected to one end of the first flow path. The flow direction of the connecting path is equal to the flow direction of the first flow path.

以下、実施形態に係る流体殺菌装置について、図面を参照して説明する。なお、以下の実施形態は、一例を示すものであって、発明を限定するものではない。 Hereinafter, the fluid sterilizer according to the embodiment will be described with reference to the drawings. The following embodiments show an example and do not limit the invention.

(第1の実施形態)
図1は、第1の実施形態に係る流体殺菌装置全体を示す模式図である。図2は、第1の実施形態に係る流体殺菌装置の要部を示す断面図である。図3は、第1の実施形態に係る流体殺菌装置が有する光源部を拡大して示す断面図である。図4は、第1の実施形態に係る流体殺菌装置が有する発光素子と反射膜の反射面との位置関係を説明するための模式図である。図5は、第1の実施形態に係る流体殺菌装置の要部において流路部材を流体が流れる方向を示す断面図である。
(First Embodiment)
FIG. 1 is a schematic view showing the entire fluid sterilizer according to the first embodiment. FIG. 2 is a cross-sectional view showing a main part of the fluid sterilizer according to the first embodiment. FIG. 3 is an enlarged cross-sectional view showing a light source portion included in the fluid sterilizer according to the first embodiment. FIG. 4 is a schematic view for explaining the positional relationship between the light emitting element of the fluid sterilizer according to the first embodiment and the reflective surface of the reflective film. FIG. 5 is a cross-sectional view showing the direction in which the fluid flows through the flow path member in the main part of the fluid sterilizer according to the first embodiment.

(流体殺菌装置の構成)
図1に示すように、第1の実施形態の流体殺菌装置1は、紫外線(紫外光)を照射する流体を流すための流路部材13が、流体を供給する給水タンク6に連結されると共に、紫外線が照射された流体を回収する回収タンク7に連結されている。図1及び図2に示すように、流体殺菌装置1は、流路部材13の上流側が、上流側流路部材8を介して給水タンク6に連結されている。上流側流路部材8には、給水タンク6から流体殺菌装置1へ流体を送るポンプ11が設けられている。また、流体殺菌装置1は、流路部材13の上流側と同様に、流路部材13の下流側が、下流側流路部材9を介して回収タンク7に連結されている。下流側流路部材9には、流体殺菌装置1から回収タンク7へ送る流体の流量を調整する流量調整機構12が設けられている。
(Configuration of fluid sterilizer)
As shown in FIG. 1, in the fluid sterilizer 1 of the first embodiment, a flow path member 13 for flowing a fluid to be irradiated with ultraviolet rays (ultraviolet light) is connected to a water supply tank 6 for supplying the fluid, and at the same time. , It is connected to a recovery tank 7 that recovers the fluid irradiated with ultraviolet rays. As shown in FIGS. 1 and 2, in the fluid sterilizer 1, the upstream side of the flow path member 13 is connected to the water supply tank 6 via the upstream side flow path member 8. The upstream side flow path member 8 is provided with a pump 11 that sends a fluid from the water supply tank 6 to the fluid sterilizer 1. Further, in the fluid sterilizer 1, the downstream side of the flow path member 13 is connected to the recovery tank 7 via the downstream side flow path member 9, similarly to the upstream side of the flow path member 13. The downstream flow path member 9 is provided with a flow rate adjusting mechanism 12 for adjusting the flow rate of the fluid sent from the fluid sterilizer 1 to the recovery tank 7.

流体殺菌装置1は、例えば、飲料水供給装置において、給水タンク6内の水を殺菌処理するために用いられる。本実施形態では、流体として、例えば、上水等の水に適用されるが、気体に適用されてもよい。 The fluid sterilizer 1 is used, for example, in a drinking water supply device for sterilizing the water in the water supply tank 6. In the present embodiment, the fluid is applied to water such as clean water, but may be applied to a gas.

図2に示すように、流体殺菌装置1は、流体を流すための第1の流路としての流路13aを有する流路部材13と、流路部材13の流路13a内へ紫外線を照射する発光素子としてのLED(Light Emitting Diode)23を有する光源部15と、を備える。また、流体殺菌装置1は、流路部材13の一端に接続された第1の接続部材17と、流路部材13の他端に接続された第2の接続部材18と、第1の接続部材17と第2の接続部材18とを連結する連結部材19と、を備える。 As shown in FIG. 2, the fluid sterilizer 1 irradiates the flow path member 13 having the flow path 13a as the first flow path for flowing the fluid and the flow path 13a of the flow path member 13 with ultraviolet rays. A light source unit 15 having an LED (Light Emitting Diode) 23 as a light emitting element is provided. Further, the fluid sterilizer 1 includes a first connecting member 17 connected to one end of the flow path member 13, a second connecting member 18 connected to the other end of the flow path member 13, and a first connecting member. A connecting member 19 for connecting the 17 and the second connecting member 18 is provided.

流路部材13は、紫外線反射率が高く、紫外線による劣化が抑えられた材料で形成されることが好ましい。本実施形態では、流路部材13として、透明な石英管が用いられており、石英管の外周面全体に、紫外線反射率が高い反射面としての反射膜13bが形成されたものを用いる。反射膜13bは、光源部15のLED23が流路13a内へ照射する紫外線を流路13a内へ反射する反射面の一例であり、例えばシリカ膜が用いられている。 The flow path member 13 is preferably made of a material having high ultraviolet reflectance and suppressed deterioration due to ultraviolet rays. In the present embodiment, a transparent quartz tube is used as the flow path member 13, and a reflective film 13b as a reflecting surface having high ultraviolet reflectance is formed on the entire outer peripheral surface of the quartz tube. The reflective film 13b is an example of a reflective surface in which the LED 23 of the light source unit 15 reflects the ultraviolet rays radiated into the flow path 13a into the flow path 13a, and for example, a silica film is used.

なお、流路部材13に形成される反射膜13bは、シリカ膜に限らず、アルミニウム蒸着膜であってもよい。また、流路部材13は、透明な石英管に限らず、高反射率のポリテトラフルオロエチレン(polytetrafluoroethylene:PTFE、テトラフルオロエチレンの重合体)等のフッ素樹脂であってもよい。また、反射膜13bは、流路部材13の外周面に形成する代わりに、流路部材13の内周面に形成されてもよい。 The reflective film 13b formed on the flow path member 13 is not limited to the silica film, and may be an aluminum-deposited film. Further, the flow path member 13 is not limited to a transparent quartz tube, and may be a fluororesin such as polytetrafluoroethylene (PTFE, a polymer of tetrafluoroethylene) having a high reflectance. Further, the reflective film 13b may be formed on the inner peripheral surface of the flow path member 13 instead of being formed on the outer peripheral surface of the flow path member 13.

図3に示すように、光源部15は、第1の接続部材17の内部に設けられている。光源部15は、光源16と、光源16を流体から保護するカバー部材21と、を有する。光源16は、流路部材13の一端側において、流路13aの、流体の流れ方向に直交する流路断面(以下、流路13aの流路断面と称する。)に対向して配置されている。また、光源部15の光源16は、第1の接続部材17が有する後述の光源支持部17b−3に配置されている。 As shown in FIG. 3, the light source unit 15 is provided inside the first connecting member 17. The light source unit 15 includes a light source 16 and a cover member 21 that protects the light source 16 from a fluid. The light source 16 is arranged on one end side of the flow path member 13 so as to face the flow path cross section of the flow path 13a orthogonal to the flow direction of the fluid (hereinafter, referred to as the flow path cross section of the flow path 13a). .. Further, the light source 16 of the light source unit 15 is arranged in the light source support unit 17b-3 described later, which is included in the first connecting member 17.

光源16は、光モジュールであって、紫外線を発する発光素子としてのLED23と、LED23が実装された基板24と、を有する。基板24は、金属材料を母材として形成されており、LED23が載置される載置面としての実装面24aを有する。基板24の実装面24a上には、図示しないが、絶縁層を介して所望の導電パターン(配線パターン)が形成されており、導電パターン上にLED23が設けられている。なお、基板24の母材は、金属材料に限らず、例えばアルミナ等のセラミックスが用いられてもよい。また、光源16が有する発光素子は、LED23に限らず、LD(Laser Diode)等の他の半導体素子が用いられてもよい。 The light source 16 is an optical module and includes an LED 23 as a light emitting element that emits ultraviolet rays, and a substrate 24 on which the LED 23 is mounted. The substrate 24 is formed of a metal material as a base material, and has a mounting surface 24a as a mounting surface on which the LED 23 is mounted. Although not shown, a desired conductive pattern (wiring pattern) is formed on the mounting surface 24a of the substrate 24 via an insulating layer, and the LED 23 is provided on the conductive pattern. The base material of the substrate 24 is not limited to a metal material, and ceramics such as alumina may be used. Further, the light emitting element included in the light source 16 is not limited to the LED 23, and other semiconductor elements such as LD (Laser Diode) may be used.

光源16は、図示しない電源から電力が供給され、LED23を発光させる。光源16は、LED23の発光面が、流路13aの流路断面に対向しており、例えば、光源16の基板24の主面が流路13aの流れ方向に対して略垂直となるように配置されている。ここで、「LED23の発光面」とは、単にLED23の発光領域のみを示しているのではなく、LED23が配置された基板24の主面全体を指している。また、「LED23の発光面が、流路13aの流路断面に対向する」向きは、互いに平行に対向する向きのみに限定されるものではない。例えば、LED23の発光面と、流路13aの流路断面とがなす角度(鋭角)は±10°程度まで許容される。 The light source 16 is supplied with electric power from a power source (not shown) to cause the LED 23 to emit light. The light source 16 is arranged so that the light emitting surface of the LED 23 faces the cross section of the flow path 13a, and for example, the main surface of the substrate 24 of the light source 16 is substantially perpendicular to the flow direction of the flow path 13a. Has been done. Here, the "light emitting surface of the LED 23" does not simply indicate only the light emitting region of the LED 23, but refers to the entire main surface of the substrate 24 on which the LED 23 is arranged. Further, the direction in which the light emitting surface of the LED 23 faces the cross section of the flow path 13a is not limited to the direction in which the light emitting surface of the LED 23 faces parallel to each other. For example, the angle (acute angle) formed by the light emitting surface of the LED 23 and the cross section of the flow path 13a is allowed up to about ± 10 °.

また、LED23としては、殺菌作用が比較的高い波長275nm近辺にピーク波長を有するものが好ましいが、殺菌作用を奏する波長帯域であればよく、紫外線の波長を限定するものではない。 Further, the LED 23 preferably has a peak wavelength in the vicinity of a wavelength of 275 nm, which has a relatively high bactericidal action, but may be in a wavelength band that exerts a bactericidal action, and does not limit the wavelength of ultraviolet rays.

光源部15のカバー部材21は、例えば、ガラス材によって形成された紫外線透過部材であり、LED23及び基板24を覆って配置されている。カバー部材21の外周部は、基板24の側面側を覆うように延ばされている。カバー部材21は、第1の接続部材17が有する後述の光源支持部17b−3に固定されており、光源部15の内部が気密に閉じられている。カバー部材21は、LED23が発した紫外線を透過し、流路13a内を流れる流体、及び第1の接続部材17が有する後述の流路17a−1、17a−2を流れる流体に対して紫外線を照射する。なお、実施形態におけるカバー部材21は、流路13aの流路断面に対向する面が、平面として形成されているが、カバー部材21の周囲を流れる流体の流動抵抗を軽減するように曲面が形成されてもよい。 The cover member 21 of the light source unit 15 is, for example, an ultraviolet ray transmitting member formed of a glass material, and is arranged so as to cover the LED 23 and the substrate 24. The outer peripheral portion of the cover member 21 is extended so as to cover the side surface side of the substrate 24. The cover member 21 is fixed to the light source support portion 17b-3 described later of the first connecting member 17, and the inside of the light source portion 15 is airtightly closed. The cover member 21 transmits the ultraviolet rays emitted by the LED 23 and transmits the ultraviolet rays to the fluid flowing in the flow path 13a and the fluid flowing through the flow paths 17a-1 and 17a-2 described later of the first connecting member 17. Irradiate. In the cover member 21 of the embodiment, the surface of the flow path 13a facing the cross section of the flow path is formed as a flat surface, but a curved surface is formed so as to reduce the flow resistance of the fluid flowing around the cover member 21. May be done.

図3及び図4に示すように、光源部15は、LED23が載置される載置面としての基板24の実装面24aが、流路部材13の流路13a内に位置している。後述するが、第1の接続部材17が有する光源支持部17b−3が、第1の接続部材17側から流路13a内へ突出されていることにより、基板24の実装面24a上に載置されたLED23全体が、流路13a内に配置されている。このため、LED23が発する紫外線のうち、特に基板24の実装面24aとなす角度が小さな方向へ沿って進む紫外線であっても、流路13a内へ入射させることが可能となり、LED23が発する紫外線の利用効率が高められる。 As shown in FIGS. 3 and 4, in the light source unit 15, the mounting surface 24a of the substrate 24 as the mounting surface on which the LED 23 is mounted is located in the flow path 13a of the flow path member 13. As will be described later, the light source support portion 17b-3 included in the first connecting member 17 is placed on the mounting surface 24a of the substrate 24 because it protrudes into the flow path 13a from the first connecting member 17 side. The entire LED 23 is arranged in the flow path 13a. Therefore, among the ultraviolet rays emitted by the LED 23, even if the ultraviolet rays form with the mounting surface 24a of the substrate 24 travel in a direction that is small, the ultraviolet rays can be incident into the flow path 13a, and the ultraviolet rays emitted by the LED 23 can be emitted. Utilization efficiency is improved.

また、LED23が載置される基板24の実装面24aは、図4に示すように、実装面24aに沿う方向(流路13aの流れ方向に直交する方向)から見たときに、反射面としての反射膜13bは、流路部材13の外周面に沿って、光源部15の最大出射角、本実施形態では、LED23の半値角θの境界線Lと流路13aの内面とが交差する位置Pよりも、光源16側へ延びている。これにより、LED23が発する紫外線のうち、半値角θの境界線Lに沿って進む紫外線を、反射膜13bに入射させて、反射膜13bによって流路13a内へ反射させることが可能となり、LED23が発する紫外線の利用効率が高められる。なお、LED23としては、例えば、半値角θが120°程度のものが用いられている。 Further, as shown in FIG. 4, the mounting surface 24a of the substrate 24 on which the LED 23 is mounted serves as a reflecting surface when viewed from a direction along the mounting surface 24a (a direction orthogonal to the flow direction of the flow path 13a). The reflective film 13b of the above is the maximum emission angle of the light source unit 15 along the outer peripheral surface of the flow path member 13, and in the present embodiment, the position where the boundary line L of the half value angle θ of the LED 23 and the inner surface of the flow path 13a intersect. It extends toward the light source 16 side from P. As a result, among the ultraviolet rays emitted by the LED 23, the ultraviolet rays traveling along the boundary line L of the half-value angle θ can be incident on the reflective film 13b and reflected by the reflective film 13b into the flow path 13a. The utilization efficiency of the emitted ultraviolet rays is improved. As the LED 23, for example, one having a half-value angle θ of about 120 ° is used.

また、本実施形態におけるカバー部材21は、基板23の実装面24aに沿う方向から見たときに、光源16の半値角θの境界線Lに沿って進む紫外線を透過させる。言い換えると、LED23の半値角θよりも、光源16の最大出射角が小さいので、カバー部材21は、基板23の実装面24aに沿う方向から見たときに、光源16の最大出射角の境界線に沿って進む紫外線を透過させるとも言える。 Further, the cover member 21 in the present embodiment transmits ultraviolet rays traveling along the boundary line L of the half-value angle θ of the light source 16 when viewed from the direction along the mounting surface 24a of the substrate 23. In other words, since the maximum emission angle of the light source 16 is smaller than the half-value angle θ of the LED 23, the cover member 21 is the boundary line of the maximum emission angle of the light source 16 when viewed from the direction along the mounting surface 24a of the substrate 23. It can also be said that the ultraviolet rays traveling along the line are transmitted.

なお、反射膜13bは、流路部材13の外周面の全域に亘って形成されることが望ましいが、反射膜13bの成膜時に流路部材13を保持するための保持代に相当する領域、すなわち、流路部材13の端部に反射膜13bを形成することが困難である。このため、上述のように、反射膜13bの一端が、位置Pよりも光源部15側へ延ばされることにより、LED23が発する紫外線が流路13aの外側へ漏れ出て損失することが抑えられ、LED23が発する紫外線の利用効率が高められる。 It is desirable that the reflective film 13b is formed over the entire outer peripheral surface of the flow path member 13, but a region corresponding to a holding allowance for holding the flow path member 13 during film formation of the reflective film 13b. That is, it is difficult to form the reflective film 13b at the end of the flow path member 13. Therefore, as described above, since one end of the reflective film 13b is extended toward the light source portion 15 from the position P, it is possible to prevent the ultraviolet rays emitted by the LED 23 from leaking to the outside of the flow path 13a and being lost. The utilization efficiency of the ultraviolet rays emitted by the LED 23 is enhanced.

LED23が載置される実装面24aは、流路13a内に配置されていればよく、流路13aの流れ方向に対する実装面24aの向き(姿勢)を限定するものではないが、LED23の半値角θを踏まえて、LED23が発する紫外線の利用効率を高める観点では、実装面24aが流路13aの流路断面と平行に配置されるのが好ましい。 The mounting surface 24a on which the LED 23 is mounted may be arranged in the flow path 13a, and does not limit the orientation (posture) of the mounting surface 24a with respect to the flow direction of the flow path 13a, but is a half-value angle of the LED 23. Based on θ, from the viewpoint of increasing the utilization efficiency of the ultraviolet rays emitted by the LED 23, it is preferable that the mounting surface 24a is arranged parallel to the flow path cross section of the flow path 13a.

また、第1の接続部材17が有する後述の流路17a−1、17a−2は、光源16の近傍に位置しているので、必要に応じて、流路17a−1、17a−2の内面に反射膜が設けられてもよい。このような反射膜により、流路13a側から流路17a−1、17a−2内へ入射する紫外線を流路13a内へ反射させることが可能になり、LED23が発する紫外線の利用効率を高めることが可能になる。 Further, since the flow paths 17a-1 and 17a-2 described later of the first connecting member 17 are located in the vicinity of the light source 16, the inner surfaces of the flow paths 17a-1 and 17a-2 are required. A reflective film may be provided on the surface. With such a reflective film, it becomes possible to reflect the ultraviolet rays incident on the flow paths 17a-1 and 17a-2 from the flow path 13a side into the flow path 13a, and the utilization efficiency of the ultraviolet rays emitted by the LED 23 is enhanced. Becomes possible.

光源16のLED23から出射された紫外線は、カバー部材21を透過し、流路13a内を流れる流体に対してLED23からの直射光が照射されると共に、図2及び図3に示す矢印のように、流路13a内において反射膜13bで反射されることで流路13a内を流れる流体に対して反射膜13bからの反射光が間接的に照射される。 The ultraviolet rays emitted from the LED 23 of the light source 16 pass through the cover member 21, and the fluid flowing in the flow path 13a is irradiated with the direct light from the LED 23, as shown by the arrows shown in FIGS. 2 and 3. By being reflected by the reflective film 13b in the flow path 13a, the reflected light from the reflective film 13b is indirectly irradiated to the fluid flowing in the flow path 13a.

第1の接続部材17の内部には、光源16が設けられており、流路13aの一端に連通する第2の流路としての流路17a−1、17a−2、17b−1、17b−2が光源16の周囲に沿って形成されている。また、第1の接続部材17の上流側フランジ17aには、後述する連結部材19の一端部が固定されている。 A light source 16 is provided inside the first connecting member 17, and the flow paths 17a-1, 17a-2, 17b-1, 17b- as a second flow path communicating with one end of the flow path 13a. 2 is formed along the periphery of the light source 16. Further, one end of a connecting member 19, which will be described later, is fixed to the upstream flange 17a of the first connecting member 17.

第1の接続部材17は、一対の上流側フランジ17aと下流側フランジ17bを、図示しない締結部材を介して一体に締結して構成されている。上流側フランジ17aは、流路部材13側に配置されており、下流側フランジ17bは、光源部15を挟んで流路部材13とは反対側に配置されている。 The first connecting member 17 is configured by integrally fastening a pair of upstream flanges 17a and downstream flanges 17b via a fastening member (not shown). The upstream side flange 17a is arranged on the flow path member 13 side, and the downstream side flange 17b is arranged on the side opposite to the flow path member 13 with the light source portion 15 interposed therebetween.

第1の接続部材17の上流側フランジ17aは、第2の流路として、流路17a−1と、流路17a−2と、を有する。上流側フランジ17aは、Oリング25を介して流路部材13の一端部を支持している。上流側フランジ17a及び下流側フランジ17bは、所定以上の熱伝導率を有する材料、例えば、腐食性に優れるステンレス鋼によって円筒状に形成されている。なお、上流側フランジ17a及び下流側フランジ17bは、ステンレス鋼に限らず、熱伝導率が高いアルミニウムの複合素材によって形成されてもよく、セラミックスやフィラーが混合された高熱伝導性樹脂材等によって形成されてもよい。 The upstream flange 17a of the first connecting member 17 has a flow path 17a-1 and a flow path 17a-2 as a second flow path. The upstream flange 17a supports one end of the flow path member 13 via the O-ring 25. The upstream flange 17a and the downstream flange 17b are formed in a cylindrical shape by a material having a thermal conductivity equal to or higher than a predetermined value, for example, stainless steel having excellent corrosiveness. The upstream flange 17a and the downstream flange 17b are not limited to stainless steel, but may be formed of a composite material of aluminum having a high thermal conductivity, and may be formed of a high thermal conductive resin material mixed with ceramics or a filler. May be done.

流路17a−1は、上流側フランジ17aの中心付近に位置しており、流路部材13の流路13aの一端と連通されている。図7に示すように、流路17a−2は、流路17a−1と連通されており、上流側フランジ17aの中心から外周側へ延びている。したがって、上流側フランジ17aの流路17a−1及び流路17a−2は、流路部材13の流路13aと連通されており、光源16の近傍に位置している。上述したように、流路17a−1、17a−2の内面には、流路13a側から流路17a−1、17a−2内へ入射する紫外線を流路13a内へ反射させる反射膜が設けられてもよく、LED23が発する紫外線の利用効率を高めることが可能になる。 The flow path 17a-1 is located near the center of the upstream flange 17a and communicates with one end of the flow path 13a of the flow path member 13. As shown in FIG. 7, the flow path 17a-2 communicates with the flow path 17a-1 and extends from the center of the upstream flange 17a to the outer peripheral side. Therefore, the flow path 17a-1 and the flow path 17a-2 of the upstream flange 17a are communicated with the flow path 13a of the flow path member 13 and are located in the vicinity of the light source 16. As described above, the inner surface of the flow paths 17a-1 and 17a-2 is provided with a reflective film that reflects ultraviolet rays incident on the flow paths 17a-1 and 17a-2 from the flow path 13a side into the flow path 13a. It is possible to increase the utilization efficiency of the ultraviolet rays emitted by the LED 23.

図2及び図3に示すように、下流側フランジ17bは、第2の流路として、流路17b−1と、流路17b−2と、光源16を支持する支持部としての光源支持部17b−3と、を有する。光源支持部17b−3は、流路17b−1及び流路17b−2で囲まれる領域に形成されている。したがって、流路17b−1と流路17b−2は、第1の接続部材17の内部に設けられた光源部15の周囲に配置されている。 As shown in FIGS. 2 and 3, the downstream flange 17b has a flow path 17b-1 as a second flow path, a flow path 17b-2, and a light source support portion 17b as a support portion for supporting the light source 16. -3 and. The light source support portion 17b-3 is formed in a region surrounded by the flow path 17b-1 and the flow path 17b-2. Therefore, the flow path 17b-1 and the flow path 17b-2 are arranged around the light source unit 15 provided inside the first connecting member 17.

また、光源支持部17b−3は、図3及び図4に示すように、光源16の基板24が取り付けられる取付部17b−4を有する。取付部17b−4は、流路部材13の流路13aの流れ方向に沿って、流路13a側へ突出して形成されている。取付部17b−4には、基板24を支持する平坦な支持面17b−5が、流路13aの流路断面と対向して形成されており、流路13a内に位置している。取付部17b−4には、平坦な支持面17b−5から流路13a側へ突出する部分が形成されていない。したがって、光源支持部17b−3は、取付部17b−4の支持面17b−5に光源16が取り付けられたときに、基板24の実装面24aと同一平面上において、LED23が発する紫外線を透過させる。すなわち、光源支持部17b−3の取付部17b−4には、LED23が発する紫外線を遮る部分が形成されていない。LED23が発した紫外線は、カバー部材21を透過し、流路13a内へ入射する。 Further, the light source support portion 17b-3 has a mounting portion 17b-4 to which the substrate 24 of the light source 16 is mounted, as shown in FIGS. 3 and 4. The mounting portion 17b-4 is formed so as to project toward the flow path 13a along the flow direction of the flow path 13a of the flow path member 13. A flat support surface 17b-5 for supporting the substrate 24 is formed on the mounting portion 17b-4 so as to face the cross section of the flow path 13a, and is located in the flow path 13a. The mounting portion 17b-4 is not formed with a portion protruding from the flat support surface 17b-5 toward the flow path 13a. Therefore, the light source support portion 17b-3 transmits the ultraviolet rays emitted by the LED 23 on the same plane as the mounting surface 24a of the substrate 24 when the light source 16 is mounted on the support surface 17b-5 of the mounting portion 17b-4. .. That is, the mounting portion 17b-4 of the light source supporting portion 17b-3 is not formed with a portion that blocks the ultraviolet rays emitted by the LED 23. The ultraviolet rays emitted by the LED 23 pass through the cover member 21 and enter the flow path 13a.

本実施形態では、基板24の実装面24aが流路13a内に位置するが、取付部17b−4の支持面17b−5が流路13a内に位置するように構成されることにより、例えば、基板24の厚み等のばらつきにかかわらずに、LED23全体を流路13a内に配置させることができる。 In the present embodiment, the mounting surface 24a of the substrate 24 is located in the flow path 13a, but the support surface 17b-5 of the mounting portion 17b-4 is configured to be located in the flow path 13a, for example. The entire LED 23 can be arranged in the flow path 13a regardless of variations in the thickness of the substrate 24 and the like.

下流側フランジ17bは、上流側フランジ17aと連結されており、流路17b−1と流路17a−2とを接続している。また、下流側フランジ17bは、下流側流路部材9と連結されている。このように第1の接続部材17は、例えば、流路部材13の流路13aから流入した流体を、光源部15の周囲において取付部17b−4の側面に沿う流路17a−1、光源支持部17b−3の外周側へ向かう流路17a−2、光源支持部17b−3の外周付近を通過する流路17b−1、光源16の発光面の反対面側で光源支持部17b−3の外周側から中心付近へ延びる流路17b−2の順に経由させて、下流側流路部材9へ流出させる。 The downstream flange 17b is connected to the upstream flange 17a, and connects the flow path 17b-1 and the flow path 17a-2. Further, the downstream flange 17b is connected to the downstream flow path member 9. As described above, the first connecting member 17 allows, for example, the fluid flowing in from the flow path 13a of the flow path member 13 to the flow path 17a-1 along the side surface of the mounting portion 17b-4 around the light source portion 15 and the light source support. The flow path 17a-2 toward the outer peripheral side of the portion 17b-3, the flow path 17b-1 passing near the outer periphery of the light source support portion 17b-3, and the light source support portion 17b-3 on the opposite surface side of the light emitting surface of the light source 16. It flows out to the downstream side flow path member 9 through the flow path 17b-2 extending from the outer peripheral side to the vicinity of the center in this order.

第2の接続部材18は、円筒状に形成されており、上流側流路部材8と流路部材13とを連結している。第2の接続部材18は、Oリング25を介して流路部材13の他端部を支持している。第2の接続部材18の外周部には、後述する連結部材19の他端部が固定されている。 The second connecting member 18 is formed in a cylindrical shape, and connects the upstream side flow path member 8 and the flow path member 13. The second connecting member 18 supports the other end of the flow path member 13 via the O-ring 25. The other end of the connecting member 19, which will be described later, is fixed to the outer peripheral portion of the second connecting member 18.

図3及び図5に示すように、上流側流路部材8の流路から、流路部材13の流路13a内へ流入した流体は、図3及び図5中の矢印のように、流路13a内を流れ、第1の接続部材17の流路17a−1、流路17a−2、流路17b−1、流路17b−2を経由し、下流側流路部材9の流路へ流出される。第1の接続部材17へ流入した流体は、流路17a−1、流路17a−2、流路17b−1、流路17b−2の経路を通過する際に、光源支持部17b−3に収容された光源16が発する熱を奪いながら、下流側流路部材9へ流出される。 As shown in FIGS. 3 and 5, the fluid flowing from the flow path of the upstream side flow path member 8 into the flow path 13a of the flow path member 13 flows through the flow path as shown by the arrows in FIGS. 3 and 5. It flows through 13a, passes through the flow path 17a-1, the flow path 17a-2, the flow path 17b-1, and the flow path 17b-2 of the first connecting member 17, and flows out to the flow path of the downstream flow path member 9. Will be done. The fluid flowing into the first connecting member 17 enters the light source support portion 17b-3 when passing through the paths of the flow path 17a-1, the flow path 17a-2, the flow path 17b-1, and the flow path 17b-2. While taking away the heat generated by the housed light source 16, it flows out to the downstream flow path member 9.

すなわち、流路13aにおいて光源16が発した紫外線が照射されることにより殺菌される流体は、流路部材13の流路13aを通って、光源16の発光面側に向かって流れ、光源16の発光面に沿う流路17a−1へ流入し、第1の接続部材17内を流路17a−1、流路17a−2、流路17b−1、流路17b−2の複数の経路を通過して、発光面の反対面側へ流出する。第1の接続部材17内の流路17a−1、流路17a−2、流路17b−1、流路17b−2の複数の経路は、光源16の周囲に沿って延びており、光源16の発光面側から反対面側に流体が通り抜ける。これにより、光源16は、他の冷却手段を用いることなく、流路17a−1、流路17a−2、流路17b−1、流路17b−2の複数の経路を通過する流体を用いて、間接的ではあるが効率的に冷却される。また、他の冷却手段を用いることなく、流路17a−1、流路17a−2、流路17b−1、流路17b−2の複数の経路を通過する流体を用いて光源16の冷却を行うことで、例えば、放熱フィンなどの他の冷却部材が不要となる。これにより、流体殺菌装置1を小型化することができる。 That is, the fluid sterilized by being irradiated with the ultraviolet rays emitted by the light source 16 in the flow path 13a flows through the flow path 13a of the flow path member 13 toward the light emitting surface side of the light source 16 and flows toward the light emitting surface side of the light source 16. It flows into the flow path 17a-1 along the light emitting surface and passes through a plurality of paths of the flow path 17a-1, the flow path 17a-2, the flow path 17b-1, and the flow path 17b-2 in the first connecting member 17. Then, it flows out to the opposite side of the light emitting surface. A plurality of paths of the flow path 17a-1, the flow path 17a-2, the flow path 17b-1, and the flow path 17b-2 in the first connecting member 17 extend along the periphery of the light source 16, and the light source 16 The fluid passes from the light emitting surface side to the opposite surface side. As a result, the light source 16 uses a fluid that passes through a plurality of paths of the flow path 17a-1, the flow path 17a-2, the flow path 17b-1, and the flow path 17b-2 without using other cooling means. , Indirectly but efficiently cooled. Further, the light source 16 is cooled by using a fluid that passes through a plurality of paths of the flow path 17a-1, the flow path 17a-2, the flow path 17b-1, and the flow path 17b-2 without using other cooling means. By doing so, for example, another cooling member such as a heat radiation fin becomes unnecessary. As a result, the fluid sterilizer 1 can be miniaturized.

なお、光源支持部17b−3に収容された光源16と、光源支持部17b−3との間に、例えば、アルミニウム、ステンレス等の所定以上の熱伝導率を有する熱伝導部材が設けられることが好ましい。光源16が発した熱が、熱伝導部材を介して第1の接続部材17内を流れる流体に伝わり、流体によって光源16を更に効率的に冷却することができる。 A heat conductive member having a thermal conductivity of a predetermined value or higher, such as aluminum or stainless steel, may be provided between the light source 16 housed in the light source support portion 17b-3 and the light source support portion 17b-3. preferable. The heat generated by the light source 16 is transferred to the fluid flowing in the first connecting member 17 via the heat conductive member, and the light source 16 can be cooled more efficiently by the fluid.

また、流体殺菌装置1の流路部材13における流体の流れ方向は、図1及び図5に示した方向に限定されるものではなく、図5に示す方向と逆方向であってもよい。すなわち、図示しないが、第1の接続部材17が上流側流路部材8に接続され、第2の接続部材18が下流側流路部材9に連結されてもよい。この構成の場合、上流側流路部材8から第1の接続部材17へ流入した流体が、流路17b−2、流路17b−1、流路17a−2、流路17a−1の順に経由して流路13a内を流れて、下流側流路部材9の流路へ流出される。このように流体の流れ方向を限定しないことは、後述する第2の実施形態から第5の実施形態においても同様である。 Further, the flow direction of the fluid in the flow path member 13 of the fluid sterilizer 1 is not limited to the direction shown in FIGS. 1 and 5, and may be the direction opposite to the direction shown in FIG. That is, although not shown, the first connecting member 17 may be connected to the upstream flow path member 8 and the second connecting member 18 may be connected to the downstream flow path member 9. In the case of this configuration, the fluid flowing from the upstream side flow path member 8 to the first connecting member 17 passes through the flow path 17b-2, the flow path 17b-1, the flow path 17a-2, and the flow path 17a-1 in this order. Then, it flows through the flow path 13a and flows out to the flow path of the downstream side flow path member 9. The fact that the flow direction of the fluid is not limited in this way is the same in the second to fifth embodiments described later.

また、図3及び図5では、流路部材13は、流路13aにおける流体の流れ方向が、光源部15の光源16の発光面に対して略垂直に配置されているが、垂直に限定されず、流路13aの流れ方向が、光源16の発光面に対して、所定の角度をなす構成、あるいは、角度を任意に調整可能な構成であってもよい。 Further, in FIGS. 3 and 5, in the flow path member 13, the flow direction of the fluid in the flow path 13a is arranged substantially perpendicular to the light emitting surface of the light source 16 of the light source unit 15, but is limited to vertical. Instead, the flow direction of the flow path 13a may be configured to form a predetermined angle with respect to the light emitting surface of the light source 16, or the angle may be arbitrarily adjusted.

連結部材19は、例えば、ステンレス等の金属材料によって、流路部材13を内部に収容する円筒状に形成されており、流路部材13の外周を覆って保護するカバー部材としても機能する。連結部材19の両端部には、フランジ部19aが形成されている。連結部材19の一端部側のフランジ部19aは、第1の接続部材17の上流側フランジ17aにおける流路部材13側の側面、すなわち流路部材13における流体の流れ方向に直交する面に、例えば、ボルト等の締結部材27を介して固定されている。同様に、連結部材19の他端部側のフランジ部19aは、第2の接続部材18における流路部材13側の側面、すなわち流路部材13における流体の流れ方向に直交する面に、締結部材27を介して固定されている。このように第1の接続部材17と第2の接続部材18は、連結部材19を介して互いに連結されることで、第1の接続部材17と第2の接続部材18との間に挟まれた流路部材13の両端の支持状態が補強されている。 The connecting member 19 is formed of a metal material such as stainless steel in a cylindrical shape that houses the flow path member 13 inside, and also functions as a cover member that covers and protects the outer periphery of the flow path member 13. Flange portions 19a are formed at both ends of the connecting member 19. The flange portion 19a on the one end side of the connecting member 19 is formed on a side surface of the first connecting member 17 on the upstream side flange 17a on the flow path member 13 side, that is, a surface of the flow path member 13 orthogonal to the fluid flow direction, for example. , Is fixed via a fastening member 27 such as a bolt. Similarly, the flange portion 19a on the other end side of the connecting member 19 is a fastening member on the side surface of the second connecting member 18 on the flow path member 13 side, that is, the surface of the flow path member 13 orthogonal to the fluid flow direction. It is fixed via 27. In this way, the first connecting member 17 and the second connecting member 18 are connected to each other via the connecting member 19, so that the first connecting member 17 and the second connecting member 18 are sandwiched between the first connecting member 17 and the second connecting member 18. The support state at both ends of the flow path member 13 is reinforced.

(流体殺菌装置の要部のI−I断面(A方向))
図6は、第1の実施形態に係る流体殺菌装置1の要部において、流路部材13を流体が流れる方向に直交するI−I断面をA方向から見た断面図である。
(I-I cross section (A direction) of the main part of the fluid sterilizer)
FIG. 6 is a cross-sectional view of the main part of the fluid sterilizer 1 according to the first embodiment, in which the I-I cross section orthogonal to the direction in which the fluid flows through the flow path member 13 is viewed from the A direction.

図2及び図5においてI−I断面を図中のA方向から見ると、図6に示すように、下流側フランジ17b及び光源16が配置されている。図2及び図5におけるI−I断面をA方向から見たとき、図6に示すように、下流側フランジ17bは、円形状であり、その中心付近に、凹状の光源支持部17b−3を有する。そして、光源支持部17b−3には、光源16が、LED23からの紫外線の照射方向が流路13a側に向くように収容されている。 Looking at the I-I cross section in FIGS. 2 and 5 from the direction A in the drawing, as shown in FIG. 6, the downstream flange 17b and the light source 16 are arranged. When the I-I cross section in FIGS. 2 and 5 is viewed from the A direction, as shown in FIG. 6, the downstream flange 17b has a circular shape, and a concave light source support portion 17b-3 is provided near the center thereof. Have. The light source support portion 17b-3 accommodates the light source 16 so that the direction of irradiation of ultraviolet rays from the LED 23 faces the flow path 13a.

また、光源支持部17b−3の周囲には、複数の流路17b−1が、LED23を中心とする同心円状に沿って間隔をあけて設けられている。複数の流路17b−1は、下流側フランジ17bにおいて、光源16を囲んだ周辺に光源16の発光面側から反対面側まで貫通する貫通孔によって形成されている。 Further, a plurality of flow paths 17b-1 are provided around the light source support portion 17b-3 at intervals along a concentric circle centered on the LED 23. The plurality of flow paths 17b-1 are formed in the downstream flange 17b by through holes penetrating from the light emitting surface side to the opposite surface side of the light source 16 in the periphery surrounding the light source 16.

なお、基板24上に実装されるLED23の個数、及び流路17b−1の個数は、図6に示す個数に限定されるものではなく、必要に応じて変更されてよい。 The number of LEDs 23 mounted on the substrate 24 and the number of flow paths 17b-1 are not limited to the number shown in FIG. 6, and may be changed as necessary.

(流体殺菌装置の要部のI−I断面(B方向))
図7は、第1の実施形態に係る流体殺菌装置1の要部において、流路部材13を流体が流れる方向に直交するI−I断面をB方向から見た断面図である。
(I-I cross section (B direction) of the main part of the fluid sterilizer)
FIG. 7 is a cross-sectional view of the main part of the fluid sterilizer 1 according to the first embodiment, in which the I-I cross section orthogonal to the direction in which the fluid flows through the flow path member 13 is viewed from the B direction.

図2及び図5においてI−I断面を図中のB方向から見ると、図7に示すように、上流側フランジ17a及び光源16が配置されている。図2及び図5におけるI−I断面を図中のB方向から見たとき、図7に示すように、上流側フランジ17aは、円形状であり、その中心付近に流路13aと連通される断面円形状の流路17a−1と、流路17a−1から、上流側フランジ17aの外周側へ向かって放射状に延びる複数の流路17a−2と、を有する。また、第1の接続部材17の内部において、カバー部材21は、流路17a−1及び流路17a−2に隣接して配置されている。 Looking at the I-I cross section in FIGS. 2 and 5 from the B direction in the drawing, as shown in FIG. 7, the upstream flange 17a and the light source 16 are arranged. When the I-I cross section in FIGS. 2 and 5 is viewed from the B direction in the drawing, as shown in FIG. 7, the upstream flange 17a has a circular shape and communicates with the flow path 13a near the center thereof. It has a flow path 17a-1 having a circular cross section, and a plurality of flow paths 17a-2 extending radially from the flow path 17a-1 toward the outer peripheral side of the upstream flange 17a. Further, inside the first connecting member 17, the cover member 21 is arranged adjacent to the flow path 17a-1 and the flow path 17a-2.

第1の接続部材17は、一対の上流側フランジ17aと下流側フランジ17bとを連結することで、図7に示す各流路17a−2の放射状に延びる先端部分と、位置が対応する図6に示す各流路17b−1とがそれぞれ接続される。 By connecting the pair of upstream flanges 17a and the downstream flanges 17b, the first connecting member 17 has a position corresponding to the radially extending tip portion of each flow path 17a-2 shown in FIG. 7. FIG. Each flow path 17b-1 shown in the above is connected.

上述したように第1の実施形態の流体殺菌装置1は、流路部材13の流路13aの流路断面に対向して配置される光源16を備えており、光源16のLED23が載置される基板24の実装面24aが、流路13a内に位置している。光源支持部17b−3は、基板24の実装面24aと同一平面上において、LED23が発する紫外線を透過させる。カバー部材21は、実装面24aに沿う方向から見たときに、LED23の半値角θの境界線Lに沿って進む紫外線を透過させる。これにより、LED23全体が流路13a内に配置されるので、LED23が発する紫外線の利用効率が高められ、流路13a内の流体に対する紫外線の照射効率を高めることができる。 As described above, the fluid sterilizer 1 of the first embodiment includes a light source 16 arranged to face the flow path cross section of the flow path 13a of the flow path member 13, and the LED 23 of the light source 16 is mounted on the light source 16. The mounting surface 24a of the substrate 24 is located in the flow path 13a. The light source support portion 17b-3 transmits the ultraviolet rays emitted by the LED 23 on the same plane as the mounting surface 24a of the substrate 24. The cover member 21 transmits ultraviolet rays traveling along the boundary line L of the half-value angle θ of the LED 23 when viewed from the direction along the mounting surface 24a. As a result, since the entire LED 23 is arranged in the flow path 13a, the utilization efficiency of the ultraviolet rays emitted by the LED 23 can be enhanced, and the irradiation efficiency of the ultraviolet rays to the fluid in the flow path 13a can be enhanced.

また、流体殺菌装置1は、LED23全体が流路13a内に配置されることにより、LED23から出射される紫外線を屈折させて流路13a内へ入射させる光学レンズ等の光学系を用いることなく、簡素な構成で、紫外線の利用効率を高めることができる。 Further, the fluid sterilizer 1 does not use an optical system such as an optical lens that refracts the ultraviolet rays emitted from the LED 23 and causes them to enter the flow path 13a by arranging the entire LED 23 in the flow path 13a. With a simple configuration, the efficiency of using ultraviolet rays can be improved.

また、流体殺菌装置1が有する流路部材13の外周面に設けられた反射膜13bは、基板24の実装面24aに沿う方向から見たときに、流路部材13の外周面に沿って、LED23の半値角θの境界線Lと流路13aの内面とが交差する位置Pよりも、LED23側へ延びている。これにより、LED23が発する紫外線のうち、半値角θの境界線Lに沿って進む紫外線を、反射膜13bによって流路13a内へ反射させることが可能となり、LED23が発する紫外線の利用効率を高めることができる。 Further, the reflective film 13b provided on the outer peripheral surface of the flow path member 13 included in the fluid sterilizer 1 is formed along the outer peripheral surface of the flow path member 13 when viewed from the direction along the mounting surface 24a of the substrate 24. It extends toward the LED 23 side from the position P where the boundary line L of the half value angle θ of the LED 23 and the inner surface of the flow path 13a intersect. As a result, among the ultraviolet rays emitted by the LED 23, the ultraviolet rays traveling along the boundary line L of the half-value angle θ can be reflected by the reflective film 13b into the flow path 13a, and the utilization efficiency of the ultraviolet rays emitted by the LED 23 can be improved. Can be done.

(変形例)
ここで、第1の実施形態におけるカバー部材21の変形例について説明する。便宜上、変形例においても、上述のカバー部材21と同一符号を付して説明する。図8は、第1の実施形態に係る流体殺菌装置が有するカバー部材21の変形例を示す模式図である。変形例のカバー部材21は、平板状に形成されている点が、第1の実施形態におけるカバー部材21と異なる。図8に示すように、カバー部材21は、基板24の実装面24aに対向する平坦部分のみを有しており、基板21の側面側へ外周部が延ばされていない。取付部17b−4の支持面17b−5の周囲には、光源16を包囲する周壁17b−6が形成されている。平板状のカバー部材21の外周部は、取付部17b−4の周壁17b−6に気密に固定されている。また、変形例のカバー部材21は、基板23の実装面24aに沿う方向から見たときに、光源16の最大出射角θ’の境界線L’に沿って進む紫外線を透過させる大きさに形成されている。
(Modification example)
Here, a modified example of the cover member 21 in the first embodiment will be described. For convenience, the modification will also be described with the same reference numerals as those of the cover member 21 described above. FIG. 8 is a schematic view showing a modified example of the cover member 21 included in the fluid sterilizer according to the first embodiment. The cover member 21 of the modified example is different from the cover member 21 in the first embodiment in that it is formed in a flat plate shape. As shown in FIG. 8, the cover member 21 has only a flat portion facing the mounting surface 24a of the substrate 24, and the outer peripheral portion is not extended to the side surface side of the substrate 21. A peripheral wall 17b-6 surrounding the light source 16 is formed around the support surface 17b-5 of the mounting portion 17b-4. The outer peripheral portion of the flat plate-shaped cover member 21 is airtightly fixed to the peripheral wall 17b-6 of the mounting portion 17b-4. Further, the cover member 21 of the modified example is formed to have a size that allows ultraviolet rays traveling along the boundary line L'of the maximum emission angle θ'of the light source 16 to be transmitted when viewed from the direction along the mounting surface 24a of the substrate 23. Has been done.

図8に示す構成において、光源16の最大出射角θ’は、LED23の半値角θよりも小さい。反射膜13bは、光源16の最大出射角θ’の境界線L’と流路13aの内面とが交差する位置Pよりも、光源16側へ延びている。これにより、光源16が発する紫外線のうち、最大出射角θ’の境界線L’に沿って進む紫外線を、反射膜13bに入射させて、反射膜13bによって流路13a内へ反射させることが可能となり、光源16が発する紫外線の利用効率を高めることができる。ここで、「光源16の最大出射角θ’」とは、光源16を保護するカバー部材21が装着された状態での最大出射角を指す。 In the configuration shown in FIG. 8, the maximum emission angle θ'of the light source 16 is smaller than the half-value angle θ of the LED 23. The reflective film 13b extends toward the light source 16 from the position P where the boundary line L'of the maximum emission angle θ'of the light source 16 and the inner surface of the flow path 13a intersect. As a result, among the ultraviolet rays emitted by the light source 16, the ultraviolet rays traveling along the boundary line L'of the maximum emission angle θ'can be incident on the reflective film 13b and reflected by the reflective film 13b into the flow path 13a. Therefore, it is possible to improve the utilization efficiency of the ultraviolet rays emitted by the light source 16. Here, the "maximum emission angle θ'of the light source 16" refers to the maximum emission angle when the cover member 21 that protects the light source 16 is attached.

以下、他の実施形態の流体殺菌装置について図面を参照して説明する。他の実施形態において、第1の実施形態と同一の構成部材には、第1の実施形態と同一符号を付して説明を省略する。また、第2の実施形態及び第3の実施形態は、第1の接続部材17の内部形状(流路)が第1の実施形態と異なるが、便宜上、第1の実施形態と同一符号を付して説明する。 Hereinafter, the fluid sterilizer of another embodiment will be described with reference to the drawings. In other embodiments, the same components as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted. Further, in the second embodiment and the third embodiment, the internal shape (flow path) of the first connecting member 17 is different from that of the first embodiment, but for convenience, the same reference numerals as those in the first embodiment are attached. I will explain.

(第2の実施形態及び第3の実施形態)
図9は、第2の実施形態に係る流体殺菌装置の要部を示す断面図である。図10は、第3の実施形態に係る流体殺菌装置の要部を示す断面図である。第2の実施形態及び第3の実施形態は、流路13aと連結される第1の接続部材17の流路の向きが、第1の実施形態と異なる。
(Second and third embodiments)
FIG. 9 is a cross-sectional view showing a main part of the fluid sterilizer according to the second embodiment. FIG. 10 is a cross-sectional view showing a main part of the fluid sterilizer according to the third embodiment. In the second embodiment and the third embodiment, the direction of the flow path of the first connecting member 17 connected to the flow path 13a is different from that of the first embodiment.

図9に示すように、第2の実施形態の流体殺菌装置2における第1の接続部材17は、流路部材13の流路13aの一端に連結された連結路としての流路17b−1を有しており、流路17b−1の流れ方向が、流路13aの流れ方向に対して鈍角θをなして傾斜している。言い換えると、流路17b−1は、流路13a側から遠ざかるに従って、流路13aの径方向における内側から外側へ向かって流体を流すように、流路13aの流れ方向に対して傾斜されている。また、流路17b−1は、流路17b−2と連結されている。 As shown in FIG. 9, the first connecting member 17 in the fluid sterilizer 2 of the second embodiment has a flow path 17b-1 as a connecting path connected to one end of the flow path 13a of the flow path member 13. The flow direction of the flow path 17b-1 is inclined with an obtuse angle θ O with respect to the flow direction of the flow path 13a. In other words, the flow path 17b-1 is inclined with respect to the flow direction of the flow path 13a so that the fluid flows from the inside to the outside in the radial direction of the flow path 13a as the distance from the flow path 13a side increases. .. Further, the flow path 17b-1 is connected to the flow path 17b-2.

また、図10に示すように、第3の実施形態の流体殺菌装置3における第1の接続部材17は、流路部材13の流路13aの一端に連結された連結路としての流路17b−1を有しており、流路17b−1の流れ方向が、流路13aの流れ方向と等しい。言い換えると、流路17b−1の流れ方向は、流路13aの流れ方向と揃えられており、流路13aと流路17b−1との間で、流体の流れ方向が変化することが抑えられている。また、流路17b−1は、流路17b−2と連結されている。 Further, as shown in FIG. 10, the first connecting member 17 in the fluid sterilizer 3 of the third embodiment is a flow path 17b- as a connecting path connected to one end of the flow path 13a of the flow path member 13. The flow direction of the flow path 17b-1 is equal to the flow direction of the flow path 13a. In other words, the flow direction of the flow path 17b-1 is aligned with the flow direction of the flow path 13a, and the change in the flow direction of the fluid between the flow path 13a and the flow path 17b-1 is suppressed. ing. Further, the flow path 17b-1 is connected to the flow path 17b-2.

第2の実施形態及び第3の実施形態は、第1の実施形態に比べて、流路13aから流路17b−1へ流入する、または流路17b−1から流路13aへ流入する流体の流動抵抗が抑えられるので、流路部材13の流路13aと、第1の接続部材17の流路17b−1との間で、流体をスムーズに流すことができる。 In the second embodiment and the third embodiment, as compared with the first embodiment, the fluid flowing from the flow path 13a into the flow path 17b-1 or flowing from the flow path 17b-1 into the flow path 13a Since the flow resistance is suppressed, the fluid can flow smoothly between the flow path 13a of the flow path member 13 and the flow path 17b-1 of the first connecting member 17.

なお、第2の実施形態及び第3の実施形態においても、流路17b−1の内面に、反射膜や反射板が設けられてもよい。このような反射膜等により、流路13a側から流路17b−1内へ入射する紫外線を、流路13a内へ反射させることが可能になり、LED23が発する紫外線の利用効率を高めることができる。 Also in the second embodiment and the third embodiment, a reflective film or a reflector may be provided on the inner surface of the flow path 17b-1. With such a reflective film or the like, it is possible to reflect the ultraviolet rays incident on the flow path 17b-1 from the flow path 13a side into the flow path 13a, and it is possible to improve the utilization efficiency of the ultraviolet rays emitted by the LED 23. ..

(第4の実施形態)
図11は、第4の実施形態に係る流体殺菌装置の要部を示す断面図である。第4の実施形態は、連結部材の内面で紫外線を反射する点が、第1の実施形態と異なる。図11に示すように、第4の実施形態の流体殺菌装置4が備える連結部材19Aは、紫外線透過性を有する流路部材13Aを内部に収容する円筒状に形成されており、内周面全体に、流路部材13Aを透過した紫外線を流路部材13Aの流路13aへ反射する反射面としての反射膜19bが形成されている。
(Fourth Embodiment)
FIG. 11 is a cross-sectional view showing a main part of the fluid sterilizer according to the fourth embodiment. The fourth embodiment is different from the first embodiment in that ultraviolet rays are reflected on the inner surface of the connecting member. As shown in FIG. 11, the connecting member 19A included in the fluid sterilizer 4 of the fourth embodiment is formed in a cylindrical shape that internally accommodates the flow path member 13A having ultraviolet light transmission, and is formed on the entire inner peripheral surface. A reflective film 19b is formed as a reflecting surface for reflecting ultraviolet rays transmitted through the flow path member 13A to the flow path 13a of the flow path member 13A.

反射膜19bとしては、例えば、シリカ膜やアルミニウム蒸着膜が用いられている。連結部材19Aは、反射膜19bを有する点が、上述の連結部材19と異なる。また、流路部材13Aは、紫外線透過性を有する材料によって形成されており、反射膜13bを有していない点が、上述の流路部材13と異なる。したがって、第4の実施形態では、光源16が発した紫外線が流路部材13Aの流路13a内へ入射し、流路部材13Aを透過した後に、連結部材19Aの反射膜19bで反射される。反射膜19bで反射された紫外線の反射光は、流路部材13Aを透過して、流路部材13Aの流路13a内を流れる流体に照射される。 As the reflective film 19b, for example, a silica film or an aluminum vapor deposition film is used. The connecting member 19A is different from the above-mentioned connecting member 19 in that it has a reflective film 19b. Further, the flow path member 13A is different from the above-mentioned flow path member 13 in that the flow path member 13A is made of a material having ultraviolet light transmittance and does not have the reflective film 13b. Therefore, in the fourth embodiment, the ultraviolet rays emitted by the light source 16 enter the flow path 13a of the flow path member 13A, pass through the flow path member 13A, and then are reflected by the reflective film 19b of the connecting member 19A. The reflected light of the ultraviolet rays reflected by the reflective film 19b passes through the flow path member 13A and irradiates the fluid flowing in the flow path 13a of the flow path member 13A.

第4の実施形態においても、光源部15を有することにより、第1の実施形態と同様に、LED23が発した紫外線の利用効率が高められるので、流路13a内の流体に対する紫外線の照射効率を高めることができる。また、流路部材13Aを透過した紫外線が、連結部材19Aの反射膜19bによって流路13a内へ反射されるので、流路13a内の流体に対する紫外線の照射効率を更に高めることができる。 Also in the fourth embodiment, by having the light source unit 15, the utilization efficiency of the ultraviolet rays emitted by the LED 23 is enhanced as in the first embodiment, so that the irradiation efficiency of the ultraviolet rays to the fluid in the flow path 13a can be improved. Can be enhanced. Further, since the ultraviolet rays transmitted through the flow path member 13A are reflected into the flow path 13a by the reflective film 19b of the connecting member 19A, the irradiation efficiency of the ultraviolet rays to the fluid in the flow path 13a can be further improved.

(第5の実施形態)
図12は、第5の実施形態に係る流体殺菌装置の要部を示す断面図である。第5の実施形態は、流路部材13の長手方向の両側に、光源16がそれぞれ配置された点が、第1の実施形態と異なる。図12に示すように、第5の実施形態の流体殺菌装置5は、第2の接続部材18Aと、連結部材19Bと、を備える。第2の接続部材18Aの内部には、上述した第1の接続部材17の内部の光源16とは別の光源16が設けられている。また、第2の接続部材18Aの内部には、上述した第1の接続部材17と同様に、流路13aの上流側の一端に連通する第3の流路としての流路17a−1、17a−2、17b−1、17b−2が光源16の周囲に沿って形成されている。連結部材19Bの両端部には、第1の接続部材17と第2の接続部材18Aに固定されるフランジ部19aがそれぞれ形成されている。
(Fifth Embodiment)
FIG. 12 is a cross-sectional view showing a main part of the fluid sterilizer according to the fifth embodiment. The fifth embodiment is different from the first embodiment in that the light sources 16 are arranged on both sides of the flow path member 13 in the longitudinal direction. As shown in FIG. 12, the fluid sterilizer 5 of the fifth embodiment includes a second connecting member 18A and a connecting member 19B. Inside the second connecting member 18A, a light source 16 different from the light source 16 inside the first connecting member 17 described above is provided. Further, inside the second connecting member 18A, similarly to the first connecting member 17 described above, the flow paths 17a-1 and 17a as a third flow path communicating with one end on the upstream side of the flow path 13a. -2, 17b-1, 17b-2 are formed along the periphery of the light source 16. Flange portions 19a fixed to the first connecting member 17 and the second connecting member 18A are formed at both ends of the connecting member 19B, respectively.

第5の実施形態によれば、第2の接続部材18Aが光源部15を有することで、第1の接続部材17のみに光源部15を有する第1の実施形態から第4の実施形態と比べて、流路13a内の流体の殺菌効果を更に高めることができる。また、第5の実施形態においても、第1の接続部材17及び第2の接続部材18Aが光源部15をそれぞれ有することにより、第1の実施形態と同様に、LED23が発した紫外線の利用効率が高められるので、流路13a内の流体に対する紫外線の照射効率を高めることができる。 According to the fifth embodiment, since the second connecting member 18A has the light source unit 15, it is compared with the first to fourth embodiments in which the light source unit 15 is provided only in the first connecting member 17. Therefore, the bactericidal effect of the fluid in the flow path 13a can be further enhanced. Further, also in the fifth embodiment, since the first connecting member 17 and the second connecting member 18A each have the light source unit 15, the utilization efficiency of the ultraviolet rays emitted by the LED 23 is the same as in the first embodiment. Therefore, it is possible to increase the irradiation efficiency of ultraviolet rays on the fluid in the flow path 13a.

本発明の実施形態を説明したが、実施形態は、例として提示したものであり、本発明の範囲を限定することを意図していない。実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、本発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although embodiments of the present invention have been described, the embodiments are presented as examples and are not intended to limit the scope of the invention. The embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. The embodiments and modifications thereof are included in the scope and gist of the present invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.

1 流体殺菌装置
13 流路部材
13a 流路(第1の流路)
13b 反射膜(反射面)
15 光源部
16 光源
17 第1の接続部材(接続部材)
17a 上流側フランジ
17b 下流側フランジ
17a−1、17a−2、17b−1、17b−2 流路(第2の流路)
17b−3 光源支持部(支持部)
21 カバー部材
23 LED(発光素子)
24 基板
24a 実装面(載置面)
θ 半値角
θ’ 最大出射角
θ 鈍角
1 Fluid sterilizer 13 Flow path member 13a Flow path (first flow path)
13b Reflective film (reflective surface)
15 Light source unit 16 Light source 17 First connecting member (connecting member)
17a Upstream flange 17b Downstream flange 17a-1, 17a-2, 17b-1, 17b-2 Flow path (second flow path)
17b-3 Light source support (support)
21 Cover member 23 LED (light emitting element)
24 Board 24a Mounting surface (mounting surface)
θ Half-value angle θ'Maximum output angle θ O obtuse angle

Claims (6)

流体を流すための第1の流路を有する流路部材と;
前記第1の流路の、前記流体の流れ方向に交差する流路断面に対向して配置され、前記第1の流路内へ紫外線を照射する発光素子を有する光源と;
前記流路部材の一端に接続されると共に前記光源が設けられ、前記光源の周囲に配置されて前記第1の流路に連通する第2の流路と、前記光源を支持する支持部と、を有する接続部材と;
前記光源を流体から保護するカバー部材と;
を具備し、
前記光源は、前記発光素子が載置される載置面を有し、前記載置面が前記第1の流路内に位置し、
前記第2の流路は、前記第1の流路の前記流路断面に対向する前記光源の一面側の、前記接続部材の中心部から前記接続部材の外周側まで向かう第1の経路と、前記第1の経路から前記接続部材の外周に沿って延びる第2の経路と、前記第2の経路に連通して前記接続部材の外周側から、前記光源の前記一面と対向する前記接続部材の他面側の中心部まで向かう第3の経路と、を有し、
前記カバー部材は、前記載置面に沿う方向から見たときに、前記光源の最大出射角の境界線に沿って進む紫外線を透過させる、流体殺菌装置。
With a flow path member having a first flow path for flowing a fluid;
A light source having a light emitting element that is arranged to face the cross section of the first flow path that intersects the flow direction of the fluid and irradiates the first flow path with ultraviolet rays;
A second flow path that is connected to one end of the flow path member and is provided with the light source and is arranged around the light source to communicate with the first flow path, and a support portion that supports the light source. With a connecting member with;
With a cover member that protects the light source from fluid;
Equipped with
The light source has a mounting surface on which the light emitting element is mounted, and the mounting surface described above is located in the first flow path.
The second flow path includes a first path from the center of the connection member to the outer peripheral side of the connection member on one side of the light source facing the flow path cross section of the first flow path. A second path extending from the first path along the outer periphery of the connecting member, and the connecting member communicating with the second path from the outer peripheral side of the connecting member and facing the one surface of the light source. It has a third path to the center on the other side,
The cover member is a fluid sterilizer that transmits ultraviolet rays traveling along the boundary line of the maximum emission angle of the light source when viewed from the direction along the above-mentioned mounting surface.
前記第2の流路は、前記光源を中心とする円周上に互いに間隔をあけて配置された複数の前記第2の経路を有する、The second flow path has a plurality of the second paths arranged at intervals on the circumference centered on the light source.
請求項1に記載の流体殺菌装置。The fluid sterilizer according to claim 1.
前記流路部材の外周面には、前記発光素子が前記第1の流路内へ照射する紫外線を前記第1の流路内へ反射する反射面が設けられ、
前記載置面に沿う方向から見たときに、前記反射面は、前記流路部材の外周面に沿って、前記光源の最大出射角の境界線と前記第1の流路の内面とが交差する位置よりも、前記光源側へ延びている、
請求項1または2に記載の流体殺菌装置。
A reflective surface is provided on the outer peripheral surface of the flow path member to reflect the ultraviolet rays emitted by the light emitting element into the first flow path into the first flow path.
When viewed from the direction along the above-mentioned mounting surface, the reflective surface intersects the boundary line of the maximum emission angle of the light source and the inner surface of the first flow path along the outer peripheral surface of the flow path member. It extends toward the light source side from the position where it is
The fluid sterilizer according to claim 1 or 2.
前記第2の流路は、前記第1の流路の一端に連結された連結路を有し、前記連結路の流れ方向が、前記第1の流路の流れ方向に対して鈍角をなして傾斜している、
請求項1ないし3のいずれか1項に記載の流体殺菌装置。
The second flow path has a connecting path connected to one end of the first flow path, and the flow direction of the connecting path is obtuse with respect to the flow direction of the first flow path. Inclined,
The fluid sterilizer according to any one of claims 1 to 3.
前記第2の流路は、前記第1の流路の一端に連結された連結路を有し、前記連結路の流れ方向が、前記第1の流路の流れ方向と等しい、
請求項1ないし3のいずれか1項に記載の流体殺菌装置。
The second flow path has a connecting path connected to one end of the first flow path, and the flow direction of the connecting path is equal to the flow direction of the first flow path.
The fluid sterilizer according to any one of claims 1 to 3.
流体を流すための第1の流路を有する流路部材と;With a flow path member having a first flow path for flowing a fluid;
前記第1の流路の、前記流体の流れ方向に交差する流路断面に対向して配置され、前記第1の流路内へ紫外線を照射する発光素子を有する光源と;A light source having a light emitting element that is arranged to face the cross section of the first flow path that intersects the flow direction of the fluid and irradiates the first flow path with ultraviolet rays;
前記流路部材の一端に接続されると共に前記光源が設けられ、前記光源の周囲に配置されて前記第1の流路に連通する第2の流路と、前記光源を支持する支持部と、を有する接続部材と;A second flow path that is connected to one end of the flow path member and is provided with the light source and is arranged around the light source to communicate with the first flow path, and a support portion that supports the light source. With a connecting member with;
前記光源を流体から保護するカバー部材と;With a cover member that protects the light source from fluid;
を具備し、Equipped with
前記光源は、前記発光素子が載置される載置面を有し、前記載置面が前記第1の流路内に位置し、The light source has a mounting surface on which the light emitting element is mounted, and the mounting surface described above is located in the first flow path.
前記カバー部材は、前記載置面に沿う方向から見たときに、前記光源の最大出射角の境界線に沿って進む紫外線を透過させ、The cover member transmits ultraviolet rays traveling along the boundary line of the maximum emission angle of the light source when viewed from the direction along the above-mentioned mounting surface.
前記第2の流路は、前記第1の流路の一端に連結された連結路を有し、前記連結路の流れ方向が、前記第1の流路の流れ方向に対して鈍角をなして傾斜している、流体殺菌装置。The second flow path has a connecting path connected to one end of the first flow path, and the flow direction of the connecting path is obtuse with respect to the flow direction of the first flow path. Inclined, fluid sterilizer.
JP2017127964A 2017-06-29 2017-06-29 Fluid sterilizer Active JP6863135B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017127964A JP6863135B2 (en) 2017-06-29 2017-06-29 Fluid sterilizer
CN201820309824.0U CN208087261U (en) 2017-06-29 2018-03-06 Fluid sterilizing unit
TW107108524A TWI753132B (en) 2017-06-29 2018-03-14 Fluid sterilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017127964A JP6863135B2 (en) 2017-06-29 2017-06-29 Fluid sterilizer

Publications (2)

Publication Number Publication Date
JP2019010609A JP2019010609A (en) 2019-01-24
JP6863135B2 true JP6863135B2 (en) 2021-04-21

Family

ID=64061713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127964A Active JP6863135B2 (en) 2017-06-29 2017-06-29 Fluid sterilizer

Country Status (3)

Country Link
JP (1) JP6863135B2 (en)
CN (1) CN208087261U (en)
TW (1) TWI753132B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109205730A (en) * 2018-09-19 2019-01-15 深圳市蓝巨科技有限公司 A kind of overflow-type sterilizing unit
JP7230624B2 (en) * 2019-03-25 2023-03-01 東芝ライテック株式会社 Fluid sterilizer
JP2021041382A (en) * 2019-09-13 2021-03-18 豊田合成株式会社 Fluid sterilizer
KR102301881B1 (en) * 2019-10-08 2021-09-15 퀀텀매트릭스 주식회사 Sterilizer
KR102452392B1 (en) 2020-06-05 2022-10-11 엘지전자 주식회사 Mask apparatus
KR102460798B1 (en) 2020-06-30 2022-10-31 엘지전자 주식회사 Mask apparatus
KR102418745B1 (en) 2020-06-30 2022-07-11 엘지전자 주식회사 Mask apparatus
KR102294479B1 (en) * 2020-08-28 2021-08-27 엘지전자 주식회사 Sterilizing case
KR102498424B1 (en) * 2021-02-04 2023-02-13 사단법인 한국물산업협의회 Sterilizing apparatus using ultraviolet radiation and method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366705A (en) * 1993-06-08 1994-11-22 James J. Reidy Gravity feed ultraviolet liquid sterilization system
JP2016006832A (en) * 2014-06-20 2016-01-14 旭硝子株式会社 Optical element, light-emitting element package, and method for manufacturing light-emitting element package
JP6758313B2 (en) * 2015-03-20 2020-09-23 シグニファイ ホールディング ビー ヴィSignify Holding B.V. UV-C water purifier
JP6530681B2 (en) * 2015-09-07 2019-06-12 日機装株式会社 Sterilizer
JP2017074114A (en) * 2015-10-13 2017-04-20 日機装株式会社 Fluid sterilizer and fluid sterilization method
JP6629569B2 (en) * 2015-11-04 2020-01-15 日機装株式会社 Fluid sterilizer

Also Published As

Publication number Publication date
JP2019010609A (en) 2019-01-24
TW201904614A (en) 2019-02-01
TWI753132B (en) 2022-01-21
CN208087261U (en) 2018-11-13

Similar Documents

Publication Publication Date Title
JP6863135B2 (en) Fluid sterilizer
JP6834664B2 (en) Fluid sterilizer
JP6458779B2 (en) Fluid sterilizer
JP6885279B2 (en) Fluid sterilizer
JP6798327B2 (en) Fluid sterilizer
JP6891537B2 (en) Fluid sterilizer
JP5591305B2 (en) Ultraviolet light emitting module and ultraviolet irradiation device
WO2017043357A1 (en) Sterilization device
TWI814985B (en) Fluid sterilization device
WO2020090687A1 (en) Ultraviolet irradiation unit and ultraviolet sterilization device
JP2020099378A (en) Fluid sterilizer
JP2019201861A (en) Fluid sterilizer
WO2021085143A1 (en) Fluid sterilization device
JP2020000285A (en) Fluid sterilizer
JP6544002B2 (en) Irradiator
JP2020103629A (en) Fluid sterilizing apparatus
JP7400656B2 (en) fluid sterilizer
JP2019076643A (en) Fluid treatment apparatus
JP2023053502A (en) Apparatus for treating fluid with uv light
TW202012002A (en) Fluid sterilization device capable of ensuring sterilization performance and being miniaturized
JP2018163250A (en) Ultraviolet ray irradiation device and polarized light irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6863135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151