JP7400656B2 - fluid sterilizer - Google Patents

fluid sterilizer Download PDF

Info

Publication number
JP7400656B2
JP7400656B2 JP2020130641A JP2020130641A JP7400656B2 JP 7400656 B2 JP7400656 B2 JP 7400656B2 JP 2020130641 A JP2020130641 A JP 2020130641A JP 2020130641 A JP2020130641 A JP 2020130641A JP 7400656 B2 JP7400656 B2 JP 7400656B2
Authority
JP
Japan
Prior art keywords
fluid
cylindrical member
flow
flow path
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020130641A
Other languages
Japanese (ja)
Other versions
JP2022026937A (en
Inventor
孝次 青
浩史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2020130641A priority Critical patent/JP7400656B2/en
Priority to CN202110599345.3A priority patent/CN114053472A/en
Publication of JP2022026937A publication Critical patent/JP2022026937A/en
Priority to JP2023164652A priority patent/JP2023171423A/en
Application granted granted Critical
Publication of JP7400656B2 publication Critical patent/JP7400656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions

Description

本発明は、流体殺菌装置に関する。 FIELD OF THE INVENTION The present invention relates to fluid sterilization devices.

従来、LEDなどの光源から照射される紫外光により水などの流体を殺菌する流体殺菌装置が知られている(例えば、特許文献1参照)。このような光源を用いる装置においては、光源の温度上昇による劣化や光量の低下を抑えるための放熱構造が重要である。 BACKGROUND ART Conventionally, fluid sterilizers have been known that sterilize fluids such as water using ultraviolet light emitted from a light source such as an LED (for example, see Patent Document 1). In a device using such a light source, a heat dissipation structure is important for suppressing deterioration of the light source and reduction in light intensity due to temperature rise.

特許文献1によれば、光源で生じた熱は、光源モジュール装置に設けられたヒートシンクにより効率的に放熱され、また、流体殺菌装置の流体の殺菌部となる筒体に伝導して、流体によっても放熱される、とされている。 According to Patent Document 1, the heat generated by the light source is efficiently dissipated by a heat sink provided in the light source module device, and is also conducted to a cylindrical body serving as a fluid sterilization section of a fluid sterilization device, so that the heat is radiated by the fluid. It is said that heat is also dissipated.

特開2020-89462号公報JP2020-89462A

しかしながら、特許文献1によれば、光源の放熱にヒートシンクを用いており、ヒートシンクのサイズが大きいため、流体殺菌装置の小型化には向かない。また、筒体から流体に効率的に放熱するためには、筒体が高い熱伝導率を有することが求められるため、筒体の材料の選択の幅が狭まり、軽量化などの妨げになる場合がある。 However, according to Patent Document 1, a heat sink is used to dissipate heat from the light source, and the size of the heat sink is large, so it is not suitable for downsizing the fluid sterilization device. In addition, in order to efficiently dissipate heat from the cylinder to the fluid, the cylinder must have high thermal conductivity, which narrows the range of choices for the material of the cylinder and may impede weight reduction. There is.

本発明の目的は、紫外光を照射することにより水等の流体を殺菌する流体殺菌装置であって、光源の発する熱を効果的に逃がすことができる構造を有しながら小型化、軽量化が可能な流体殺菌装置を提供することにある。 An object of the present invention is to provide a fluid sterilizer that sterilizes fluids such as water by irradiating it with ultraviolet light, which has a structure that can effectively dissipate heat generated by a light source, and which is compact and lightweight. An object of the present invention is to provide a possible fluid sterilization device.

本発明の一態様は、上記目的を達成するために、下記[1]~[6]の流体殺菌装置を提供する。 In order to achieve the above object, one aspect of the present invention provides the following fluid sterilization devices [1] to [6].

[1]殺菌対象である流体を流すための流路、前記流体を前記流路に流入させるための流入口、及び前記流体を前記流路から流出させるための流出口を有し、長さ方向の一端に開口部が設けられた流路管と、光取り出し側に突出する突出部を有する基体に紫外光を発する光源が収容され、前記突出部が前記開口部の内側に嵌め込まれることにより前記流路管の一端に固定された、前記流路内に前記紫外光を照射する紫外光照射モジュールと、前記流路管及び前記突出部の内側に、前記突出部と接触し、かつ前記流路に露出して設けられた、前記光源の熱を前記流体に逃がして前記光源を冷却するための環状の冷却部材と、を備え、前記冷却部材が、前記流路管及び前記突出部との間でシールされ前記流路管と前記突出部の界面からの前記流体の漏れ出しを防ぐ、流体殺菌装置。
[2]前記流路管が、前記流路を区画するための筒状部材を内部に有し、前記筒状部材の長さ方向の一端が前記流入口に対向し、他端が前記紫外光照射モジュールに対向し、前記流入口から流入した前記流体が、前記筒状部材の内側を通った後、前記筒状部材の外側の前記冷却部材が露出する領域を通って前記流出口から流出し、前記紫外光照射モジュールから発せられた光が、前記筒状部材の内側に照射される、上記[1]に記載の流体殺菌装置。
[3]前記筒状部材が、前記流路管の長手方向の位置が前記冷却部材よりも前記流出口から遠い、前記筒状部材の内側を流れる前記流体を前記筒状部材の外側に流動させるための孔を有し、前記孔の面積が、前記流入口及び前記流出口の面積よりも大きい、上記[2]に記載の流体殺菌装置。
[4]前記筒状部材がフッ素樹脂からなる、上記[2]又は[3]に記載の流体殺菌装置。
[5]前記筒状部材の前記流入口側の端部が、その中心から離れた位置に前記流体が通過する孔を有する、前記流入口から流入した前記流体を拡散させる平板状の拡散板により覆われた、上記[2]~[4]のいずれか1項に記載の流体殺菌装置。
[6]前記流路管が樹脂からなる、上記[1]~[6]のいずれか1項に記載の流体殺菌装置。
[1] It has a flow path for flowing the fluid to be sterilized, an inlet for causing the fluid to flow into the flow path, and an outlet for causing the fluid to flow out from the flow path, and has a lengthwise direction. A light source that emits ultraviolet light is housed in a base body that has a channel tube with an opening at one end and a protrusion that protrudes toward the light extraction side, and the protrusion is fitted inside the opening to provide the an ultraviolet light irradiation module that irradiates the ultraviolet light into the flow path, which is fixed to one end of the flow path; an annular cooling member for cooling the light source by dissipating heat from the light source to the fluid, the cooling member being exposed to the flow pipe and the protrusion; A fluid sterilizing device that prevents leakage of the fluid from an interface between the flow path tube and the protrusion.
[2] The flow pipe has a cylindrical member therein for dividing the flow path, one end of the cylindrical member in the length direction faces the inlet, and the other end faces the ultraviolet light. The fluid facing the irradiation module and flowing in from the inlet passes through the inside of the cylindrical member, passes through a region outside the cylindrical member where the cooling member is exposed, and flows out from the outlet. , The fluid sterilization device according to [1] above, wherein the light emitted from the ultraviolet light irradiation module is irradiated inside the cylindrical member.
[3] The cylindrical member causes the fluid flowing inside the cylindrical member, whose position in the longitudinal direction of the flow pipe is farther from the outlet than the cooling member, to flow to the outside of the cylindrical member. The fluid sterilization device according to [2] above, wherein the fluid sterilization device has a hole for the purpose of sterilization, and the area of the hole is larger than the area of the inlet and the outlet.
[4] The fluid sterilization device according to [2] or [3] above, wherein the cylindrical member is made of fluororesin.
[5] The end of the cylindrical member on the inflow port side has a hole through which the fluid passes at a position apart from the center thereof, and is formed by a flat diffusion plate that diffuses the fluid flowing in from the inflow port. The fluid sterilization device according to any one of [2] to [4] above, which is covered.
[6] The fluid sterilization device according to any one of [1] to [6] above, wherein the flow path tube is made of resin.

本発明によれば、紫外光を照射することにより水等の流体を殺菌する流体殺菌装置であって、光源の発する熱を効果的に逃がすことができる構造を有しながら小型化、軽量化が可能な流体殺菌装置を提供することができる。 According to the present invention, there is provided a fluid sterilizer that sterilizes fluids such as water by irradiating ultraviolet light, which is compact and lightweight while having a structure that can effectively release heat generated by a light source. A possible fluid sterilization device can be provided.

図1は、本発明の実施の形態に係る流体殺菌装置の斜視図である。FIG. 1 is a perspective view of a fluid sterilization device according to an embodiment of the present invention. 図2は、その長手方向に沿って切断された流体殺菌装置の断面図である。FIG. 2 is a cross-sectional view of the fluid sterilization device taken along its length. 図3は、流体殺菌装置に含まれる冷却部材の斜視図である。FIG. 3 is a perspective view of a cooling member included in the fluid sterilization device. 図4(a)は、流体殺菌装置に含まれる筒状部材の側面図である。図4(b)は、図4(a)に示される切断線A-Aで切断したときの筒状部材の断面図である。FIG. 4(a) is a side view of a cylindrical member included in the fluid sterilization device. FIG. 4(b) is a cross-sectional view of the cylindrical member taken along cutting line AA shown in FIG. 4(a). 図5は、流体殺菌装置に含まれる拡散板の平面図である。FIG. 5 is a plan view of a diffusion plate included in the fluid sterilization device.

〔実施の形態〕
(流体殺菌装置の構成)
図1は、本発明の実施の形態に係る流体殺菌装置1の斜視図である。図2は、その長手方向に沿って切断された流体殺菌装置1の断面図である。
[Embodiment]
(Configuration of fluid sterilizer)
FIG. 1 is a perspective view of a fluid sterilization device 1 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the fluid sterilization device 1 taken along its longitudinal direction.

流体殺菌装置1は、流体(主に水などの液体)の殺菌及び菌の繁殖の抑制を行うための装置であり、殺菌対象である流体を流すための流路101、流体を流路101に流入させるための流入口102、流体を流路101から流出させるための流出口103を有する流路管10と、流路管10の長さ方向の一端に固定された、流路101内に紫外光を照射する紫外光照射モジュール11と、流路管10の内部に、流路101に露出して設けられた、紫外光照射モジュール11に含まれる光源の熱を流体に逃がして光源を冷却するための環状(筒状)の冷却部材12とを備える。 The fluid sterilizer 1 is a device for sterilizing fluid (mainly liquids such as water) and suppressing the propagation of bacteria. A flow pipe 10 has an inlet 102 for causing the fluid to flow in, an outlet 103 for causing fluid to flow out from the flow channel 101, and an ultraviolet ray inside the flow channel 101 fixed to one end in the length direction of the flow pipe 10. The ultraviolet light irradiation module 11 that irradiates light and the light source included in the ultraviolet light irradiation module 11 provided inside the flow path tube 10 and exposed to the flow path 101 are cooled by dissipating the heat of the light source to the fluid. An annular (cylindrical) cooling member 12 is provided.

流路管10は、その長手方向(図2の左右方向)の一端に、紫外光照射モジュール11を嵌め込むための開口部104を有する。流入口102は、開口部104と反対側の流路管10の端部に設けられ、流出口103は、流路管10の側面に設けられる。流路管10の流入口102と流出口103は、例えば、図1、図2に示されるように、流体を流すチューブなどを接続できるような、外側に突出した管状の形状を有する。流路管10の形状は、典型的には、図1に示されるような円管形状である。 The flow pipe 10 has an opening 104 at one end in the longitudinal direction (left-right direction in FIG. 2) into which the ultraviolet light irradiation module 11 is fitted. The inlet 102 is provided at the end of the flow pipe 10 opposite to the opening 104, and the outlet 103 is provided on the side surface of the flow pipe 10. For example, as shown in FIGS. 1 and 2, the inlet 102 and the outlet 103 of the flow pipe 10 have an outwardly protruding tubular shape to which a tube for flowing fluid can be connected. The shape of the flow path pipe 10 is typically a circular tube shape as shown in FIG.

紫外光照射モジュール11は、紫外光を発する光源としての発光素子111と、発光素子111が実装された、配線を有する基板112と、発光素子111及び基板112を収容する基体113を有する。 The ultraviolet light irradiation module 11 includes a light emitting element 111 as a light source that emits ultraviolet light, a substrate 112 having wiring on which the light emitting element 111 is mounted, and a base 113 that accommodates the light emitting element 111 and the substrate 112.

基体113は、光取り出し側に突出する突出部114を有し、この突出部114が流路管10の開口部104の内側に嵌め込まれることにより、流路管10の一端に紫外光照射モジュール11が固定される。基体113は、流路管10に密着して嵌め込まれるため、流路管10の形状に応じた形状を有する。また、突出部114の形状は、典型的には環状である。例えば、流路管10が円管形状を有する場合は、基体113の平面形状(流路管10側から見た形状)は円形であり、突出部114は円環形状を有する。 The base body 113 has a protrusion 114 that protrudes toward the light extraction side, and by fitting the protrusion 114 inside the opening 104 of the flow pipe 10, the ultraviolet light irradiation module 11 is attached to one end of the flow pipe 10. is fixed. Since the base body 113 is closely fitted into the flow pipe 10 , it has a shape corresponding to the shape of the flow pipe 10 . Further, the shape of the protrusion 114 is typically annular. For example, when the flow pipe 10 has a circular pipe shape, the planar shape of the base body 113 (the shape seen from the flow pipe 10 side) is circular, and the protrusion 114 has an annular shape.

紫外光照射モジュール11において、発光素子111及び基板112は、基体113の凹部115内に収容され、凹部115の開口面は防水フィルム116に覆われている。これによって、紫外光照射モジュール11の発光素子111の実装された空間は密閉され、流体の浸入を防いでいる。また、発光素子111から発せられた紫外光は、防水フィルム116を透過して取り出される。 In the ultraviolet light irradiation module 11 , the light emitting element 111 and the substrate 112 are housed in a recess 115 of a base 113 , and the opening surface of the recess 115 is covered with a waterproof film 116 . As a result, the space in which the light emitting element 111 of the ultraviolet light irradiation module 11 is mounted is sealed, preventing fluid from entering. Moreover, the ultraviolet light emitted from the light emitting element 111 is transmitted through the waterproof film 116 and extracted.

紫外光照射モジュール11(発光素子111)の発する紫外光は、例えば、UV-Aと呼ばれる波長域(400~315nm)の紫外光、UV-Bと呼ばれる波長域(315~280nm)の紫外光や、UV-Cと呼ばれる波長域(280nm未満)の紫外光(以下、UVC光と呼ぶ)であり、このうち最も殺菌効果の高いUVC光であることが好ましい。 The ultraviolet light emitted by the ultraviolet light irradiation module 11 (light emitting element 111) is, for example, ultraviolet light in a wavelength range called UV-A (400 to 315 nm), ultraviolet light in a wavelength range called UV-B (315 to 280 nm), or ultraviolet light in a wavelength range called UV-B (315 to 280 nm). , ultraviolet light (hereinafter referred to as UVC light) in a wavelength range (less than 280 nm) called UV-C, and among these, UVC light is preferred because it has the highest sterilizing effect.

発光素子111は、例えば、紫外光を発するLEDチップ(Light Emitting Diode)やLDチップ(Laser Diode)であり、配光を調節するためのレンズなどを備えていてもよい。 The light emitting element 111 is, for example, an LED chip (Light Emitting Diode) or an LD chip (Laser Diode) that emits ultraviolet light, and may include a lens for adjusting light distribution.

防水フィルム116は、フッ素樹脂などの発光素子111の発する紫外光を透過する材料からなる。また、防水フィルム116の代わりに、石英ガラス板などの、発光素子111の発する紫外光を透過する材料からなる板を用いてもよい。 The waterproof film 116 is made of a material such as fluororesin that transmits ultraviolet light emitted by the light emitting element 111. Further, instead of the waterproof film 116, a plate made of a material that transmits ultraviolet light emitted by the light emitting element 111, such as a quartz glass plate, may be used.

紫外光照射モジュール11を流路管10に固定する方法は特に限定されない。図1に示される例では、紫外光照射モジュール11が基体113の側面に突起115を有し、流路管10が突起115を通すためのL字に曲がった線状の穴105を有する。紫外光照射モジュール11を流路管10の開口部104に挿入してから円周方向に捻ると、突起115が穴105の曲がった部分に入り込み、紫外光照射モジュール11を流路管10に挿入することにより圧縮された後述するシール部品151~153などの復元力により、紫外光照射モジュール11が流路管10に固定される。なお、ネジ止めなどの他の方法を用いて紫外光照射モジュール11を流路管10に固定してもよい。 The method of fixing the ultraviolet light irradiation module 11 to the channel pipe 10 is not particularly limited. In the example shown in FIG. 1, the ultraviolet light irradiation module 11 has a protrusion 115 on the side surface of the base body 113, and the channel tube 10 has an L-shaped linear hole 105 through which the protrusion 115 passes. When the ultraviolet light irradiation module 11 is inserted into the opening 104 of the flow pipe 10 and then twisted in the circumferential direction, the protrusion 115 enters the curved part of the hole 105, and the ultraviolet light irradiation module 11 is inserted into the flow pipe 10. The ultraviolet light irradiation module 11 is fixed to the flow pipe 10 by the restoring force of the compressed seal parts 151 to 153, which will be described later. Note that the ultraviolet light irradiation module 11 may be fixed to the channel pipe 10 using other methods such as screwing.

図3は、冷却部材12の斜視図である。冷却部材12は、流路管10と紫外光照射モジュール11の界面からの流体の漏れ出しを防ぐシール機能と、発光素子111の熱を流体に逃がして発光素子111を冷却する冷却機能を併せ持つ。冷却部材12は、冷却効果を高めるため、アルミニウム、銅、ステンレス、などの熱伝導率が高い材料からなることが好ましい。また、冷却効果を効果的に発揮するためには、同じく流体に接する流路管10よりも熱伝導率が高いことが好ましい。 FIG. 3 is a perspective view of the cooling member 12. The cooling member 12 has both a sealing function that prevents fluid from leaking from the interface between the flow pipe 10 and the ultraviolet light irradiation module 11, and a cooling function that cools the light emitting element 111 by dissipating the heat of the light emitting element 111 into the fluid. The cooling member 12 is preferably made of a material with high thermal conductivity, such as aluminum, copper, or stainless steel, in order to enhance the cooling effect. Further, in order to effectively exhibit the cooling effect, it is preferable that the thermal conductivity is higher than that of the flow path pipe 10 which is also in contact with the fluid.

冷却部材12は、流路管10及び紫外光照射モジュール11の突出部114の内側に、突出部114と接触して設置される。Oリングなどの環状のシール部品151、152によって、冷却部材12は流路管10及び突出部114との間でシールされており、流路管10と突出部114の界面からの流体の漏れ出しを防いでいる。 The cooling member 12 is installed inside the flow pipe 10 and the protrusion 114 of the ultraviolet light irradiation module 11 so as to be in contact with the protrusion 114 . The cooling member 12 is sealed between the flow pipe 10 and the protrusion 114 by annular seal parts 151 and 152 such as O-rings, and fluid leakage from the interface between the flow pipe 10 and the protrusion 114 is prevented. is prevented.

具体的には、流路管10の長手方向(紫外光照射モジュール11の挿入方向)に沿って、流路管10と冷却部材12がシール部品151を挟み、冷却部材12と紫外光照射モジュール11の基体113がシール部品152を挟み、紫外光照射モジュール11が流路管10に挿入されることによって、シール部品151とシール部品152が圧縮されてシール効果が生じる。また、図2に示されるように、シール部品152と基体113の間に防水フィルム116を挟んで固定してもよい。 Specifically, along the longitudinal direction of the flow pipe 10 (the insertion direction of the ultraviolet light irradiation module 11), the flow pipe 10 and the cooling member 12 sandwich the seal component 151, and the cooling member 12 and the ultraviolet light irradiation module 11 When the ultraviolet light irradiation module 11 is inserted into the flow path tube 10 with the sealing component 152 sandwiched between the base bodies 113 of the ultraviolet light irradiation module 11, the sealing component 151 and the sealing component 152 are compressed to produce a sealing effect. Furthermore, as shown in FIG. 2, a waterproof film 116 may be sandwiched and fixed between the seal component 152 and the base 113.

環状の冷却部材12の外側の側面121は、基体113の突出部114の内側の側面に接触しており、発光素子111で生じた熱が基板112、基体113を介して冷却部材12に伝わる。また、冷却部材12の内側の側面122は、流路101に露出しているため、流路101を流れる流体に接触し、冷却部材12の熱を流体に伝えることができる。このため、冷却部材12を用いて、発光素子111で生じた熱を効果的に流体へ逃がすことができる。すなわち、冷却部材12によって発光素子111を冷却することができる。 The outer side surface 121 of the annular cooling member 12 is in contact with the inner side surface of the protrusion 114 of the base 113, and heat generated in the light emitting element 111 is transmitted to the cooling member 12 via the substrate 112 and the base 113. Moreover, since the inner side surface 122 of the cooling member 12 is exposed to the flow path 101, it comes into contact with the fluid flowing through the flow path 101, and can transfer the heat of the cooling member 12 to the fluid. Therefore, using the cooling member 12, the heat generated in the light emitting element 111 can be effectively released to the fluid. That is, the light emitting element 111 can be cooled by the cooling member 12.

冷却部材12によって発光素子111で生じた熱を効果的に流体へ逃がすことができるため、流路管10を放熱に利用する必要はなく、流路管10が高い熱伝導率を有する必要はない。このため、流体殺菌装置1においては、流路管10の材料の選択の幅が広く、例えば、軽量な樹脂を流路管10の材料に用いて流体殺菌装置1の軽量化を図ることができる。例えば、アルミニウムの比重は2.7、ポリカーボネート樹脂の比重は1.2であり、熱伝導率に優れるアルミニウムの代わりにポリカーボネート樹脂を流路管10の材料に用いることにより、流体殺菌装置1を大幅に軽量化することができる。 Since the heat generated in the light emitting element 111 can be effectively released to the fluid by the cooling member 12, there is no need to use the flow pipe 10 for heat radiation, and there is no need for the flow pipe 10 to have high thermal conductivity. . Therefore, in the fluid sterilization device 1, there is a wide range of material selection for the flow path tube 10, and for example, lightweight resin can be used as the material for the flow path tube 10 to reduce the weight of the fluid sterilization device 1. . For example, the specific gravity of aluminum is 2.7, and the specific gravity of polycarbonate resin is 1.2. By using polycarbonate resin as the material for the flow pipe 10 instead of aluminum, which has excellent thermal conductivity, the fluid sterilization device 1 can be significantly increased. It can be made lighter.

流路管10は、図2に示されるように、流路101を区画する筒状部材13を内部に有していてもよい。筒状部材13の長さ方向の一端は流入口102に対向し、他端が紫外光照射モジュール11に対向する。 As shown in FIG. 2, the flow pipe 10 may have a cylindrical member 13 inside that defines the flow path 101. One end of the cylindrical member 13 in the length direction faces the inlet 102, and the other end faces the ultraviolet light irradiation module 11.

流入口102から流入した流体は、筒状部材13の内側(筒状部材13の内側の側面131に囲まれた領域)を通った後、筒状部材13の外側(筒状部材13の外側の側面132と流路管10の内面の間の領域)の冷却部材12が露出する領域を通って流出口103から流出する。そして、紫外光照射モジュール11から発せられた光は、筒状部材13の内側に照射される。このように、筒状部材13を用いることにより、流路101を筒状部材13の内側の紫外光を照射する区間と筒状部材13の外側の冷却部材12を冷却する区間に区画し、流体の殺菌と発光素子111の冷却を効率的に行うことができる。 The fluid flowing in from the inlet 102 passes through the inside of the cylindrical member 13 (the area surrounded by the side surface 131 on the inside of the cylindrical member 13), and then passes through the outside of the cylindrical member 13 (the area surrounded by the side surface 131 on the inside of the cylindrical member 13). It flows out from the outlet 103 through the area where the cooling member 12 is exposed (the area between the side surface 132 and the inner surface of the flow pipe 10). Then, the light emitted from the ultraviolet light irradiation module 11 is irradiated onto the inside of the cylindrical member 13. In this way, by using the cylindrical member 13, the flow path 101 is divided into a section inside the cylindrical member 13 where ultraviolet light is irradiated and a section outside the cylindrical member 13 where the cooling member 12 is cooled. sterilization and cooling of the light emitting element 111 can be performed efficiently.

筒状部材13は、筒状部材13の内側を流れる流体を筒状部材13の外側に流動させるための孔133を有する。孔133は、流路管10の長手方向の位置が冷却部材12よりも流出口103から遠いため、孔133を抜けた流体は冷却部材12が露出する領域を通って冷却部材12の熱を奪ってから、流出口103に到達する。 The cylindrical member 13 has a hole 133 for causing the fluid flowing inside the cylindrical member 13 to flow to the outside of the cylindrical member 13. Since the hole 133 is located farther from the outlet 103 in the longitudinal direction of the flow pipe 10 than the cooling member 12, the fluid that has passed through the hole 133 passes through the area where the cooling member 12 is exposed and takes away the heat from the cooling member 12. After that, the outlet 103 is reached.

図4(a)は、筒状部材13の側面図である。図4(b)は、図4(a)に示される切断線A-Aで切断したときの筒状部材13の断面図である。孔133は、1つであってもいいし、複数であってもよい。図4に示される例では、4つの孔133が筒状部材13の円周方向に沿って等間隔で設けられている。流路管10内での流体の流速の低下や流路管10内の圧力の上昇を抑えるため、孔133の面積(複数の孔133が設けられている場合はそれらの合計面積)は、流入口102及び流出口103の面積よりも大きいことが好ましい。 FIG. 4(a) is a side view of the cylindrical member 13. FIG. 4(b) is a cross-sectional view of the cylindrical member 13 taken along the cutting line AA shown in FIG. 4(a). The number of holes 133 may be one or more. In the example shown in FIG. 4, four holes 133 are provided at equal intervals along the circumferential direction of the cylindrical member 13. In order to suppress a decrease in the flow velocity of the fluid in the flow pipe 10 and an increase in the pressure in the flow pipe 10, the area of the hole 133 (if a plurality of holes 133 are provided, the total area) It is preferable that the area is larger than the area of the inlet 102 and the outlet 103.

筒状部材13は、紫外光照射モジュール14から発せられる紫外光を内面131で効率的に反射して、効果的に流体を殺菌するため、フッ素樹脂などの紫外光に対する耐性及び反射率の高い材料からなることが好ましい。このようなフッ素樹脂としては、例えば、PTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン)、PVF(ポリフッ化ビニル)、PVDF(ポリフッ化ビニリデン)などが挙げられる。 The cylindrical member 13 is made of a material with high resistance and reflectance to ultraviolet light, such as fluororesin, in order to efficiently reflect the ultraviolet light emitted from the ultraviolet light irradiation module 14 on the inner surface 131 and effectively sterilize the fluid. It is preferable to consist of. Examples of such fluororesins include PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane), PVF (polyvinyl fluoride), and PVDF (polyvinylidene fluoride).

特に、UVC光に対する反射率に優れるPTFEを筒状部材13の材料として用いることにより、UVC光を発する紫外光照射モジュール11を用いて効果的に流体の殺菌を行うことができる。 In particular, by using PTFE, which has excellent reflectivity for UVC light, as the material for the cylindrical member 13, fluid can be effectively sterilized using the ultraviolet light irradiation module 11 that emits UVC light.

また、筒状部材13が流路管10の内面への向う紫外光の多くを遮るため、流路管10の紫外光暴露による劣化を抑えることができる。例えば、流路管10の材料として紫外光に対する耐性が高くない樹脂を用いる場合でも、寿命の低下を抑えることができる。 Furthermore, since the cylindrical member 13 blocks most of the ultraviolet light directed toward the inner surface of the flow pipe 10, deterioration of the flow pipe 10 due to exposure to ultraviolet light can be suppressed. For example, even when a resin that does not have high resistance to ultraviolet light is used as the material for the flow path tube 10, the decrease in life can be suppressed.

筒状部材13の形状は、筒状というシンプルな形状であるため、市販されている汎用のフッ素樹脂パイプなどをほぼそのまま用いることができ、高価なフッ素樹脂を材料に用いる場合であってもコストを抑えることができる。 Since the shape of the cylindrical member 13 is a simple cylindrical shape, commercially available general-purpose fluororesin pipes can be used almost as is, and even if expensive fluororesin is used as the material, the cost will be reduced. can be suppressed.

特に、UVC光に対する反射率に優れるフッ素樹脂であるPTFEは、溶融粘度が非常に高いために通常の溶融加工ができず、目的の形状に加工するためには、PTFEパウダーを圧縮、焼成することにより製造されるブロックから切削する必要があり、材料費や加工費が非常に高い。汎用のPTFEパイプを用いることができれば、PTFEブロックからの切削加工を必要としないため、PTFEを筒状部材13の材料に用いる場合は、製造コストを低減する効果がより大きくなる。 In particular, PTFE, a fluororesin with excellent reflectivity for UVC light, has a very high melt viscosity and cannot be processed by normal melt processing.In order to process it into the desired shape, PTFE powder must be compressed and fired. It is necessary to cut from the block manufactured by the method, and the material and processing costs are very high. If a general-purpose PTFE pipe can be used, cutting from a PTFE block is not required, so when PTFE is used as the material for the cylindrical member 13, the effect of reducing manufacturing costs will be greater.

筒状部材13の流入口103側の端部、すなわち筒状部材13の流体の流入口は、図2に示されるように、平板状の拡散板14により覆われていることが好ましい。 The end of the cylindrical member 13 on the inlet 103 side, that is, the fluid inlet of the cylindrical member 13, is preferably covered with a flat diffusion plate 14, as shown in FIG.

図5は、拡散板14の平面図である。拡散板14は、その中心から離れた位置に流体が通過する複数の孔141を有し、流入口102から流入した流体を拡散させる。孔141は、拡散板14の中心には設けられておらず、拡散板14の外周部の近く、又は外周部に接する位置に設けられているため、孔141を通過した流体は、筒状部材13の内側の側面131近くに流れ込む。 FIG. 5 is a plan view of the diffusion plate 14. The diffusion plate 14 has a plurality of holes 141 through which fluid passes, at positions apart from its center, and diffuses the fluid flowing in from the inlet 102. The hole 141 is not provided at the center of the diffusion plate 14, but is provided near the outer periphery of the diffusion plate 14 or at a position in contact with the outer periphery. 13 near the inner side surface 131.

一般に、流路を流れる流体の流速は流路の内壁に近いほど摩擦抵抗により小さくなり、流路の中心における流速との差が大きくなるところ、拡散板14を用いて流体を筒状部材13の側面131(内壁)近くに流入させることにより、筒状部材13の側面131近くの流速を相対的に大きくし、筒状部材13の中心近傍と側面131近傍の流速差を小さくすることができる。これによって、流路101内の流体の滞留時間が平均化されるため、流体の流路の違いによる紫外光の照射時間のばらつきが小さくなり、効率的に殺菌を行うことができる。 In general, the flow velocity of fluid flowing through a flow channel becomes smaller as it approaches the inner wall of the flow channel due to frictional resistance, and the difference between the flow velocity at the center of the flow channel and the center of the flow channel increases. By flowing near the side surface 131 (inner wall), the flow velocity near the side surface 131 of the cylindrical member 13 can be relatively increased, and the difference in flow velocity between the vicinity of the center of the cylindrical member 13 and the vicinity of the side surface 131 can be reduced. As a result, the residence time of the fluid in the flow path 101 is averaged, so that variations in the irradiation time of ultraviolet light due to differences in the fluid flow path are reduced, and sterilization can be performed efficiently.

流路管10内での流体の流速の低下や流路管10内の圧力の上昇を抑えるために、孔141の合計面積は、流入口102及び流出口103の面積よりも大きいことが好ましい。また、筒状部材13の側面131近くになるべく均等に流体を流し込むために、複数の孔141が拡散板14の円周方向に沿って等間隔で配置されていることが好ましい。 In order to suppress a decrease in the flow rate of the fluid in the flow pipe 10 and an increase in the pressure inside the flow pipe 10, the total area of the holes 141 is preferably larger than the areas of the inlet 102 and the outlet 103. Further, in order to flow the fluid as evenly as possible near the side surface 131 of the cylindrical member 13, it is preferable that the plurality of holes 141 be arranged at equal intervals along the circumferential direction of the diffusion plate 14.

殺菌効率を高めるため、拡散板14は、筒状部材13と同様に、紫外光照射モジュール11から発せられる光を反射するフッ素樹脂からなることが好ましい。特に、PTFEを拡散板14の材料として用いることにより、UVC光を発する紫外光照射モジュール11を用いて効果的に殺菌を行うことができる。 In order to increase the sterilization efficiency, it is preferable that the diffusion plate 14 is made of a fluororesin that reflects the light emitted from the ultraviolet light irradiation module 11, similarly to the cylindrical member 13. In particular, by using PTFE as the material for the diffusion plate 14, sterilization can be effectively performed using the ultraviolet light irradiation module 11 that emits UVC light.

また、拡散板14を用いる場合、拡散板14が流路管10の流入口102周辺へ向う紫外光のほとんどを遮るため、筒状部材13と拡散板14により、流路管10の紫外光暴露による劣化をより効果的に抑えることができる。 In addition, when the diffusion plate 14 is used, since the diffusion plate 14 blocks most of the ultraviolet light directed toward the vicinity of the inlet 102 of the flow path tube 10, the cylindrical member 13 and the diffusion plate 14 prevent the exposure of the flow path tube 10 to ultraviolet light. The deterioration due to this can be more effectively suppressed.

拡散板14の流体殺菌装置1への固定方法は特に限定されない。例えば、図2に示されるように、拡散板14を流路管10の内面と筒状部材13の端部の間に挟んで固定することができる。紫外光照射モジュール11を流路管10の開口部104内に挿入することにより、筒状部材13が押し込まれて、拡散板14が流路管10の内面と筒状部材13の端部に挟まれて固定される。この場合、拡散板14を囲むOリングなどの環状のシール部品153を用いると、シール部品153が拡散板14とともに流路管10の内面と筒状部材13の端部に挟まれ、その復元力により筒状部材13を確実に固定し、また、流入口102から流入した流体が筒状部材13の外側に直接流れることを防止できる。 The method of fixing the diffusion plate 14 to the fluid sterilizer 1 is not particularly limited. For example, as shown in FIG. 2, the diffusion plate 14 can be sandwiched and fixed between the inner surface of the flow pipe 10 and the end of the cylindrical member 13. By inserting the ultraviolet light irradiation module 11 into the opening 104 of the flow pipe 10, the cylindrical member 13 is pushed in, and the diffusion plate 14 is sandwiched between the inner surface of the flow pipe 10 and the end of the cylindrical member 13. and fixed. In this case, if an annular sealing part 153 such as an O-ring surrounding the diffusion plate 14 is used, the sealing part 153 is sandwiched together with the diffusion plate 14 between the inner surface of the flow path pipe 10 and the end of the cylindrical member 13, and its restoring force This makes it possible to securely fix the cylindrical member 13 and prevent the fluid flowing in from the inlet 102 from flowing directly to the outside of the cylindrical member 13.

なお、平板状の拡散板14の代わりに立体的形状を有する拡散部材を用いてもよいが、平板状の方が構造的にシンプルであるため、高価なフッ素樹脂、特にブロックからの切削が必要なPTFEを材料に用いる場合の製造コストを抑えることができる。 Note that a diffusion member having a three-dimensional shape may be used instead of the flat diffusion plate 14, but since a flat plate is structurally simpler, it requires cutting from an expensive fluororesin, especially a block. Manufacturing costs can be reduced when PTFE is used as the material.

(実施の形態の効果)
上記実施の形態に係る流体殺菌装置1によれば、冷却部材12を用いて効果的に発光素子111を冷却することができる。そして、冷却部材12は流路管10内に収まり、また、冷却部材12の冷却機能の高さ故にヒートシンクなどの大型の冷却用部品を用いる必要がないため、流体殺菌装置1の小型化も可能である。また、冷却部材12を用いることにより、流路管10が高い熱伝導率を有しなくても流体に熱を逃がすことによる発光素子111の冷却が可能であるため、流路管10の材料の選択の幅が広く、例えば、軽量な樹脂を流路管10の材料に用いて流体殺菌装置1を軽量化することができる。
(Effects of embodiment)
According to the fluid sterilization device 1 according to the embodiment described above, the light emitting element 111 can be effectively cooled using the cooling member 12. The cooling member 12 fits within the flow pipe 10, and because the cooling function of the cooling member 12 is high, there is no need to use large cooling parts such as a heat sink, so it is possible to downsize the fluid sterilizer 1. It is. Furthermore, by using the cooling member 12, it is possible to cool the light emitting element 111 by dissipating heat to the fluid even if the flow pipe 10 does not have high thermal conductivity. There is a wide range of choices; for example, the weight of the fluid sterilizer 1 can be reduced by using a lightweight resin as the material for the flow path pipe 10.

以上、本発明の実施の形態を説明したが、本発明は、上記の実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。また、発明の主旨を逸脱しない範囲内において上記実施の形態の構成要素を任意に組み合わせることができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the invention. Furthermore, the constituent elements of the embodiments described above can be arbitrarily combined without departing from the spirit of the invention.

また、上記の実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Furthermore, the above embodiments do not limit the claimed invention. Furthermore, it should be noted that not all combinations of features described in the embodiments are essential for solving the problems of the invention.

1 流体殺菌装置
10 流路管
101 流路
102 流入口
103 流出口
104 開口部
11 紫外光照射モジュール
111 発光素子
113 基体
114 突出部
12 冷却部材
13 筒状部材
133 孔
14 拡散板
141 孔
1 Fluid sterilizer 10 Channel tube 101 Channel 102 Inlet 103 Outlet 104 Opening 11 Ultraviolet light irradiation module 111 Light emitting element 113 Base 114 Projection 12 Cooling member 13 Cylindrical member 133 Hole 14 Diffusion plate 141 Hole

Claims (5)

殺菌対象である流体を流すための流路、前記流体を前記流路に流入させるための流入口、及び前記流体を前記流路から流出させるための流出口を有し、長さ方向の一端に開口部が設けられた流路管と、
光取り出し側に突出する突出部を有する基体に紫外光を発する光源が収容され、前記突出部が前記開口部の内側に嵌め込まれることにより前記流路管の一端に固定された、前記流路内に前記紫外光を照射する紫外光照射モジュールと、
前記流路管及び前記突出部の内側に、前記突出部と接触し、かつ前記流路に露出して設けられた、前記光源の熱を前記流体に逃がして前記光源を冷却するための環状の冷却部材と、
前記流路管の長手方向に沿って、前記流路管と前記冷却部材、及び前記冷却部材と前記基体によってそれぞれ挟まれて圧縮を受けることにより、前記冷却部材が前記流路管及び前記突出部との間でそれぞれシールされて、前記流路管と前記突出部の界面からの前記流体の漏れ出しを防ぐシール部品と、
前記流路管の内部に設けられ、長さ方向の一端が前記流入口に対向し、他端が前記紫外光照射モジュールに対向した、前記流路を区画するための筒状部材と、
を備え、
前記流入口から流入した前記流体が、前記筒状部材の内側を通った後、前記筒状部材の外側の前記冷却部材が露出する領域を通って前記流出口から流出し、
前記紫外光照射モジュールから発せられた光が、前記筒状部材の内側に照射される、
流体殺菌装置。
It has a flow path for flowing the fluid to be sterilized, an inlet for causing the fluid to flow into the flow path, and an outlet for causing the fluid to flow out from the flow path, and at one end in the length direction. a flow pipe provided with an opening;
A light source that emits ultraviolet light is accommodated in a base body having a protrusion that protrudes toward the light extraction side, and the protrusion is fitted into the inside of the opening to be fixed to one end of the flow channel. an ultraviolet light irradiation module that irradiates the ultraviolet light to;
An annular ring is provided inside the flow pipe and the protrusion, in contact with the protrusion and exposed to the flow path, for cooling the light source by dissipating the heat of the light source to the fluid. a cooling member;
The cooling member is compressed by being compressed by the flow pipe and the cooling member, and the cooling member and the base body along the longitudinal direction of the flow pipe, so that the cooling member is compressed by the flow pipe and the protrusion. a seal component that is sealed between the flow path pipe and the protrusion to prevent leakage of the fluid from the interface between the flow path pipe and the protrusion;
a cylindrical member provided inside the flow path tube, with one lengthwise end facing the inlet and the other end facing the ultraviolet light irradiation module, for dividing the flow path;
Equipped with
The fluid flowing in from the inlet passes through the inside of the cylindrical member, passes through a region outside the cylindrical member where the cooling member is exposed, and flows out from the outlet;
Light emitted from the ultraviolet light irradiation module is irradiated onto the inside of the cylindrical member.
Fluid sterilizer.
前記筒状部材が、前記流路管の長手方向の位置が前記冷却部材よりも前記流出口から遠い、前記筒状部材の内側を流れる前記流体を前記筒状部材の外側に流動させるための孔を有し、
前記孔の面積が、前記流入口及び前記流出口の面積よりも大きい、
請求項に記載の流体殺菌装置。
The cylindrical member has a hole for causing the fluid flowing inside the cylindrical member to flow to the outside of the cylindrical member, the position of the flow pipe being further from the outlet in the longitudinal direction than the cooling member. has
The area of the hole is larger than the area of the inlet and the outlet,
The fluid sterilization device according to claim 1 .
前記筒状部材がフッ素樹脂からなる、
請求項又はに記載の流体殺菌装置。
the cylindrical member is made of fluororesin;
The fluid sterilization device according to claim 1 or 2 .
前記筒状部材の前記流入口側の端部が、その中心から離れた位置に前記流体が通過する孔を有する、前記流入口から流入した前記流体を拡散させる平板状の拡散板により覆われた、
請求項のいずれか1項に記載の流体殺菌装置。
An end of the cylindrical member on the inflow port side is covered with a flat diffusion plate that has a hole through which the fluid passes at a position away from the center of the cylindrical member, and that diffuses the fluid that flows in from the inflow port. ,
A fluid sterilization device according to any one of claims 1 to 3 .
前記流路管が樹脂からなる、
請求項1~のいずれか1項に記載の流体殺菌装置。
the flow path tube is made of resin,
A fluid sterilization device according to any one of claims 1 to 4 .
JP2020130641A 2020-07-31 2020-07-31 fluid sterilizer Active JP7400656B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020130641A JP7400656B2 (en) 2020-07-31 2020-07-31 fluid sterilizer
CN202110599345.3A CN114053472A (en) 2020-07-31 2021-05-31 Fluid sterilizing device
JP2023164652A JP2023171423A (en) 2020-07-31 2023-09-27 fluid sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020130641A JP7400656B2 (en) 2020-07-31 2020-07-31 fluid sterilizer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023164652A Division JP2023171423A (en) 2020-07-31 2023-09-27 fluid sterilizer

Publications (2)

Publication Number Publication Date
JP2022026937A JP2022026937A (en) 2022-02-10
JP7400656B2 true JP7400656B2 (en) 2023-12-19

Family

ID=80233306

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020130641A Active JP7400656B2 (en) 2020-07-31 2020-07-31 fluid sterilizer
JP2023164652A Pending JP2023171423A (en) 2020-07-31 2023-09-27 fluid sterilizer

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023164652A Pending JP2023171423A (en) 2020-07-31 2023-09-27 fluid sterilizer

Country Status (2)

Country Link
JP (2) JP7400656B2 (en)
CN (1) CN114053472A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203095A (en) 2015-04-22 2016-12-08 日機装株式会社 Sterilizer
JP2018140001A (en) 2017-02-28 2018-09-13 東芝ライテック株式会社 Fluid sterilizer
US20190142986A1 (en) 2017-11-10 2019-05-16 Bolb Inc. Flowing fluid disinfectors and submersible uv light devices
JP2020022943A (en) 2018-08-08 2020-02-13 株式会社Uskテクノロジー Fluid pasteurizer
US20200189936A1 (en) 2018-12-13 2020-06-18 Stanley Electric Co., Ltd. Fluid sterilizing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2530677C (en) * 2005-12-19 2010-05-18 Lumen Associates Apparatus for irradiation of fluid with electromagnetic radiation and method for the same
JP6834664B2 (en) * 2017-03-24 2021-02-24 東芝ライテック株式会社 Fluid sterilizer
WO2019013539A1 (en) * 2017-07-12 2019-01-17 서울바이오시스 주식회사 Fluid treatment apparatus
CN109956517A (en) * 2017-12-14 2019-07-02 丰田合成株式会社 Ultraviolet light sterilizing unit and fluid sterilizing unit
JP7262985B2 (en) * 2018-12-04 2023-04-24 スタンレー電気株式会社 Light source module device, Fluid sterilization device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203095A (en) 2015-04-22 2016-12-08 日機装株式会社 Sterilizer
JP2018140001A (en) 2017-02-28 2018-09-13 東芝ライテック株式会社 Fluid sterilizer
US20190142986A1 (en) 2017-11-10 2019-05-16 Bolb Inc. Flowing fluid disinfectors and submersible uv light devices
JP2020022943A (en) 2018-08-08 2020-02-13 株式会社Uskテクノロジー Fluid pasteurizer
US20200189936A1 (en) 2018-12-13 2020-06-18 Stanley Electric Co., Ltd. Fluid sterilizing device

Also Published As

Publication number Publication date
CN114053472A (en) 2022-02-18
JP2023171423A (en) 2023-12-01
JP2022026937A (en) 2022-02-10

Similar Documents

Publication Publication Date Title
TWI733781B (en) Fluid sterilization device
US11104590B2 (en) Sterilization device using straightener and UV LED array facing the straightener
JP6834664B2 (en) Fluid sterilizer
JP2020089462A (en) Light source module apparatus and fluid sterilizer
TWI753132B (en) Fluid sterilization device
JP6798327B2 (en) Fluid sterilizer
JP6891537B2 (en) Fluid sterilizer
US11752227B2 (en) Ultraviolet irradiation unit and ultraviolet stertilization device
US20180179086A1 (en) Sterilization device
KR20190049766A (en) UV Irradiation Apparatus and Method
US20200140292A1 (en) Systems and methods for fluid disinfection with ultraviolet light
JP2019201861A (en) Fluid sterilizer
JP7400656B2 (en) fluid sterilizer
US20220362419A1 (en) Fluid sterilization device
JP2020000285A (en) Fluid sterilizer
JP6897602B2 (en) Fluid sterilizer
JP2019076643A (en) Fluid treatment apparatus
JP7405035B2 (en) Fluid sterilizer
WO2023167182A1 (en) Fluid sterilization device
JP2023165204A (en) fluid sterilizer
JP2023078423A (en) Fluid sterilizer
JP2023146778A (en) Ultraviolet lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R151 Written notification of patent or utility model registration

Ref document number: 7400656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151