JP6859989B2 - Circuit breaker with current control electrode - Google Patents

Circuit breaker with current control electrode Download PDF

Info

Publication number
JP6859989B2
JP6859989B2 JP2018160809A JP2018160809A JP6859989B2 JP 6859989 B2 JP6859989 B2 JP 6859989B2 JP 2018160809 A JP2018160809 A JP 2018160809A JP 2018160809 A JP2018160809 A JP 2018160809A JP 6859989 B2 JP6859989 B2 JP 6859989B2
Authority
JP
Japan
Prior art keywords
electrode
contact electrode
current control
current
movable contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018160809A
Other languages
Japanese (ja)
Other versions
JP2020035629A (en
Inventor
パタナデチ ノラセージ
パタナデチ ノラセージ
正明 貫洞
正明 貫洞
Original Assignee
パタナデチ ノラセージ
パタナデチ ノラセージ
正明 貫洞
正明 貫洞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パタナデチ ノラセージ, パタナデチ ノラセージ, 正明 貫洞, 正明 貫洞 filed Critical パタナデチ ノラセージ
Priority to JP2018160809A priority Critical patent/JP6859989B2/en
Publication of JP2020035629A publication Critical patent/JP2020035629A/en
Application granted granted Critical
Publication of JP6859989B2 publication Critical patent/JP6859989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

本発明は回路電流を遮断する電流制御付遮断器に関する。 The present invention relates to a circuit breaker with current control that cuts off a circuit current.

世界的に交流電圧電源のみならず直流電圧電源の用途が拡大し、現在、民生(例えば:鉄道、トロリー、電気分解、鉱山、風力、太陽光発電)にまで直流電圧電源の利用が広がっている。 The use of DC voltage power supply has expanded worldwide as well as AC voltage power supply, and the use of DC voltage power supply is now expanding to consumer (for example: railway, trolley, electrolysis, mining, wind power, solar power generation). ..

この直流電圧電源は、交流電圧電源と異なり、一定電圧と一極性(正極性または負極性)で供給される。そのため、その回路で過電流(例えば、短絡、地絡)が生じた場合、一定電圧下で、過電流を遮断する必要性のため、近年、各種の直流高速遮断器(例えば、非特許文献1)が開発されている。一方、直流高速遮断器においては、安全な保守管理作業の面から、近年益々、小型化、軽量化および高速遮断性能が要求されるに至っている。 Unlike the AC voltage power supply, this DC voltage power supply is supplied with a constant voltage and one polarity (positive electrode or negative electrode). Therefore, when an overcurrent (for example, a short circuit or a ground fault) occurs in the circuit, it is necessary to cut off the overcurrent under a constant voltage. Therefore, in recent years, various DC high-speed circuit breakers (for example, Non-Patent Document 1) ) Is being developed. On the other hand, in recent years, DC high-speed circuit breakers are increasingly required to be smaller, lighter, and have higher-speed breaking performance from the viewpoint of safe maintenance and management work.

ところで、直流高速遮断器は、一般に、電気的並びに機械的からなる動作で構成されている。しかし、遮断器の種類で異なるが、直流高速遮断器は、パワーエレクトロニクスの利用(スイッチング技術、同期回路、共振回路など)、アークランナ、接触部、ストッパー、保持電磁石(磁性体)、保持コイル、開閉バネ、保持コイル、調整鉄心、接極子、引き外しコイル、誘導分路、圧縮空気等の要素があり、その動作機構は複雑である。 By the way, a DC high-speed circuit breaker is generally composed of both electrical and mechanical operations. However, although it depends on the type of circuit breaker, the DC high-speed circuit breaker uses power electronics (switching technology, synchronization circuit, resonance circuit, etc.), arc runner, contact part, stopper, holding electromagnet (magnetic material), holding coil, opening and closing. There are elements such as springs, holding coils, adjusting iron cores, circuit breakers, tripping coils, induction shunts, and compressed air, and their operating mechanisms are complicated.

ここで、直流高速遮断器としては、2つの接触子電極、すなわち、可動接触子電極と固定接触子電極とを備える構成例が知られている。また、直流高速遮断器を含む直流回路においては、過電流を検出する手段として非接触方式の変流器(CT:current transformer)を採用する例が広く知られている。 Here, as a DC high-speed circuit breaker, a configuration example including two contactor electrodes, that is, a movable contactor electrode and a fixed contactor electrode is known. Further, in a DC circuit including a DC high-speed circuit breaker, an example of adopting a non-contact current transformer (CT) as a means for detecting an overcurrent is widely known.

また、過電流検出手段を含む直流高速遮断器において要求される遮断性能は、その被遮断回路で過電流が生じた場合、当該過電流を如何に短時間で検出測定することに加え、主電流を遮断するための接触子電極が非接触状態になり、かつ、アーク放電が消滅するまでの応答時間を如何に短時間にするかに拘わるものである。 Further, the breaking performance required for a DC high-speed circuit breaker including an overcurrent detecting means is that when an overcurrent occurs in the circuit to be cut, in addition to detecting and measuring the overcurrent in a short time, the main current It is related to how to shorten the response time until the contact electrode for blocking the current is in a non-contact state and the arc discharge disappears.

なお、過電流検出手段として採用される上述した変流器(CT)は、一般に、過電流を検出するにあたって周波数帯域が限られており、パルス性の過電流については相対的に検出性能が劣ることも知られている。 The above-mentioned current transformer (CT) used as an overcurrent detecting means generally has a limited frequency band for detecting an overcurrent, and its detection performance is relatively inferior for a pulsed overcurrent. It is also known.

また、現在、過電流を検出してから可動接触子部と固定接触部が非接触状態になり、かつ、アーク放電電流が消滅するまでの時間(動作時間)はミリ秒台であることが知られている。 In addition, it is currently known that the time (operating time) from the detection of overcurrent until the movable contact part and the fixed contact part are in a non-contact state and the arc discharge current disappears is in the millisecond range. Has been done.

一方、近年、直流電気回路網に過電流が生じた際、当該過電流をナノ秒で検出することを可能とする電流電圧変換器が、特許第6030293号明細書(特許文献2)において示されている。 On the other hand, in recent years, when an overcurrent occurs in a DC electric circuit network, a current-voltage converter capable of detecting the overcurrent in nanoseconds is shown in Japanese Patent No. 6030293 (Patent Document 2). ing.

三菱電機:電力No.1801 2018 2月7日Mitsubishi Electric: Electricity No.1801 2018 February 7, 2018 特許第6030293号明細書Japanese Patent No. 6030293

上述したように、遮断器の接触子電極として、可動接触子電極および固定接触子電極により構成されている遮断器の場合、これら可動接触子電極と固定接触子電極とに被遮断電流の全電流が流入状態で非接触状態にすると、アーク放電が生じる。このとき生じたアーク放電電流(プラズマ化された電流)は、全て両接触子電極に流入することになる。そして、このアーク放電電流が流入した両接触子電極(可動接触子電極および固定接触子電極)は、アーク放電電流のジュール熱によりその電極材料の表面が焼損劣化することとなる。 As described above, in the case of a circuit breaker composed of a movable contact electrode and a fixed contact electrode as the contact electrode of the circuit breaker, the total current of the interrupted current is applied to the movable contact electrode and the fixed contact electrode. When the inflow state is brought into a non-contact state, an arc discharge occurs. All the arc discharge current (plasma-ized current) generated at this time flows into both contactor electrodes. Then, the surface of the electrode material of both contactor electrodes (movable contact electrode and fixed contactor electrode) into which the arc discharge current has flowed is burnt and deteriorated by the Joule heat of the arc discharge current.

例えば、上述の如き遮断器を配設した直流回路網において、サージまたは短絡事故が生じた場合、または、使用電気機器の電気的劣化過程の場合等において過電流(含:パルス性)が流れた際、遮断器は当該回路を遮断する。このとき当該遮断器には、遮断時(すなわち、可動接触子電極と固定接触子電極との開閉時)に当該固定接触部と可動接触部との間でアーク(火花放電)が発生し、これにより接触子表面が焼損し消耗することとなる。 For example, in a DC network in which a circuit breaker is provided as described above, an overcurrent (including: pulse property) flows in the case of a surge or short-circuit accident, or in the case of an electrical deterioration process of the electrical equipment used. At that time, the circuit breaker cuts off the circuit. At this time, an arc (spark discharge) is generated between the fixed contact portion and the movable contact portion of the circuit breaker at the time of blocking (that is, when the movable contact electrode and the fixed contact electrode are opened and closed). As a result, the contact surface is burnt and consumed.

また、上述の如き過電流が生じた場合に限らず、通常の電流遮断においても遮断器の操作回数の増加に伴いアーク放電の回数が増すことになる。そして、その接触子表面の劣化面積の増大並びに表面からの深さが、助長され、最終的に、電流遮断性能が劣化し、不能になる虞がある。 Further, not only when an overcurrent occurs as described above, but also in a normal current cutoff, the number of arc discharges increases as the number of times the circuit breaker is operated increases. Then, the increase in the deteriorated area of the contact surface and the depth from the surface are promoted, and finally, the current cutoff performance may be deteriorated and become impossible.

換言すれば、上述の如き構成を成す遮断器は、経年稼働により電極材料表面の焼損劣化が進行し、ついにはアーク放電電流の遮断が不能になり、稼働寿命時間の低下を来たす虞があるといえる。 In other words, the circuit breaker having the above-mentioned configuration may be burnt and deteriorated on the surface of the electrode material due to aged operation, and finally it becomes impossible to cut off the arc discharge current, resulting in a decrease in the operating life time. I can say.

本発明は、係る事情に鑑みてなされたものであり、電極接触部のアーク放電電流による電極表面の焼損劣化を軽減し、遮断器の稼働寿命時間を延ばすことができる電流制御電極付遮断器を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a circuit breaker with a current control electrode capable of reducing burnout deterioration of the electrode surface due to an arc discharge current at the electrode contact portion and extending the operating life time of the circuit breaker. The purpose is to provide.

本発明の一態様の電流制御電極付遮断器は、直流電気回路網において、任意の閉回路の枝路電流を遮断するために、当該枝路に直列に接続された電流制御電極付遮断器において、前記枝路において所定の直流電源に接続された可動接触子電極と、一端が、前記可動接触子電極と接触状態または非接触状態となるように配設された固定接触子電極と、前記可動接触子電極と前記固定接触子電極の一端との間における想定アーク放電路と異なる空間に配設され、アーク放電電流を導くための導電性突起を有する導電性のリング形状を備えた電流制御電極と、前記固定接触子電極の他端に直列に接続された、前記直流電気回路網上における1次側回路部と、当該直流電気回路網に生じたパルス性過電流によって所定の減衰振動電圧を発生する2次側回路部とを、有し、前記2次側回路部の一端には前記電流制御電極が接続されると共に、当該2次側回路部の他端には接地部が接続され、前記1次側回路部に生じたパルス性過電流によって前記2次側回路部に発生した前記減衰振動電圧を前記電流制御電極に印加可能としたパルス発生器と、前記直流電気回路網において、前記パルス発生器における前記1次側回路部に直列に接続され、当該直流電気回路網に生じるパルス性過電流を検知する電流電圧変換器と、前記電流電圧変換器が所定のパルス性過電流を検知した際に、前記可動接触子電極と前記固定接触子電極とが接触状態から非接触状態へ移行するよう当該可動接触子電極の移動を制御する可動接触子電極駆動部と、を備え、前記可動接触子電極駆動部は、前記電流電圧変換器が前記直流電気回路網に生じるパルス性過電流を検知した際、前記可動接触子電極を前記固定接触子電極から離間するよう移動制御し、前記電流制御電極は、前記パルス発生器において発生した前記減衰振動電圧が印加された際、当該減衰振動電圧の極性に応じて、当該電流制御電極の近傍において前記可動接触子電極と前記固定接触子電極との離間により発生したアーク放電により生成された所定の荷電粒子を反発または吸収し、さらに、前記導電性突起を介して当該アーク放電の一部を誘導かつ分流制御し、前記パルス発生器は、前記電流制御電極において誘導かつ分流された前記アーク放電の一部を前記接地部に向けて流出する。 The breaker with a current control electrode according to one aspect of the present invention is a breaker with a current control electrode connected in series to the branch path in order to cut off a branch path current of an arbitrary closed circuit in a DC electric circuit network. A movable contact electrode connected to a predetermined DC power source in the branch path, a fixed contact electrode arranged so that one end thereof is in contact with or not in contact with the movable contact electrode, and the movable contact electrode. disposed on the assumption arc discharge path different from the space definitive between one end of the contact electrode and the fixed contact electrode, a current control with a conductive ring-shaped having a conductive protrusion for guiding the arc discharge current A predetermined attenuated vibration voltage due to a pulsed overcurrent generated in the electrode, the primary side circuit portion on the DC electric circuit network connected in series with the other end of the fixed contact electrode, and the DC electric circuit network. The current control electrode is connected to one end of the secondary circuit unit, and the grounding unit is connected to the other end of the secondary circuit unit. In the pulse generator capable of applying the attenuated vibration voltage generated in the secondary circuit section due to the pulsed overcurrent generated in the primary circuit section to the current control electrode, and in the DC electric circuit network. A current-voltage converter that is connected in series to the primary circuit section of the pulse generator and detects a pulsed overcurrent generated in the DC electric network, and the current-voltage converter generate a predetermined pulsed overcurrent. upon detecting, and a movable contact electrode driver for controlling the movement of the movable contact electrode so that said movable contact electrode and the fixed contact electrode moves from the contact state to the non-contact state, the When the current-voltage converter detects a pulsed overcurrent generated in the DC electric circuit network, the movable contact electrode driving unit moves and controls the movable contact electrode so as to be separated from the fixed contact electrode. When the attenuated vibration voltage generated in the pulse generator is applied, the current control electrode has the movable contact electrode and the fixed contact electrode in the vicinity of the current control electrode according to the polarity of the attenuated vibration voltage. The pulse generator repels or absorbs a predetermined charged particle generated by the arc discharge generated by the separation from the arc discharge, and further induces and controls a part of the arc discharge through the conductive protrusion. A part of the arc discharge induced and diverted at the current control electrode flows out toward the ground portion.

上述したように、本発明の電流制御電極付遮断器は、可動接触子電極および固定接触子電極並びに電流制御電極を備え、直流回路網に過電流が生じた際、可動接触子電極を固定接触子電極から離間させることで枝路電流を遮断する遮断器において、可動接触子電極と固定接触子電極との間に生じるアーク放電電流の一部を分流し、接触子部に流入するアーク電流を抑制、低減または消滅させることで、可動接触子電極および固定接触子電極の焼損劣化を軽減し、稼働寿命時間を延ばすことができる。 As described above, the circuit breaker with a current control electrode of the present invention includes a movable contact electrode, a fixed contact electrode, and a current control electrode, and when an overcurrent occurs in the DC network, the movable contact electrode is fixedly contacted. In a breaker that cuts off the branch path current by separating it from the child electrode, a part of the arc discharge current generated between the movable contact electrode and the fixed contact electrode is diverted, and the arc current flowing into the contact portion is transferred. By suppressing, reducing or extinguishing, it is possible to reduce the burnout deterioration of the movable contact electrode and the fixed contact electrode and extend the operating life time.

このアーク放電電流を分流するために、アーク放電電流に電磁気的影響を及ぼす電気的磁気的空間に、第3の導電性電極である電流制御電極を配置する。具体的には、可動接触子電極と固定接触子電極との間に配置する。 In order to divide the arc discharge current, a current control electrode, which is a third conductive electrode, is arranged in an electromagnetic space that electromagnetically affects the arc discharge current. Specifically, it is arranged between the movable contact electrode and the fixed contact electrode.

そして、可動接触子電極および固定接触子電極に過電流が流入し、可動接触子電極と固定接触子電極とを開放する(非接触状態にする)ことよって生じるアーク放電電流を、前記電流制御電極に正極性電圧もしくは負極性電圧または双方の極性を有する電圧を時系列で印加する、または、振動波電圧(例えば、減衰振動電圧)を印加することで制御する。 Then, an overcurrent flows into the movable contact electrode and the fixed contact electrode, and the arc discharge current generated by opening the movable contact electrode and the fixed contact electrode (making them non-contact state) is generated by the current control electrode. It is controlled by applying a positive electrode voltage, a negative electrode voltage, or a voltage having both polarities in time series, or by applying a vibration wave voltage (for example, an attenuated vibration voltage).

この電流制御電極に印加される電圧の極性(正極性または負極性)で、可動接触子電極と固定接触子電極との間で発生したアーク放電によって生じる電子、イオン、放電劣化生成物などの荷電粒子を反発、吸収させることで電流制御電極にアーク放電電流の一部を誘導かつ分流させ、アーク放電電流を制御し、アーク放電電流の可動接触子電極もしくは固定接触子電極または双方への流入を抑制させる。 The polarity (positive or negative) of the voltage applied to this current control electrode is the charge of electrons, ions, discharge deterioration products, etc. generated by the arc discharge generated between the movable contact electrode and the fixed contact electrode. By repelling and absorbing particles, a part of the arc discharge current is induced and diverted to the current control electrode, the arc discharge current is controlled, and the arc discharge current flows into the movable contact electrode, the fixed contact electrode, or both. Suppress.

このアーク放電電流の制御抑制によって、可動接触子電極もしくは固定接触子電極または双方の表面の焼損に依る界面劣化を低減して、遮断器の機器寿命を長くするができる。 By suppressing the control of the arc discharge current, it is possible to reduce the interfacial deterioration due to the burning of the surfaces of the movable contact electrode or the fixed contact electrode or both of them, and extend the equipment life of the circuit breaker.

さらに、本発明の電流制御電極付遮断器は、当該電流制御電極付遮断器が配設された直流回路網に、従来の1000分の1倍短く過電流の検出、すなわち、過電流をナノ秒台で検出測定できる電流電圧変換器(過電流測定装置)を配設することで、過電流の発生から主電流を遮断するまでの従来の応答時間(ミリ秒台)を短縮でき、可動接触子電極もしくは固定接触子電極または双方の表面の焼損に依る界面劣化の低減をより効果的なものとする。 Further, the circuit breaker with the current control electrode of the present invention detects an overcurrent in the DC network in which the circuit breaker with the current control electrode is arranged, which is 1/1000 shorter than the conventional one, that is, the overcurrent is detected in nanoseconds. By arranging a current-voltage converter (overcurrent measuring device) that can detect and measure with a stand, the conventional response time (milliseconds) from the occurrence of overcurrent to the interruption of the main current can be shortened, and the movable contactor It is made more effective to reduce the interface deterioration due to the burning of the surface of the electrode or the fixed contactor electrode or both.

本発明によれば、電極接触部のアーク放電電流による電極表面の焼損劣化を軽減し、遮断器の稼働寿命時間を延ばすことができる電流制御電極付遮断器を提供することができる。 According to the present invention, it is possible to provide a circuit breaker with a current control electrode capable of reducing burnout deterioration of the electrode surface due to an arc discharge current at the electrode contact portion and extending the operating life time of the circuit breaker.

図1は、本発明の第1の実施形態の電流制御電極付遮断器の構成であって、可動接触子電極1と固定接触子電極2が接触している状態を示した回路図である。FIG. 1 is a circuit diagram showing a configuration of a circuit breaker with a current control electrode according to the first embodiment of the present invention, in which the movable contact electrode 1 and the fixed contact electrode 2 are in contact with each other. 図2は、第1の実施形態の電流制御電極付遮断器の構成であって、可動接触子電極1と固定接触子電極2が離間した非接触状態を示した回路図である。FIG. 2 is a circuit diagram showing the configuration of the circuit breaker with a current control electrode of the first embodiment, showing a non-contact state in which the movable contact electrode 1 and the fixed contact electrode 2 are separated from each other. 図3は、第1の実施形態の電流制御電極付遮断器において、可動接触子電極1、固定接触子電極2および電流制御電極3の位置関係を示した要部拡大図である。FIG. 3 is an enlarged view of a main part showing the positional relationship between the movable contact electrode 1, the fixed contact electrode 2, and the current control electrode 3 in the circuit breaker with the current control electrode of the first embodiment. 図4は、第1の実施形態の電流制御電極付遮断器において、可動接触子電極1、固定接触子電極2および電流制御電極3の位置関係を示した要部断面および平面を示した拡大図である。FIG. 4 is an enlarged view showing a cross section and a plane of a main part showing the positional relationship between the movable contact electrode 1, the fixed contact electrode 2 and the current control electrode 3 in the circuit breaker with the current control electrode of the first embodiment. Is. 図5は、第1の実施形態の電流制御電極付遮断器における電流制御電極3のトリガ電圧波形と、雷インパルス電圧発生器からの印加電圧波形との関係を示した図である。FIG. 5 is a diagram showing the relationship between the trigger voltage waveform of the current control electrode 3 in the circuit breaker with the current control electrode of the first embodiment and the voltage waveform applied from the lightning impulse voltage generator. 図6は、第1の実施形態の電流制御電極付遮断器における電流制御電極3およびパルス発生器4の電気的特性を検証した実証試験用の回路構成図である。FIG. 6 is a circuit configuration diagram for a verification test in which the electrical characteristics of the current control electrode 3 and the pulse generator 4 in the circuit breaker with the current control electrode of the first embodiment are verified. 図7は、本発明の第2の実施形態の電流制御電極付遮断器において、可動接触子電極1、固定接触子電極2および電流制御電極3の位置関係を示した要部断面および平面を示した拡大図である。FIG. 7 shows a cross section and a plane of a main part showing the positional relationship between the movable contact electrode 1, the fixed contact electrode 2 and the current control electrode 3 in the circuit breaker with the current control electrode of the second embodiment of the present invention. It is an enlarged view.

以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<第1の実施形態>
図を用いて第1の実施形態の電流制御電極付遮断器の構成について説明する。
図1は、本発明の第1の実施形態の電流制御電極付遮断器の構成であって、可動接触子電極1と固定接触子電極2が接触している状態を示した回路図であり、図2は、第1の実施形態の電流制御電極付遮断器の構成であって、可動接触子電極1と固定接触子電極2が離間した非接触状態を示した回路図である。
<First Embodiment>
The configuration of the circuit breaker with the current control electrode of the first embodiment will be described with reference to the figure.
FIG. 1 is a circuit diagram showing the configuration of a circuit breaker with a current control electrode according to the first embodiment of the present invention, showing a state in which the movable contact electrode 1 and the fixed contact electrode 2 are in contact with each other. FIG. 2 is a circuit diagram showing the configuration of the circuit breaker with a current control electrode of the first embodiment, showing a non-contact state in which the movable contact electrode 1 and the fixed contact electrode 2 are separated from each other.

図1、図2に示すように、本実施形態の電流制御電極付遮断器100は、直流電源7を有する直流電気回路網における任意の枝路を開放(遮断)可能に配設された可動接触子電極1および固定接触子電極2と、これら可動接触子電極1と固定接触子電極2との間の空間における想定アーク放電路と異なる空間に配置された電流制御電極3と、前記固定接触子電極2に接続され当該直流電気回路網に過電流が生じた際に電流制御電極3に対して所定の減衰振動電圧を印加するパルス発生器4と、当該直流電気回路網における過電流を検出する電流電圧変換器6と、電流電圧変換器6において過電流を検出した際に可動接触子電極1を移動せしめる可動接触子電極駆動部8と、を有する。 As shown in FIGS. 1 and 2, the circuit breaker 100 with a current control electrode of the present embodiment is a movable contact arranged so as to open (block) an arbitrary branch path in a DC electric circuit network having a DC power supply 7. The child electrode 1 and the fixed contact electrode 2, the current control electrode 3 arranged in a space different from the assumed arc discharge path in the space between the movable contact electrode 1 and the fixed contact electrode 2, and the fixed contact. A pulse generator 4 that is connected to the electrode 2 and applies a predetermined attenuated vibration voltage to the current control electrode 3 when an overcurrent occurs in the DC electric circuit network, and an overcurrent in the DC electric circuit network are detected. It has a current-voltage converter 6 and a movable contact electrode driving unit 8 that moves the movable contact electrode 1 when an overcurrent is detected in the current-voltage converter 6.

本実施形態において可動接触子電極1および固定接触子電極2は、以下に示すように配置される。すなわち本実施形態においては、直流回路網の任意の枝電流を遮断するために、その枝電流の両端の2つの節P1、P2(電位の高い接続点P2の電位をV2、電位の低い接続点P1の電位をV1とすると、V2≧V1;説明のため正極性とする)の一方の節P2に固定接触子電極2を配置し、他の一方の節P1に可動接触子電極1を配置する。 In the present embodiment, the movable contact electrode 1 and the fixed contact electrode 2 are arranged as shown below. That is, in the present embodiment, in order to cut off an arbitrary branch current of the DC network, the two nodes P1 and P2 at both ends of the branch current (the potential of the high potential connection point P2 is V2, and the potential of the low potential connection point is V2). When the potential of P1 is V1, the fixed contact electrode 2 is arranged in one node P2 (V2 ≧ V1; positive electrode for explanation), and the movable contact electrode 1 is arranged in the other node P1. ..

ここで図1は、当該直流電気回路網が閉じている状態、すなわち、可動接触子電極1と固定接触子電極2が接触している状態を示し、図2は、当該直流電気回路網における任意の枝路が開放(遮断)された状態、すなわち、可動接触子電極1と固定接触子電極2が離間して非接触の状態を示している。 Here, FIG. 1 shows a state in which the DC electric network is closed, that is, a state in which the movable contact electrode 1 and the fixed contact electrode 2 are in contact with each other, and FIG. 2 shows an arbitrary state in the DC electric network. The branch path is open (blocked), that is, the movable contact electrode 1 and the fixed contact electrode 2 are separated from each other and are not in contact with each other.

電流制御電極3は、アーク放電電流を分流するために、アーク放電電流に電磁気的影響を及ぼす電気的磁気的空間であって、可動接触子電極1と固定接触子電極2との間の空間、より具体的には、可動接触子電極1と固定接触子電極2との間の絶縁性消弧媒体(気体(例:空気、不活ガスSF6,SF6代替気体(含:加圧気体)、液体、真空、等)の空間に配置される。 The current control electrode 3 is an electrically magnetic space that has an electromagnetic effect on the arc discharge current in order to divide the arc discharge current, and is a space between the movable contact electrode 1 and the fixed contact electrode 2. More specifically, an insulating arc-extinguishing medium between the movable contact electrode 1 and the fixed contact electrode 2 (gas (eg, air, inactive gas SF6, SF6 alternative gas (including: pressurized gas), liquid). , Vacuum, etc.).

図3は、第1の実施形態の電流制御電極付遮断器において、可動接触子電極1、固定接触子電極2および電流制御電極3の位置関係を示した要部拡大図であり、図4は、第1の実施形態の電流制御電極付遮断器において、可動接触子電極1、固定接触子電極2および電流制御電極3の位置関係を示した要部断面および平面を示した拡大図である。 FIG. 3 is an enlarged view of a main part showing the positional relationship between the movable contact electrode 1, the fixed contact electrode 2, and the current control electrode 3 in the circuit breaker with the current control electrode of the first embodiment. , Is an enlarged view showing a cross section and a plane of a main part showing the positional relationship between the movable contact electrode 1, the fixed contact electrode 2 and the current control electrode 3 in the breaker with a current control electrode of the first embodiment.

図3、図4に示すように、本第1の実施形態における電流制御電極3は、可動接触子電極1が可動する直線上の中心軸を取り巻くリング形状を呈し、図3、図4においては図示しないが、絶縁部材で保持されている。なお、可動接触子電極1が固定接触子電極2から離間した際の当該可動接触子電極1と固定接触子電極2との電極間距離をL、リング形状の電流制御電極3の高さをL1とすると、L1<L、また、電流制御電極3の内径をr2、可動接触子電極1の半径をr1とすると、r2>r1の関係を有する。 As shown in FIGS. 3 and 4, the current control electrode 3 in the first embodiment has a ring shape surrounding a linear central axis on which the movable contact electrode 1 is movable, and in FIGS. 3 and 4, the current control electrode 3 has a ring shape. Although not shown, it is held by an insulating member. The distance between the movable contact electrode 1 and the fixed contact electrode 2 when the movable contact electrode 1 is separated from the fixed contact electrode 2 is L, and the height of the ring-shaped current control electrode 3 is L1. Then, if L1 <L, and if the inner diameter of the current control electrode 3 is r2 and the radius of the movable contact electrode 1 is r1, then there is a relationship of r2> r1.

また、電流制御電極3は、当該直流回路網において過電流が発生した場合、その過電流で高電圧減衰振動パルスを発生させる上述したパルス発生器4の出力電圧の一端子に接続されている(図1、図2参照)。 Further, the current control electrode 3 is connected to one terminal of the output voltage of the above-mentioned pulse generator 4 that generates a high voltage damped vibration pulse by the overcurrent when an overcurrent occurs in the DC network (). (See FIGS. 1 and 2).

この電流制御電極3は、導電性部材が用いられ、本実施形態においては可動接触子電極1および固定接触子電極2と同等な部材により構成される。さらに、この導電性の電流制御電極3は、上述したように可動接触子電極1と固定接触子電極2とが開路時に発生するアーク放電に対し、電磁気的に、アーク放電を制御できる位置空間に配置されている。 A conductive member is used for the current control electrode 3, and in the present embodiment, the current control electrode 3 is composed of a member equivalent to the movable contact electrode 1 and the fixed contact electrode 2. Further, as described above, the conductive current control electrode 3 is provided in a position space where the arc discharge can be electromagnetically controlled with respect to the arc discharge generated when the movable contact electrode 1 and the fixed contact electrode 2 are opened. Have been placed.

なお、本実施形態において採用する電流制御電極3は、高さL1のリング形状を呈するが、電流制御電極3の形状はこれに限らず、例えば、可動接触子電極1が可動する直線上の中心軸を取り巻く円筒形状、同直線上の中心軸を取り巻く網目形状、同直線上の中心軸に対する放射棒形状、同直線上の中心軸に対する放射針形状等の形状を採ってもよい。 The current control electrode 3 used in the present embodiment has a ring shape with a height of L1, but the shape of the current control electrode 3 is not limited to this, and for example, the center on a straight line on which the movable contact electrode 1 is movable. A cylindrical shape surrounding the shaft, a mesh shape surrounding the central axis on the same straight line, a radiation rod shape with respect to the central axis on the same straight line, a radiation needle shape with respect to the central axis on the same straight line, and the like may be adopted.

パルス発生器4は、当該直流電気回路網において前記固定接触子電極2の他端に接続されると共に、その2次側の出力端子は前記電流制御電極3に接続されている。そして、当該直流電気回路網に過電流が生じた際に2次側出力端子から所定のトリガーパルス(減衰振動電圧)を出力し、電流制御電極3に対して印加する。 The pulse generator 4 is connected to the other end of the fixed contact electrode 2 in the DC electric network, and the output terminal on the secondary side thereof is connected to the current control electrode 3. Then, when an overcurrent occurs in the DC electric circuit network, a predetermined trigger pulse (damped vibration voltage) is output from the secondary output terminal and applied to the current control electrode 3.

このパルス発生器4から出力される減衰振動電圧は、正極性または負極性の電圧、あるいは正極性および負極性を繰り返す極性のものである。 The attenuated vibration voltage output from the pulse generator 4 is a positive electrode or negative electrode voltage, or a polarity that repeats the positive electrode property and the negative electrode property.

ここで、本実施形態において採用する前記パルス発生器4は、本発明の発明者による特許第4595097号明細書に詳しい。 Here, the pulse generator 4 adopted in the present embodiment is detailed in Japanese Patent No. 4595097 by the inventor of the present invention.

なお、本実施形態においては、この電流制御電極3に印加されるトリガーパルス(減衰振動電圧)は、パルス発生器4が発生する減衰振動電圧であるとしたが、これに限らず、例えば、電流制御電極3は、この遮断器(可動接触子電極1と固定接触子電極2)の開閉操作時に同期して、図示しない他の電源から正極性または負極性の電圧、あるいは正極性および負極性の波形を有する電圧(例えば、減衰振動波電圧)が架電(印加)されるものであってもよい。 In the present embodiment, the trigger pulse (damped vibration voltage) applied to the current control electrode 3 is the damped vibration voltage generated by the pulse generator 4, but the present invention is not limited to this, and for example, the current. The control electrode 3 has a positive or negative voltage, or a positive and negative voltage from another power source (not shown) in synchronization with the opening / closing operation of the breaker (movable contact electrode 1 and fixed contact electrode 2). A voltage having a waveform (for example, an attenuated vibration wave voltage) may be applied (applied).

電流電圧変換器6は、当該直流電気回路網において、パルス発生器4の他端に対して負荷5を介して直列に接続される。本実施形態において電流電圧変換器6は、当該直流電気回路網に過電流が生じた際、当該過電流をナノ秒で検出可能である。また、可動接触子電極駆動部8は、電流電圧変換器6が過電流(含:パルス性)を検出した際、可動接触子電極1と固定接触子電極2とが接触した状態(図1参照)から非接触状態(図2参照)へ移行するための制御をするための駆動信号を当該可動接触子電極1に対して出力する。 The current-voltage converter 6 is connected in series to the other end of the pulse generator 4 via the load 5 in the DC electric network. In the present embodiment, the current-voltage converter 6 can detect the overcurrent in nanoseconds when an overcurrent occurs in the DC electric network. Further, the movable contact electrode driving unit 8 is in a state where the movable contact electrode 1 and the fixed contact electrode 2 are in contact with each other when the current-voltage converter 6 detects an overcurrent (including: pulse property) (see FIG. 1). ) To the non-contact state (see FIG. 2), a drive signal for controlling the transition to the non-contact state (see FIG. 2) is output to the movable contact electrode 1.

なお、本実施形態において採用する電流電圧変換器6は、本発明の発明者による特許第6030293号明細書において開示されている。 The current-voltage converter 6 adopted in the present embodiment is disclosed in Japanese Patent No. 6030293 by the inventor of the present invention.

また、本実施形態の電流制御電極付遮断器100は、当該電流制御電極付遮断器100が配設された直流回路網に、従来の1000分の1倍短く過電流の検出、すなわち、過電流をナノ秒台で検出測定できる電流電圧変換器6(過電流測定装置)を配設することで、過電流の発生から主電流を遮断するまでの従来の応答時間(ミリ秒台)を短縮でき、可動接触子電極もしくは固定接触子電極または双方の表面の焼損による界面劣化の低減をより効果的なものとする。 Further, the circuit breaker 100 with a current control electrode of the present embodiment detects an overcurrent in the DC network in which the circuit breaker 100 with a current control electrode is arranged, which is 1/1000 shorter than the conventional one, that is, overcurrent. By arranging a current-voltage converter 6 (overcurrent measuring device) that can detect and measure in the nanosecond range, the conventional response time (millisecond range) from the occurrence of the overcurrent to the interruption of the main current can be shortened. , The reduction of interface deterioration due to burning of the surfaces of the movable contact electrode or the fixed contact electrode or both of them is made more effective.

<本実施形態の作用>
本実施形態において、可動接触子電極1と固定接触子電極2とが接触した状態(図1参照)において直流回路網において過電流が生じたとする。このとき電流電圧変換器6は当該過電流をナノ秒で検出可能であり、当該過電流をその発生から極短時間(ナノ秒オーダー)で検出すると、この検出に伴い可動接触子電極駆動部8が可動接触子電極1に対して所定の駆動信号を出力する。
<Operation of this embodiment>
In the present embodiment, it is assumed that an overcurrent occurs in the DC network in a state where the movable contact electrode 1 and the fixed contact electrode 2 are in contact with each other (see FIG. 1). At this time, the current-voltage converter 6 can detect the overcurrent in nanoseconds, and when the overcurrent is detected in a very short time (on the order of nanoseconds) from the occurrence of the overcurrent, the movable contact electrode driving unit 8 is accompanied by this detection. Outputs a predetermined drive signal to the movable contact electrode 1.

可動接触子電極1は前記駆動信号を受けると固定接触子電極2から離間しはじめ、すなわち、可動接触子電極1と固定接触子電極2が接触した状態(図1参照)から非接触の状態(図2参照)へと移行する。 When the movable contact electrode 1 receives the drive signal, it begins to separate from the fixed contact electrode 2, that is, from a state in which the movable contact electrode 1 and the fixed contact electrode 2 are in contact with each other (see FIG. 1) to a non-contact state (see FIG. 1). (See Fig. 2).

可動接触子電極1と固定接触子電極2とが接触した状態(図1参照)から非接触の状態(図2参照)へと移行する際に、可動接触子電極1と固定接触子電極2との間にアーク放電が発生し、このアーク放電によって可動接触子電極1および固定接触子電極2ならびに電流制御電極3の近傍には電子、イオン、放電劣化生成物などの荷電粒子が生成される。 When the movable contact electrode 1 and the fixed contact electrode 2 are in contact with each other (see FIG. 1) to the non-contact state (see FIG. 2), the movable contact electrode 1 and the fixed contact electrode 2 are subjected to the transition. An arc discharge is generated between the two, and the arc discharge generates charged particles such as electrons, ions, and discharge deterioration products in the vicinity of the movable contact electrode 1, the fixed contact electrode 2, and the current control electrode 3.

一方、直流回路網において生じた過電流によりパルス発生器4の2次側の出力端子からは上述したトリガパルス(減衰振動電圧)が出力され、このトリガパルス(減衰振動電圧)が電流制御電極3に印加される。電流制御電極3は、この減衰振動電圧の印加の極性(正極性または負極性)に応じて、近傍において生成された電子、イオン、放電劣化生成物などの荷電粒子を反発または吸収する。このとき、可動接触子電極1と電流制御電極3との間、および、可動接触子電極1と固定接触子電極2との間には絶縁破壊が生じ、電流制御電極3にはアーク放電電流の一部が誘導かつ分流され、パルス発生器4からグランドに向けて当該分流した電流が流れる。 On the other hand, the above-mentioned trigger pulse (damped vibration voltage) is output from the output terminal on the secondary side of the pulse generator 4 due to the overcurrent generated in the DC network, and this trigger pulse (damped vibration voltage) is the current control electrode 3. Is applied to. The current control electrode 3 repels or absorbs charged particles such as electrons, ions, and discharge deterioration products generated in the vicinity depending on the polarity (positive or negative) of application of the damped vibration voltage. At this time, insulation failure occurs between the movable contact electrode 1 and the current control electrode 3 and between the movable contact electrode 1 and the fixed contact electrode 2, and the current control electrode 3 receives an arc discharge current. A part of the current is induced and split, and the split current flows from the pulse generator 4 toward the ground.

なお、パルス発生器4からトリガパルス(減衰振動電圧)が出力された後、電流制御電極3において絶縁破壊が起こるまでの時間は、本実施形態においては、後述する実証試験結果に示すように、極短時間(例えば、電極間距離が0.6mとすると約0.2μs程度)である。 In this embodiment, the time from when the trigger pulse (damped vibration voltage) is output from the pulse generator 4 until the dielectric breakdown occurs in the current control electrode 3 is as shown in the verification test result described later. It is an extremely short time (for example, about 0.2 μs when the distance between the electrodes is 0.6 m).

上述したように、本実施形態の電流制御電極3は、電気システム的には、直流電気回路網に過電流が生じてから極短時間の後に、可動接触子電極1と固定接触子電極2との間に生じたアーク放電電流の一部を誘導かつ分流することで、当該アーク放電電流を制御し、アーク放電電流が可動接触子電極1もしくは固定接触子電極2または双方に対する流入を抑制することができる。 As described above, in terms of the electrical system, the current control electrode 3 of the present embodiment includes the movable contact electrode 1 and the fixed contact electrode 2 after a very short time after an overcurrent occurs in the DC electric network. By inducing and distributing a part of the arc discharge current generated during the period, the arc discharge current is controlled, and the arc discharge current suppresses the inflow to the movable contact electrode 1 or the fixed contact electrode 2 or both. Can be done.

すなわち、本実施形態においては、アーク放電電流が制御され、アーク放電電流と電流制御電極に流入した電流の差分が可動接触子電極1もしくは固定接触子電極2またはその双方の電極に流入するため、可動接触子電極1および固定接触子電極2の表面のジュール熱の焼損による表面劣化を低減することができる。 That is, in the present embodiment, the arc discharge current is controlled, and the difference between the arc discharge current and the current flowing into the current control electrode flows into the movable contact electrode 1 and / or the fixed contact electrode 2 or both electrodes. It is possible to reduce surface deterioration due to burning of Joule heat on the surfaces of the movable contact electrode 1 and the fixed contact electrode 2.

図5は、第1の実施形態の電流制御電極付遮断器における電流制御電極3のトリガ電圧波形と、雷インパルス電圧発生器からの印加電圧波形との関係を示した図である。また、図6は、第1の実施形態の電流制御電極付遮断器における電流制御電極3およびパルス発生器4の電気的特性を検証した実証試験用の回路構成図である。 FIG. 5 is a diagram showing the relationship between the trigger voltage waveform of the current control electrode 3 in the circuit breaker with the current control electrode of the first embodiment and the voltage waveform applied from the lightning impulse voltage generator. Further, FIG. 6 is a circuit configuration diagram for a verification test in which the electrical characteristics of the current control electrode 3 and the pulse generator 4 in the circuit breaker with the current control electrode of the first embodiment are verified.

この実証試験結果の特性図は、雷インパルス電圧発生器17から可動接触子電極1に電源電圧として雷インパルス電圧(576kV)を印加したときに可動接触子電極1に印加された印加電圧波形(CH1)と、当該印加電圧によってパルス発生器4からトリガーパルス(減衰振動電圧)が発生したことを示すトリガパルス波形(CH2)とを示したものであって、当該トリガパルスの発生から極短時間(当該試験用回路においては0.2μs)で絶縁破壊が生じたことを示すものである。 The characteristic diagram of the verification test result shows the applied voltage waveform (CH1) applied to the movable contactor electrode 1 when the lightning impulse voltage (576 kV) is applied to the movable contactor electrode 1 as the power supply voltage from the lightning impulse voltage generator 17. ) And a trigger pulse waveform (CH2) indicating that a trigger pulse (decayed vibration voltage) was generated from the pulse generator 4 by the applied voltage, and a very short time (5) from the generation of the trigger pulse. In the test circuit, it indicates that dielectric breakdown occurred at 0.2 μs).

なお、実験条件は、可動接触子電極1と固定接触子電極2との電極間距離:0.6[m],可動接触子電極1と電流制御電極3との電極間距離:0.6[m]。また、電流制御電極3に相当する電極としては棒状の電極13を用いた。 The experimental conditions were the distance between the movable contact electrode 1 and the fixed contact electrode 2: 0.6 [m], and the distance between the movable contact electrode 1 and the current control electrode 3: 0.6 [. m]. Further, as the electrode corresponding to the current control electrode 3, a rod-shaped electrode 13 was used.

この図5に示す特性図から、雷インパルス電圧を印加してから、規約原点から約2.4μsでパルス発生器4からトリガパルスが電流制御電極3に向けて出力したとき、その近傍で電子、イオン、放電劣化生成物が生成され、また、規約原点から約2.6μs後に絶縁破壊が生じたことがわかる。すなわち、パルス発生器4からトリガパルスが電流制御電極3に向けて出力した後、約0.2μsで絶縁破壊が起こっていることがわかる。すなわち、電流制御電極3がアーク放電電流を制御したことを実証したものである。なお、時間軸を主としている。 From the characteristic diagram shown in FIG. 5, when a lightning impulse voltage is applied and a trigger pulse is output from the pulse generator 4 toward the current control electrode 3 at about 2.4 μs from the specified origin, electrons are generated in the vicinity thereof. It can be seen that ions and discharge deterioration products were generated, and that dielectric breakdown occurred about 2.6 μs after the origin of the specification. That is, it can be seen that dielectric breakdown occurs in about 0.2 μs after the trigger pulse is output from the pulse generator 4 toward the current control electrode 3. That is, it is demonstrated that the current control electrode 3 controlled the arc discharge current. The time axis is the main.

<実施形態の効果>
上述したように、本実施形態の電流制御電極付遮断器100によると、可動接触子電極1および固定接触子電極2並びに電流制御電極3を備え、直流電気回路網に過電流が生じた際、可動接触子電極1を固定接触子電極3から離間させることで枝路電流を遮断する遮断器において、可動接触子電極1と固定接触子電極2との間に生じるアーク放電電流の一部を電流制御電極3で分流し、可動接触子電極1および固定接触子電極2に流入するアーク電流を抑制、低減または消滅させることで、可動接触子電極1もしくは固定接触子電極2またはその双方の電極の焼損劣化を軽減し、稼働寿命時間を延ばすことができる。
<Effect of embodiment>
As described above, according to the breaker 100 with a current control electrode of the present embodiment, the movable contact electrode 1, the fixed contact electrode 2, and the current control electrode 3 are provided, and when an overcurrent occurs in the DC electric network, In a breaker that cuts off branch path current by separating the movable contact electrode 1 from the fixed contact electrode 3, a part of the arc discharge current generated between the movable contact electrode 1 and the fixed contact electrode 2 is current. By suppressing, reducing or extinguishing the arc current flowing into the movable contact electrode 1 and the fixed contact electrode 2 by dividing the flow at the control electrode 3, the movable contact electrode 1 and / or the fixed contact electrode 2 of both electrodes are used. Burnout deterioration can be reduced and the operating life time can be extended.

なお、本実施形態においては、電流制御電極付遮断器100を直流電気回路網に適用する例を示したが、本願発明の概念は、これに限らず交流電気回路網にも適用することができる。 In the present embodiment, an example of applying the circuit breaker 100 with a current control electrode to a DC electric circuit network has been shown, but the concept of the present invention is not limited to this and can be applied to an AC electric circuit network. ..

次に、本実施形態の第2の実施形態について説明する。
図7は、本発明の第2の実施形態の電流制御電極付遮断器において、可動接触子電極1、固定接触子電極2および電流制御電極3の位置関係を示した要部断面および平面を示した拡大図である。
Next, a second embodiment of the present embodiment will be described.
FIG. 7 shows a cross section and a plane of a main part showing the positional relationship between the movable contact electrode 1, the fixed contact electrode 2 and the current control electrode 3 in the circuit breaker with the current control electrode of the second embodiment of the present invention. It is an enlarged view.

図7に示すように、第2の実施形態における電流制御電極3は、開路時、主アーク放電路を電流制御電極3に容易に導くために、すなわち、固定接触子電極2と可動接触子電極1との間の電界E12(電位傾度)よりも大きくするために、アーク放電路に面した電流制御電極3の内周表面に導電性突起3aを設け、当該突起3a部分の電界強度E1cを増大させることを特徴とする。 As shown in FIG. 7, the current control electrode 3 in the second embodiment is used to easily guide the main arc discharge path to the current control electrode 3 when the circuit is open, that is, the fixed contact electrode 2 and the movable contact electrode 2. In order to make it larger than the electric field E12 (potential gradient) between 1 and 1, a conductive protrusion 3a is provided on the inner peripheral surface of the current control electrode 3 facing the arc discharge path, and the electric field strength E1c of the protrusion 3a portion is increased. It is characterized by letting it.

なお、電界E12と電界E1cとの関係は
E1c≫E12
である。
The relationship between the electric field E12 and the electric field E1c is E1c >> E12.
Is.

ここで、上述した突起3aの部分の電位傾度はさらに高い。本実施形態においてはこの突起3aの存在により、電流制御電極3に印加される電圧によってその部分の近傍が電離し、アークを容易に電流制御電極3に誘導することができるようになっている。 Here, the potential gradient of the portion of the protrusion 3a described above is even higher. In the present embodiment, due to the presence of the protrusion 3a, the vicinity of the portion is ionized by the voltage applied to the current control electrode 3, and the arc can be easily guided to the current control electrode 3.

上述した実施形態においては、上記電流制御電極3はパルス発生器4からのトリガパルス(減衰振動電圧)の印加によりアーク放電電流を制御したが、これに限らず、可動接触子電極1と固定接触子電極2との開放時に同期し、また、過電流検出にも同期した独立した電源からの所定電圧の印加により放電させる(初期電子、イオン、放電劣化生成物を発生させる)構成を採ってもよい。 In the above-described embodiment, the current control electrode 3 controls the arc discharge current by applying a trigger pulse (damped vibration voltage) from the pulse generator 4, but the present invention is not limited to this, and the current control electrode 3 is in fixed contact with the movable contact electrode 1. Even if a configuration is adopted in which a predetermined voltage is applied from an independent power source that synchronizes with the opening of the child electrode 2 and also synchronizes with overcurrent detection to discharge (generate initial electrons, ions, and discharge deterioration products). Good.

さらに、電流制御電極3は、過電流検出と可動接触子電極1と固定接触子電極2との開放と同期して、外部から紫外線またはレーザなどの電磁波を照射させる構成を採ってもよい。 Further, the current control electrode 3 may be configured to irradiate an electromagnetic wave such as an ultraviolet ray or a laser from the outside in synchronization with the detection of overcurrent and the opening of the movable contact electrode 1 and the fixed contact electrode 2.

本発明による電流制御電極付遮断器を電流遮断に用いることによって、短絡事故、地絡並ぶに絶縁劣化時に起こる過電流(含;パルス性)を容易に遮断することが可能であるため、電気機器の絶縁劣化の軽減並びに作業上の安全性が極めて向上できる。 By using the circuit breaker with a current control electrode according to the present invention for current cutoff, it is possible to easily cut off the overcurrent (including pulse property) that occurs at the time of short-circuit accident, ground fault, and insulation deterioration. Insulation deterioration can be reduced and work safety can be extremely improved.

このため、太陽光発電のように持続的に直流発電している発電プラントに適用すると、何らかの原因でモジュールが短絡しまたは劣化によって過電流が流れた場合、個々のモジュールを発電プラントから瞬時に開放(開路)することができるので、発電プラントの全発電効率の低下を最小限にすることを可能とする効果を奏する。 Therefore, when applied to a power plant that continuously generates DC power such as photovoltaic power generation, if the modules are short-circuited for some reason or an overcurrent flows due to deterioration, each module is instantly released from the power plant. Since it can be (opened), it has the effect of minimizing the decrease in the overall power generation efficiency of the power plant.

さらに、その発電プラントの維持管理において、発電ストリングスまたは発電区画(ストリングを直列もしくは並列または双方とした構成)ごとに開放(開路)すること、すなわち故障区間を分離開放が可能であるため、全発電プラントを停止することなく、残りの発電ストリングで継続して電力を供給できる利点がある。 Furthermore, in the maintenance of the power plant, it is possible to open (open) each power generation string or power generation section (configuration in which strings are connected in series, in parallel, or both), that is, the faulty section can be separated and opened, so that all power generation can be performed. It has the advantage of being able to continue to supply power with the remaining power generation strings without shutting down the plant.

そのため、故障区間のストリングのみを交換または修理を安全に保全作業をすることができる。日照時、すなわち太陽光発電プラントの稼働中において、安全に維持管理するとこができる。 Therefore, only the string in the faulty section can be replaced or repaired safely for maintenance work. It can be safely maintained and managed in the sunshine, that is, during the operation of the photovoltaic power plant.

上述したように、電流制御電極付遮断器の電流制御電極に、遮断器の開閉の操作時に同期している電源から正極性もしくは負極性、または双方性の電圧が架電(印加)される過程で、同期している電源の操作を通信手段(無線遠隔操作)により接続、非接続の動作が可能であるため、遠隔操作で太陽光発電プラントを集中して維持管理ができる。 As described above, the process of applying (applying) positive, negative, or bilateral voltage to the current control electrode of the circuit breaker with current control electrode from the power supply synchronized with the opening and closing operation of the circuit breaker. Since the synchronized power supply operations can be connected and disconnected by communication means (wireless remote operation), the solar power plant can be centrally maintained and managed by remote operation.

なお、上記において、発電プラントについて記しているが、発電プラントに限らず、各大小需要家(一般家庭も含む)にもこれらの方法は適用が可能であるため、電力系統との効率的連携運用並びに維持管理が容易となる。 In the above, the power plant is described, but since these methods can be applied not only to the power plant but also to each large and small consumer (including general households), efficient cooperation operation with the power system is possible. In addition, maintenance becomes easy.

さらに、電気工学分野、通信工学分野、制御工学、ロボット工学、鉄道工学(含、磁気浮上車:リニアモータカ−)、自動車工学等の直流電源が用いられている総ての分野の電流遮断に適用できる。 Furthermore, it can be applied to current interruption in all fields where DC power supplies are used, such as electrical engineering, communication engineering, control engineering, robot engineering, railway engineering (including magnetic levitation vehicle: linear motor car), and automobile engineering. ..

具体的に、電気鉄道の動力車の直流電流遮断等、電車鉄道用変電所における直流幹線の遮断等、自動車の電源の電流遮断等、ロボットの電源の電流遮断、圧延工場などの直流電動機の電源遮断などに適用可能である。 Specifically, DC current cutoff for electric railway motor vehicles, DC trunk line cutoff at substations for train railways, current cutoff for automobile power supplies, current cutoff for robot power supplies, power supply for DC motors in rolling mills, etc. It can be applied to blocking.

上記から分るように、直流電源を使用している総ての電気情報通信工学分野において、電流を遮断(開路)する用途に好適である。なお、パルス的電源(方形波)において、駆動する電気機器(電動機、DUTY Factor(パルス幅をその周期で除したもの)の比率が大きいもの)であれば適用が可能である。 As can be seen from the above, it is suitable for applications that cut off (open) the current in all fields of electrical information and communication engineering that use a DC power supply. It should be noted that the pulse power supply (square wave) can be applied to any electric device (electric motor, DUTY Factor (pulse width divided by the period) having a large ratio) to be driven.

1:可動接触子電極
2:固定接触子電極
3:電流制御電極
4:パルス発生器(減衰振動電圧発生器)
5:負荷
6:電流電圧変換器(過電流検出器)
7:直流電源
8:可動接触子電極駆動部
L:可動接触子電極と固定接触子電極との電極間距離
L1:電流制御電極の高さ
r1:可動接触子電極の半径
r2:電流制御電極の内径
1: Movable contact electrode 2: Fixed contact electrode 3: Current control electrode 4: Pulse generator (damped vibration voltage generator)
5: Load 6: Current-voltage converter (overcurrent detector)
7: DC power supply 8: Movable contact electrode drive unit L: Distance between movable contact electrode and fixed contact electrode L1: Height of current control electrode r1: Radius of movable contact electrode r2: Current control electrode Inner diameter

Claims (1)

直流電気回路網において、任意の閉回路の枝路電流を遮断するために、当該枝路に直列に接続された電流制御電極付遮断器において、
前記枝路において所定の直流電源に接続された可動接触子電極と、
一端が、前記可動接触子電極と接触状態または非接触状態となるように配設された固定接触子電極と、
前記可動接触子電極と前記固定接触子電極の一端との間における想定アーク放電路と異なる空間に配設され、アーク放電電流を導くための導電性突起を有する導電性のリング形状を備えた電流制御電極と、
前記固定接触子電極の他端に直列に接続された、前記直流電気回路網上における1次側回路部と、当該直流電気回路網に生じたパルス性過電流によって所定の減衰振動電圧を発生する2次側回路部とを、有し、前記2次側回路部の一端には前記電流制御電極が接続されると共に、当該2次側回路部の他端には接地部が接続され、前記1次側回路部に生じたパルス性過電流によって前記2次側回路部に発生した前記減衰振動電圧を前記電流制御電極に印加可能としたパルス発生器と、
前記直流電気回路網において、前記パルス発生器における前記1次側回路部に直列に接続され、当該直流電気回路網に生じるパルス性過電流を検知する電流電圧変換器と、
前記電流電圧変換器が所定のパルス性過電流を検知した際に、前記可動接触子電極と前記固定接触子電極とが接触状態から非接触状態へ移行するよう当該可動接触子電極の移動を制御する可動接触子電極駆動部と、
を備え、
前記可動接触子電極駆動部は、前記電流電圧変換器が前記直流電気回路網に生じるパルス性過電流を検知した際、前記可動接触子電極を前記固定接触子電極から離間するよう移動制御し、
前記電流制御電極は、前記パルス発生器において発生した前記減衰振動電圧が印加された際、当該減衰振動電圧の極性に応じて、当該電流制御電極の近傍において前記可動接触子電極と前記固定接触子電極との離間により発生したアーク放電により生成された所定の荷電粒子を反発または吸収し、さらに、前記導電性突起を介して当該アーク放電の一部を誘導かつ分流制御し、
前記パルス発生器は、前記電流制御電極において誘導かつ分流された前記アーク放電の一部を前記接地部に向けて流出する
ことを特徴とする電流制御電極付遮断器。
In a DC electric circuit, in a circuit breaker with a current control electrode connected in series with the branch path in order to cut off the branch path current of an arbitrary closed circuit.
A movable contact electrode connected to a predetermined DC power source in the branch path,
A fixed contact electrode arranged so that one end is in contact with or not in contact with the movable contact electrode.
Disposed on the assumption arc discharge path different from the space definitive between one end of the fixed contact electrode and the movable contact electrode, comprising a conductive ring-shaped having a conductive protrusion for guiding the arc discharge current With the current control electrode,
A predetermined attenuated vibration voltage is generated by a pulsed overcurrent generated in the DC electric circuit network and the primary side circuit portion on the DC electric circuit network connected in series with the other end of the fixed contact electrode. It has a secondary circuit section, and the current control electrode is connected to one end of the secondary circuit section, and a grounding section is connected to the other end of the secondary circuit section. A pulse generator capable of applying the attenuated vibration voltage generated in the secondary circuit section due to the pulsed overcurrent generated in the secondary circuit section to the current control electrode.
In the DC electric network, a current-voltage converter connected in series to the primary circuit portion of the pulse generator and detecting a pulsed overcurrent generated in the DC electric network, and a current-voltage converter.
When the current-voltage converter detects a predetermined pulsed overcurrent, the movement of the movable contact electrode is controlled so that the movable contact electrode and the fixed contact electrode shift from the contact state to the non-contact state. Movable contact electrode drive unit and
With
When the current-voltage converter detects a pulsed overcurrent generated in the DC electric network, the movable contact electrode drive unit moves and controls the movable contact electrode so as to be separated from the fixed contact electrode.
When the attenuated vibration voltage generated in the pulse generator is applied, the current control electrode has the movable contact electrode and the fixed contactor in the vicinity of the current control electrode according to the polarity of the attenuated vibration voltage. A predetermined charged particle generated by the arc discharge generated by the separation from the electrode is repelled or absorbed, and a part of the arc discharge is induced and divided and controlled through the conductive protrusion.
The pulse generator is a circuit breaker with a current control electrode, characterized in that a part of the arc discharge induced and diverted at the current control electrode flows out toward the grounding portion.
JP2018160809A 2018-08-29 2018-08-29 Circuit breaker with current control electrode Active JP6859989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018160809A JP6859989B2 (en) 2018-08-29 2018-08-29 Circuit breaker with current control electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018160809A JP6859989B2 (en) 2018-08-29 2018-08-29 Circuit breaker with current control electrode

Publications (2)

Publication Number Publication Date
JP2020035629A JP2020035629A (en) 2020-03-05
JP6859989B2 true JP6859989B2 (en) 2021-04-14

Family

ID=69668432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018160809A Active JP6859989B2 (en) 2018-08-29 2018-08-29 Circuit breaker with current control electrode

Country Status (1)

Country Link
JP (1) JP6859989B2 (en)

Also Published As

Publication number Publication date
JP2020035629A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US9691560B2 (en) Single- or multi-pole switching device, in particular for DC applications
EP2469552B1 (en) Method, circuit breaker and switching unit for switching off high-voltage DC currents
US10403449B2 (en) Direct-current circuit breaker
KR102021863B1 (en) Direct Current Circuit Breaker and Method Using The Same
US9478974B2 (en) DC voltage circuit breaker
WO2016047209A1 (en) Direct current circuit breaker
EP2669921A1 (en) Circuit breaker apparatus
KR101766229B1 (en) Apparatus and method for interrupting high voltage direct current using gap switch
JP2015506532A (en) Apparatus and method for opening and closing an electrical load circuit
CN107332222B (en) Direct current switch arc extinguishing device suitable for high power
EP2226914B1 (en) Systems and methods for protecting a series capacitor bank
JP2017013547A (en) Ground fault protection device and ground fault protection system
JP2022515499A (en) Current breaker and control method for high voltage direct current with capacitive buffer circuit
KR101841859B1 (en) A circuit breaker unit with electromagnetic drive
CN107533926B (en) By-pass switch provides the method and power system of conductive path
JP6859989B2 (en) Circuit breaker with current control electrode
Koepf et al. Breaking performance of protection devices for automotive dc powertrains with a voltage of 450 V
CN103299389B (en) A kind of method of electric arc extinguished by impulsive discharge in low pressure or high-tension switch gear
CN101587787A (en) Isolating switch
JP2006260925A (en) Direct current high speed vacuum circuit breaker
JP2016103427A (en) DC current cutoff device
KR101698943B1 (en) Bidirectional driving device
CN220628881U (en) Quick current limiting device
CN213906300U (en) Head wave rapid current limiting device
JP2014516195A (en) Power switching device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210309

R150 Certificate of patent or registration of utility model

Ref document number: 6859989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250