JP6857812B2 - Method for manufacturing electrolyte membrane-electrode-frame joint - Google Patents

Method for manufacturing electrolyte membrane-electrode-frame joint Download PDF

Info

Publication number
JP6857812B2
JP6857812B2 JP2018009861A JP2018009861A JP6857812B2 JP 6857812 B2 JP6857812 B2 JP 6857812B2 JP 2018009861 A JP2018009861 A JP 2018009861A JP 2018009861 A JP2018009861 A JP 2018009861A JP 6857812 B2 JP6857812 B2 JP 6857812B2
Authority
JP
Japan
Prior art keywords
frame
electrolyte membrane
electrode
electrode assembly
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018009861A
Other languages
Japanese (ja)
Other versions
JP2019129064A (en
Inventor
陽太 金子
陽太 金子
光生 吉村
光生 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018009861A priority Critical patent/JP6857812B2/en
Publication of JP2019129064A publication Critical patent/JP2019129064A/en
Application granted granted Critical
Publication of JP6857812B2 publication Critical patent/JP6857812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池に用いられる、電解質膜の両主面に電極が配置された電解質膜−電極接合体の外周部を、枠で挟持した電解質膜−電極−枠接合体の製造方法に関するものである。 The present invention is an electrolyte membrane-electrode-frame assembly in which the outer peripheral portion of the electrolyte membrane-electrode assembly in which electrodes are arranged on both main surfaces of the electrolyte membrane used in a polymer electrolyte fuel cell is sandwiched between frames. It relates to a manufacturing method.

近年、クリーンで効率的なエネルギー源として燃料電池が期待されている。固体高分子型の燃料電池は、固体高分子からなる電解質膜の両主面に電極が配置されて発電反応を起こす電解質膜−電極接合体をセパレータで挟んだものを、一つの単セルモジュールとして必要な個数のモジュールを積み上げ構成されている。 In recent years, fuel cells are expected as a clean and efficient energy source. A solid polymer fuel cell is a single cell module in which electrodes are arranged on both main surfaces of an electrolyte membrane made of a solid polymer and an electrolyte membrane-electrode assembly that causes a power generation reaction is sandwiched between separators. It is configured by stacking the required number of modules.

電解質膜は、通常、樹脂製の枠に固定されている。この枠により、セパレータで挟み組み立てる際のハンドリング性向上や、非発電部の電解質材料の使用量を削減することができる。 The electrolyte membrane is usually fixed to a resin frame. With this frame, it is possible to improve the handleability when sandwiching and assembling with a separator, and to reduce the amount of electrolyte material used in the non-power generation part.

燃料電池を動作させるためには、電解質膜の両面に形成した電極の一方に燃料ガス(水素ガス)を供給し、他方に酸化剤ガス(酸素を含んだ空気)を供給しなければならず、一方のガスが他方に流入すると、正常な電気化学反応が行われず、充分な発電特性を得ることができない。そのため、電解質膜の枠との固定部において、ガスシール性を有していなければならない。 In order to operate the fuel cell, it is necessary to supply fuel gas (hydrogen gas) to one of the electrodes formed on both sides of the electrolyte membrane and supply oxidant gas (air containing oxygen) to the other. When one gas flows into the other, a normal electrochemical reaction does not occur and sufficient power generation characteristics cannot be obtained. Therefore, the fixed portion of the electrolyte membrane with the frame must have a gas-sealing property.

従来の電解質膜の枠への固定方法としては、超音波を用いて樹脂製の枠に電解質膜を溶着しているものがある(例えば、特許文献1参照)。 As a conventional method for fixing the electrolyte membrane to the frame, there is a method in which the electrolyte membrane is welded to the resin frame using ultrasonic waves (see, for example, Patent Document 1).

以下、特許文献1に開示された従来の燃料電池の電解質膜−電極接合体について、説明する。 Hereinafter, the electrolyte membrane-electrode assembly of the conventional fuel cell disclosed in Patent Document 1 will be described.

図5は、特許文献1に開示された従来の燃料電池の電解質膜−電極−枠接合体をセパレータで挟み込んだ、単セルモジュールの断面図である。図6は、同従来の燃料電池の電解質膜−電極−枠接合体の平面図である。 FIG. 5 is a cross-sectional view of a single cell module in which an electrolyte membrane-electrode-frame joint of a conventional fuel cell disclosed in Patent Document 1 is sandwiched between separators. FIG. 6 is a plan view of the electrolyte membrane-electrode-frame joint of the conventional fuel cell.

図5に示すように、従来の燃料電池の電解質膜−電極−枠接合体11は、両主面の略中央部に矩形の触媒層3が配置された矩形の電解質膜2の周縁部を、第1の枠51と第2の枠52とで挟み込んだものである。 As shown in FIG. 5, the electrolyte membrane-electrode-frame joint 11 of a conventional fuel cell has a peripheral portion of a rectangular electrolyte membrane 2 in which a rectangular catalyst layer 3 is arranged substantially at the center of both main surfaces. It is sandwiched between the first frame 51 and the second frame 52.

第1の枠51は、内径が触媒層3の外径よりも小さくて外径が電解質膜−電極−枠接合体11の外径よりも大きい額縁形状の樹脂製であり、第2の枠52は、内径が触媒層3の外径よりも小さくて外径が電解質膜−電極−枠接合体11の外径よりも大きく且つ第1の枠51の外径よりも小さい額縁形状の樹脂製である。 The first frame 51 is made of a frame-shaped resin having an inner diameter smaller than the outer diameter of the catalyst layer 3 and an outer diameter larger than the outer diameter of the electrolyte membrane-electrode-frame joint 11, and the second frame 52. Is made of a frame-shaped resin whose inner diameter is smaller than the outer diameter of the catalyst layer 3 and whose outer diameter is larger than the outer diameter of the electrolyte membrane-electrode-frame joint 11 and smaller than the outer diameter of the first frame 51. is there.

また、第1の枠51における第2の枠52とで電解質膜2を挟む面は、第1の枠51における第2の枠52よりも外周側に位置する部分よりも厚みが、第2の枠52の厚みと電解質膜2の厚みとの合計の厚みだけ薄くなっている。 Further, the surface of the first frame 51 sandwiching the electrolyte membrane 2 with the second frame 52 is thicker than the portion of the first frame 51 located on the outer peripheral side of the second frame 52. The thickness of the frame 52 and the thickness of the electrolyte membrane 2 are reduced by the total thickness.

そして、電解質膜2を介して、第1の枠51と第2の枠52とを、第2の枠52側からの超音波溶着法による溶着部8で接合した後に、第1の枠51と第2の枠52との境界部及び溶着部8を、第2の枠52の外側から、第3の枠53で覆っている。 Then, after joining the first frame 51 and the second frame 52 with the welding portion 8 by the ultrasonic welding method from the second frame 52 side via the electrolyte membrane 2, the first frame 51 and the first frame 51 are joined. The boundary portion with the second frame 52 and the welded portion 8 are covered with a third frame 53 from the outside of the second frame 52.

なお、電解質膜2を介して、第1の枠51と第2の枠52とを、第2の枠52側からの超音波溶着法による溶着部8で接合した時に、第1の枠51における第3の枠53で覆われる面と、第2の枠52における第3の枠53で覆われる面とが、略同一面上に位置するように、第1の枠51と第2の枠52とを構成している。 When the first frame 51 and the second frame 52 are joined by the welding portion 8 by the ultrasonic welding method from the second frame 52 side via the electrolyte membrane 2, the first frame 51 is formed. The first frame 51 and the second frame 52 so that the surface covered by the third frame 53 and the surface covered by the third frame 53 in the second frame 52 are located on substantially the same surface. And constitutes.

電解質膜−電極−枠接合体11の両面には、燃料ガス及び酸化剤ガスを触媒層3に均一に行き渡らせるための第1の枠51と第2の枠52の開口部(の内径)よりも大きい矩形のガス拡散層4が、第1の枠51と第2の枠52の開口部から露出する触媒層3を外側から覆い隠すように配置されている。 From the openings (inner diameters) of the first frame 51 and the second frame 52 for uniformly distributing the fuel gas and the oxidant gas to the catalyst layer 3 on both sides of the electrolyte membrane-electrode-frame joint 11. A large rectangular gas diffusion layer 4 is arranged so as to cover the catalyst layer 3 exposed from the openings of the first frame 51 and the second frame 52 from the outside.

そして、電解質膜−電極−枠接合体11と対向する面に、燃料ガスまたは酸化剤ガスが流れガス拡散層4と対向する溝状のガス流路61と、ガス拡散層4を囲み第1の枠51または第2の枠52と当接する環状のシール部材7とを有する一対のセパレータ6で、電解質膜−電極−枠接合体11を挟み込むことで、単セルモジュール1を構成している。 Then, the fuel gas or the oxidant gas flows on the surface facing the electrolyte membrane-electrode-frame joint 11, and the groove-shaped gas flow path 61 facing the gas diffusion layer 4 and the gas diffusion layer 4 are surrounded by the first. The single cell module 1 is formed by sandwiching the electrolyte membrane-electrode-frame joint 11 with a pair of separators 6 having an annular sealing member 7 that comes into contact with the frame 51 or the second frame 52.

ガス拡散層4の周縁部は、第1の枠51及び第2の枠52の開口部に乗り上げ、セパレータ6と電解質膜−電極−枠接合体11との空間を埋めている。 The peripheral edge of the gas diffusion layer 4 rides on the openings of the first frame 51 and the second frame 52, and fills the space between the separator 6 and the electrolyte membrane-electrode-frame joint 11.

第1の枠51及び第2の枠52とセパレータ6との間に空間(隙間)がある場合には、燃料ガス及び酸化剤ガスが、ガス流路61を通過せずに、第1の枠51及び第2の枠52とセパレータ6との間の空間を通過してしまい、触媒層3を有して発電に寄与する発電領域12に燃料ガス及び酸化剤ガスが行き渡らず、充分な発電性能を得ることができない。 When there is a space (gap) between the first frame 51 and the second frame 52 and the separator 6, the fuel gas and the oxidant gas do not pass through the gas flow path 61, and the first frame The fuel gas and the oxidant gas do not spread to the power generation region 12 which has the catalyst layer 3 and contributes to power generation after passing through the space between the 51 and the second frame 52 and the separator 6, and has sufficient power generation performance. Cannot be obtained.

第1の枠51及び第2の枠52とセパレータ6との間に、隙間ができないようにガス拡散層4を充填することで、燃料ガス及び酸化剤ガスが、ガス流路61を通過することになり、所定の発電性能を得ることができる。 By filling the gas diffusion layer 4 so that no gap is formed between the first frame 51 and the second frame 52 and the separator 6, the fuel gas and the oxidant gas pass through the gas flow path 61. Therefore, a predetermined power generation performance can be obtained.

また、ガス拡散層4における、第1の枠51及び第2の枠52とセパレータ6との間に位置する領域の厚みを、第1の枠51及び第2の枠52とセパレータ6の間隔より厚くしておくことで、電解質膜−電極−枠接合体11をセパレータ6で挟持する際に、ガス拡散層4が圧縮されて、第1の枠51及び第2の枠52を電解質膜2に密着させることができる。 Further, the thickness of the region of the gas diffusion layer 4 located between the first frame 51 and the second frame 52 and the separator 6 is adjusted from the distance between the first frame 51 and the second frame 52 and the separator 6. By making the thickness thicker, the gas diffusion layer 4 is compressed when the electrolyte membrane-electrode-frame junction 11 is sandwiched between the separators 6, and the first frame 51 and the second frame 52 are formed into the electrolyte membrane 2. Can be brought into close contact.

また、第1の枠51及び第2の枠52を電解質膜2に密着させることで、電解質膜2と第1の枠51及び電解質膜2と第2の枠52の間に、燃料ガス及び酸化剤ガスが侵入する可能性を低減でき、ガスバリア性を向上できると共に、電解質膜2が燃料ガス及び酸化剤ガスにより劣化することが抑制でき、燃料電池の性能を長期に確保することができる。 Further, by bringing the first frame 51 and the second frame 52 into close contact with the electrolyte membrane 2, fuel gas and oxidation are formed between the electrolyte membrane 2 and the first frame 51 and between the electrolyte membrane 2 and the second frame 52. The possibility of the agent gas invading can be reduced, the gas barrier property can be improved, the deterioration of the electrolyte membrane 2 by the fuel gas and the oxidant gas can be suppressed, and the performance of the fuel cell can be ensured for a long period of time.

触媒層3は、電解質膜2の両主面に周縁部を除き均一に形成されている。触媒層3の周縁部には、第1の枠51及び第2の枠52の開口部の縁が覆い被さっている。こうすることで、電解質膜2の触媒層3が形成されていない領域に、酸化剤ガスが暴露することを低減することができ、酸化剤ガスによる電解質膜2の劣化を抑制することが可能となる。 The catalyst layer 3 is uniformly formed on both main surfaces of the electrolyte membrane 2 except for the peripheral portion. The peripheral edge of the catalyst layer 3 is covered with the edges of the openings of the first frame 51 and the second frame 52. By doing so, it is possible to reduce the exposure of the oxidant gas to the region where the catalyst layer 3 of the electrolyte membrane 2 is not formed, and it is possible to suppress the deterioration of the electrolyte membrane 2 due to the oxidant gas. Become.

単セルモジュール1を形成した際に、セパレータ6に設けられたシール部材7は、電解質膜−電極−枠接合体11に形成された溶着部8よりも発電領域側(内周側)に配置され且つ触媒層3の領域よりも外周側に配置されている。 When the single cell module 1 is formed, the seal member 7 provided on the separator 6 is arranged on the power generation region side (inner circumference side) of the welded portion 8 formed on the electrolyte membrane-electrode-frame joint 11. Moreover, it is arranged on the outer peripheral side of the region of the catalyst layer 3.

単セルモジュール1とした際に、セパレータ6に設けられたシール部材7は、第1の枠51及び第2の枠52と当接し、圧縮される。圧縮によりシール部材7の反力が発生し、
シール部材7と第1の枠51及び第2の枠52、第1の枠51及び第2の枠52と電解質膜2の間の密着度が向上し、ガスバリア性を確保することができる。
When the single cell module 1 is used, the seal member 7 provided on the separator 6 comes into contact with the first frame 51 and the second frame 52 and is compressed. The reaction force of the seal member 7 is generated by the compression,
The degree of adhesion between the seal member 7, the first frame 51 and the second frame 52, the first frame 51 and the second frame 52, and the electrolyte membrane 2 is improved, and gas barrier properties can be ensured.

触媒層3は、燃料ガス及び酸化剤ガスが拡散し、発電反応を起こすために、多孔質構造となっている。そのため、第1の枠51及び第2の枠52におけるシール部材7と当接する部分であるシール部材当接触部71と、触媒層3とが重なった場合に、シール部材7の反力だけでは触媒層3の多孔質部を遮蔽することができず、ガスリークの原因となる。 The catalyst layer 3 has a porous structure in order for the fuel gas and the oxidant gas to diffuse and cause a power generation reaction. Therefore, when the contact portion 71 of the seal member, which is a portion of the first frame 51 and the second frame 52 that comes into contact with the seal member 7, and the catalyst layer 3 overlap, the reaction force of the seal member 7 alone is enough to catalyze the catalyst. The porous portion of the layer 3 cannot be shielded, which causes a gas leak.

第1の枠51と当接するシール部材7及び第2の枠52と当接するシール部材7は、電解質膜−電極−枠接合体11を挟んで、向かい合う位置に配置し、両極に設けられたシール部材7は共に、触媒層3と重ならない配置になっているが、少なくとも一方のシール部材7が触媒層3にかかっていなければ、触媒層3にかからないシール部材7側で充分なガスバリア性を確保できる。 The seal member 7 that comes into contact with the first frame 51 and the seal member 7 that comes into contact with the second frame 52 are arranged at positions facing each other with the electrolyte membrane-electrode-frame joint 11 interposed therebetween, and seals provided on both poles. Both members 7 are arranged so as not to overlap with the catalyst layer 3, but if at least one of the sealing members 7 does not cover the catalyst layer 3, sufficient gas barrier properties are ensured on the sealing member 7 side that does not cover the catalyst layer 3. it can.

両側のシール部材7を互いに向かい合う位置に配置した場合は、電解質膜−電極−枠接合体11にかかるシール部材7の反力が対向し、電解質膜−電極−枠接合体11に応力を与えることがなく、両極においてシール部材7が触媒層3にかからなければ、よりガスバリア性を確保できてよい。 When the sealing members 7 on both sides are arranged at positions facing each other, the reaction forces of the sealing members 7 applied to the electrolyte membrane-electrode-frame joint 11 face each other, and stress is applied to the electrolyte membrane-electrode-frame joint 11. If the sealing member 7 does not cover the catalyst layer 3 at both electrodes, the gas barrier property may be more ensured.

溶着部8よりも発電領域12側(電解質膜−電極−枠接合体11の内周側)にシール部材7と当接するシール部材当接触部71を配置することで、溶着部8を形成する際の、超音波溶着時の熱及び振動による電解質膜2の変形部が燃料ガス、酸化剤ガスや水分に晒されることを抑制することができ、ガスリーク低減することができ、燃料電池の発電性能を維持することができる。 When forming the welded portion 8 by arranging the seal member contact portion 71 that comes into contact with the seal member 7 on the power generation region 12 side (the inner peripheral side of the electrolyte film-electrode-frame joint 11) with respect to the welded portion 8. It is possible to prevent the deformed portion of the electrolyte membrane 2 from being exposed to fuel gas, oxidant gas and moisture due to heat and vibration during ultrasonic welding, reduce gas leakage, and improve the power generation performance of the fuel cell. Can be maintained.

また、水分を吸収することによる膨潤収縮を低減することができ、機械的応力の集中を防ぎ、電解質膜構造が壊れることを抑止することができ、燃料電池性能を長期に維持することができる。 In addition, it is possible to reduce swelling and shrinkage due to absorption of water, prevent concentration of mechanical stress, prevent breakage of the electrolyte membrane structure, and maintain fuel cell performance for a long period of time.

図6に示すように、電解質膜−電極−枠接合体11は、矩形の電解質膜2の四辺を囲うように、第1の枠51、第2の枠52、第3の枠53を備えており、電解質膜2の電解質膜端部21の近傍に、所定の溶着部間隔82で溶着部8が設けられている。 As shown in FIG. 6, the electrolyte membrane-electrode-frame joint 11 includes a first frame 51, a second frame 52, and a third frame 53 so as to surround the four sides of the rectangular electrolyte membrane 2. A welded portion 8 is provided in the vicinity of the electrolyte membrane end portion 21 of the electrolyte membrane 2 at a predetermined welded portion interval 82.

第1の枠51には、中心部に発電領域12となる開口が設けられている。第1の枠51と第2の枠52に設けた開口は同じ大きさであるので、発電領域12に用いることのできる領域が大きくなり、電解質膜2の利用率がよい。 The first frame 51 is provided with an opening that serves as a power generation region 12 in the center. Since the openings provided in the first frame 51 and the second frame 52 have the same size, the area that can be used for the power generation region 12 becomes large, and the utilization rate of the electrolyte membrane 2 is good.

電解質膜2は、発電領域12よりも大きく、且つ第1の枠51と第2の枠52で挟持した際に、第1の枠51及び第2の枠52の外周側にはみ出さない大きさである。 The electrolyte membrane 2 is larger than the power generation region 12 and has a size that does not protrude to the outer peripheral side of the first frame 51 and the second frame 52 when sandwiched between the first frame 51 and the second frame 52. Is.

第1の枠51ないし第3の枠53は、燃料電池の発電反応に必要な燃料ガスもしくは酸化剤ガスを供給する貫通孔であるマニホールド9を具備している。 The first frame 51 to the third frame 53 include a manifold 9 which is a through hole for supplying a fuel gas or an oxidant gas necessary for a power generation reaction of a fuel cell.

シール部材当接触部71が、発電領域12の全領域及びマニホールド9を囲うように、セパレータ6における電解質膜−電極−枠接合体11と対向する面にシール部材7を配置している。 Seal member The seal member 7 is arranged on the surface of the separator 6 facing the electrolyte membrane-electrode-frame joint 11 so that the contact portion 71 surrounds the entire region of the power generation region 12 and the manifold 9.

電解質膜−電極−枠接合体11は、電解質膜2を介しての第1の枠51と第2の枠52の溶着部8の形成を超音波溶着により行っている。第2の枠52にも、中心部に発電領域12となる開口が設けられている。 The electrolyte membrane-electrode-frame joint 11 forms the welded portion 8 of the first frame 51 and the second frame 52 via the electrolyte membrane 2 by ultrasonic welding. The second frame 52 is also provided with an opening serving as a power generation region 12 in the central portion.

超音波溶着を用いた電解質膜2を介しての第1の枠51と第2の枠52の溶着部8の形成において、第1の枠51の材料と第2の枠52の材料と電解質膜2の材料とが混在する溶着部8を形成することができる。 In the formation of the welded portion 8 of the first frame 51 and the second frame 52 via the electrolyte membrane 2 using ultrasonic welding, the material of the first frame 51, the material of the second frame 52, and the electrolyte membrane A welded portion 8 in which the materials of 2 are mixed can be formed.

第1の枠51の材料と第2の枠52の材料と電解質膜2の材料とが混在する溶着部8を形成することで、第1の枠51および第2の枠52と電解質膜2の固定性をより向上することができ、乾湿寸法変化による電解質膜2への応力の集中を避けることができ、電解質膜2の長期耐久性を向上することができる。 By forming the welded portion 8 in which the material of the first frame 51, the material of the second frame 52, and the material of the electrolyte membrane 2 are mixed, the first frame 51, the second frame 52, and the electrolyte membrane 2 are formed. Fixability can be further improved, stress concentration on the electrolyte membrane 2 due to changes in wet and dry dimensions can be avoided, and long-term durability of the electrolyte membrane 2 can be improved.

第3の枠53は、第1の枠51と第2の枠52の境界及び溶着部8の加工痕を覆っている。 The third frame 53 covers the boundary between the first frame 51 and the second frame 52 and the processing marks of the welded portion 8.

図7は、従来の燃料電池の電解質膜−電極−枠接合体11の組立工程を示す説明図である。 FIG. 7 is an explanatory diagram showing an assembly process of the electrolyte membrane-electrode-frame joint 11 of the conventional fuel cell.

まず、第1の枠51と第2の枠52を射出成形により作製し、触媒層3を両主面の略中央部に塗布により形成した電解質膜2を、第1の枠51の開口部の上に載置した後に、第2の枠52を電解質膜2の周縁部の上に配置する。 First, the first frame 51 and the second frame 52 are manufactured by injection molding, and the electrolyte membrane 2 formed by applying the catalyst layer 3 to the substantially central portions of both main surfaces is formed on the opening of the first frame 51. After being placed on top, the second frame 52 is placed on the peripheral edge of the electrolyte membrane 2.

次に、第2の枠52の外側から超音波ホーン81を所定の位置に当接させ、溶着部8を形成する。次に、第1の枠51及び第2の枠52と一体化した電解質膜2を、射出成型機の金型に配置し、第3の枠53を射出成型により形成する。 Next, the ultrasonic horn 81 is brought into contact with a predetermined position from the outside of the second frame 52 to form the welded portion 8. Next, the electrolyte membrane 2 integrated with the first frame 51 and the second frame 52 is placed in the mold of the injection molding machine, and the third frame 53 is formed by injection molding.

溶着部8は、超音波接合を用いてスポット状に形成される。スポット状の溶着部8とした場合は、電解質膜−電極−枠接合体11の組立時間が短くなり、生産性を向上することができる。 The welded portion 8 is formed in a spot shape by using ultrasonic bonding. When the spot-shaped welded portion 8 is formed, the assembly time of the electrolyte membrane-electrode-frame joint 11 is shortened, and the productivity can be improved.

第2の枠52に当接させる超音波加工工具は、先端がφ0.5mmのものを用いた。第1の枠51及び第2の枠52を超音波接合する際の、接合加工条件としては、精電舎工業社製の超音波接合機(ΣG620S)で、28.5kHzの振動数で、振幅は40μm、加圧力30Nで、0.25秒の加工時間である。 As the ultrasonic processing tool to be brought into contact with the second frame 52, a tool having a tip of φ0.5 mm was used. When ultrasonically bonding the first frame 51 and the second frame 52, the bonding processing conditions are an ultrasonic bonding machine (ΣG620S) manufactured by Seidensha Kogyo Co., Ltd., with a frequency of 28.5 kHz and an amplitude. Is 40 μm, a pressing force of 30 N, and a processing time of 0.25 seconds.

溶着部8とシール部材7の間隔は約2mmとした。溶着部8とシール部材7の間隔をより狭小にすることで、発電に寄与しない領域の電解質膜量を削減できるが、超音波接合時の熱や振動により、加工部の周囲の電解質膜2を変形させるため、電解質膜2の変形した領域がシール部材7より発電面に対して内側に来ないように配置する。 The distance between the welded portion 8 and the sealing member 7 was set to about 2 mm. By narrowing the distance between the welded portion 8 and the sealing member 7, the amount of the electrolyte membrane in the region that does not contribute to power generation can be reduced, but the electrolyte membrane 2 around the processed portion is formed by heat and vibration during ultrasonic bonding. In order to deform the electrolyte membrane 2, the deformed region of the electrolyte membrane 2 is arranged so as not to come inward from the sealing member 7 with respect to the power generation surface.

第3の枠53は、第1の枠51と第2の枠52の境界面を覆うと共に溶着部8の加工痕を覆うように形成している。このように形成した場合は、電解質膜−電極−枠接合体11の剛性がより向上し、ハンドリング性などが良くなる。 The third frame 53 is formed so as to cover the interface between the first frame 51 and the second frame 52 and also to cover the processing marks of the welded portion 8. When formed in this way, the rigidity of the electrolyte membrane-electrode-frame joint 11 is further improved, and the handleability and the like are improved.

図8は、従来の燃料電池の電解質膜−電極−枠接合体11の組立工程での電解質膜2の加熱乾燥による収縮の影響を説明するための説明図である。 FIG. 8 is an explanatory diagram for explaining the effect of shrinkage of the electrolyte membrane 2 due to heating and drying in the assembly process of the electrolyte membrane-electrode-frame joint 11 of the conventional fuel cell.

図8の(a)は、従来の燃料電池の電解質膜−電極−枠接合体11の加熱乾燥前の平面図であり、図8の(b)は、電解質膜2の両主面に触媒層3を塗布形成した電解質膜−電極接合体13の中央部を、第1の枠51および第2の枠52の開口部の内径よりも小さい外径を有する吸着治具10に、吸着により固定させて、電解質膜−電極接合体13の周縁部を第1の枠51および第2の枠52とで挟む狭持工程が済んだ状態の(a)のA−A線
断面と(a)のB−B線断面を示す概略断面図である。
FIG. 8A is a plan view of the electrolyte membrane-electrode-frame assembly 11 of a conventional fuel cell before heating and drying, and FIG. 8B is a catalyst layer on both main surfaces of the electrolyte membrane 2. The central portion of the electrolyte membrane-electrode assembly 13 formed by coating 3 is fixed to a suction jig 10 having an outer diameter smaller than the inner diameter of the openings of the first frame 51 and the second frame 52 by suction. The AA line cross section of (a) and the B of (a) in a state where the peripheral portion of the electrolyte membrane-electrode assembly 13 is sandwiched between the first frame 51 and the second frame 52. It is a schematic cross-sectional view which shows the-B line cross section.

図8の(c)は、狭持工程の後で、電解質膜2を介して、第1の枠51と第2の枠52とを、第2の枠52側からの超音波溶着法による溶着部8で接合して、固定部分が電解質膜−電極接合体13の周方向に点在するように電解質膜−電極接合体13の外周部(周縁部)を第1の枠51と第2の枠52とに固定する固定工程が済んだ状態の(a)のA−A線断面を示す概略断面図である。 In FIG. 8C, after the holding step, the first frame 51 and the second frame 52 are welded from the second frame 52 side by an ultrasonic welding method via the electrolyte membrane 2. The outer peripheral portion (peripheral portion) of the electrolyte membrane-electrode assembly 13 is joined with the first frame 51 and the second frame so that the fixed portions are scattered in the circumferential direction of the electrolyte membrane-electrode assembly 13 by joining at the portion 8. It is a schematic cross-sectional view which shows the AA line cross section of (a) in the state which the fixing step of fixing to a frame 52 is completed.

図8の(d)は、固定工程で仮固定した電解質膜−電極−枠接合体11を、吸着治具10から分離した状態の(a)のA−A線断面を示す概略断面図である。 FIG. 8D is a schematic cross-sectional view showing a cross section taken along line AA of FIG. 8A in a state where the electrolyte membrane-electrode-frame joint 11 temporarily fixed in the fixing step is separated from the adsorption jig 10. ..

図8の(e)は、溶着工程で仮固定した電解質膜−電極−枠接合体11を、加熱乾燥させる加熱工程が済んだ状態の(a)のA−A線断面を示す概略断面図である。また、図8の(f)は、固定工程で仮固定した電解質膜−電極−枠接合体11を、加熱乾燥させる加熱工程が済んだ状態の(a)のB−B線断面を示す概略断面図である。 FIG. 8E is a schematic cross-sectional view showing a cross section taken along line AA of FIG. 8A in a state where the electrolyte membrane-electrode-frame joint 11 temporarily fixed in the welding step is heated and dried. is there. Further, FIG. 8 (f) is a schematic cross section showing a BB line cross section of (a) in a state where the heating step of heating and drying the electrolyte membrane-electrode-frame joint 11 temporarily fixed in the fixing step is completed. It is a figure.

特許第5575345号公報Japanese Patent No. 5575345

従来の電解質膜−電極−枠接合体の製造方法では、特に、高効率化のために膜厚が薄くプロトンの移動が容易な含水率の高い電解質膜2の両主面に触媒層3を塗布形成した電解質膜−電極接合体13を用いる場合は、電解質膜−電極接合体13の周縁部を第1の枠51および第2の枠52とで挟み(図8の(b))、電解質膜−電極接合体13の周縁部を第1の枠51および第2の枠52に溶着部8で仮固定(図8の(c))した後に、射出成型機の金型に配置して、シール性向上のために第1の枠51と第2の枠52の境界及び溶着部8の加工痕を覆う第3の枠53を射出成型により形成すると、金型の熱により電解質膜−電極−枠接合体11(特に、電解質膜2)が乾燥により収縮する。 In the conventional method for producing an electrolyte membrane-electrode-frame assembly, the catalyst layer 3 is applied to both main surfaces of the electrolyte membrane 2 having a thin film thickness and easy proton transfer in order to improve efficiency. When the formed electrolyte membrane-electrode assembly 13 is used, the peripheral edge of the electrolyte membrane-electrode assembly 13 is sandwiched between the first frame 51 and the second frame 52 ((b) in FIG. 8), and the electrolyte membrane is used. -The peripheral edge of the electrode assembly 13 is temporarily fixed to the first frame 51 and the second frame 52 by the welding portion 8 ((c) in FIG. 8), and then placed on the mold of the injection molding machine to seal. When the boundary between the first frame 51 and the second frame 52 and the third frame 53 covering the processing marks of the welded portion 8 are formed by injection molding in order to improve the properties, the electrolyte membrane-electrode-frame is formed by the heat of the mold. The assembly 11 (particularly, the electrolyte membrane 2) shrinks due to drying.

このとき、電解質膜−電極接合体13が溶着部8で仮固定されていない箇所では、第1の枠51と第2の枠52をそのまま残して、図8の(f)の矢印cに示す寸法分だけ電解質膜−電極接合体13だけが収縮する。 At this time, where the electrolyte membrane-electrode assembly 13 is not temporarily fixed by the welded portion 8, the first frame 51 and the second frame 52 are left as they are, and are shown by the arrow c in FIG. 8 (f). Only the electrolyte membrane-electrode assembly 13 shrinks by the size.

そして、電解質膜−電極接合体13が溶着部8で仮固定されている箇所では、溶着部8が抵抗になって電解質膜−電極接合体13が収縮する寸法は図8の(e)の矢印aに示す寸法分だけに抑えられるが、電解質膜−電極接合体13が収縮する時に溶着部8を介して第1の枠51と第2の枠52を内周側に引っ張る力が掛かり、図8の(e)の矢印bに示す寸法分だけ電解質膜−電極−枠接合体11が変形してしまう。 Then, at the location where the electrolyte membrane-electrode assembly 13 is temporarily fixed by the welded portion 8, the dimension in which the welded portion 8 acts as a resistance and the electrolyte membrane-electrode assembly 13 contracts is indicated by the arrow in FIG. 8 (e). Although it is suppressed to only the dimensions shown in a, when the electrolyte membrane-electrode assembly 13 contracts, a force that pulls the first frame 51 and the second frame 52 toward the inner circumference is applied via the welded portion 8, and FIG. The electrolyte membrane-electrode-frame assembly 11 is deformed by the dimension shown by the arrow b in (e) of 8.

この変形した電解質膜−電極−枠接合体11が、金型内でずれ、金型で電解質膜−電極−枠接合体11のずれた部分をつぶしてしまい、電解質膜−電極接合体13の一部に過大な荷重がかかり、電解質膜−電極接合体13の寿命が低下する可能性がある。 The deformed electrolyte membrane-electrode-frame assembly 11 is displaced in the mold, and the displaced portion of the electrolyte membrane-electrode-frame junction 11 is crushed by the mold, so that one of the electrolyte membrane-electrode assembly 13 An excessive load may be applied to the portion, and the life of the electrolyte membrane-electrode assembly 13 may be shortened.

本発明は、従来技術の課題に鑑み、電解質膜−電極接合体の外周部を枠に固定した後、枠と電解質膜−電極接合体の少なくともいずれか一つに熱を加える製造方法であっても、電解質膜−電極−枠接合体が変形しにくい電解質膜−電極−枠接合体の製造方法を提供することを目的としている。 The present invention is a manufacturing method in which the outer peripheral portion of the electrolyte membrane-electrode assembly is fixed to a frame and then heat is applied to at least one of the frame and the electrolyte membrane-electrode assembly in view of the problems of the prior art. Another object of the present invention is to provide a method for producing an electrolyte membrane-electrode-frame assembly in which the electrolyte membrane-electrode-frame assembly is not easily deformed.

この目的を達成するために、本発明の電解質膜−電極−枠接合体の製造方法は、電解質膜と電解質膜を挟んで両主面に配置される電極とを有する電解質膜−電極接合体の外周部を、電解質膜−電極接合体の電極が露出するように、内径が電解質膜−電極接合体の外径よりも小さくて外径が電解質膜−電極接合体の外径よりも大きい額縁形状の第1の枠と第2の枠とで挟持した燃料電池用の電解質膜−電極−枠接合体の製造方法であって、電解質膜−電極接合体の外周部を第1の枠と第2の枠とで挟む狭持工程と、狭持工程後に、第1の枠の開口部に露出する電解質膜−電極接合体の電極を電極に略平行な押圧面で第1の枠側から第2の枠側に押す押圧工程と、押圧工程後に、固定部分が電解質膜−電極接合体の周方向に点在するように電解質膜−電極接合体の外周部を第1の枠と第2の枠とに固定する固定工程と、固定工程後に、第1の枠と第2の枠と電解質膜−電極接合体の少なくともいずれか一つに熱を加える加熱工程と、を有し、加熱工程で、第1の枠と第2の枠とで挟まれ第1の枠と第2の枠とに固定されていない部分が、電解質膜−電極接合体の中央側に変位しないように、且つ加熱工程後に電解質膜−電極接合体に弛みが残らないように、押圧工程では、電極と接触した押圧面を電解質膜−電極接合体の厚み方向の第2の枠側に所定距離だけ移動させるのである。 In order to achieve this object, the method for producing an electrolyte membrane-electrode-frame assembly of the present invention comprises an electrolyte membrane-electrode assembly having an electrolyte membrane and electrodes arranged on both main surfaces with the electrolyte membrane interposed therebetween. A frame shape in which the inner diameter is smaller than the outer diameter of the electrolyte membrane-electrode assembly and the outer diameter is larger than the outer diameter of the electrolyte membrane-electrode assembly so that the electrodes of the electrolyte membrane-electrode assembly are exposed on the outer periphery. This is a method for manufacturing an electrolyte membrane-electrode-frame assembly for a fuel cell sandwiched between the first frame and the second frame, wherein the outer peripheral portion of the electrolyte membrane-electrode assembly is the first frame and the second frame. The electrode of the electrolyte membrane-electrode assembly exposed in the opening of the first frame after the sandwiching step is sandwiched between the frames, and the electrode of the electrolyte membrane-electrode assembly is pressed from the first frame side to the second with a pressing surface substantially parallel to the electrode. The outer peripheral portion of the electrolyte membrane-electrode assembly is placed in the first frame and the second frame so that the fixed portions are scattered in the circumferential direction of the electrolyte membrane-electrode assembly after the pressing step of pressing the frame side. It has a fixing step of fixing to and, and a heating step of applying heat to at least one of a first frame, a second frame, and an electrolyte membrane-electrode assembly after the fixing step. The portion sandwiched between the first frame and the second frame and not fixed to the first frame and the second frame is not displaced toward the center of the electrolyte membrane-electrode assembly, and after the heating step. In the pressing step, the pressing surface in contact with the electrode is moved to the second frame side in the thickness direction of the electrolyte membrane-electrode assembly by a predetermined distance so that no slack remains in the electrolyte membrane-electrode assembly.

また、別の本発明の電解質膜−電極−枠接合体の製造方法は、電解質膜と電解質膜を挟んで両主面に配置される電極とを有する電解質膜−電極接合体の外周部を、電解質膜−電極接合体の電極が露出するように、内径が電解質膜−電極接合体の外径よりも小さくて外径が電解質膜−電極接合体の外径よりも大きい額縁形状の第1の枠と第2の枠とで挟持した燃料電池用の電解質膜−電極−枠接合体の製造方法であって、電解質膜−電極接合体の電極を平坦な吸着面で吸着する吸着治具が第1の枠の開口部内に収まり第1の枠の上面が吸着面よりも低い位置で吸着面と略平行になるように第1の枠を吸着治具の周囲に配置する配置工程と、配置工程後に、吸着治具の吸着面と第1の枠の上面の上に電解質膜−電極接合体を載置する載置工程と、吸着治具の吸着面で、電解質膜−電極接合体の電極を吸着する吸着工程と、吸着工程中に、電解質膜−電極接合体の外周部が第1の枠と第2の枠とで挟まれるように電解質膜−電極接合体の外周部に第2の枠を積層する積層工程と、積層工程後に、固定部分が電解質膜−電極接合体の周方向に点在するように電解質膜−電極接合体の外周部を第1の枠と第2の枠とに固定する固定工程と、固定工程後に、第1の枠と第2の枠と電解質膜−電極接合体の少なくともいずれか一つに熱を加える加熱工程と、を有し、加熱工程で、第1の枠と第2の枠とで挟まれ第1の枠と第2の枠とに固定されていない部分が、電解質膜−電極接合体の中央側に変位しないように、且つ加熱工程後に電解質膜−電極接合体に弛みが残らないように、吸着面の高さを、配置工程で配置後の第1の枠の上面よりも所定高さだけ高くなるようにしたのである。 Further, another method of manufacturing the electrolyte membrane-electrode-frame joint of the present invention is to provide an outer peripheral portion of the electrolyte membrane-electrode joint having an electrolyte membrane and electrodes arranged on both main surfaces with the electrolyte membrane interposed therebetween. The first frame-shaped first having an inner diameter smaller than the outer diameter of the electrolyte membrane-electrode joint and an outer diameter larger than the outer diameter of the electrolyte membrane-electrode joint so that the electrodes of the electrolyte membrane-electrode joint are exposed. A method for manufacturing an electrolyte membrane-electrode-frame joint for a fuel cell sandwiched between a frame and a second frame, the first is a suction jig that sucks the electrodes of the electrolyte membrane-electrode joint on a flat suction surface. An arrangement step of arranging the first frame around the suction jig so that the first frame fits in the opening of the frame 1 and the upper surface of the first frame is substantially parallel to the suction surface at a position lower than the suction surface. Later, a mounting step of placing the electrolyte film-electrode joint on the suction surface of the suction jig and the upper surface of the first frame, and the electrode of the electrolyte film-electrode joint on the suction surface of the suction jig. A second frame is placed on the outer peripheral portion of the electrolyte membrane-electrode joint so that the outer peripheral portion of the electrolyte film-electrode joint is sandwiched between the first frame and the second frame during the adsorption step and the adsorption step. After the laminating step and the laminating step, the outer peripheral portion of the electrolyte film-electrode joint is divided into the first frame and the second frame so that the fixed portions are scattered in the circumferential direction of the electrolyte film-electrode joint. It has a fixing step of fixing and a heating step of applying heat to at least one of a first frame, a second frame, and an electrolyte membrane-electrode joint after the fixing step. The portion sandwiched between the frame and the second frame and not fixed to the first frame and the second frame is not displaced toward the center of the electrolyte membrane-electrode joint, and the electrolyte membrane is formed after the heating step. -The height of the suction surface was set to be higher than the upper surface of the first frame after placement in the placement process by a predetermined height so that no slack was left in the electrode joint.

上記製造方法により、加熱工程で、第1の枠と第2の枠とで挟まれ第1の枠と第2の枠とに固定されていない部分が、電解質膜−電極接合体の中央側に変位せず、且つ加熱工程後に電解質膜−電極接合体に弛みが残らない電解質膜−電極−枠接合体を得ることができる。 According to the above manufacturing method, in the heating step, the portion sandwiched between the first frame and the second frame and not fixed to the first frame and the second frame is located on the central side of the electrolyte membrane-electrode assembly. It is possible to obtain an electrolyte membrane-electrode-frame assembly that does not displace and does not leave slack in the electrolyte membrane-electrode assembly after the heating step.

そして、電解質膜−電極−枠接合体が変形するのを抑制できるので、金型内で電解質膜−電極−枠接合体がずれ、金型で電解質膜−電極−枠接合体をつぶしてしまうことがなくなるため、電解質膜−電極接合体の寿命が低下しない電解質膜−電極−枠接合体の作製が可能となる。 Then, since the deformation of the electrolyte film-electrode-frame joint can be suppressed, the electrolyte film-electrode-frame joint is displaced in the mold, and the electrolyte film-electrode-frame joint is crushed by the mold. Therefore, it is possible to manufacture an electrolyte film-electrode-frame joint in which the life of the electrolyte film-electrode joint is not shortened.

本発明の電解質膜−電極−枠接合体の製造方法によれば、電解質膜−電極−枠接合体が変形するのを抑制でき、金型内で電解質膜−電極−枠接合体がずれ、金型で電解質膜−電極−枠接合体をつぶしてしまうことがなくなるため、電解質膜−電極接合体の寿命が低下
しない電解質膜−電極−枠接合体の作製が可能となる。
According to the method for producing an electrolyte film-electrode-frame joint of the present invention, deformation of the electrolyte film-electrode-frame joint can be suppressed, the electrolyte film-electrode-frame joint is displaced in the mold, and the gold Since the mold does not crush the electrolyte film-electrode-frame joint, it is possible to manufacture the electrolyte film-electrode-frame joint without shortening the life of the electrolyte film-electrode joint.

本発明の実施の形態1の電解質膜−電極−枠接合体の製造方法で電解質膜−電極−枠接合体の変形を抑制できることを説明するための説明図Explanatory drawing for demonstrating that deformation of an electrolyte membrane-electrode-frame joint can be suppressed by the method of manufacturing the electrolyte membrane-electrode-frame joint of Embodiment 1 of this invention. 本発明の実施の形態1の電解質膜−電極−枠接合体の製造方法を示すフローチャートA flowchart showing a method for manufacturing an electrolyte membrane-electrode-frame joint according to the first embodiment of the present invention. 本発明の実施の形態2の電解質膜−電極−枠接合体の製造方法で電解質膜−電極−枠接合体の変形を抑制できることを説明するための説明図Explanatory drawing for demonstrating that deformation of an electrolyte membrane-electrode-frame joint can be suppressed by the method of manufacturing the electrolyte membrane-electrode-frame joint of Embodiment 2 of this invention. 本発明の実施の形態2の電解質膜−電極−枠接合体の製造方法を示すフローチャートA flowchart showing a method for manufacturing an electrolyte membrane-electrode-frame joint according to a second embodiment of the present invention. 特許文献1に開示された従来の燃料電池の膜電極接合体をセパレータで挟み込んだ、単セルモジュールの断面図Cross-sectional view of a single cell module in which a membrane electrode assembly of a conventional fuel cell disclosed in Patent Document 1 is sandwiched between separators. 同従来の燃料電池の膜電極接合体の平面図Plan view of the membrane electrode assembly of the conventional fuel cell 同従来の燃料電池の膜電極接合体の組立工程を示す説明図Explanatory drawing which shows the assembly process of the membrane electrode assembly of the conventional fuel cell 従来の燃料電池の電解質膜−電極−枠接合体の組立工程での電解質膜の加熱乾燥による収縮の影響を説明するための説明図Explanatory drawing for explaining the influence of shrinkage due to heating and drying of an electrolyte membrane in the process of assembling an electrolyte membrane-electrode-frame joint of a conventional fuel cell.

第1の発明は、電解質膜と電解質膜を挟んで両主面に配置される電極とを有する電解質膜−電極接合体の外周部を、電解質膜−電極接合体の電極が露出するように、内径が電解質膜−電極接合体の外径よりも小さくて外径が電解質膜−電極接合体の外径よりも大きい額縁形状の第1の枠と第2の枠とで挟持した燃料電池用の電解質膜−電極−枠接合体の製造方法であって、電解質膜−電極接合体の外周部を第1の枠と第2の枠とで挟む狭持工程と、狭持工程後に、第1の枠の開口部に露出する電解質膜−電極接合体の電極を電極に略平行な押圧面で第1の枠側から第2の枠側に押す押圧工程と、押圧工程後に、固定部分が電解質膜−電極接合体の周方向に点在するように電解質膜−電極接合体の外周部を第1の枠と第2の枠とに固定する固定工程と、固定工程後に、第1の枠と第2の枠と電解質膜−電極接合体の少なくともいずれか一つに熱を加える加熱工程と、を有し、加熱工程で、第1の枠と第2の枠とで挟まれ第1の枠と第2の枠とに固定されていない部分が、電解質膜−電極接合体の中央側に変位しないように、且つ加熱工程後に電解質膜−電極接合体に弛みが残らないように、押圧工程では、電極と接触した押圧面を電解質膜−電極接合体の厚み方向の第2の枠側に所定距離だけ移動させる、ことを特徴とする、電解質膜−電極−枠接合体の製造方法である。 In the first invention, the outer peripheral portion of the electrolyte membrane-electrode joint having the electrolyte membrane and the electrodes arranged on both main surfaces sandwiching the electrolyte membrane is exposed so that the electrodes of the electrolyte membrane-electrode joint are exposed. For a fuel cell sandwiched between a frame-shaped first frame and a second frame whose inner diameter is smaller than the outer diameter of the electrolyte membrane-electrode joint and whose outer diameter is larger than the outer diameter of the electrolyte membrane-electrode joint. A method for manufacturing an electrolyte membrane-electrode-frame joint, wherein the outer peripheral portion of the electrolyte film-electrode joint is sandwiched between the first frame and the second frame, and after the narrowing step, the first The electrolyte film exposed in the opening of the frame-The pressing step of pushing the electrode of the electrode junction from the first frame side to the second frame side with a pressing surface substantially parallel to the electrode, and after the pressing step, the fixed part is the electrolyte film. -Electrolyte film so as to be scattered in the circumferential direction of the electrode joint-A fixing step of fixing the outer peripheral portion of the electrode joint to the first frame and the second frame, and after the fixing step, the first frame and the first It has a heating step of applying heat to at least one of the frame 2 and the electrolyte membrane-electrode joint, and in the heating step, the first frame is sandwiched between the first frame and the second frame. In the pressing step, the portion not fixed to the second frame is not displaced toward the center of the electrolyte membrane-electrode junction, and the electrolyte membrane-electrode junction is not loosened after the heating step. This is a method for manufacturing an electrolyte membrane-electrode-frame joint, characterized in that the pressing surface in contact with the electrode is moved to the second frame side in the thickness direction of the electrolyte membrane-electrode joint by a predetermined distance.

上記製造方法は、電解質膜−電極接合体の外周部を第1の枠と第2の枠とで挟む狭持工程の後で、電解質膜−電極接合体の外周部を第1の枠と第2の枠とに固定する固定工程の前に、第1の枠の開口部に露出する電解質膜−電極接合体の電極を電極に略平行な押圧面で第1の枠側から第2の枠側に押す押圧工程を有し、押圧工程において、電極と接触した押圧面を電解質膜−電極接合体の厚み方向の第2の枠側に所定距離だけ移動させるのであるが、この所定距離は、加熱工程で、第1の枠と第2の枠とで挟まれ第1の枠と第2の枠とに固定されていない部分が、電解質膜−電極接合体の中央側に変位しないように、且つ加熱工程後に電解質膜−電極接合体に弛みが残らないように設定された距離である。 In the above manufacturing method, after the sandwiching step of sandwiching the outer peripheral portion of the electrolyte membrane-electrode assembly between the first frame and the second frame, the outer peripheral portion of the electrolyte membrane-electrode assembly is sandwiched between the first frame and the first frame. Before the fixing step of fixing to the second frame, the electrode of the electrolyte membrane-electrode assembly exposed in the opening of the first frame is pressed from the first frame side to the second frame with a pressing surface substantially parallel to the electrode. It has a pressing step of pushing to the side, and in the pressing step, the pressing surface in contact with the electrode is moved to the second frame side in the thickness direction of the electrolyte membrane-electrode assembly by a predetermined distance. In the heating process, the portion sandwiched between the first frame and the second frame and not fixed to the first frame and the second frame is prevented from being displaced toward the center side of the electrolyte membrane-electrode assembly. Moreover, the distance is set so that no slack remains in the electrolyte membrane-electrode assembly after the heating step.

つまり、電解質膜−電極接合体において、加熱工程によって後に収縮する寸法分だけ予め弛ませた状態で、電解質膜−電極接合体の外周部を第1の枠と第2の枠とに固定するため、加熱工程で、第1の枠と第2の枠とで挟まれ第1の枠と第2の枠とに固定されていない部分が、電解質膜−電極接合体の中央側に変位せず、且つ加熱工程後に電解質膜−電極接合体に弛みが残らない電解質膜−電極−枠接合体を得ることができる。 That is, in order to fix the outer peripheral portion of the electrolyte membrane-electrode assembly to the first frame and the second frame in a state of being loosened in advance by the size of the electrolyte membrane-electrode assembly that shrinks later due to the heating step. In the heating step, the portion sandwiched between the first frame and the second frame and not fixed to the first frame and the second frame does not displace toward the center side of the electrolyte membrane-electrode assembly. Moreover, it is possible to obtain an electrolyte membrane-electrode-frame assembly in which no slack remains in the electrolyte membrane-electrode assembly after the heating step.

そして、加熱乾燥により収縮する電解質膜−電極接合体によって第1の枠と第2の枠とが開口部の内周側に引っ張られることを抑制できるため、電解質膜−電極−枠接合体が変形するのを抑制でき、金型内で電解質膜−電極−枠接合体がずれ、金型で電解質膜−電極−枠接合体をつぶしてしまうことがなくなり、電解質膜−電極接合体の寿命が低下しない電解質膜−電極−枠接合体の作製が可能となる。 Then, since it is possible to prevent the first frame and the second frame from being pulled toward the inner peripheral side of the opening by the electrolyte film-electrode joint that shrinks due to heating and drying, the electrolyte film-electrode-frame joint is deformed. The electrolyte film-electrode-frame joint is not displaced in the mold, and the electrolyte film-electrode-frame joint is not crushed by the mold, and the life of the electrolyte film-electrode joint is shortened. It is possible to fabricate an electrolyte membrane-electrode-frame joint that does not.

第2の発明は、電解質膜と電解質膜を挟んで両主面に配置される電極とを有する電解質膜−電極接合体の外周部を、電解質膜−電極接合体の電極が露出するように、内径が電解質膜−電極接合体の外径よりも小さくて外径が電解質膜−電極接合体の外径よりも大きい額縁形状の第1の枠と第2の枠とで挟持した燃料電池用の電解質膜−電極−枠接合体の製造方法であって、電解質膜−電極接合体の電極を平坦な吸着面で吸着する吸着治具が第1の枠の開口部内に収まり第1の枠の上面が吸着面よりも低い位置で吸着面と略平行になるように第1の枠を吸着治具の周囲に配置する配置工程と、配置工程後に、吸着治具の吸着面と第1の枠の上面の上に電解質膜−電極接合体を載置する載置工程と、吸着治具の吸着面で電解質膜−電極接合体の電極を吸着する吸着工程と、吸着工程中に、電解質膜−電極接合体の外周部が第1の枠と第2の枠とで挟まれるように電解質膜−電極接合体の外周部に第2の枠を積層する積層工程と、積層工程後に、固定部分が電解質膜−電極接合体の周方向に点在するように電解質膜−電極接合体の外周部を第1の枠と第2の枠とに固定する固定工程と、固定工程後に、第1の枠と第2の枠と電解質膜−電極接合体の少なくともいずれか一つに熱を加える加熱工程と、を有し、加熱工程で、第1の枠と第2の枠とで挟まれ第1の枠と第2の枠とに固定されていない部分が、電解質膜−電極接合体の中央側に変位しないように、且つ、加熱工程後に電解質膜−電極接合体に弛みが残らないように、吸着面の高さを、配置工程で配置後の第1の枠の上面よりも所定高さだけ高くなるようにした、ことを特徴とする、電解質膜−電極−枠接合体の製造方法である。 In the second invention, the outer peripheral portion of the electrolyte membrane-electrode joint having the electrolyte membrane and the electrodes arranged on both main surfaces sandwiching the electrolyte membrane is exposed so that the electrodes of the electrolyte membrane-electrode joint are exposed. For a fuel cell sandwiched between a frame-shaped first frame and a second frame whose inner diameter is smaller than the outer diameter of the electrolyte membrane-electrode joint and whose outer diameter is larger than the outer diameter of the electrolyte membrane-electrode joint. A method for manufacturing an electrolyte film-electrode-frame joint, in which a suction jig that sucks the electrodes of the electrolyte film-electrode joint on a flat suction surface fits in the opening of the first frame and is the upper surface of the first frame. The first frame is arranged around the suction jig so that is substantially parallel to the suction surface at a position lower than the suction surface, and after the placement step, the suction surface of the suction jig and the first frame During the mounting step of placing the electrolyte membrane-electrode junction on the upper surface, the adsorption step of adsorbing the electrodes of the electrolyte membrane-electrode junction on the adsorption surface of the adsorption jig, and the adsorption step, the electrolyte membrane-electrode A laminating step of laminating a second frame on the outer peripheral portion of the electrolyte film-electrode joint so that the outer peripheral portion of the joint is sandwiched between the first frame and the second frame, and after the laminating step, the fixed portion is an electrolyte. A fixing step of fixing the outer peripheral portion of the electrolyte film-electrode joint to the first frame and the second frame so as to be scattered in the circumferential direction of the film-electrode joint, and a first frame after the fixing step. It has a second frame and a heating step of applying heat to at least one of the electrolyte membrane-electrode joint, and in the heating step, the first frame is sandwiched between the first frame and the second frame. The suction surface so that the portion not fixed to the second frame and the second frame does not shift to the center side of the electrolyte film-electrode joint and no slack remains in the electrolyte film-electrode joint after the heating step. This is a method for producing an electrolyte film-electrode-frame joint, characterized in that the height of the electrode is set to be higher than the upper surface of the first frame after placement by a predetermined height in the placement step.

上記製造方法は、吸着治具が第1の枠の開口部内に収まり第1の枠の上面が吸着面よりも低い位置で吸着治具の吸着面と略平行になるように第1の枠を吸着治具の周囲に配置してから、吸着治具の吸着面と第1の枠の上面の上に電解質膜−電極接合体を載置し、電解質膜−電極接合体の外周部が第1の枠と第2の枠とで挟まれるように電解質膜−電極接合体の外周部に第2の枠を積層して、電解質膜−電極接合体の外周部を第1の枠と第2の枠とに固定するのであるが、第1の枠の上面を基準とする吸着面の高さは、加熱工程で、第1の枠と第2の枠とで挟まれ第1の枠と第2の枠とに固定されていない部分が、電解質膜−電極接合体の中央側に変位しないように、且つ加熱工程後に電解質膜−電極接合体に弛みが残らないように設定された高さである。 In the above manufacturing method, the first frame is set so that the suction jig fits in the opening of the first frame and the upper surface of the first frame is lower than the suction surface and is substantially parallel to the suction surface of the suction jig. After arranging it around the suction jig, the electrolyte membrane-electrode assembly is placed on the suction surface of the suction jig and the upper surface of the first frame, and the outer peripheral portion of the electrolyte membrane-electrode assembly is the first. The second frame is laminated on the outer peripheral portion of the electrolyte membrane-electrode assembly so as to be sandwiched between the frame and the second frame, and the outer peripheral portion of the electrolyte membrane-electrode assembly is formed between the first frame and the second frame. Although it is fixed to the frame, the height of the suction surface with respect to the upper surface of the first frame is sandwiched between the first frame and the second frame in the heating process, and the first frame and the second frame. The height is set so that the portion not fixed to the frame is not displaced toward the center of the electrolyte membrane-electrode assembly and no slack remains in the electrolyte membrane-electrode assembly after the heating step. ..

つまり、電解質膜−電極接合体において、加熱工程によって後に収縮する寸法分だけ予め弛ませた状態で、電解質膜−電極接合体の外周部を第1の枠と第2の枠とに固定するため、加熱工程で、第1の枠と第2の枠とで挟まれ第1の枠と第2の枠とに固定されていない部分が、電解質膜−電極接合体の中央側に変位せず、且つ加熱工程後に電解質膜−電極接合体に弛みが残らない電解質膜−電極−枠接合体を得ることができる。 That is, in order to fix the outer peripheral portion of the electrolyte membrane-electrode assembly to the first frame and the second frame in a state of being loosened in advance by the size of the electrolyte membrane-electrode assembly that shrinks later due to the heating step. In the heating step, the portion sandwiched between the first frame and the second frame and not fixed to the first frame and the second frame does not displace toward the center side of the electrolyte membrane-electrode assembly. Moreover, it is possible to obtain an electrolyte membrane-electrode-frame assembly in which no slack remains in the electrolyte membrane-electrode assembly after the heating step.

そして、加熱乾燥により収縮する電解質膜−電極接合体によって第1の枠と第2の枠とが開口部の内周側に引っ張られることを抑制できるため、電解質膜−電極−枠接合体が変形するのを抑制でき、金型内で電解質膜−電極−枠接合体がずれ、金型で電解質膜−電極−枠接合体をつぶしてしまうことがなくなり、電解質膜−電極接合体の寿命が低下しない電解質膜−電極−枠接合体の作製が可能となる。 Then, since it is possible to prevent the first frame and the second frame from being pulled toward the inner peripheral side of the opening by the electrolyte film-electrode joint that shrinks due to heating and drying, the electrolyte film-electrode-frame joint is deformed. The electrolyte film-electrode-frame joint is not displaced in the mold, and the electrolyte film-electrode-frame joint is not crushed by the mold, and the life of the electrolyte film-electrode joint is shortened. It is possible to fabricate an electrolyte membrane-electrode-frame joint that does not.

第3の発明は、特に、第1または第2の発明において、第1の枠と第2の枠の材料が熱可塑性樹脂であることを特徴とするものであり、第1の枠と第2の枠の溶着、例えば、超音波溶着により、電解質膜−電極接合体の外周部を第1の枠と第2の枠とに固定すること
ができる。
The third invention is characterized in that, in particular, in the first or second invention, the materials of the first frame and the second frame are thermoplastic resins, and the first frame and the second frame The outer peripheral portion of the electrolyte membrane-electrode assembly can be fixed to the first frame and the second frame by welding the frames of, for example, ultrasonic welding.

第4の発明は、特に、第3の発明において、固定工程では、第1の枠または第2の枠の外側から超音波ホーンを押し当てて電解質膜−電極接合体の外周部を第1の枠と第2の枠とに固定することを特徴とするものであり、超音波ホーンによる溶融接合界面のみが加熱され溶融溶着ができ、周囲への熱影響を最小限に抑えることができ、電解質膜−電極−枠接合体の信頼性(耐久性)を向上させることができる。 In the third invention, in particular, in the third invention, in the fixing step, an ultrasonic horn is pressed from the outside of the first frame or the second frame to press the outer peripheral portion of the electrolyte membrane-electrode assembly into the first frame. It is characterized by being fixed to the frame and the second frame, and only the melt bonding interface by the ultrasonic horn is heated and melt welding can be performed, the thermal influence on the surroundings can be minimized, and the electrolyte. The reliability (durability) of the membrane-electrode-frame assembly can be improved.

以下、本発明の電解質膜−電極−枠接合体の製造方法の実施の形態を、図面を参照しながら説明するが、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the method for producing an electrolyte membrane-electrode-frame junction of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.

(実施の形態1)
以下、本発明の電解質膜−電極−枠接合体の製造方法の実施の形態1を、従来例と異なる部分について、図面を参照しながら説明する。本実施の形態において、従来例と同一構成については同一符号を付して、重複する説明は省略する。
(Embodiment 1)
Hereinafter, Embodiment 1 of the method for producing an electrolyte membrane-electrode-frame joint of the present invention will be described with reference to the drawings with reference to a portion different from the conventional example. In the present embodiment, the same components as those of the conventional example are designated by the same reference numerals, and duplicate description will be omitted.

図1は、本発明の実施の形態1の電解質膜−電極−枠接合体の製造方法で電解質膜−電極−枠接合体の変形を抑制できることを説明するための説明図である。 FIG. 1 is an explanatory diagram for explaining that deformation of the electrolyte membrane-electrode-frame joint can be suppressed by the method for producing an electrolyte membrane-electrode-frame joint according to the first embodiment of the present invention.

本実施の形態の電解質膜−電極−枠接合体の製造方法で製造される電解質膜−電極−枠接合体14は、矩形の電解質膜−電極接合体13の周縁部を、額縁形状に成形された熱可塑性樹脂製の第1の枠54と第2の枠55とで挟んで、第2の枠55の外側から超音波ホーンを押し当てる超音波溶着法による溶着部8で電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定したものである。 In the electrolyte membrane-electrode-frame assembly 14 manufactured by the method for producing an electrolyte membrane-electrode-frame assembly of the present embodiment, the peripheral edge of the rectangular electrolyte membrane-electrode assembly 13 is formed into a frame shape. Electrolyte membrane-electrode assembly at the welded portion 8 by the ultrasonic welding method in which the ultrasonic horn is pressed from the outside of the second frame 55, sandwiched between the first frame 54 and the second frame 55 made of the thermoplastic resin. The outer peripheral portion of the body 13 is fixed to the first frame 54 and the second frame 55.

電解質膜−電極接合体13は、矩形の固体高分子からなる電解質膜2の両主面の略中央部に電解質膜2より小さい矩形の触媒層3が配置されたものである。 The electrolyte membrane-electrode assembly 13 is formed by arranging a rectangular catalyst layer 3 smaller than the electrolyte membrane 2 at substantially the center of both main surfaces of the electrolyte membrane 2 made of a rectangular solid polymer.

第1の枠54と第2の枠55は、電解質膜−電極接合体13の触媒層3の大部分が露出するように、開口部の内径が電解質膜−電極接合体13の触媒層3の外径よりも小さくて外径が電解質膜−電極接合体13の外径よりも大きい額縁形状である。 The first frame 54 and the second frame 55 have an inner diameter of the opening of the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 so that most of the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 is exposed. The frame shape is smaller than the outer diameter and the outer diameter is larger than the outer diameter of the electrolyte membrane-electrode assembly 13.

図1の(a)は、本実施の形態の電解質膜−電極−枠接合体14の平面図である。図1の(b)は、電解質膜−電極接合体13の触媒層3を平坦な吸着面(押圧面)で吸着する吸着治具10が第1の枠54の開口部内に収まり第1の枠54の上面が吸着面(押圧面)と略同一平面上に位置するように第1の枠54を吸着治具10の周囲に配置して、吸着治具10の吸着面(押圧面)と第1の枠54の上面の上に電解質膜−電極接合体13を載置しようとしている状態の(a)のC−C線断面と(a)のD−D線断面を示す概略断面図である。 FIG. 1A is a plan view of the electrolyte membrane-electrode-frame joint 14 of the present embodiment. In FIG. 1B, the adsorption jig 10 for adsorbing the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 on a flat adsorption surface (pressing surface) fits in the opening of the first frame 54 and is in the first frame. The first frame 54 is arranged around the suction jig 10 so that the upper surface of the 54 is located on substantially the same plane as the suction surface (pressing surface), and the suction surface (pressing surface) of the suction jig 10 and the first frame 54 are arranged. 1 is a schematic cross-sectional view showing the CC line cross section of (a) and the DD line cross section of (a) in a state where the electrolyte membrane-electrode assembly 13 is to be placed on the upper surface of the frame 54 of 1. ..

図1の(c)は、吸着治具10の吸着面(押圧面)と第1の枠54の上面の上に電解質膜−電極接合体13が載置され、吸着治具10の吸着面(押圧面)が電解質膜−電極接合体13を吸着している状態の(a)のC−C線断面と(a)のD−D線断面を示す概略断面図である。 In FIG. 1C, the electrolyte membrane-electrode assembly 13 is placed on the suction surface (pressing surface) of the suction jig 10 and the upper surface of the first frame 54, and the suction surface of the suction jig 10 (c). 3 is a schematic cross-sectional view showing the CC line cross section of (a) and the DD line cross section of (a) in a state where the pressing surface) is adsorbing the electrolyte membrane-electrode assembly 13.

図1の(d)は、電解質膜−電極接合体13の周縁部が熱可塑性樹脂製の第1の枠54と第2の枠55とで挟まれるように、電解質膜−電極接合体13の周縁部の上に第2の枠55を載置(積層)した状態の(a)のC−C線断面と(a)のD−D線断面を示す概略断面図である。 In FIG. 1D, the electrolyte membrane-electrode assembly 13 is shown so that the peripheral edge of the electrolyte membrane-electrode assembly 13 is sandwiched between the first frame 54 and the second frame 55 made of thermoplastic resin. It is schematic cross-sectional view which shows the CC line cross section of (a) and DD line cross section of (a) in the state which the 2nd frame 55 is placed (stacked) on the peripheral edge part.

図1の(e)は、第1の枠54の開口部に露出する電解質膜−電極接合体13の触媒層3を、触媒層3に略平行な吸着治具10の吸着面(押圧面)で、第1の枠54側から第2の枠55側に押して、電解質膜−電極接合体13の触媒層3と接触した吸着治具10の吸着面(押圧面)を、電解質膜−電極接合体13の厚み方向の第2の枠55側に所定距離だけ移動させた状態の(a)のC−C線断面と(a)のD−D線断面を示す概略断面図である。 In FIG. 1 (e), the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 exposed in the opening of the first frame 54 is the adsorption surface (pressing surface) of the adsorption jig 10 substantially parallel to the catalyst layer 3. Then, the adsorption surface (pressing surface) of the adsorption jig 10 that is pushed from the first frame 54 side to the second frame 55 side and is in contact with the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 is bonded to the electrolyte membrane-electrode assembly. It is a schematic cross-sectional view which shows the CC line cross section of (a) and the DD line cross section of (a) in the state which moved to the 2nd frame 55 side of the body 13 in the thickness direction by a predetermined distance.

図1の(f)は、第2の枠55の外側から超音波ホーンを押し当てる超音波溶着法による溶着部8で電解質膜−電極接合体13の外周部の複数箇所を第1の枠54と第2の枠55とに固定して電解質膜−電極−枠接合体14とした後に、吸着治具10を下降させている状態の(a)のC−C線断面を示す概略断面図である。 FIG. 1 (f) shows a welding portion 8 by an ultrasonic welding method in which an ultrasonic horn is pressed from the outside of the second frame 55, and a plurality of locations on the outer peripheral portion of the electrolyte membrane-electrode assembly 13 are formed in the first frame 54. In the schematic cross-sectional view showing the CC line cross section of (a) in a state where the adsorption jig 10 is lowered after the electrolyte membrane-electrode-frame assembly 14 is fixed to the second frame 55. is there.

図1の(g)は、吸着治具10の吸着面(押圧面)が電解質膜−電極接合体13の触媒層3から離れたことにより、電解質膜−電極接合体13における第1の枠54と第2の枠55とで挟まれていない部分(第1の枠54と第2の枠55の開口部に露出した部分)が弛んだ状態の(a)のC−C線断面を示す概略断面図である。 In FIG. 1 (g), the suction surface (pressing surface) of the suction jig 10 is separated from the catalyst layer 3 of the electrolyte membrane-electrode assembly 13, so that the first frame 54 in the electrolyte membrane-electrode assembly 13 is shown. The outline showing the CC line cross section of (a) in the state where the portion not sandwiched between the first frame 54 and the second frame 55 (the portion exposed to the opening of the first frame 54 and the second frame 55) is loosened. It is a sectional view.

図1の(h)は、加熱乾燥により電解質膜−電極接合体13が収縮した状態の(a)のC−C線断面を示す概略断面図である。図1の(i)は、加熱乾燥により電解質膜−電極接合体13が収縮した状態の(a)のD−D線断面を示す概略断面図である。 FIG. 1H is a schematic cross-sectional view showing the CC line cross section of FIG. 1A in a state where the electrolyte membrane-electrode assembly 13 is contracted by heating and drying. FIG. 1 (i) is a schematic cross-sectional view showing a cross section taken along line DD of (a) in a state in which the electrolyte membrane-electrode assembly 13 is contracted by heating and drying.

図2は、本発明の実施の形態1の電解質膜−電極−枠接合体の製造方法を示すフローチャートである。 FIG. 2 is a flowchart showing a method for manufacturing an electrolyte membrane-electrode-frame joint according to the first embodiment of the present invention.

以下、図1と図2を参照しながら、実施の形態1の電解質膜−電極−枠接合体14の製造方法を詳細に説明する。 Hereinafter, the method for producing the electrolyte membrane-electrode-frame joint 14 of the first embodiment will be described in detail with reference to FIGS. 1 and 2.

STEP1では、図1の(b)に示すように、第1の枠54を、吸着治具10が第1の枠54の開口部内に収まる(第1の枠54が吸着治具10の周囲を囲む)ように、且つ、第1の枠54の上面が、吸着治具10の上面を構成する吸着面(押圧面)と略同一平面上に位置するように、配置(セット)する。 In STEP 1, as shown in FIG. 1B, the suction jig 10 fits in the opening of the first frame 54 (the first frame 54 is around the suction jig 10). (Enclose), and the upper surface of the first frame 54 is arranged (set) so as to be located on substantially the same plane as the suction surface (pressing surface) constituting the upper surface of the suction jig 10.

また、電解質膜2は、電解質膜2の両主面に触媒層3が塗布により形成されて、所定の大きさ、寸法の矩形に切断されて、電解質膜−電極接合体13となって、吸着治具10の上方に搬送される。 Further, in the electrolyte membrane 2, the catalyst layer 3 is formed by coating on both main surfaces of the electrolyte membrane 2, and is cut into a rectangle having a predetermined size and size to form an electrolyte membrane-electrode assembly 13 and adsorbed. It is conveyed above the jig 10.

STEP2では、図1の(c)に示すように、吸着治具10の吸着面(押圧面)と第1の枠54の上面の上に電解質膜−電極接合体13を載置する。 In STEP 2, as shown in FIG. 1 (c), the electrolyte membrane-electrode assembly 13 is placed on the suction surface (pressing surface) of the suction jig 10 and the upper surface of the first frame 54.

このとき、電解質膜−電極接合体13の触媒層3の周縁が第1の枠54の開口部の縁よりも内周側に入らないように位置合わせすると共に、吸着治具10の吸着面(押圧面)と電解質膜−電極接合体13との間に空気溜まりができないように、また、電解質膜−電極接合体13に皺ができないようにする。 At this time, the peripheral edge of the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 is aligned so as not to enter the inner peripheral side of the edge of the opening of the first frame 54, and the suction surface of the suction jig 10 ( The pressing surface) and the electrolyte membrane-electrode assembly 13 are prevented from accumulating air, and the electrolyte membrane-electrode assembly 13 is prevented from being wrinkled.

なお、このとき、吸着治具10の吸着面(押圧面)と電解質膜−電極接合体13との間に空気溜まりができないように、吸着治具10は、電解質膜−電極接合体13が吸着面に接触する前に、吸着面に開口した多数の孔から吸着面側の空気を吸引する吸引動作を開始しても構わない。 At this time, the electrolyte membrane-electrode assembly 13 is adsorbed on the adsorption jig 10 so that air does not collect between the adsorption surface (pressing surface) of the adsorption jig 10 and the electrolyte membrane-electrode assembly 13. Before contacting the surface, a suction operation of sucking air on the suction surface side from a large number of holes opened in the suction surface may be started.

STEP3で、吸着面に開口した多数の孔から吸着面側の空気を吸引する吸引動作を行
って、吸着治具10の吸着面(押圧面)で電解質膜−電極接合体13の電極部(第1の枠54の開口部に露出する触媒層3)を吸着により固定してから、STEP4で、図1の(d)に示すように、電解質膜−電極接合体13の周縁部が第1の枠54と第2の枠55とで挟まれるように、電解質膜−電極接合体13の周縁部の上に第2の枠55を正しい位置に載置(積層)する。
In STEP 3, a suction operation is performed to suck air on the suction surface side from a large number of holes opened in the suction surface, and the electrode portion (third) of the electrolyte membrane-electrode assembly 13 is performed on the suction surface (pressing surface) of the suction jig 10. After fixing the catalyst layer 3) exposed to the opening of the frame 54 of No. 1 by adsorption, the peripheral portion of the electrolyte membrane-electrode assembly 13 is the first in STEP 4, as shown in FIG. 1 (d). The second frame 55 is placed (laminated) in the correct position on the peripheral edge of the electrolyte membrane-electrode assembly 13 so as to be sandwiched between the frame 54 and the second frame 55.

正しい位置に第2の枠55が載置(積層)されたときは、電解質膜−電極接合体13の触媒層3の周縁が第2の枠55の開口部の縁よりも内周側に入らない。 When the second frame 55 is placed (laminated) in the correct position, the peripheral edge of the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 enters the inner peripheral side of the edge of the opening of the second frame 55. Absent.

また、電解質膜−電極接合体13を吸着治具10に吸着固定した状態で、電解質膜−電極接合体13の周縁部の上に第2の枠55を載置(積層)するので、第2の枠55を載置(積層)する作業で、電解質膜−電極接合体13の位置がずれたり、電解質膜−電極接合体13がめくれたりする現象の発生を抑制することができる。 Further, since the second frame 55 is placed (laminated) on the peripheral edge of the electrolyte membrane-electrode assembly 13 in a state where the electrolyte membrane-electrode assembly 13 is adsorbed and fixed to the adsorption jig 10, the second frame-electrode assembly 13 is placed (laminated) on the peripheral portion. In the work of placing (laminating) the frame 55 of the above, it is possible to suppress the occurrence of the phenomenon that the position of the electrolyte membrane-electrode assembly 13 is displaced and the electrolyte membrane-electrode assembly 13 is turned over.

そして、第2の枠55を正しい位置に載置(積層)した後で、電解質膜−電極接合体13の周縁部が、所定の力で、第1の枠54と第2の枠55とによって挟持されるように、第1の枠54と第2の枠55とをクランプする。 Then, after the second frame 55 is placed (laminated) in the correct position, the peripheral edge portion of the electrolyte membrane-electrode assembly 13 is formed by the first frame 54 and the second frame 55 with a predetermined force. The first frame 54 and the second frame 55 are clamped so as to be sandwiched.

次に、STEP5で、図1の(e)に示すように、第1の枠54の開口部に露出する電解質膜−電極接合体13の電極(第1の枠54の開口部に露出する触媒層3)を電極(触媒層3)に略平行な吸着治具10の吸着面(押圧面)で第1の枠54側から第2の枠55側に押す(吸着治具10を第1の枠54側から第2の枠55側に向かう方向に所定距離だけ移動させる)。 Next, in STEP 5, as shown in FIG. 1 (e), the electrode of the electrolyte membrane-electrode assembly 13 exposed in the opening of the first frame 54 (catalyst exposed in the opening of the first frame 54). The layer 3) is pushed from the first frame 54 side to the second frame 55 side by the suction surface (pressing surface) of the suction jig 10 substantially parallel to the electrode (catalyst layer 3) (the suction jig 10 is pushed to the first frame 55 side). Move the frame 54 side toward the second frame 55 side by a predetermined distance).

このとき、吸着治具10の移動(吸着治具10の吸着面(押圧面)の電解質膜−電極接合体13に対する押圧)により、電解質膜−電極接合体13の周縁は黒矢印に示す距離だけ第1の枠54の開口部の内周側に移動する。 At this time, due to the movement of the suction jig 10 (pressing the suction surface (pressing surface) of the suction jig 10 against the electrolyte membrane-electrode assembly 13), the peripheral edge of the electrolyte membrane-electrode assembly 13 is only the distance indicated by the black arrow. It moves to the inner peripheral side of the opening of the first frame 54.

次に、STEP6で、第2の枠55の外側から超音波ホーン81を所定の位置に当接させ、電解質膜2を介して、第1の枠54と第2の枠55とを、第2の枠55側からの超音波溶着法による溶着部8で接合して、固定部分が電解質膜−電極接合体13の周方向に点在するように電解質膜−電極接合体13の外周部(周縁部)を第1の枠54と第2の枠55とに固定する。 Next, in STEP 6, the ultrasonic horn 81 is brought into contact with a predetermined position from the outside of the second frame 55, and the first frame 54 and the second frame 55 are brought into contact with the second frame 55 via the electrolyte membrane 2. The outer peripheral portion (periphery) of the electrolyte membrane-electrode assembly 13 is bonded by the welding portion 8 by the ultrasonic welding method from the frame 55 side of the frame 55 so that the fixed portions are scattered in the circumferential direction of the electrolyte membrane-electrode assembly 13. Part) is fixed to the first frame 54 and the second frame 55.

次に、STEP7で、図1の(f)に示すように、吸着治具10の吸着面(押圧面)での電解質膜−電極接合体13の電極部(第1の枠54の開口部に露出する触媒層3)の吸着を解除し、吸着治具10を元の位置に戻す。 Next, in STEP 7, as shown in FIG. 1 (f), the electrode portion of the electrolyte membrane-electrode assembly 13 on the adsorption surface (pressing surface) of the adsorption jig 10 (in the opening of the first frame 54). The adsorption of the exposed catalyst layer 3) is released, and the adsorption jig 10 is returned to its original position.

次に、STEP8で、クランプを解除し、次のSTEP9で、電解質膜−電極−枠接合体14を吸着治具10から取り出す。 Next, in STEP 8, the clamp is released, and in the next STEP 9, the electrolyte membrane-electrode-frame joint 14 is taken out from the adsorption jig 10.

このときの電解質膜−電極−枠接合体14は、図1の(g)に示すように、第1の枠54と第2の枠55の開口部に露出する部分の電解質膜−電極接合体13に弛みがあるが、加熱、乾燥による収縮で、図1の(h)及び(i)に示すように、第1の枠54と第2の枠55の開口部に露出する部分の電解質膜−電極接合体13の弛みは無くなる。 As shown in FIG. 1 (g), the electrolyte membrane-electrode assembly 14 at this time is an electrolyte membrane-electrode assembly in a portion exposed to the openings of the first frame 54 and the second frame 55. Although there is slack in 13, the electrolyte membrane of the portion exposed to the openings of the first frame 54 and the second frame 55 due to shrinkage due to heating and drying, as shown in FIGS. 1 (h) and 1 (i). -The slack of the electrode assembly 13 is eliminated.

また、加熱、乾燥後においても、図1の(i)に示すように、電解質膜−電極接合体13の外周部における第1の枠54と第2の枠55とで挟まれ第1の枠54と第2の枠55とに固定されていない部分が電解質膜−電極接合体13の中央側に変位していない。 Further, even after heating and drying, as shown in FIG. 1 (i), the first frame is sandwiched between the first frame 54 and the second frame 55 on the outer peripheral portion of the electrolyte membrane-electrode assembly 13. The portion not fixed to the 54 and the second frame 55 is not displaced toward the center of the electrolyte membrane-electrode assembly 13.

なお、STEP5で、吸着治具10を第1の枠54側から第2の枠55側に向かう方向に所定距離だけ移動させるときの所定距離は、加熱乾燥工程で第1の枠54と第2の枠55とで挟まれ第1の枠54と第2の枠55とに固定されていない部分(電解質膜−電極接合体13の外周部の一部)が電解質膜−電極接合体13の中央側に変位しないように、且つ加熱乾燥工程後に電解質膜−電極接合体13に弛みが残らないように設定してある。 In STEP 5, when the suction jig 10 is moved from the first frame 54 side to the second frame 55 side by a predetermined distance, the predetermined distance is determined by the first frame 54 and the second frame 54 in the heating and drying step. The portion (a part of the outer peripheral portion of the electrolyte membrane-electrode assembly 13) sandwiched between the frames 55 and not fixed to the first frame 54 and the second frame 55 is the center of the electrolyte membrane-electrode assembly 13. It is set so that it does not shift to the side and no slack remains in the electrolyte membrane-electrode assembly 13 after the heating and drying step.

この所定距離は、試行錯誤を重ねて導き出すことができるが、電解質膜−電極接合体13(の電解質膜2)の膨潤率と寸法などを基に算出しても構わない。 This predetermined distance can be derived by repeating trial and error, but it may be calculated based on the swelling rate and dimensions of the electrolyte membrane-electrode assembly 13 (electrolyte membrane 2).

本実施の形態では、電解質膜−電極接合体13(の電解質膜2)を、第1の枠54と第2の枠55とに固定する溶着部8の形成を超音波溶着により行っている。 In the present embodiment, the welding portion 8 for fixing the electrolyte membrane-electrode assembly 13 (electrolyte membrane 2) to the first frame 54 and the second frame 55 is formed by ultrasonic welding.

第1の枠54と第2の枠55と電解質膜2のそれぞれの材料が混在する溶着部8を形成することで、第1の枠54および第2の枠55と電解質膜2の固定性をより向上することができ、乾湿寸法変化による電解質膜2への応力の集中を避けることができ、電解質膜2の長期耐久性を向上することができる。 By forming the welded portion 8 in which the materials of the first frame 54, the second frame 55, and the electrolyte membrane 2 are mixed, the fixing property of the first frame 54, the second frame 55, and the electrolyte membrane 2 can be improved. It can be further improved, stress concentration on the electrolyte membrane 2 due to a change in wet and dry dimensions can be avoided, and the long-term durability of the electrolyte membrane 2 can be improved.

第1の枠54と第2の枠55とは、従来例の第1の枠51と第2の枠52と同様の形状にして、第1の枠54と第2の枠55との境界部及び溶着部8を、第2の枠55の外側から、従来例の第3の枠53と同様の形状の第3の枠で覆っても構わない。 The first frame 54 and the second frame 55 have the same shape as the first frame 51 and the second frame 52 of the conventional example, and the boundary portion between the first frame 54 and the second frame 55. And the welded portion 8 may be covered from the outside of the second frame 55 with a third frame having the same shape as the third frame 53 of the conventional example.

この場合は、第3の枠を、第1の枠54及び第2の枠55と同一の樹脂材料で形成し、第1の枠54及び第2の枠55に、直接、第3の枠を射出成形すると、接合力が高まり、電解質膜−電極−枠接合体14の一体性が向上し、ハンドリング性がよくなる。 In this case, the third frame is formed of the same resin material as the first frame 54 and the second frame 55, and the third frame is directly attached to the first frame 54 and the second frame 55. When injection molding is performed, the bonding force is increased, the integrity of the electrolyte membrane-electrode-frame bonded body 14 is improved, and the handleability is improved.

溶着部8の形成においては、レーザを用いた溶融接合法を用いてもよい。レーザを用いた場合は、非接触で溶着部8を形成することが可能となり、第1の枠54と第2の枠55と電解質膜2のそれぞれの材料が混在する溶着部8に、電解質膜2の劣化の原因となるコンタミが混入することを防止でき、長期に性能を保証することが可能となる。 In forming the welded portion 8, a melt joining method using a laser may be used. When a laser is used, the welded portion 8 can be formed in a non-contact manner, and the electrolyte membrane is formed on the welded portion 8 in which the materials of the first frame 54, the second frame 55, and the electrolyte membrane 2 are mixed. It is possible to prevent contamination that causes deterioration of 2 and guarantee the performance for a long period of time.

この場合のレーザ光は、少なくとも電解質膜2に吸収される波長のものを選択することが望ましく、第1の枠54または第2の枠55を透過し、電解質膜2に吸収される波長のレーザ光を用いることがより望ましい。これにより、第1の枠54または第2の枠55を透過したレーザ光が電解質膜2で吸収され、レーザ光照射部が高温となり、その熱によりレーザ光が照射された電解質膜2部を挟持する第1の枠54及び第2の枠55枠を溶融させ、溶融接合が可能となる。 In this case, it is desirable to select a laser beam having a wavelength that is absorbed by the electrolyte membrane 2, and a laser having a wavelength that passes through the first frame 54 or the second frame 55 and is absorbed by the electrolyte membrane 2. It is more desirable to use light. As a result, the laser light transmitted through the first frame 54 or the second frame 55 is absorbed by the electrolyte membrane 2, the temperature of the laser light irradiation portion becomes high, and the two portions of the electrolyte membrane irradiated with the laser light by the heat are sandwiched. The first frame 54 and the second frame 55 are melted to enable fusion bonding.

本実施の形態では、縦方向と横方向で等方的な特性を持つ電解質膜2を用いたため、発電領域全周において溶着部8の間隔を等間隔として、電解質膜2の乾燥収縮もしくは湿潤膨張の寸法変化による溶着部8への応力の集中を均等にしたが、縦方向と横方向で異方性を持つ電解質膜2を用いる場合は、縦方向と横方向のそれぞれの電解質膜2の特性に合せた間隔に調整すれば良い。 In the present embodiment, since the electrolyte membrane 2 having isotropic characteristics in the vertical direction and the horizontal direction is used, the electrolyte membrane 2 is dried and contracted or wet-expanded with the welded portions 8 at equal intervals over the entire circumference of the power generation region. When the electrolyte membrane 2 having anisotropy in the vertical direction and the horizontal direction is used, the characteristics of the electrolyte membrane 2 in the vertical direction and the horizontal direction are equalized. The interval may be adjusted according to.

本実施の形態では、シール部材7と電解質膜2の端部をできる限り近づけることで、発電に寄与しない電解質膜2の量を削減している。シール部材7と電解質膜2の端部の間隔は、乾燥により収縮した電解質膜2がシール部材7より内側に到達しなければ良い。 In the present embodiment, the amount of the electrolyte membrane 2 that does not contribute to power generation is reduced by bringing the end portions of the seal member 7 and the electrolyte membrane 2 as close as possible. The distance between the end portion of the seal member 7 and the electrolyte membrane 2 may be such that the electrolyte membrane 2 contracted by drying does not reach the inside of the seal member 7.

溶着部8の間隔が広い場合は、溶融接合されていない箇所の電解質膜2の変位は大きくなるため、シール部材7と電解質膜2の端部の間隔を大きくすれば良い。シール部材7と電解質膜2の端部の間隔を大きくした場合は、電解質膜2の端部を迂回して、一方のガス
が他方の電極にリークする際のリーク経路長を長くすることがでるため、ガスリークを低減できてよい。
When the distance between the welded portions 8 is wide, the displacement of the electrolyte membrane 2 at the portion where the welding portion 8 is not welded becomes large, so that the distance between the sealing member 7 and the end portion of the electrolyte membrane 2 may be increased. When the distance between the sealing member 7 and the end of the electrolyte membrane 2 is increased, the leak path length when one gas leaks to the other electrode can be lengthened by bypassing the end of the electrolyte membrane 2. Therefore, the gas leak may be reduced.

本実施の形態では、電解質膜2の両主面に触媒層3が塗布により形成された電解質膜−電極接合体13の外周部を、第1の枠54と第2の枠55とで挟持したものを電解質膜−電極−枠接合体14としたが、触媒層3の外側にガス拡散層を積層したものを電解質膜−電極接合体として、その電解質膜−電極接合体の外周部を、第1の枠と第2の枠とで挟持したものを電解質膜−電極−枠接合体としても構わない。 In the present embodiment, the outer peripheral portion of the electrolyte membrane-electrode assembly 13 in which the catalyst layer 3 is coated on both main surfaces of the electrolyte membrane 2 is sandwiched between the first frame 54 and the second frame 55. The electrolyte membrane-electrode assembly 14 was used as the electrolyte membrane-electrode assembly, but the one in which the gas diffusion layer was laminated on the outside of the catalyst layer 3 was used as the electrolyte membrane-electrode assembly, and the outer peripheral portion of the electrolyte membrane-electrode assembly was designated as the first. What is sandwiched between the first frame and the second frame may be an electrolyte membrane-electrode-frame assembly.

また、本実施の形態では、触媒層3の寸法を、第1の枠54及び第2の枠55の開口部の内径寸法より大きくしたが、触媒層3の全面が第1の枠54及び第2の枠55の開口部に露出するように、触媒層3の寸法を、第1の枠54及び第2の枠55の開口部の内径寸法より小さくしても構わない。 Further, in the present embodiment, the size of the catalyst layer 3 is made larger than the inner diameter of the openings of the first frame 54 and the second frame 55, but the entire surface of the catalyst layer 3 is the first frame 54 and the first frame 54 and the first. The size of the catalyst layer 3 may be smaller than the inner diameter of the openings of the first frame 54 and the second frame 55 so as to be exposed to the opening of the frame 55 of 2.

以上、説明したように本実施の形態の電解質膜−電極−枠接合体14の製造方法は、電解質膜2と電解質膜2を挟んで両主面に配置される電極(触媒層3)とを有する電解質膜−電極接合体13の外周部を、電解質膜−電極接合体13の電極(触媒層3)が露出するように、内径が電解質膜−電極接合体13の外径よりも小さくて外径が電解質膜−電極接合体13の外径よりも大きい額縁形状の第1の枠54と第2の枠55とで挟持した燃料電池用の電解質膜−電極−枠接合体14の製造方法である。 As described above, in the method for manufacturing the electrolyte membrane-electrode-frame junction 14 of the present embodiment, the electrolyte membrane 2 and the electrodes (catalyst layer 3) arranged on both main surfaces with the electrolyte membrane 2 sandwiched between the electrolyte membrane 2 and the electrodes (catalyst layer 3) are arranged. The inner diameter of the outer peripheral portion of the electrolyte membrane-electrode junction 13 is smaller than the outer diameter of the electrolyte membrane-electrode junction 13 so that the electrode (catalyst layer 3) of the electrolyte membrane-electrode junction 13 is exposed. A method for manufacturing an electrolyte membrane-electrode-frame joint 14 for a fuel cell sandwiched between a first frame 54 and a second frame 55 having a frame shape having a diameter larger than the outer diameter of the electrolyte membrane-electrode joint 13. is there.

そして、本実施の形態の電解質膜−電極−枠接合体14の製造方法は、電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とで挟む狭持工程(図1の(d)、図2のSTEP4)と、狭持工程後に、第1の枠54の開口部に露出する電解質膜−電極接合体13の電極(触媒層3)を電極(触媒層3)に略平行な押圧面(吸着治具10の吸着面)で第1の枠54側から第2の枠55側に押す押圧工程(図1の(e)、図2のSTEP5)と、押圧工程後に、固定部分が電解質膜−電極接合体13の周方向に点在するように電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定する固定工程(図1の(f)、図2のSTEP6)と、固定工程後に、第1の枠54と第2の枠55と電解質膜−電極接合体13の少なくともいずれか一つに熱を加える加熱工程(第1の枠54及び第2の枠55に、直接、第3の枠を射出成形する工程または電解質膜−電極接合体13を加熱により乾燥させる工程など)と、を有している。 The method for manufacturing the electrolyte membrane-electrode assembly 14 of the present embodiment is a narrowing step (holding step) in which the outer peripheral portion of the electrolyte membrane-electrode assembly 13 is sandwiched between the first frame 54 and the second frame 55. (D) in FIG. 1 and STEP 4 in FIG. 2) and the electrode (catalyst layer 3) of the electrolyte membrane-electrode assembly 13 exposed to the opening of the first frame 54 after the holding step are electrode (catalyst layer 3). ) With a pressing surface (adsorption surface of the adsorption jig 10) substantially parallel to the pressing step ((e) in FIG. 1 and STEP 5 in FIG. 2) of pressing from the first frame 54 side to the second frame 55 side. After the step, the fixing step of fixing the outer peripheral portion of the electrolyte membrane-electrode assembly 13 to the first frame 54 and the second frame 55 so that the fixing portions are scattered in the circumferential direction of the electrolyte membrane-electrode assembly 13. ((F) of FIG. 1, STEP 6 of FIG. 2) and a heating step of applying heat to at least one of the first frame 54, the second frame 55, and the electrolyte membrane-electrode assembly 13 after the fixing step. (A step of directly injection-molding the third frame into the first frame 54 and the second frame 55, or a step of drying the electrolyte membrane-electrode assembly 13 by heating, etc.).

そして、本実施の形態の電解質膜−電極−枠接合体14の製造方法は、加熱工程で、第1の枠54と第2の枠55とで挟まれ第1の枠54と第2の枠55とに固定されていない部分(電解質膜−電極接合体13の外周部の一部)が、電解質膜−電極接合体13の中央側に変位しないように、且つ、加熱工程後に電解質膜−電極接合体13に弛みが残らないように、押圧工程では、電極(触媒層3)と接触した押圧面(吸着治具10の吸着面)を電解質膜−電極接合体13の厚み方向の第2の枠55側に所定距離だけ移動させることを特徴とする電解質膜−電極−枠接合体14の製造方法である。 Then, in the method for manufacturing the electrolyte membrane-electrode-frame assembly 14 of the present embodiment, the first frame 54 and the second frame are sandwiched between the first frame 54 and the second frame 55 in the heating step. The portion not fixed to 55 (a part of the outer peripheral portion of the electrolyte membrane-electrode assembly 13) is not displaced toward the center side of the electrolyte membrane-electrode assembly 13, and the electrolyte membrane-electrode is not displaced after the heating step. In the pressing step, the pressing surface (adsorption surface of the adsorption jig 10) in contact with the electrode (catalyst layer 3) is the second in the thickness direction of the electrolyte membrane-electrode assembly 13 so that no slack remains in the assembly 13. This is a method for manufacturing an electrolyte membrane-electrode-frame assembly 14, characterized in that it is moved to the frame 55 side by a predetermined distance.

本実施の形態の電解質膜−電極−枠接合体14の製造方法は、電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とで挟む狭持工程の後で、電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定する固定工程の前に、第1の枠54の開口部に露出する電解質膜−電極接合体13の電極(触媒層3)を電極(触媒層3)に略平行な押圧面(吸着治具10の吸着面)で第1の枠54側から第2の枠55側に押す押圧工程を有し、押圧工程において、電極(触媒層3)と接触した押圧面(吸着治具10の吸着面)を電解質膜−電極接合体13の厚み方向の第2の枠55側に所定距離だけ移動させるのであるが、この所定距離は、加熱工程で、第1の枠54と第2の枠55とで挟まれ第1の枠54と第2の枠55とに固定されていない部分(電解質膜−電極接合体13の
外周部の一部)が、電解質膜−電極接合体13の中央側に変位しないように、且つ加熱工程後に電解質膜−電極接合体13に弛みが残らないように設定された距離である。
The method for manufacturing the electrolyte membrane-electrode-frame assembly 14 of the present embodiment is after a sandwiching step in which the outer peripheral portion of the electrolyte membrane-electrode assembly 13 is sandwiched between the first frame 54 and the second frame 55. The electrolyte membrane-electrode assembly exposed at the opening of the first frame 54 before the fixing step of fixing the outer peripheral portion of the electrolyte membrane-electrode assembly 13 to the first frame 54 and the second frame 55. There is a pressing step of pressing the electrode (catalyst layer 3) of 13 from the first frame 54 side to the second frame 55 side with a pressing surface (adsorption surface of the adsorption jig 10) substantially parallel to the electrode (catalyst layer 3). Then, in the pressing step, the pressing surface (adsorption surface of the adsorption jig 10) in contact with the electrode (catalyst layer 3) is moved to the second frame 55 side in the thickness direction of the electrolyte membrane-electrode assembly 13 by a predetermined distance. However, this predetermined distance is a portion (electrolyte membrane-) that is sandwiched between the first frame 54 and the second frame 55 and is not fixed to the first frame 54 and the second frame 55 in the heating process. A part of the outer peripheral portion of the electrode assembly 13) is set so as not to be displaced toward the center side of the electrolyte membrane-electrode assembly 13 and so that no slack remains in the electrolyte membrane-electrode assembly 13 after the heating step. The distance.

つまり、電解質膜−電極接合体13において、加熱工程によって後に収縮する寸法分だけ予め弛ませた状態で、電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定するために、加熱工程で、第1の枠54と第2の枠55とで挟まれ第1の枠54と第2の枠55とに固定されていない部分(電解質膜−電極接合体13の外周部の一部)が、電解質膜−電極接合体13の中央側に変位せず、且つ加熱工程後に電解質膜−電極接合体13に弛みが残らない電解質膜−電極−枠接合体14を得ることができる。 That is, in the electrolyte membrane-electrode assembly 13, the outer peripheral portion of the electrolyte membrane-electrode assembly 13 is combined with the first frame 54 and the second frame 55 in a state where the electrolyte membrane-electrode assembly 13 is loosened in advance by the size that shrinks later due to the heating step. In the heating step, a portion sandwiched between the first frame 54 and the second frame 55 and not fixed to the first frame 54 and the second frame 55 (electrolyte membrane-electrode assembly). The outer peripheral portion of 13) is not displaced toward the center of the electrolyte membrane-electrode assembly 13, and no slack remains in the electrolyte membrane-electrode assembly 13 after the heating step. Electrolyte membrane-electrode-frame assembly 14 Can be obtained.

そして、加熱乾燥により収縮する電解質膜−電極接合体13によって第1の枠54と第2の枠55とが開口部の内周側に引っ張られることを抑制できるため、電解質膜−電極−枠接合体14が変形するのを抑制でき、金型内で電解質膜−電極−枠接合体14がずれ、金型で電解質膜−電極−枠接合体14をつぶしてしまうことがなくなり、電解質膜−電極接合体13の寿命が低下しない電解質膜−電極−枠接合体14の作製が可能となる。 Then, since it is possible to prevent the first frame 54 and the second frame 55 from being pulled toward the inner peripheral side of the opening by the electrolyte film-electrode joint 13 that shrinks due to heating and drying, the electrolyte film-electrode-frame joint Deformation of the body 14 can be suppressed, the electrolyte membrane-electrode-frame junction 14 does not shift in the mold, and the electrolyte membrane-electrode-frame junction 14 is not crushed by the mold, and the electrolyte membrane-electrode It is possible to fabricate the electrolyte membrane-electrode-frame joint 14 in which the life of the joint 13 is not shortened.

本実施の形態では、第1の枠54と第2の枠55の材料に熱可塑性樹脂を用いたので、第1の枠54と第2の枠55の溶着、例えば、超音波溶着により、電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定することができる。 In the present embodiment, since the thermoplastic resin is used as the material of the first frame 54 and the second frame 55, the electrolyte is welded by welding the first frame 54 and the second frame 55, for example, ultrasonic welding. The outer peripheral portion of the membrane-electrode assembly 13 can be fixed to the first frame 54 and the second frame 55.

本実施の形態の固定工程では、第2の枠55の外側から超音波ホーンを押し当てて電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定するのであるが、超音波ホーンによる溶融接合界面のみが加熱され溶融溶着ができ、周囲への熱影響を最小限に抑えることができ、電解質膜−電極−枠接合体14の信頼性(耐久性)を向上させることができる。 In the fixing step of the present embodiment, the ultrasonic horn is pressed from the outside of the second frame 55 to fix the outer peripheral portion of the electrolyte membrane-electrode assembly 13 to the first frame 54 and the second frame 55. However, only the melt-bonded interface by the ultrasonic horn is heated and melt-welded can be performed, the heat effect on the surroundings can be minimized, and the reliability (durability) of the electrolyte membrane-electrode-frame joint 14 is achieved. Can be improved.

(実施の形態2)
以下、本発明の電解質膜−電極−枠接合体の製造方法の実施の形態2を、従来例と異なる部分について、図面を参照しながら説明する。本実施の形態において、従来例または実施の形態1と同一構成については同一符号を付して、従来例と重複する説明は省略する。
(Embodiment 2)
Hereinafter, Embodiment 2 of the method for producing an electrolyte membrane-electrode-frame joint of the present invention will be described with reference to the drawings with reference to a portion different from the conventional example. In the present embodiment, the same components as those of the conventional example or the first embodiment are designated by the same reference numerals, and the description overlapping with the conventional example will be omitted.

図3は、本発明の実施の形態2の電解質膜−電極−枠接合体の製造方法で電解質膜−電極−枠接合体の変形を抑制できることを説明するための説明図である。 FIG. 3 is an explanatory diagram for explaining that the deformation of the electrolyte membrane-electrode-frame joint can be suppressed by the method for producing the electrolyte membrane-electrode-frame joint according to the second embodiment of the present invention.

本実施の形態の電解質膜−電極−枠接合体の製造方法で製造される電解質膜−電極−枠接合体14は、矩形の電解質膜−電極接合体13の周縁部を、額縁形状に成形された熱可塑性樹脂製の第1の枠54と第2の枠55とで挟んで、第2の枠55の外側から超音波ホーンを押し当てる超音波溶着法による溶着部8で電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定したものである。 In the electrolyte membrane-electrode-frame assembly 14 manufactured by the method for producing an electrolyte membrane-electrode-frame assembly of the present embodiment, the peripheral edge of the rectangular electrolyte membrane-electrode assembly 13 is formed into a frame shape. Electrolyte membrane-electrode assembly at the welded portion 8 by the ultrasonic welding method in which the ultrasonic horn is pressed from the outside of the second frame 55, sandwiched between the first frame 54 and the second frame 55 made of the thermoplastic resin. The outer peripheral portion of the body 13 is fixed to the first frame 54 and the second frame 55.

電解質膜−電極接合体13は、矩形の固体高分子からなる電解質膜2の両主面の略中央部に電解質膜2より小さい矩形の触媒層3が配置されたものである。 The electrolyte membrane-electrode assembly 13 is formed by arranging a rectangular catalyst layer 3 smaller than the electrolyte membrane 2 at substantially the center of both main surfaces of the electrolyte membrane 2 made of a rectangular solid polymer.

第1の枠54と第2の枠55は、電解質膜−電極接合体13の触媒層3の大部分が露出するように、開口部の内径が電解質膜−電極接合体13の触媒層3の外径よりも小さくて外径が電解質膜−電極接合体13の外径よりも大きい額縁形状である。 The first frame 54 and the second frame 55 have an inner diameter of the opening of the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 so that most of the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 is exposed. The frame shape is smaller than the outer diameter and the outer diameter is larger than the outer diameter of the electrolyte membrane-electrode assembly 13.

図3の(a)は、本実施の形態の電解質膜−電極−枠接合体14の平面図である。図3の(b)は、電解質膜−電極接合体13の触媒層3を平坦な吸着面(押圧面)で吸着する吸着治具10が第1の枠54の開口部内に収まり第1の枠54の上面が吸着面(押圧面)
よりも低い位置で吸着面(押圧面)と略平行になるように第1の枠54を吸着治具10の周囲に配置して、吸着治具10の吸着面(押圧面)と第1の枠54の上面の上に電解質膜−電極接合体13を載置しようとしている状態の(a)のE−E線断面と(a)のF−F線断面を示す概略断面図である。
FIG. 3A is a plan view of the electrolyte membrane-electrode-frame joint 14 of the present embodiment. In FIG. 3B, the adsorption jig 10 for adsorbing the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 on a flat adsorption surface (pressing surface) fits in the opening of the first frame 54 and is in the first frame. The upper surface of 54 is the suction surface (pressing surface)
The first frame 54 is arranged around the suction jig 10 so as to be substantially parallel to the suction surface (pressing surface) at a lower position than the suction surface (pressing surface) of the suction jig 10. It is a schematic cross-sectional view which shows the EE line cross section of (a) and the FF line cross section of (a) in a state where the electrolyte membrane-electrode assembly 13 is to be placed on the upper surface of the frame 54.

図3の(c)は、吸着治具10の吸着面(押圧面)と第1の枠54の上面の上に電解質膜−電極接合体13が載置され、吸着治具10の吸着面(押圧面)が電解質膜−電極接合体13を吸着している状態の(a)のE−E線断面と(a)のF−F線断面を示す概略断面図である。 In FIG. 3C, the electrolyte membrane-electrode assembly 13 is placed on the suction surface (pressing surface) of the suction jig 10 and the upper surface of the first frame 54, and the suction surface of the suction jig 10 (c). 3 is a schematic cross-sectional view showing the EE line cross section of (a) and the FF line cross section of (a) in a state where the pressing surface) is adsorbing the electrolyte membrane-electrode assembly 13.

図3の(d)は、電解質膜−電極接合体13の周縁部が熱可塑性樹脂製の第1の枠54と第2の枠55とで挟まれるように、電解質膜−電極接合体13の周縁部の上に第2の枠55を載置(積層)した状態の(a)のE−E線断面と(a)のF−F線断面を示す概略断面図である。 In FIG. 3D, the electrolyte membrane-electrode assembly 13 is shown so that the peripheral edge of the electrolyte membrane-electrode assembly 13 is sandwiched between the first frame 54 and the second frame 55 made of thermoplastic resin. It is a schematic cross-sectional view which shows the EE line cross section of (a) and the FF line cross section of (a) in the state where the 2nd frame 55 is placed (stacked) on the peripheral edge part.

図3の(e)は、第2の枠55の外側から超音波ホーンを押し当てる超音波溶着法による溶着部8で電解質膜−電極接合体13の外周部の複数箇所を第1の枠54と第2の枠55とに固定して電解質膜−電極−枠接合体14とした後に、電解質膜−電極−枠接合体14を吸着治具10から分離させている状態の(a)のC−C線断面を示す概略断面図である。 In FIG. 3 (e), a welding portion 8 is formed by an ultrasonic welding method in which an ultrasonic horn is pressed from the outside of the second frame 55, and a plurality of locations on the outer peripheral portion of the electrolyte membrane-electrode assembly 13 are formed on the first frame 54. C in the state of (a) in a state where the electrolyte membrane-electrode-frame assembly 14 is fixed to the second frame 55 and the electrolyte membrane-electrode-frame assembly 14 and then the electrolyte membrane-electrode-frame assembly 14 is separated from the adsorption jig 10. It is a schematic cross-sectional view which shows the-C line cross section.

図3の(f)は、吸着治具10の吸着面(押圧面)が電解質膜−電極接合体13の触媒層3から離れたことにより、電解質膜−電極接合体13における第1の枠54と第2の枠55とで挟まれていない部分(第1の枠54と第2の枠55の開口部に露出した部分)が弛んだ状態の(a)のE−E線断面を示す概略断面図である。 In FIG. 3 (f), the suction surface (pressing surface) of the suction jig 10 is separated from the catalyst layer 3 of the electrolyte membrane-electrode assembly 13, so that the first frame 54 in the electrolyte membrane-electrode assembly 13 is shown. The outline showing the EE line cross section of (a) in a state where the portion not sandwiched between the first frame 54 and the second frame 55 (the portion exposed to the opening of the first frame 54 and the second frame 55) is loosened. It is a sectional view.

図3の(g)は、加熱乾燥により電解質膜−電極接合体13が収縮した状態の(a)のE−E線断面を示す概略断面図である。図3の(h)は、加熱乾燥により電解質膜−電極接合体13が収縮した状態の(a)のF−F線断面を示す概略断面図である。 FIG. 3 (g) is a schematic cross-sectional view showing the EE line cross section of (a) in a state where the electrolyte membrane-electrode assembly 13 is contracted by heating and drying. FIG. 3H is a schematic cross-sectional view showing the FF line cross section of FIG. 3A in a state where the electrolyte membrane-electrode assembly 13 is contracted by heating and drying.

図4は、本発明の実施の形態2の電解質膜−電極−枠接合体の製造方法を示すフローチャートである。 FIG. 4 is a flowchart showing a method for manufacturing the electrolyte membrane-electrode-frame joint according to the second embodiment of the present invention.

以下、図3と図4を参照しながら、実施の形態2の電解質膜−電極−枠接合体14の製造方法を詳細に説明する。 Hereinafter, the method for producing the electrolyte membrane-electrode-frame joint 14 of the second embodiment will be described in detail with reference to FIGS. 3 and 4.

STEP1では、図3の(b)に示すように、第1の枠54を、吸着治具10が第1の枠54の開口部内に収まる(第1の枠54が吸着治具10の周囲を囲む)ように、且つ、第1の枠54の上面が、吸着治具10の上面を構成する吸着面(押圧面)よりも低い位置で吸着面(押圧面)と略平行になるように、配置(セット)する。 In STEP 1, as shown in FIG. 3B, the suction jig 10 fits in the opening of the first frame 54 (the first frame 54 is around the suction jig 10). (Enclose) and so that the upper surface of the first frame 54 is substantially parallel to the suction surface (pressing surface) at a position lower than the suction surface (pressing surface) constituting the upper surface of the suction jig 10. Place (set).

また、電解質膜2は、電解質膜2の両主面に触媒層3が塗布により形成されて、所定の大きさ、寸法の矩形に切断されて、電解質膜−電極接合体13となって、吸着治具10の上方に搬送される。 Further, in the electrolyte membrane 2, the catalyst layer 3 is formed by coating on both main surfaces of the electrolyte membrane 2, and is cut into a rectangle having a predetermined size and size to form an electrolyte membrane-electrode assembly 13 and adsorbed. It is conveyed above the jig 10.

STEP2では、図3の(c)に示すように、吸着治具10の吸着面(押圧面)と第1の枠54の上面の上に電解質膜−電極接合体13を載置する。 In STEP 2, as shown in FIG. 3C, the electrolyte membrane-electrode assembly 13 is placed on the suction surface (pressing surface) of the suction jig 10 and the upper surface of the first frame 54.

このとき、電解質膜−電極接合体13の触媒層3の周縁が第1の枠54の開口部の縁よりも内周側に入らないように位置合わせすると共に、吸着治具10の吸着面(押圧面)と
電解質膜−電極接合体13との間に空気溜まりができないように、また、できるだけ電解質膜−電極接合体13に皺ができないようにする。
At this time, the peripheral edge of the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 is aligned so as not to enter the inner peripheral side of the edge of the opening of the first frame 54, and the suction surface of the suction jig 10 ( The pressing surface) and the electrolyte membrane-electrode assembly 13 should be prevented from accumulating air, and the electrolyte membrane-electrode assembly 13 should be prevented from wrinkling as much as possible.

なお、このとき、吸着治具10の吸着面(押圧面)と電解質膜−電極接合体13との間に空気溜まりができないように、吸着治具10は、電解質膜−電極接合体13が吸着面に接触する前に、吸着面に開口した多数の孔から吸着面側の空気を吸引する吸引動作を開始しても構わない。 At this time, the electrolyte membrane-electrode assembly 13 is adsorbed on the adsorption jig 10 so that air does not collect between the adsorption surface (pressing surface) of the adsorption jig 10 and the electrolyte membrane-electrode assembly 13. Before contacting the surface, a suction operation of sucking air on the suction surface side from a large number of holes opened in the suction surface may be started.

STEP3で、吸着面に開口した多数の孔から吸着面側の空気を吸引する吸引動作を行って、吸着治具10の吸着面(押圧面)で電解質膜−電極接合体13の電極部(第1の枠54の開口部に露出する触媒層3)を吸着により固定してから、STEP4で、図3の(d)に示すように、電解質膜−電極接合体13の周縁部が第1の枠54と第2の枠55とで挟まれるように、電解質膜−電極接合体13の周縁部の上に第2の枠55を正しい位置に載置(積層)する。 In STEP 3, a suction operation is performed to suck air on the suction surface side from a large number of holes opened in the suction surface, and the electrode portion (third) of the electrolyte membrane-electrode assembly 13 is performed on the suction surface (pressing surface) of the suction jig 10. After fixing the catalyst layer 3) exposed to the opening of the frame 54 of No. 1 by adsorption, the peripheral portion of the electrolyte membrane-electrode assembly 13 is the first in STEP 4, as shown in FIG. 3 (d). The second frame 55 is placed (laminated) in the correct position on the peripheral edge of the electrolyte membrane-electrode assembly 13 so as to be sandwiched between the frame 54 and the second frame 55.

正しい位置に第2の枠55が載置(積層)されたときは、電解質膜−電極接合体13の触媒層3の周縁が第2の枠55の開口部の縁よりも内周側に入らない。 When the second frame 55 is placed (laminated) in the correct position, the peripheral edge of the catalyst layer 3 of the electrolyte membrane-electrode assembly 13 enters the inner peripheral side of the edge of the opening of the second frame 55. Absent.

また、電解質膜−電極接合体13を吸着治具10に吸着固定した状態で、電解質膜−電極接合体13の周縁部の上に第2の枠55を載置(積層)するので、第2の枠55を載置(積層)する作業で、電解質膜−電極接合体13の位置がずれたり、電解質膜−電極接合体13がめくれたりする現象の発生を抑制することができる。 Further, since the second frame 55 is placed (laminated) on the peripheral edge of the electrolyte membrane-electrode assembly 13 in a state where the electrolyte membrane-electrode assembly 13 is adsorbed and fixed to the adsorption jig 10, the second frame-electrode assembly 13 is placed (laminated) on the peripheral portion. In the work of placing (laminating) the frame 55 of the above, it is possible to suppress the occurrence of the phenomenon that the position of the electrolyte membrane-electrode assembly 13 is displaced and the electrolyte membrane-electrode assembly 13 is turned over.

そして、第2の枠55を正しい位置に載置(積層)した後で、電解質膜−電極接合体13の周縁部が、所定の力で、第1の枠54と第2の枠55とによって挟持されるように、第1の枠54と第2の枠55とをクランプする。 Then, after the second frame 55 is placed (laminated) in the correct position, the peripheral edge portion of the electrolyte membrane-electrode assembly 13 is formed by the first frame 54 and the second frame 55 with a predetermined force. The first frame 54 and the second frame 55 are clamped so as to be sandwiched.

次に、STEP6で、第2の枠55の外側から超音波ホーン81を所定の位置に当接させ、電解質膜2を介して、第1の枠54と第2の枠55とを、第2の枠55側からの超音波溶着法による溶着部8で接合して、固定部分が電解質膜−電極接合体13の周方向に点在するように電解質膜−電極接合体13の外周部(周縁部)を第1の枠54と第2の枠55とに固定する。 Next, in STEP 6, the ultrasonic horn 81 is brought into contact with a predetermined position from the outside of the second frame 55, and the first frame 54 and the second frame 55 are brought into contact with the second frame 55 via the electrolyte membrane 2. The outer peripheral portion (periphery) of the electrolyte membrane-electrode assembly 13 is bonded by the welding portion 8 by the ultrasonic welding method from the frame 55 side of the frame 55 so that the fixed portions are scattered in the circumferential direction of the electrolyte membrane-electrode assembly 13. Part) is fixed to the first frame 54 and the second frame 55.

次に、STEP7で、図3の(e)に示すように、吸着治具10の吸着面(押圧面)での電解質膜−電極接合体13の電極部(第1の枠54の開口部に露出する触媒層3)の吸着を解除し、STEP8で、クランプを解除し、次のSTEP9で、電解質膜−電極−枠接合体14を吸着治具10から取り出す。 Next, in STEP 7, as shown in FIG. 3 (e), the electrode portion of the electrolyte membrane-electrode assembly 13 on the adsorption surface (pressing surface) of the adsorption jig 10 (in the opening of the first frame 54). The adsorption of the exposed catalyst layer 3) is released, the clamp is released in STEP8, and the electrolyte membrane-electrode-frame assembly 14 is taken out from the adsorption jig 10 in the next STEP9.

このときの電解質膜−電極−枠接合体14は、図3の(f)に示すように、第1の枠54と第2の枠55の開口部に露出する部分の電解質膜−電極接合体13に弛みがあるが、加熱、乾燥による収縮で、図3の(g)及び(h)に示すように、第1の枠54と第2の枠55の開口部に露出する部分の電解質膜−電極接合体13の弛みは無くなる。 As shown in FIG. 3 (f), the electrolyte membrane-electrode assembly 14 at this time is an electrolyte membrane-electrode assembly in a portion exposed to the openings of the first frame 54 and the second frame 55. Although there is slack in 13, the electrolyte membrane of the portion exposed to the openings of the first frame 54 and the second frame 55 due to shrinkage due to heating and drying, as shown in (g) and (h) of FIG. -The slack of the electrode assembly 13 is eliminated.

また、加熱、乾燥後においても、図3の(h)に示すように、電解質膜−電極接合体13の外周部における第1の枠54と第2の枠55とで挟まれ第1の枠54と第2の枠55とに固定されていない部分が電解質膜−電極接合体13の中央側に変位していない。 Further, even after heating and drying, as shown in FIG. 3H, the first frame is sandwiched between the first frame 54 and the second frame 55 on the outer peripheral portion of the electrolyte membrane-electrode assembly 13. The portion not fixed to the 54 and the second frame 55 is not displaced toward the center of the electrolyte membrane-electrode assembly 13.

なお、STEP1で、第1の枠54を、吸着治具10が第1の枠54の開口部内に収まる(第1の枠54が吸着治具10の周囲を囲む)ように、且つ、第1の枠54の上面が、吸着治具10の上面を構成する吸着面(押圧面)よりも低い位置で吸着面(押圧面)と略
平行になるように、配置(セット)するときの第1の枠54の上面と吸着治具10の吸着面(押圧面)との高低差は、加熱乾燥工程で第1の枠54と第2の枠55とで挟まれ第1の枠54と第2の枠55とに固定されていない部分(電解質膜−電極接合体13の外周部の一部)が電解質膜−電極接合体13の中央側に変位しないように、且つ加熱乾燥工程後に電解質膜−電極接合体13に弛みが残らないように設定してある。
In STEP 1, the first frame 54 is placed so that the suction jig 10 fits in the opening of the first frame 54 (the first frame 54 surrounds the suction jig 10), and the first frame 54 is first. First, when the upper surface of the frame 54 is arranged (set) so as to be substantially parallel to the suction surface (pressing surface) at a position lower than the suction surface (pressing surface) constituting the upper surface of the suction jig 10. The height difference between the upper surface of the frame 54 and the suction surface (pressing surface) of the suction jig 10 is sandwiched between the first frame 54 and the second frame 55 in the heating and drying step, and the first frame 54 and the second frame 54 and the second frame 55 are sandwiched between the first frame 54 and the second frame 55. The portion not fixed to the frame 55 (electrolyte membrane-a part of the outer peripheral portion of the electrode assembly 13) is not displaced toward the center side of the electrolyte membrane-electrode assembly 13, and the electrolyte membrane- after the heating and drying step. The electrode assembly 13 is set so that no slack remains.

この高低差(第1の枠54の上面を基準とした、吸着治具10の吸着面(押圧面)の高さ)は、試行錯誤を重ねて導き出すことができるが、電解質膜−電極接合体13(の電解質膜2)の膨潤率と寸法などを基に算出しても構わない。 This height difference (the height of the suction surface (pressing surface) of the suction jig 10 with respect to the upper surface of the first frame 54) can be derived by repeating trial and error, but the electrolyte membrane-electrode assembly It may be calculated based on the swelling rate and dimensions of 13 (electrolyte membrane 2).

本実施の形態では、電解質膜−電極接合体13(の電解質膜2)を、第1の枠54と第2の枠55とに固定する溶着部8の形成を超音波溶着により行っている。 In the present embodiment, the welding portion 8 for fixing the electrolyte membrane-electrode assembly 13 (electrolyte membrane 2) to the first frame 54 and the second frame 55 is formed by ultrasonic welding.

第1の枠54と第2の枠55と電解質膜2のそれぞれの材料が混在する溶着部8を形成することで、第1の枠54および第2の枠55と電解質膜2の固定性をより向上することができ、乾湿寸法変化による電解質膜2への応力の集中を避けることができ、電解質膜2の長期耐久性を向上することができる。 By forming the welded portion 8 in which the materials of the first frame 54, the second frame 55, and the electrolyte membrane 2 are mixed, the fixing property of the first frame 54, the second frame 55, and the electrolyte membrane 2 can be improved. It can be further improved, stress concentration on the electrolyte membrane 2 due to a change in wet and dry dimensions can be avoided, and the long-term durability of the electrolyte membrane 2 can be improved.

第1の枠54と第2の枠55とは、従来例の第1の枠51と第2の枠52と同様の形状にして、第1の枠54と第2の枠55との境界部及び溶着部8を、第2の枠55の外側から、従来例の第3の枠53と同様の形状の第3の枠で覆っても構わない。 The first frame 54 and the second frame 55 have the same shape as the first frame 51 and the second frame 52 of the conventional example, and the boundary portion between the first frame 54 and the second frame 55. And the welded portion 8 may be covered from the outside of the second frame 55 with a third frame having the same shape as the third frame 53 of the conventional example.

この場合は、第3の枠を、第1の枠54及び第2の枠55と同一の樹脂材料で形成し、第1の枠54及び第2の枠55に、直接、第3の枠を射出成形すると、接合力が高まり、電解質膜−電極−枠接合体14の一体性が向上し、ハンドリング性がよくなる。 In this case, the third frame is formed of the same resin material as the first frame 54 and the second frame 55, and the third frame is directly attached to the first frame 54 and the second frame 55. When injection molding is performed, the bonding force is increased, the integrity of the electrolyte membrane-electrode-frame bonded body 14 is improved, and the handleability is improved.

溶着部8の形成においては、レーザを用いた溶融接合法を用いてもよい。レーザを用いた場合は、非接触で溶着部8を形成することが可能となり、第1の枠54と第2の枠55と電解質膜2のそれぞれの材料が混在する溶着部8に、電解質膜2の劣化の原因となるコンタミが混入することを防止でき、長期に性能を保証することが可能となる。 In forming the welded portion 8, a melt joining method using a laser may be used. When a laser is used, the welded portion 8 can be formed in a non-contact manner, and the electrolyte membrane is formed on the welded portion 8 in which the materials of the first frame 54, the second frame 55, and the electrolyte membrane 2 are mixed. It is possible to prevent contamination that causes deterioration of 2 and guarantee the performance for a long period of time.

この場合のレーザ光は、少なくとも電解質膜2に吸収される波長のものを選択することが望ましく、第1の枠54または第2の枠55を透過し、電解質膜2に吸収される波長のレーザ光を用いることがより望ましい。これにより、第1の枠54または第2の枠55を透過したレーザ光が電解質膜2で吸収され、レーザ光照射部が高温となり、その熱によりレーザ光が照射された電解質膜2部を挟持する第1の枠54及び第2の枠55枠を溶融させ、溶融接合が可能となる。 In this case, it is desirable to select a laser beam having a wavelength that is absorbed by the electrolyte membrane 2, and a laser having a wavelength that passes through the first frame 54 or the second frame 55 and is absorbed by the electrolyte membrane 2. It is more desirable to use light. As a result, the laser light transmitted through the first frame 54 or the second frame 55 is absorbed by the electrolyte membrane 2, the temperature of the laser light irradiation portion becomes high, and the two portions of the electrolyte membrane irradiated with the laser light by the heat are sandwiched. The first frame 54 and the second frame 55 are melted to enable fusion bonding.

本実施の形態では、縦方向と横方向で等方的な特性を持つ電解質膜2を用いたため、発電領域全周において溶着部8の間隔を等間隔として、電解質膜2の乾燥収縮もしくは湿潤膨張の寸法変化による溶着部8への応力の集中を均等にしたが、縦方向と横方向で異方性を持つ電解質膜2を用いる場合は、縦方向と横方向のそれぞれの電解質膜2の特性に合せた間隔に調整すれば良い。 In the present embodiment, since the electrolyte membrane 2 having isotropic characteristics in the vertical direction and the horizontal direction is used, the electrolyte membrane 2 is dried and contracted or wet-expanded with the welded portions 8 at equal intervals over the entire circumference of the power generation region. When the electrolyte membrane 2 having anisotropy in the vertical direction and the horizontal direction is used, the characteristics of the electrolyte membrane 2 in the vertical direction and the horizontal direction are equalized. The interval may be adjusted according to.

本実施の形態では、シール部材7と電解質膜2の端部をできる限り近づけることで、発電に寄与しない電解質膜2の量を削減している。シール部材7と電解質膜2の端部の間隔は、乾燥により収縮した電解質膜2がシール部材7より内側に到達しなければ良い。 In the present embodiment, the amount of the electrolyte membrane 2 that does not contribute to power generation is reduced by bringing the end portions of the seal member 7 and the electrolyte membrane 2 as close as possible. The distance between the end portion of the seal member 7 and the electrolyte membrane 2 may be such that the electrolyte membrane 2 contracted by drying does not reach the inside of the seal member 7.

溶着部8の間隔が広い場合は、溶融接合されていない箇所の電解質膜2の変位は大きくなるため、シール部材7と電解質膜2の端部の間隔を大きくすれば良い。シール部材7と
電解質膜2の端部の間隔を大きくした場合は、電解質膜2の端部を迂回して、一方のガスが他方の電極にリークする際のリーク経路長を長くすることがでるため、ガスリークを低減できてよい。
When the distance between the welded portions 8 is wide, the displacement of the electrolyte membrane 2 at the portion where the welding portion 8 is not welded becomes large, so that the distance between the sealing member 7 and the end portion of the electrolyte membrane 2 may be increased. When the distance between the sealing member 7 and the end of the electrolyte membrane 2 is increased, the leak path length when one gas leaks to the other electrode can be lengthened by bypassing the end of the electrolyte membrane 2. Therefore, the gas leak may be reduced.

本実施の形態では、電解質膜2の両主面に触媒層3が塗布により形成された電解質膜−電極接合体13の外周部を、第1の枠54と第2の枠55とで挟持したものを電解質膜−電極−枠接合体14としたが、触媒層3の外側にガス拡散層を積層したものを電解質膜−電極接合体として、その電解質膜−電極接合体の外周部を、第1の枠と第2の枠とで挟持したものを電解質膜−電極−枠接合体としても構わない。 In the present embodiment, the outer peripheral portion of the electrolyte membrane-electrode assembly 13 in which the catalyst layer 3 is coated on both main surfaces of the electrolyte membrane 2 is sandwiched between the first frame 54 and the second frame 55. The electrolyte membrane-electrode assembly 14 was used as the electrolyte membrane-electrode assembly, but the one in which the gas diffusion layer was laminated on the outside of the catalyst layer 3 was used as the electrolyte membrane-electrode assembly, and the outer peripheral portion of the electrolyte membrane-electrode assembly was designated as the first. What is sandwiched between the first frame and the second frame may be an electrolyte membrane-electrode-frame assembly.

また、本実施の形態では、触媒層3の寸法を、第1の枠54及び第2の枠55の開口部の内径寸法より大きくしたが、触媒層3の全面が第1の枠54及び第2の枠55の開口部に露出するように、触媒層3の寸法を、第1の枠54及び第2の枠55の開口部の内径寸法より小さくしても構わない。 Further, in the present embodiment, the size of the catalyst layer 3 is made larger than the inner diameter of the openings of the first frame 54 and the second frame 55, but the entire surface of the catalyst layer 3 is the first frame 54 and the first frame 54 and the first. The size of the catalyst layer 3 may be smaller than the inner diameter of the openings of the first frame 54 and the second frame 55 so as to be exposed to the opening of the frame 55 of 2.

以上、説明したように本実施の形態の電解質膜−電極−枠接合体14の製造方法は、電解質膜2と電解質膜2を挟んで両主面に配置される電極(触媒層3)とを有する電解質膜−電極接合体13の外周部を、電解質膜−電極接合体13の電極(触媒層3)が露出するように、内径が電解質膜−電極接合体13の外径よりも小さくて外径が電解質膜−電極接合体13の外径よりも大きい額縁形状の第1の枠54と第2の枠55とで挟持した燃料電池用の電解質膜−電極−枠接合体14の製造方法である。 As described above, in the method for manufacturing the electrolyte membrane-electrode-frame junction 14 of the present embodiment, the electrolyte membrane 2 and the electrodes (catalyst layer 3) arranged on both main surfaces with the electrolyte membrane 2 sandwiched between the electrolyte membrane 2 and the electrodes (catalyst layer 3) are arranged. The inner diameter of the outer peripheral portion of the electrolyte membrane-electrode junction 13 is smaller than the outer diameter of the electrolyte membrane-electrode junction 13 so that the electrode (catalyst layer 3) of the electrolyte membrane-electrode junction 13 is exposed. A method for manufacturing an electrolyte membrane-electrode-frame joint 14 for a fuel cell sandwiched between a first frame 54 and a second frame 55 having a frame shape having a diameter larger than the outer diameter of the electrolyte membrane-electrode joint 13. is there.

そして、本実施の形態の電解質膜−電極−枠接合体14の製造方法は、電解質膜−電極接合体13の電極(触媒層3)を平坦な吸着面で吸着する吸着治具10が第1の枠54の開口部内に収まり第1の枠54の上面が吸着面よりも低い位置で吸着面と略平行になるように第1の枠54を吸着治具10の周囲に配置する配置工程(図3の(b)、図4のSTEP1)と、配置工程後に、吸着治具10の吸着面と第1の枠54の上面の上に電解質膜−電極接合体13を載置する載置工程(図3の(c)、図4のSTEP2)と、吸着治具10の吸着面で電解質膜−電極接合体13の電極(触媒層3)を吸着する吸着工程(図3の(c)、図4のSTEP3)と、吸着工程中に、電解質膜−電極接合体13の外周部が第1の枠54と第2の枠55とで挟まれるように電解質膜−電極接合体13の外周部に第2の枠55を積層する積層工程(図3の(d)、図4のSTEP4)と、積層工程後に、固定部分が電解質膜−電極接合体13の周方向に点在するように電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定する固定工程(図3の(e)、図4のSTEP6)と、固定工程後に、第1の枠54と第2の枠55と電解質膜−電極接合体13の少なくともいずれか一つに熱を加える加熱工程(第1の枠54及び第2の枠55に、直接、第3の枠を射出成形する工程または電解質膜−電極接合体13を加熱により乾燥させる工程など)と、を有している。 Then, in the method for manufacturing the electrolyte membrane-electrode-frame joint 14 of the present embodiment, the suction jig 10 that sucks the electrode (catalyst layer 3) of the electrolyte membrane-electrode joint 13 on a flat suction surface is the first. The first frame 54 is arranged around the suction jig 10 so as to fit in the opening of the frame 54 and the upper surface of the first frame 54 is substantially parallel to the suction surface at a position lower than the suction surface. (B) of FIG. 3 and STEP1) of FIG. 4, and the placement step of placing the electrolyte film-electrode joint 13 on the suction surface of the suction jig 10 and the upper surface of the first frame 54 after the placement step. ((C) of FIG. 3, STEP 2 of FIG. 4) and the adsorption step of adsorbing the electrode (catalyst layer 3) of the electrolyte film-electrode joint 13 on the adsorption surface of the adsorption jig 10 ((c) of FIG. 3 STEP3) of FIG. 4 and the outer peripheral portion of the electrolyte membrane-electrode junction 13 so that the outer peripheral portion of the electrolyte membrane-electrode junction 13 is sandwiched between the first frame 54 and the second frame 55 during the adsorption step. After the laminating step ((d) of FIG. 3 and STEP 4 of FIG. 4) in which the second frame 55 is laminated on the surface, and after the laminating step, the electrolyte is scattered so that the fixed portions are scattered in the circumferential direction of the electrolyte film-electrode junction 13. A fixing step ((e) of FIG. 3 and STEP 6 of FIG. 4) for fixing the outer peripheral portion of the film-electrode joint 13 to the first frame 54 and the second frame 55, and a first frame after the fixing step. Heating step of applying heat to at least one of 54, the second frame 55, and the electrolyte membrane-electrode joint 13 (the third frame is injection-molded directly into the first frame 54 and the second frame 55). Or a step of drying the electrolyte membrane-electrode junction 13 by heating, etc.).

そして、本実施の形態の電解質膜−電極−枠接合体14の製造方法は、加熱工程で、第1の枠54と第2の枠55とで挟まれ第1の枠54と第2の枠55とに固定されていない部分(電解質膜−電極接合体13の外周部の一部)が、電解質膜−電極接合体13の中央側に変位しないように、且つ、加熱工程後に電解質膜−電極接合体13に弛みが残らないように、吸着治具10の吸着面の高さを、配置工程で配置後の第1の枠54の上面よりも所定高さだけ高くなるようにしたことを特徴とする電解質膜−電極−枠接合体14の製造方法である。 Then, in the method for manufacturing the electrolyte membrane-electrode-frame assembly 14 of the present embodiment, the first frame 54 and the second frame are sandwiched between the first frame 54 and the second frame 55 in the heating step. The portion not fixed to 55 (a part of the outer peripheral portion of the electrolyte membrane-electrode assembly 13) is not displaced toward the center side of the electrolyte membrane-electrode assembly 13, and the electrolyte membrane-electrode is not displaced after the heating step. The feature is that the height of the suction surface of the suction jig 10 is set to be higher than the upper surface of the first frame 54 after placement in the placement step by a predetermined height so that no slack remains in the joint body 13. This is a method for manufacturing the electrolyte membrane-electrode-frame assembly 14.

本実施の形態の電解質膜−電極−枠接合体14の製造方法は、吸着治具10が第1の枠54の開口部内に収まり第1の枠54の上面が吸着治具10の吸着面よりも低い位置で吸着治具10の吸着面と略平行になるように第1の枠54を吸着治具10の周囲に配置して
から、吸着治具10の吸着面と第1の枠54の上面の上に電解質膜−電極接合体13を載置し、電解質膜−電極接合体13の外周部が第1の枠54と第2の枠55とで挟まれるように電解質膜−電極接合体13の外周部に第2の枠55を積層して、電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定するのであるが、第1の枠54の上面を基準とする吸着治具10の吸着面の高さは、後の加熱工程で、第1の枠54と第2の枠55とで挟まれ第1の枠54と第2の枠55とに固定されていない部分(電解質膜−電極接合体13の外周部の一部)が、電解質膜−電極接合体13の中央側に変位しないように、且つ、加熱工程後に電解質膜−電極接合体13に弛みが残らないように設定された高さである。
In the method for manufacturing the electrolyte membrane-electrode-frame assembly 14 of the present embodiment, the suction jig 10 is housed in the opening of the first frame 54, and the upper surface of the first frame 54 is from the suction surface of the suction jig 10. After arranging the first frame 54 around the suction jig 10 so as to be substantially parallel to the suction surface of the suction jig 10 at a low position, the suction surface of the suction jig 10 and the first frame 54 The electrolyte membrane-electrode assembly 13 is placed on the upper surface, and the electrolyte membrane-electrode assembly 13 is sandwiched between the first frame 54 and the second frame 55 so that the outer peripheral portion of the electrolyte membrane-electrode assembly 13 is sandwiched between the first frame 54 and the second frame 55. A second frame 55 is laminated on the outer peripheral portion of 13, and the outer peripheral portion of the electrolyte membrane-electrode assembly 13 is fixed to the first frame 54 and the second frame 55. The first frame 54 The height of the suction surface of the suction jig 10 with respect to the upper surface of the first frame 54 and the second frame 55 is sandwiched between the first frame 54 and the second frame 55 in the subsequent heating step. The part that is not fixed to and (a part of the outer peripheral portion of the electrolyte membrane-electrode assembly 13) is not displaced toward the center side of the electrolyte membrane-electrode assembly 13, and the electrolyte membrane-electrode assembly is joined after the heating step. The height is set so that no slack remains in the body 13.

つまり、電解質膜−電極接合体13において、加熱工程によって後に収縮する寸法分だけ予め弛ませた状態で、電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定するため、加熱工程で、第1の枠54と第2の枠55とで挟まれ第1の枠54と第2の枠55とに固定されていない部分(電解質膜−電極接合体13の外周部の一部)が、電解質膜−電極接合体13の中央側に変位せず、且つ加熱工程後に電解質膜−電極接合体13に弛みが残らない電解質膜−電極−枠接合体14を得ることができる。 That is, in the electrolyte membrane-electrode assembly 13, the outer peripheral portion of the electrolyte membrane-electrode assembly 13 is combined with the first frame 54 and the second frame 55 in a state where the electrolyte membrane-electrode assembly 13 is loosened in advance by the size that shrinks later due to the heating step. In the heating step, a portion sandwiched between the first frame 54 and the second frame 55 and not fixed to the first frame 54 and the second frame 55 (electrolyte membrane-electrode assembly 13). The electrolyte membrane-electrode assembly 14 is not displaced toward the center of the electrolyte membrane-electrode assembly 13 and no slack remains in the electrolyte membrane-electrode assembly 13 after the heating step. Obtainable.

そして、加熱乾燥により収縮する電解質膜−電極接合体13によって第1の枠54と第2の枠55とが開口部の内周側に引っ張られることを抑制できるため、電解質膜−電極−枠接合体14が変形するのを抑制でき、金型内で電解質膜−電極−枠接合体14がずれ、金型で電解質膜−電極−枠接合体14をつぶしてしまうことがなくなり、電解質膜−電極接合体13の寿命が低下しない電解質膜−電極−枠接合体14の作製が可能となる。 Then, since it is possible to prevent the first frame 54 and the second frame 55 from being pulled toward the inner peripheral side of the opening by the electrolyte film-electrode joint 13 that shrinks due to heating and drying, the electrolyte film-electrode-frame joint Deformation of the body 14 can be suppressed, the electrolyte membrane-electrode-frame junction 14 does not shift in the mold, and the electrolyte membrane-electrode-frame junction 14 is not crushed by the mold, and the electrolyte membrane-electrode It is possible to fabricate the electrolyte membrane-electrode-frame joint 14 in which the life of the joint 13 is not shortened.

本実施の形態では、第1の枠54と第2の枠55の材料に熱可塑性樹脂を用いたので、第1の枠54と第2の枠55の溶着、例えば、超音波溶着により、電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定することができる。 In the present embodiment, since the thermoplastic resin is used as the material of the first frame 54 and the second frame 55, the electrolyte is welded by welding the first frame 54 and the second frame 55, for example, ultrasonic welding. The outer peripheral portion of the membrane-electrode assembly 13 can be fixed to the first frame 54 and the second frame 55.

本実施の形態の固定工程では、第2の枠55の外側から超音波ホーンを押し当てて電解質膜−電極接合体13の外周部を第1の枠54と第2の枠55とに固定するのであるが、超音波ホーンによる溶融接合界面のみが加熱され溶融溶着ができ、周囲への熱影響を最小限に抑えることができ、電解質膜−電極−枠接合体14の信頼性(耐久性)を向上させることができる。 In the fixing step of the present embodiment, the ultrasonic horn is pressed from the outside of the second frame 55 to fix the outer peripheral portion of the electrolyte membrane-electrode assembly 13 to the first frame 54 and the second frame 55. However, only the melt-bonded interface by the ultrasonic horn is heated and melt-welded can be performed, the heat effect on the surroundings can be minimized, and the reliability (durability) of the electrolyte membrane-electrode-frame joint 14 is achieved. Can be improved.

本発明の電解質膜−電極−枠接合体の製造方法により製造された電解質膜−電極−枠接合体は、加熱乾燥によって電解質膜−電極−枠接合体が変形するのを抑制できるため、電解質膜−電極接合体の寿命低下を防ぐことができる。したがって、家庭用コージェネレーションや車載用の燃料電池として好適に用いることができる。 The electrolyte membrane-electrode-frame junction produced by the method for producing an electrolyte membrane-electrode-frame junction of the present invention can suppress deformation of the electrolyte membrane-electrode-frame junction due to heating and drying, and thus can suppress deformation of the electrolyte membrane-electrode-frame junction. -It is possible to prevent the life of the electrode assembly from being shortened. Therefore, it can be suitably used as a household cogeneration system or an in-vehicle fuel cell.

2 電解質膜
3 触媒層
8 溶着部
10 吸着治具
13 電解質膜−電極接合体
14 電解質膜−電極−枠接合体
54 第1の枠
55 第2の枠
81 超音波ホーン
2 Electrolyte film 3 Catalyst layer 8 Welding part 10 Adsorption jig 13 Electrolyte membrane-electrode assembly 14 Electrolyte membrane-electrode-frame assembly 54 First frame 55 Second frame 81 Ultrasonic horn

Claims (4)

電解質膜と前記電解質膜を挟んで両主面に配置される電極とを有する電解質膜−電極接合体の外周部を、前記電解質膜−電極接合体の前記電極が露出するように、内径が前記電解質膜−電極接合体の外径よりも小さくて外径が前記電解質膜−電極接合体の外径よりも大きい額縁形状の第1の枠と第2の枠とで挟持した燃料電池用の電解質膜−電極−枠接合体の製造方法であって、
前記電解質膜−電極接合体の外周部を前記第1の枠と前記第2の枠とで挟む狭持工程と、前記狭持工程後に、前記第1の枠の開口部に露出する前記電解質膜−電極接合体の前記電極を前記電極に略平行な押圧面で前記第1の枠側から前記第2の枠側に押す押圧工程と、前記押圧工程後に、固定部分が前記電解質膜−電極接合体の周方向に点在するように前記電解質膜−電極接合体の外周部を前記第1の枠と前記第2の枠とに固定する固定工程と、前記固定工程後に、前記第1の枠と前記第2の枠と前記電解質膜−電極接合体の少なくともいずれか一つに熱を加える加熱工程と、を有し、
前記加熱工程で、前記第1の枠と前記第2の枠とで挟まれ前記第1の枠と前記第2の枠とに固定されていない部分が、前記電解質膜−電極接合体の中央側に変位しないように、且つ前記加熱工程後に前記電解質膜−電極接合体に弛みが残らないように、前記押圧工程では、前記電極と接触した押圧面を前記電解質膜−電極接合体の厚み方向の前記第2の枠側に所定距離だけ移動させる、
ことを特徴とする、電解質膜−電極−枠接合体の製造方法。
The inner diameter is such that the outer peripheral portion of the electrolyte membrane-electrode joint having the electrolyte membrane and the electrodes arranged on both main surfaces sandwiching the electrolyte membrane is exposed so that the electrodes of the electrolyte membrane-electrode joint are exposed. An electrolyte for a fuel cell sandwiched between a frame-shaped first frame and a second frame having an outer diameter smaller than the outer diameter of the electrolyte membrane-electrode joint and larger than the outer diameter of the electrolyte membrane-electrode joint. A method for manufacturing a film-electrode-frame joint, which is a method for manufacturing a film-electrode-frame joint.
The electrolyte membrane-the electrolyte membrane exposed to the opening of the first frame after the holding step of sandwiching the outer peripheral portion of the electrolyte membrane-electrode assembly between the first frame and the second frame, and the holding step. -The pressing step of pushing the electrode of the electrode assembly from the first frame side to the second frame side with a pressing surface substantially parallel to the electrode, and after the pressing step, the fixed portion is the electrolyte membrane-electrode joining. A fixing step of fixing the outer peripheral portion of the electrolyte membrane-electrode assembly to the first frame and the second frame so as to be scattered in the circumferential direction of the body, and after the fixing step, the first frame. And a heating step of applying heat to at least one of the second frame and the electrolyte membrane-electrode assembly.
In the heating step, the portion sandwiched between the first frame and the second frame and not fixed to the first frame and the second frame is the central side of the electrolyte membrane-electrode assembly. In the pressing step, the pressing surface in contact with the electrode is in the thickness direction of the electrolyte membrane-electrode assembly so as not to be displaced to the surface and to prevent slack from remaining in the electrolyte membrane-electrode assembly after the heating step. Move to the second frame side by a predetermined distance,
A method for producing an electrolyte membrane-electrode-frame joint.
電解質膜と前記電解質膜を挟んで両主面に配置される電極とを有する電解質膜−電極接合体の外周部を、前記電解質膜−電極接合体の前記電極が露出するように、内径が前記電解質膜−電極接合体の外径よりも小さくて外径が前記電解質膜−電極接合体の外径よりも大きい額縁形状の第1の枠と第2の枠とで挟持した燃料電池用の電解質膜−電極−枠接合体の製造方法であって、
前記電解質膜−電極接合体の前記電極を平坦な吸着面で吸着する吸着治具が前記第1の枠の開口部内に収まり前記第1の枠の上面が前記吸着面よりも低い位置で前記吸着面と略平行になるように前記第1の枠を前記吸着治具の周囲に配置する配置工程と、
前記配置工程後に、前記吸着治具の前記吸着面と前記第1の枠の前記上面の上に前記電解質膜−電極接合体を載置する載置工程と、
前記吸着治具の前記吸着面で、前記電解質膜−電極接合体の前記電極を吸着する吸着工程と、
前記吸着工程中に、前記電解質膜−電極接合体の外周部が前記第1の枠と前記第2の枠とで挟まれるように前記電解質膜−電極接合体の外周部に前記第2の枠を積層する積層工程と、
前記積層工程後に、固定部分が前記電解質膜−電極接合体の周方向に点在するように前記電解質膜−電極接合体の外周部を前記第1の枠と前記第2の枠とに固定する固定工程と、前記固定工程後に、前記第1の枠と前記第2の枠と前記電解質膜−電極接合体の少なくともいずれか一つに熱を加える加熱工程と、を有し、
前記加熱工程で、前記第1の枠と前記第2の枠とで挟まれ前記第1の枠と前記第2の枠とに固定されていない部分が、前記電解質膜−電極接合体の中央側に変位しないように、且つ前記加熱工程後に前記電解質膜−電極接合体に弛みが残らないように、前記吸着面の高さを、前記配置工程で配置後の前記第1の枠の前記上面よりも所定高さだけ高くなるようにした、
ことを特徴とする、電解質膜−電極−枠接合体の製造方法。
The inner diameter is such that the outer peripheral portion of the electrolyte membrane-electrode joint having the electrolyte membrane and the electrodes arranged on both main surfaces sandwiching the electrolyte membrane is exposed so that the electrodes of the electrolyte membrane-electrode joint are exposed. An electrolyte for a fuel cell sandwiched between a frame-shaped first frame and a second frame having an outer diameter smaller than the outer diameter of the electrolyte membrane-electrode joint and larger than the outer diameter of the electrolyte membrane-electrode joint. A method for manufacturing a film-electrode-frame joint, which is a method for manufacturing a film-electrode-frame joint.
The adsorption jig that adsorbs the electrode of the electrolyte membrane-electrode assembly on a flat adsorption surface fits in the opening of the first frame, and the upper surface of the first frame is lower than the adsorption surface. An arrangement step of arranging the first frame around the suction jig so as to be substantially parallel to the surface, and
After the placement step, a mounting step of placing the electrolyte membrane-electrode assembly on the suction surface of the suction jig and the upper surface of the first frame, and
A adsorption step of adsorbing the electrode of the electrolyte membrane-electrode assembly on the adsorption surface of the adsorption jig.
During the adsorption step, the second frame is placed on the outer peripheral portion of the electrolyte membrane-electrode assembly so that the outer peripheral portion of the electrolyte membrane-electrode assembly is sandwiched between the first frame and the second frame. And the laminating process of laminating
After the laminating step, the outer peripheral portion of the electrolyte membrane-electrode assembly is fixed to the first frame and the second frame so that the fixing portions are scattered in the circumferential direction of the electrolyte membrane-electrode assembly. It has a fixing step and a heating step of applying heat to at least one of the first frame, the second frame, and the electrolyte membrane-electrode assembly after the fixing step.
In the heating step, the portion sandwiched between the first frame and the second frame and not fixed to the first frame and the second frame is the central side of the electrolyte membrane-electrode assembly. The height of the adsorption surface is set from the upper surface of the first frame after the arrangement in the arrangement step so as not to be displaced to the surface and no slack remains in the electrolyte membrane-electrode assembly after the heating step. I made it higher by the specified height,
A method for producing an electrolyte membrane-electrode-frame joint.
前記第1の枠と前記第2の枠の材料が熱可塑性樹脂である、ことを特徴とする、請求項1または2に記載の電解質膜−電極−枠接合体の製造方法。 The method for producing an electrolyte membrane-electrode-frame joint according to claim 1 or 2, wherein the material of the first frame and the second frame is a thermoplastic resin. 前記固定工程では、前記第1の枠または前記第2の枠の外側から超音波ホーンを押し当てて前記電解質膜−電極接合体の外周部を前記第1の枠と前記第2の枠とに固定する、ことを特徴とする、請求項3に記載の電解質膜−電極−枠接合体の製造方法。 In the fixing step, an ultrasonic horn is pressed from the outside of the first frame or the second frame to form the outer peripheral portion of the electrolyte membrane-electrode assembly into the first frame and the second frame. The method for producing an electrolyte membrane-electrode-frame assembly according to claim 3, wherein the electrolyte membrane-electrode-frame assembly is fixed.
JP2018009861A 2018-01-24 2018-01-24 Method for manufacturing electrolyte membrane-electrode-frame joint Active JP6857812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018009861A JP6857812B2 (en) 2018-01-24 2018-01-24 Method for manufacturing electrolyte membrane-electrode-frame joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018009861A JP6857812B2 (en) 2018-01-24 2018-01-24 Method for manufacturing electrolyte membrane-electrode-frame joint

Publications (2)

Publication Number Publication Date
JP2019129064A JP2019129064A (en) 2019-08-01
JP6857812B2 true JP6857812B2 (en) 2021-04-14

Family

ID=67471305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009861A Active JP6857812B2 (en) 2018-01-24 2018-01-24 Method for manufacturing electrolyte membrane-electrode-frame joint

Country Status (1)

Country Link
JP (1) JP6857812B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755726B (en) * 2020-07-10 2024-02-20 魔方氢能源科技(江苏)有限公司 Membrane electrode preparation method, membrane electrode and fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025379A1 (en) * 2003-09-09 2005-03-24 Takano Co., Ltd. Method of producing structural body that functions as seat, backrest, partition, etc., and structural body produced by the method
JP2006196328A (en) * 2005-01-14 2006-07-27 Nitto Denko Corp Method and apparatus for manufacturing battery cell
JP5162884B2 (en) * 2006-11-22 2013-03-13 富士電機株式会社 Solid polymer electrolyte fuel cell
JP5870643B2 (en) * 2011-11-21 2016-03-01 凸版印刷株式会社 Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP5575345B1 (en) * 2013-03-21 2014-08-20 パナソニック株式会社 Single polymer module of polymer electrolyte fuel cell and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2019129064A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2014147926A1 (en) Single cell module for solid polymer fuel cells, and solid polymer fuel cell
CN106910921B (en) Fuel cell and method for manufacturing fuel cell
US8921010B2 (en) Method of preparing a fuel cell unitized electrode assembly by ultrasonic welding
JPWO2002043172A1 (en) Components for fuel cells
JP2017212126A (en) Fuel cell
US10763530B2 (en) Manufacturing method for fuel cell
JP6857812B2 (en) Method for manufacturing electrolyte membrane-electrode-frame joint
JP7052442B2 (en) How to make a fuel cell stack
US20210288338A1 (en) Fuel cell and method for producing fuel cell
CN112310431B (en) Elastomeric cell frame for fuel cell, method of manufacturing the same, and unit cell
JP7257851B2 (en) Elastic cell frame for fuel cell, manufacturing method thereof, and unit cell using same
JP5575345B1 (en) Single polymer module of polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP6748849B2 (en) Fuel cell membrane electrode assembly and fuel cell
JP2020145106A (en) Manufacturing method of fuel battery unit cell
JP4461788B2 (en) Manufacturing method of fuel cell and fuel cell
JP7188365B2 (en) Fuel cell and manufacturing method thereof
US11018363B2 (en) Fuel cell including frame member
JP2010092733A (en) Membrane-electrode assembly, and method and apparatus for manufacturing the same
JP2007115445A (en) Fuel cell
JP7184057B2 (en) Method for manufacturing fuel cell
JP6287556B2 (en) Fuel cell
JP7302544B2 (en) Fuel cell manufacturing method
JP7435510B2 (en) Manufacturing method of fuel cell
US11710842B2 (en) Manufacturing method for fuel cell
JP5781860B2 (en) Manufacturing method of fuel cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R151 Written notification of patent or utility model registration

Ref document number: 6857812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151