JP6748849B2 - Fuel cell membrane electrode assembly and fuel cell - Google Patents

Fuel cell membrane electrode assembly and fuel cell Download PDF

Info

Publication number
JP6748849B2
JP6748849B2 JP2017031155A JP2017031155A JP6748849B2 JP 6748849 B2 JP6748849 B2 JP 6748849B2 JP 2017031155 A JP2017031155 A JP 2017031155A JP 2017031155 A JP2017031155 A JP 2017031155A JP 6748849 B2 JP6748849 B2 JP 6748849B2
Authority
JP
Japan
Prior art keywords
frame member
electrolyte membrane
fuel cell
electrode assembly
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017031155A
Other languages
Japanese (ja)
Other versions
JP2018137142A (en
Inventor
陽太 金子
陽太 金子
光生 吉村
光生 吉村
秋山 崇
崇 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017031155A priority Critical patent/JP6748849B2/en
Publication of JP2018137142A publication Critical patent/JP2018137142A/en
Application granted granted Critical
Publication of JP6748849B2 publication Critical patent/JP6748849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池、特に固体高分子型燃料電池に用いられる膜電極接合体と、それを用いた燃料電池に関するものである。 The present invention relates to a fuel cell, particularly a membrane electrode assembly used in a polymer electrolyte fuel cell, and a fuel cell using the same.

燃料電池は、発電反応を起こす電解質膜に触媒層を接合し、それらをセパレータで挟んだものを一つの単セルモジュールとして、必要な個数のモジュールを積み上げ構成されている。 A fuel cell has a structure in which a catalyst layer is joined to an electrolyte membrane that causes a power generation reaction, and a catalyst cell is sandwiched by separators to form a single cell module, and a required number of modules are stacked.

電解質膜は、主に樹脂製の枠状のフレーム部材に固定されている。このフレーム部材により、セパレータで挟み組み立てる際のハンドリング性向上や、非発電部の電解質材料の使用量を削減することができる。 The electrolyte membrane is mainly fixed to a frame member made of resin. With this frame member, it is possible to improve the handleability when sandwiching and assembling with the separator and to reduce the amount of the electrolyte material used in the non-power generation portion.

燃料電池を動作させるためには、電解質膜の両面に形成した電極の一方に燃料ガス(水素ガス)を供給し、他方に酸素(空気)を供給しなければならず、一方のガスが他方に流入すると、正常な電気化学反応が行われず、充分な発電特性を得ることができない。そのため、電解質膜の枠体との固定部において、ガスシール性を有していなければならない。 In order to operate a fuel cell, it is necessary to supply fuel gas (hydrogen gas) to one of the electrodes formed on both sides of the electrolyte membrane and oxygen (air) to the other, and one gas to the other. When it flows in, a normal electrochemical reaction is not performed, and sufficient power generation characteristics cannot be obtained. Therefore, the portion where the electrolyte membrane is fixed to the frame body must have gas sealing properties.

従来の電解質膜のフレーム部材への固定方法としては、超音波を用いて樹脂製のフレーム部材に電解質膜を溶着しているものがある(例えば、特許文献1参照)。 As a conventional method for fixing an electrolyte membrane to a frame member, there is one in which an electrolyte membrane is welded to a resin frame member using ultrasonic waves (see, for example, Patent Document 1).

以下、特許文献1に開示された従来の燃料電池の膜電極接合体について、説明する。 Hereinafter, the membrane electrode assembly of the conventional fuel cell disclosed in Patent Document 1 will be described.

図2は、特許文献1に開示された従来の燃料電池の膜電極接合体をセパレータで挟み込んだ、単セルモジュールの断面図である。図3は、同従来の燃料電池の膜電極接合体の平面図である。 FIG. 2 is a cross-sectional view of a single cell module in which a membrane electrode assembly of a conventional fuel cell disclosed in Patent Document 1 is sandwiched by separators. FIG. 3 is a plan view of a membrane electrode assembly of the conventional fuel cell.

図2に示すように、従来の燃料電池の膜電極接合体11は、電解質膜2の端部を、樹脂製の枠状の第1のフレーム部材51と樹脂製の枠状の第2のフレーム部材52とで挟み込み、電解質膜2を介して、第1のフレーム部材51と第2のフレーム部材52とが、溶融溶着部8で接合され、第1のフレーム部材51と第2のフレーム部材52との境界部及び溶融溶着部8を、第2のフレーム部材52の外側から、第3のフレーム部材53で覆った構成である。 As shown in FIG. 2, in a conventional membrane electrode assembly 11 of a fuel cell, an end portion of the electrolyte membrane 2 is provided with a resin-made frame-shaped first frame member 51 and a resin-made frame-shaped second frame. The first frame member 51 and the second frame member 52 are sandwiched between the member 52 and the electrolyte membrane 2, and the first frame member 51 and the second frame member 52 are joined to each other at the fusion-welded portion 8 to form the first frame member 51 and the second frame member 52. The boundary portion and the fusion-welded portion 8 are covered with the third frame member 53 from the outside of the second frame member 52.

膜電極接合体11の両面には、燃料ガス及び酸化剤ガスを触媒に均一に行き渡らせるためのガス拡散層4を配置し、ガス流路61を具備したシール部材7付きセパレータ6で挟み込むことで、単セルモジュール1を構成している。ガス拡散層4は、第1のフレーム部材51及び第2のフレーム部材52に乗り上げ、セパレータ6との空間を埋めている。 By disposing the gas diffusion layers 4 for uniformly distributing the fuel gas and the oxidant gas to the catalyst on both surfaces of the membrane electrode assembly 11, and sandwiching them with the separator 6 with the seal member 7 having the gas flow path 61. , The single cell module 1 is configured. The gas diffusion layer 4 rides on the first frame member 51 and the second frame member 52 and fills the space with the separator 6.

第1のフレーム部材51及び第2のフレーム部材52とセパレータ6との間に空間がある場合には、燃料ガス及び酸化剤ガスが、ガス流路61を通過せず、第1のフレーム部材51及び第2のフレーム部材52とセパレータ6との間の空間を通過してしまい、発電領域12に燃料ガス及び酸化剤ガスが行き渡らず、充分な発電性能を得ることができない。 When there is a space between the separator 6 and the first frame member 51 and the second frame member 52, the fuel gas and the oxidant gas do not pass through the gas flow path 61, and the first frame member 51 Also, the fuel gas and the oxidant gas do not spread to the power generation region 12 because they pass through the space between the second frame member 52 and the separator 6, and sufficient power generation performance cannot be obtained.

第1のフレーム部材51及び第2のフレーム部材52とセパレータ6との間に、ガス拡散層4を充填することで、燃料ガス及び酸化剤ガスが、ガス流路61を通過することになり、所定の発電性能を得ることができる。 By filling the gas diffusion layer 4 between the first frame member 51 and the second frame member 52 and the separator 6, the fuel gas and the oxidant gas will pass through the gas flow path 61, It is possible to obtain a predetermined power generation performance.

また、ガス拡散層4における、第1のフレーム部材51及び第2のフレーム部材52とセパレータ6との間に位置する領域の厚みを、第1のフレーム部材51及び第2のフレーム部材52とセパレータ6の間隔より厚くしておくことで、膜電極接合体11をセパレータ6で挟持する際に、ガス拡散層4が圧縮され、第1のフレーム部材51及び第2のフレーム部材52を電解質膜2に密着させることができる。 In addition, the thickness of the region of the gas diffusion layer 4 located between the first frame member 51 and the second frame member 52 and the separator 6 is set to the thickness of the first frame member 51 and the second frame member 52 and the separator. When the membrane electrode assembly 11 is sandwiched by the separators 6, the gas diffusion layer 4 is compressed and the first frame member 51 and the second frame member 52 are made thicker than the interval of 6 so that the electrolyte membrane 2 is formed. Can be adhered to.

また、第1のフレーム部材51及び第2のフレーム部材52を電解質膜2に密着させることで、電解質膜2と第1のフレーム部材51及び電解質膜2と第2のフレーム部材52の間に、燃料ガス及び酸化剤ガスが侵入する可能性を低減でき、ガスバリア性を向上できると共に、電解質膜2が燃料ガス及び酸化剤ガスにより劣化することが抑制でき、燃料電池の性能を長期に確保することが出来る。 Further, by bringing the first frame member 51 and the second frame member 52 into close contact with the electrolyte membrane 2, between the electrolyte membrane 2 and the first frame member 51 and between the electrolyte membrane 2 and the second frame member 52, The possibility that the fuel gas and the oxidant gas may enter can be reduced, the gas barrier property can be improved, and the deterioration of the electrolyte membrane 2 due to the fuel gas and the oxidant gas can be suppressed, and the performance of the fuel cell can be ensured for a long time. Can be done.

触媒層電極3は、電解質膜2の両面に端部を除き均一に形成されている。触媒層電極3の端部には、第1のフレーム部材51及び第2のフレーム部材52の一部が覆いかぶさっている。こうすることで、電解質膜2の触媒層電極3が形成されていない領域に、酸化剤ガスが暴露することを低減することができ、酸化剤ガスによる電解質膜の劣化を抑制することが可能となる。 The catalyst layer electrodes 3 are uniformly formed on both surfaces of the electrolyte membrane 2 except for the ends. A part of the first frame member 51 and the second frame member 52 covers the end portion of the catalyst layer electrode 3. By doing so, it is possible to reduce the exposure of the oxidant gas to the region of the electrolyte membrane 2 where the catalyst layer electrode 3 is not formed, and it is possible to suppress the deterioration of the electrolyte membrane due to the oxidant gas. Become.

単セルモジュール1を形成した際に、セパレータ6に設けられたシール部材7は、膜電極接合体11に形成された溶融溶着部8よりも発電領域側に配置され、且つ触媒層電極3の領域よりも外側に配置している。 When the single cell module 1 is formed, the seal member 7 provided on the separator 6 is arranged on the power generation region side with respect to the fusion welding portion 8 formed on the membrane electrode assembly 11, and the region of the catalyst layer electrode 3 is formed. It is placed outside.

単セルモジュール1とした際に、セパレータ6に設けられたシール部材7は、第1のフレーム部材51及び第2のフレーム部材52と当接し、圧縮される。圧縮によりシール部材7の反力が発生し、シール部材7と第1のフレーム部材51及び第2のフレーム部材52、第1のフレーム部材51及び第2のフレーム部材52と電解質膜2の間の密着度が向上し、ガスバリア性を確保することが出来る。 In the case of the single cell module 1, the seal member 7 provided on the separator 6 comes into contact with the first frame member 51 and the second frame member 52 and is compressed. The reaction force of the seal member 7 is generated by the compression, and the seal member 7 and the first frame member 51 and the second frame member 52, the first frame member 51 and the second frame member 52, and the electrolyte membrane 2 are separated from each other. The adhesion is improved and the gas barrier property can be secured.

触媒層電極3は、燃料ガス及び空気ガスが拡散し、発電反応を起こすために、多孔質構造となっている。そのため、触媒層電極3とシール部材当接触部71が重なった場合、シール部材7の反力だけでは触媒層電極3の多孔質部を遮蔽することができず、ガスリークの原因となる。 The catalyst layer electrode 3 has a porous structure because the fuel gas and the air gas diffuse to cause a power generation reaction. Therefore, when the catalyst layer electrode 3 and the seal member contact portion 71 overlap with each other, the porous portion of the catalyst layer electrode 3 cannot be shielded only by the reaction force of the seal member 7, which causes a gas leak.

第1のフレーム部材51側に具備されたシール部材7及び第2のフレーム部材52側に具備されたシール部材7は、膜電極接合体11を挟んで、向かい合う位置に配置し、両極に設けられたシール部材7は共に、触媒層電極3と重ならない配置になっているが、少なくとも一方のシール部材7が触媒層電極3にかかっていなければ、触媒層電極3にかからないシール部材7側で充分なガスバリア性を確保できる。 The seal member 7 provided on the side of the first frame member 51 and the seal member 7 provided on the side of the second frame member 52 are disposed at opposite positions with the membrane electrode assembly 11 interposed therebetween, and are provided at both electrodes. Both of the sealing members 7 are arranged so as not to overlap with the catalyst layer electrode 3. However, if at least one of the sealing members 7 does not overlap the catalyst layer electrode 3, the side of the sealing member 7 that does not cover the catalyst layer electrode 3 is sufficient. A good gas barrier property can be secured.

シール部材7を向かい合う位置に配置した場合は、膜電極接合体11にかかるシール部材7の反力が対向し、膜電極接合体11に応力を与えることがなく、両極においてシール部材7が触媒層電極3にかからなければ、よりガスバリア性を確保できてよい。 When the seal members 7 are arranged at the positions facing each other, the reaction force of the seal member 7 applied to the membrane electrode assembly 11 faces each other, and the membrane electrode assembly 11 is not stressed. If the electrode 3 is not applied, the gas barrier property may be more secured.

溶融溶着部8よりも発電領域12側にシール部材7を設けることで、溶融溶着部8を形成する際の、超音波溶着時の熱及び振動による電解質膜2の変形部が燃料ガス、酸化剤ガスや水分に晒されることを抑制することができ、ガスリーク低減することができ、燃料電池の発電性能を維持することができる。また、水分を吸収することによる膨潤収縮を低減することができ、機械的応力の集中を防ぎ、電解質膜構造が壊れることを抑止することができ、燃料電池性能を長期に維持することができる。 By providing the seal member 7 closer to the power generation region 12 than the melt-welded portion 8, when the melt-welded portion 8 is formed, the deformed portion of the electrolyte membrane 2 due to heat and vibration during ultrasonic welding causes the fuel gas and the oxidant. Exposure to gas or moisture can be suppressed, gas leak can be reduced, and power generation performance of the fuel cell can be maintained. Further, it is possible to reduce swelling and contraction due to absorption of water, prevent concentration of mechanical stress, prevent destruction of the electrolyte membrane structure, and maintain fuel cell performance for a long period of time.

図3に示すように、膜電極接合体11は、電解質膜2の四辺を囲うように、第1のフレーム部材51、第2のフレーム部材52と第3のフレーム部材53を備えており、電解質膜2の電解質膜端部21の近傍に、所定の溶融溶着部間隔82で溶融溶着部8が設けられている。 As shown in FIG. 3, the membrane electrode assembly 11 includes a first frame member 51, a second frame member 52, and a third frame member 53 so as to surround the four sides of the electrolyte membrane 2, In the vicinity of the electrolyte membrane end portion 21 of the membrane 2, the melt-welded portions 8 are provided at a predetermined melt-welded portion interval 82.

第1のフレーム部材51には、中心部に発電領域12となる開口が設けられている。第1のフレーム部材51と第2のフレーム部材52に設けた開口は同じ大きさであるので、発電領域12に用いることの出来る領域が大きくなり、電解質膜の利用率がよい。 The first frame member 51 is provided with an opening serving as the power generation region 12 at the center. Since the openings provided in the first frame member 51 and the second frame member 52 have the same size, the area that can be used for the power generation area 12 becomes large and the utilization rate of the electrolyte membrane is good.

電解質膜2は、発電領域12よりも大きく、且つ第1のフレーム部材51と第2のフレーム部材52で挟持した際に、第1のフレーム部材51及び第2のフレーム部材52からはみ出さない大きさである。 The electrolyte membrane 2 is larger than the power generation region 12 and has a size that does not protrude from the first frame member 51 and the second frame member 52 when sandwiched between the first frame member 51 and the second frame member 52. That's it.

第1のフレーム部材51ないし第3のフレーム部材53は、燃料電池の発電反応に必要な燃料ガスもしくは酸化剤ガスを供給するマニホールド9を具備している。 The first frame member 51 to the third frame member 53 are provided with a manifold 9 that supplies the fuel gas or the oxidant gas necessary for the power generation reaction of the fuel cell.

シール部材当接触部71が、発電領域12の全領域及びガスケット9を囲うように、セパレータ6にシール部材7を配置している。 The seal member 7 is arranged on the separator 6 so that the seal member contact portion 71 surrounds the entire region of the power generation region 12 and the gasket 9.

膜電極接合体11は、電解質膜2を介しての第1のフレーム部材51と第2のフレーム部材52の溶融溶着部8の形成を超音波溶着により行っている。第2のフレーム部材52にも、中心部に発電領域12となる開口が設けられている。 In the membrane electrode assembly 11, the fusion welding portion 8 of the first frame member 51 and the second frame member 52 is formed by ultrasonic welding via the electrolyte membrane 2. The second frame member 52 is also provided with an opening serving as the power generation region 12 in the central portion.

超音波溶着を用いた電解質膜2を介しての第1のフレーム部材51と第2のフレーム部材52の溶融溶着部8の形成において、第1のフレーム部材料と第2のフレーム部材料と電解質膜が混在する溶融溶着部8を形成することができる。 In forming the fusion-welded portion 8 of the first frame member 51 and the second frame member 52 through the electrolyte membrane 2 using ultrasonic welding, the first frame material, the second frame material, and the electrolyte It is possible to form the melt-welded portion 8 in which the films are mixed.

フレーム部材料と電解質膜材料が混在する溶融溶着部8を形成することで、第1のフレーム部材51および第2のフレーム部材52と電解質膜2の固定性をより向上することができ、乾湿寸法変化による電解質膜2への応力の集中を避けることができ、電解質膜2の長期耐久性を向上することができる。 By forming the melt-welded portion 8 in which the frame material and the electrolyte membrane material are mixed, the fixability of the first frame member 51 and the second frame member 52 and the electrolyte membrane 2 can be further improved, and the wet and dry dimensions can be improved. The concentration of stress on the electrolyte membrane 2 due to the change can be avoided, and the long-term durability of the electrolyte membrane 2 can be improved.

第3のフレーム部材53は、第1のフレーム部材51と第2のフレーム部材52の境界面及び溶融溶着部8の加工痕を覆っている。 The third frame member 53 covers the boundary surface between the first frame member 51 and the second frame member 52 and the processing mark of the fusion-welded portion 8.

図4は、従来の燃料電池の膜電極接合体の組立工程を示す説明図である。まず、予め第1のフレーム部材51と第2のフレーム部材52を射出成形を用いて作製し、第1のフレーム部材51に触媒層電極3を塗布した電解質膜2を配置した後、第2のフレーム部材52を配置する。 FIG. 4 is an explanatory view showing a process of assembling a membrane electrode assembly of a conventional fuel cell. First, the first frame member 51 and the second frame member 52 are manufactured in advance by injection molding, and the electrolyte membrane 2 coated with the catalyst layer electrode 3 is arranged on the first frame member 51, and then the second frame member 51 is formed. The frame member 52 is arranged.

次に、第2のフレーム部材52の外側から超音波ホーン81を所定の位置に当接させ、溶融溶着部8を形成する。次に、第1のフレーム部材51及び第2のフレーム部材52と一体化した電解質膜2を、射出成型機の金型に配置し、第3のフレーム部材53を形成する。 Next, the ultrasonic horn 81 is brought into contact with a predetermined position from the outside of the second frame member 52 to form the fusion-welded portion 8. Next, the electrolyte membrane 2 integrated with the first frame member 51 and the second frame member 52 is placed in the mold of the injection molding machine to form the third frame member 53.

溶融溶着部8は、超音波接合を用いてスポット状に形成される。スポット状の溶融溶着部8とした場合は、膜電極接合体11の組立時間が短くなり、生産性を向上することが出来る。 The fusion welding portion 8 is formed in a spot shape by using ultrasonic bonding. When the spot-shaped melt-welded portion 8 is used, the assembly time of the membrane electrode assembly 11 is shortened and the productivity can be improved.

第2のフレーム部材52に当接させる超音波加工工具は、先端がφ0.5mmのものを用いた。第1のフレーム部材51及び第2のフレーム部材52を超音波接合する際の、接合加工条件としては、精電舎工業社製の超音波接合機(ΣG620S)で、28.5kHzの振動数で、振幅は40μm、加圧力30Nで、0.25秒の加工時間である。 The ultrasonic processing tool to be brought into contact with the second frame member 52 had a tip of φ0.5 mm. When ultrasonically joining the first frame member 51 and the second frame member 52, the joining processing condition is an ultrasonic joining machine (ΣG620S) manufactured by Seidensha Kogyo Co., Ltd., at a frequency of 28.5 kHz. The amplitude is 40 μm, the pressing force is 30 N, and the processing time is 0.25 seconds.

溶融溶着部8とシール部材7の間隔は約2mmとした。溶融溶着部8とシール部材7の間隔をより狭小にすることで、発電に寄与しない領域の電解質膜量を削減できるが、超音波接合時の熱や振動により、加工部の周囲の電解質膜2を変形させるため、電解質膜2の変形した領域がシール部材7より発電面に対して内側にこないように配置する。 The distance between the fusion-welded portion 8 and the seal member 7 was about 2 mm. Although the amount of the electrolyte membrane in the region that does not contribute to power generation can be reduced by further narrowing the distance between the fusion-welded portion 8 and the seal member 7, the electrolyte membrane 2 around the processed portion can be reduced due to heat and vibration during ultrasonic bonding. In order to deform the structure, the deformed region of the electrolyte membrane 2 is arranged so as not to come inward of the sealing member 7 with respect to the power generation surface.

第1のフレーム部材51と第2のフレーム部材52の境界面を覆うフレーム部材と溶融溶着部8の加工痕を覆うフレーム部材を一体として、第3のフレーム部材53を形成している。このように一体で形成した場合は、膜電極接合体11の剛性がより向上し、ハンドリング性などが良くなる。 A third frame member 53 is formed by integrally forming a frame member that covers the boundary surface between the first frame member 51 and the second frame member 52 and a frame member that covers the processing mark of the fusion-welded portion 8. When integrally formed in this way, the rigidity of the membrane electrode assembly 11 is further improved, and the handling property and the like are improved.

図4に示すように、第1のフレーム部材51及び第2のフレーム部材52に、直接、第3のフレーム部材53を射出成形するため、第1のフレーム部材51と第2のフレーム部材52と第3のフレーム部材53に同一の樹脂材料を用いた場合は、フレーム部材間の接合力が高まり、膜電極接合体11の一体性が向上し、ハンドリング性が良くなる。 As shown in FIG. 4, since the third frame member 53 is injection-molded directly on the first frame member 51 and the second frame member 52, the first frame member 51 and the second frame member 52 are When the same resin material is used for the third frame member 53, the bonding force between the frame members is increased, the integrity of the membrane electrode assembly 11 is improved, and the handleability is improved.

また、第1のフレーム部材51と第2のフレーム部材52のフレーム部材料として、熱可塑性樹脂を用いており、特に第1のフレーム部材51及び第2のフレーム部材52は燃料電池の発電環境に晒されることから、変性PPE、変性PPEやPPSなどの材料を用いることがより好ましい。 In addition, a thermoplastic resin is used as the material of the frame portion of the first frame member 51 and the second frame member 52, and the first frame member 51 and the second frame member 52 are particularly suitable for the power generation environment of the fuel cell. It is more preferable to use a material such as modified PPE, modified PPE or PPS because it is exposed.

電解質膜2に、縦方向と横方向で等方的な特性を持つ電解質膜2を用いたので、発電領域全周において溶融溶着部間隔82を等間隔としたが、等間隔に溶融溶着部8を形成した場合は、電解質膜2が乾燥収縮もしくは湿潤膨張による溶融溶着部8への応力の集中を均等にすることができる。 Since the electrolyte membrane 2 having the isotropic characteristics in the vertical direction and the horizontal direction is used as the electrolyte membrane 2, the melt-welded portion intervals 82 are set to be equal over the entire circumference of the power generation region. In the case of forming, the electrolyte membrane 2 can equalize the concentration of stress on the melt-welded portion 8 due to dry shrinkage or wet expansion.

特許第5575345号公報Patent No. 5575345

しかしながら、特許文献1に開示された従来の膜電極接合体11では、図5に示すように、超音波ホーン81で第1のフレーム部材51と第2のフレーム部材52を溶着する際に、第2のフレーム部材52の溶融樹脂が電解質膜2を貫通し、第1のフレーム部材51と第2のフレーム部材52の間に押し出され、第2のフレーム部材52を持ち上げながら超音波ホーン81の周りにたまる。 However, in the conventional membrane electrode assembly 11 disclosed in Patent Document 1, when welding the first frame member 51 and the second frame member 52 with the ultrasonic horn 81, as shown in FIG. The molten resin of the second frame member 52 penetrates the electrolyte membrane 2 and is extruded between the first frame member 51 and the second frame member 52, and while the second frame member 52 is being lifted, around the ultrasonic horn 81. Accumulate.

そのまま、超音波ホーン81が第2のフレーム部材52を貫通し、溶かしながら超音波ホーン81の周りにたまった樹脂と相溶して固化することで、電解質膜2の外周部を狭持する第1のフレーム部材51と第2のフレーム部材52との間隔が広がって、電解質膜2にシワが発生し、クロスリークが発生する。 As it is, the ultrasonic horn 81 penetrates through the second frame member 52, and while melting, the ultrasonic horn 81 compatibilizes with the resin accumulated around the ultrasonic horn 81 and solidifies, thereby holding the outer peripheral portion of the electrolyte membrane 2. The gap between the first frame member 51 and the second frame member 52 widens, and wrinkles occur in the electrolyte membrane 2 and cross leak occurs.

前記従来の課題を解決するために、本発明の燃料電池の膜電極接合体は、電解質膜の外周部を狭持する一対の樹脂製のフレーム部材の少なくともどちらか一方の電解質膜側の表
面に、フレーム部材を構成する樹脂材料及び電解質膜の材料とが混在する溶着部を収容可能な凹部を設けたのである。
In order to solve the above-mentioned conventional problems, the membrane electrode assembly of the fuel cell of the present invention has a surface on at least one of the electrolyte membrane sides of a pair of resin frame members that sandwich the outer peripheral portion of the electrolyte membrane. The recessed portion is provided to accommodate the welded portion in which the resin material forming the frame member and the material of the electrolyte membrane are mixed.

これによって、電解質膜の外周部を狭持する一対の樹脂製のフレーム部材の間隔が広がらず、電解質膜を挟持した部分にシワが発生しなくなるため、燃料ガスおよび酸化剤ガスのクロスリークを防ぐことができ、さらに燃料ガスおよび酸化ガスの利用効率を高めることができるため、燃料電池として有用な単セルモジュール作製が可能となる。 As a result, the interval between the pair of resin frame members that sandwich the outer peripheral portion of the electrolyte membrane does not widen, and wrinkles do not occur in the portion that sandwiches the electrolyte membrane, preventing cross leak of fuel gas and oxidant gas. Moreover, since the utilization efficiency of the fuel gas and the oxidizing gas can be further enhanced, it becomes possible to produce a single cell module useful as a fuel cell.

本発明によれば、電解質膜の外周部を狭持する一対の樹脂製のフレーム部材の間隔が広がらず、電解質膜を挟持した部分にシワが発生しなくなるため、燃料ガスおよび酸化剤ガスのクロスリークを防ぐことができ、さらに燃料ガスおよび酸化ガスの利用効率を高めることができるため、燃料電池として有用な単セルモジュール作製が可能となる。 According to the present invention, the distance between the pair of resin frame members that sandwich the outer peripheral portion of the electrolyte membrane does not widen, and wrinkles do not occur in the portion that sandwiches the electrolyte membrane. Since leakage can be prevented and the utilization efficiency of the fuel gas and the oxidizing gas can be increased, it becomes possible to produce a single cell module useful as a fuel cell.

本発明の実施の形態の燃料電池の膜電極接合体における電解質膜を一対の樹脂製のフレームで固定する方法を示す説明図An explanatory view showing a method of fixing an electrolyte membrane in a membrane electrode assembly of a fuel cell of an embodiment of the invention with a pair of resin frames. 特許文献1に開示された従来の燃料電池の膜電極接合体をセパレータで挟み込んだ、単セルモジュールの断面図Sectional view of a single cell module in which a membrane electrode assembly of a conventional fuel cell disclosed in Patent Document 1 is sandwiched by separators. 同従来の燃料電池の膜電極接合体の平面図Plan view of a membrane electrode assembly of the conventional fuel cell 同従来の燃料電池の膜電極接合体の組立工程を示す説明図Explanatory drawing which shows the assembly process of the membrane electrode assembly of the same conventional fuel cell 従来の燃料電池の膜電極接合体における電解質膜を一対の樹脂製のフレームで固定する方法を示す説明図Explanatory drawing showing a method for fixing an electrolyte membrane in a membrane electrode assembly of a conventional fuel cell with a pair of resin frames

第1の発明は、電解質膜の外周部を樹脂製の第1のフレーム部材と樹脂製の第2のフレーム部材で挟持した燃料電池の膜電極接合体であって、前記第1のフレーム部材と前記第2のフレーム部材の少なくともどちらか一方の電解質膜側の表面に、前記フレーム部材を構成する樹脂材料及び前記電解質膜の材料とが混在する溶着部を収容可能な凹部を設けたのである。 A first invention is a membrane electrode assembly for a fuel cell in which an outer peripheral portion of an electrolyte membrane is sandwiched between a first frame member made of resin and a second frame member made of resin, and the membrane electrode assembly comprises: On at least one of the surfaces of the second frame member on the side of the electrolyte membrane, a concave portion capable of accommodating a welded portion in which the resin material forming the frame member and the material of the electrolyte membrane are mixed is provided.

これによって、例えば、超音波ホーンを用いて、樹脂製の第1のフレーム部材と樹脂製の第2のフレーム部材と電解質膜の外周部を溶着する場合は、超音波ホーンをフレーム部材に押し当てた時に、熱や振動により熔けたフレーム部材の樹脂と電解質膜の材料との混在物が、凹部に流れ込み、第1のフレーム部材と第2のフレーム部材との間隔が広がらなくなる。 Thus, for example, when the first frame member made of resin, the second frame member made of resin, and the outer peripheral portion of the electrolyte membrane are welded using the ultrasonic horn, the ultrasonic horn is pressed against the frame member. At this time, a mixture of the resin of the frame member and the material of the electrolyte membrane, which has been melted by heat or vibration, flows into the recess, and the gap between the first frame member and the second frame member does not widen.

したがって、電解質膜を挟持した部分にシワが発生しなくなるため、燃料ガスおよび酸化剤ガスのクロスリークを防ぐことができ、さらに燃料ガスおよび酸化ガスの利用効率を高めることができる。 Therefore, since wrinkles do not occur in the portion sandwiching the electrolyte membrane, cross leak of the fuel gas and the oxidant gas can be prevented, and the utilization efficiency of the fuel gas and the oxidant gas can be improved.

第2の発明は、特に第1の発明において、前記第1のフレーム部材と前記第2のフレーム部材の一方の表面に前記電解質膜を貫通して他方のフレーム部材まで達する穴が前記電解質膜の外周に点在するように凹設され、前記電解質膜を貫通する貫通孔の近傍に、前記溶着部が存在し、前記凹部は、前記穴の内径よりも大きい内径で且つ前記穴の容積よりも大きい容積で凹設されるものである。 In a second aspect of the present invention, in particular, in the first aspect, a hole that penetrates the electrolyte membrane and reaches the other frame member is formed in one surface of the first frame member and the second frame member of the electrolyte membrane. Concavely provided so as to be scattered on the outer periphery, in the vicinity of the through hole penetrating the electrolyte membrane, the welded portion is present, and the recessed portion has an inner diameter larger than the inner diameter of the hole and more than the volume of the hole. It is recessed with a large volume.

これにより、フレーム部材を構成する樹脂材料及び電解質膜の材料とが混在する溶着部を凹部に収容することができる。 Thereby, the welded portion in which the resin material forming the frame member and the material of the electrolyte membrane are mixed can be accommodated in the recess.

第3の発明は、特に第1または第2の発明における、前記第1のフレーム部材と前記第2のフレーム部材が、同じ樹脂材料であるものである。 A third aspect of the invention is that the first frame member and the second frame member in the first or second aspect are made of the same resin material.

これにより、フレーム部材間の接合力が高まり、膜電極接合体の一体性が向上し、ハンドリング性がよくなる。 Thereby, the bonding force between the frame members is increased, the integrity of the membrane electrode assembly is improved, and the handleability is improved.

第4の発明は、特に第1から第3のいずれかの発明における、前記穴を、第3のフレーム部材で塞ぐものである。 A fourth aspect of the invention is to block the hole with a third frame member in any of the first to third aspects.

第1のフレーム部材と第2のフレーム部材の境界面を覆うフレームと溶融溶着部の加工痕を覆うフレームを一体として、第3のフレーム部材を形成している。 A third frame member is formed by integrally forming a frame that covers the boundary surface between the first frame member and the second frame member and a frame that covers the processing mark of the fusion-welded portion.

この状態で、第1のフレーム部材と第2のフレーム部材の境界面を覆うフレームと溶融溶着部の加工痕を覆うフレームを分離した部材として形成しても良いが、一体で形成した場合、膜電極接合体の剛性がより向上し、ハンドリング性などがよくなる。 In this state, the frame that covers the boundary surface between the first frame member and the second frame member and the frame that covers the processing mark of the fusion-welded portion may be formed as separate members. The rigidity of the electrode assembly is further improved, and the handling property is improved.

第5の発明は、特に第4の発明における、前記第3のフレーム部材が、前記第1のフレーム部材と前記第2のフレーム部材のうちの少なくとも前記穴が表面に凹設された方のフレーム部材と同じ樹脂材料であるものである。 A fifth aspect of the invention is the frame according to the fourth aspect, wherein the third frame member is the one of the first frame member and the second frame member in which at least the hole is recessed in the surface. It is the same resin material as the member.

これにより、第1のフレーム部材び第2のフレーム部材に、直接、第3のフレーム部材を射出成形する場合に、同一の樹脂材料を用いると、フレーム部材間の接合力が高まり、膜電極接合体の一体性が向上し、ハンドリング性がよくなる。 As a result, when the same resin material is used in injection molding the third frame member directly into the first frame member and the second frame member, the bonding force between the frame members is increased and the membrane electrode bonding is performed. Improves body integrity and handling.

第6の発明は、特に第1から第5のいずれかの発明において、超音波ホーンを用いて、溶着部を形成するものである。 The sixth invention is, in any one of the first to fifth inventions, in which the welding portion is formed by using an ultrasonic horn.

本構成によって、電解質膜のフレームへの固定を溶融接合箇所で行い、溶着箇所より発電領域側に設けたシール部材により、ガスシール性を確保する。ガスリークの起こりやすい溶融接合箇所よりシール部材を発電領域側に設けることにで、溶融接合箇所にガスが到達することなく、ガスシール性を確保することができる。 With this configuration, the electrolyte membrane is fixed to the frame at the fusion-bonded portion, and the gas-sealing property is ensured by the seal member provided on the power generation region side of the welded portion. By providing the sealing member closer to the power generation region than the fusion-bonded portion where gas leakage is likely to occur, the gas sealing property can be secured without the gas reaching the fusion-bonded portion.

第7の発明は、特に第1から第6のいずれかの発明の燃料電池の膜電極接合体を一対のセパレーターで狭持した燃料電池セルである。 A seventh invention is a fuel cell in which the membrane electrode assembly of the fuel cell according to any one of the first to sixth inventions is sandwiched between a pair of separators.

これにより、燃料ガスおよび酸化剤ガスを触媒に均一に行き渡らせることができる。 Thereby, the fuel gas and the oxidant gas can be evenly distributed over the catalyst.

第8の発明は、特に第7の発明の燃料電池セルが複数積層された燃料電池である。 The eighth invention is a fuel cell in which a plurality of the fuel cells of the seventh invention are stacked.

これにより、燃料電池セルを複数個積層し、集電板、端板で両側から所定の荷重で締結することで、発電時に電流を取り出すことができる。 Thus, by stacking a plurality of fuel cells and fastening them with a predetermined load from both sides of the current collector plate and the end plate, current can be taken out during power generation.

以下、本発明の実施の形態について、従来例と異なる部分について、図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings, regarding parts different from the conventional example.

(実施の形態1)
図1は、本発明の実施の形態1の燃料電池の膜電極接合体における電解質膜を第1のフレームと第2のフレームで固定する方法を示す説明図である。
(Embodiment 1)
FIG. 1 is an explanatory diagram showing a method of fixing an electrolyte membrane in a membrane electrode assembly of a fuel cell according to Embodiment 1 of the present invention with a first frame and a second frame.

本実施の形態において、第1のフレーム部材51側に具備されたシール部材7および第
2のフレーム部材52側に具備されたシール部材7は、膜電極接合体11を挟んで向かい合う位置に配置し、両極に設けられたシール部材7は共に触媒層電極3と重ならない配置としたが、シール部材7同士が向かい合う位置に配置しなくても良くシール部材7の反力が充分に得られなければよい。
In the present embodiment, the seal member 7 provided on the first frame member 51 side and the seal member 7 provided on the second frame member 52 side are arranged at positions facing each other with the membrane electrode assembly 11 interposed therebetween. The seal members 7 provided on both electrodes are arranged so as not to overlap the catalyst layer electrode 3, but it is not necessary to dispose the seal members 7 at positions facing each other and a sufficient reaction force of the seal member 7 cannot be obtained. Good.

また、少なくとも一方のシール部材7が触媒層電極3にかかっていなければ、触媒層電極3にかからないシール部材7側で充分なガスバリア性を確保できてよい。 Further, if at least one of the seal members 7 does not cover the catalyst layer electrode 3, sufficient gas barrier properties may be secured on the side of the seal member 7 that does not cover the catalyst layer electrode 3.

本実施の形態において、溶融溶着部8よりも発電領域12側にシール部材7を設けることで溶融溶着部8を形成する際の、超音波溶着時の熱および振動による電解質膜2の変形部が燃料ガス、酸化剤ガスや水分に晒されることを抑制することができ、ガスリーク低減することができ、燃料電池の発電性能を維持することができる。 In the present embodiment, when the sealing member 7 is provided on the power generation region 12 side of the fusion welding portion 8, when the fusion welding portion 8 is formed, a deformed portion of the electrolyte membrane 2 due to heat and vibration during ultrasonic welding is generated. Exposure to fuel gas, oxidant gas, and water can be suppressed, gas leak can be reduced, and power generation performance of the fuel cell can be maintained.

また、水分を吸着することによる膨潤収縮を低減することができ、機械的応力の集中を防ぎ、電解質膜構造が壊れることを抑止することができ、燃料電池性能を長期に維持することができる。 Further, it is possible to reduce swelling and shrinkage due to adsorption of water, prevent concentration of mechanical stress, prevent destruction of the electrolyte membrane structure, and maintain fuel cell performance for a long period of time.

本実施の形態では、第1のフレーム部材51には、中心部に発電領域12となる開口が設けられている。第1のフレーム部材51と第2のフレーム部材52に設けた開口は違う大きさでも良く、同じ大きさとした場合は、発電領域12に用いることができる領域が大きくなり電解質膜2の利用率がよい。 In the present embodiment, the first frame member 51 is provided with an opening serving as the power generation region 12 at the center. The openings provided in the first frame member 51 and the second frame member 52 may have different sizes, and when the openings have the same size, the area that can be used for the power generation area 12 becomes large and the utilization rate of the electrolyte membrane 2 is increased. Good.

電解質膜2は発電領域12よりも大きく、かつ第1のフレーム部材51と第2のフレーム部材52で狭持した際に、第1のフレーム部材51および第2のフレーム部材52からはみ出さない大きさであればよい。 The electrolyte membrane 2 is larger than the power generation region 12 and has a size that does not protrude from the first frame member 51 and the second frame member 52 when sandwiched between the first frame member 51 and the second frame member 52. All right.

本実施の形態では、電解質膜2を介して、第1のフレーム部材51と第2のフレーム部材52の溶融溶着部8の形成を超音波溶着により行っている。第2のフレーム部材52にも、中心部に発電領域12となる開口が設けられている。超音波溶着を用いた電解質膜2が混在する溶融溶着部8を形成することができる。 In the present embodiment, the fusion-welded portion 8 of the first frame member 51 and the second frame member 52 is formed by ultrasonic welding via the electrolyte membrane 2. The second frame member 52 is also provided with an opening serving as the power generation region 12 in the central portion. It is possible to form the melt-welded portion 8 in which the electrolyte membrane 2 using ultrasonic welding is mixed.

フレーム部材の材料と電解質膜2の材料が混在する溶融溶着部8を形成することで、第1のフレーム部材51および第2のフレーム部材52と電解質膜2の固定性をより向上することができ、乾湿寸法変化による電解質膜2への応力の集中を避けることができ、電解質膜2の長期耐久性を向上することができる。 By forming the melt-welded portion 8 in which the material of the frame member and the material of the electrolyte membrane 2 are mixed, the fixability of the electrolyte membrane 2 with the first frame member 51 and the second frame member 52 can be further improved. It is possible to avoid concentration of stress on the electrolyte membrane 2 due to changes in dry and wet dimensions, and improve the long-term durability of the electrolyte membrane 2.

本実施の形態では、第1のフレーム部材51と第2のフレーム部材52の境界面及び溶融溶着部8の加工痕を覆うように、第3のフレーム部材53を形成し、膜電極接合体11を組み立てる。 In the present embodiment, the third frame member 53 is formed so as to cover the boundary surface between the first frame member 51 and the second frame member 52 and the processing mark of the fusion-welded portion 8, and the membrane electrode assembly 11 is formed. Assemble.

予め第1のフレーム部材51と第2のフレーム部材52を射出成形を用いて作製し、第1のフレーム部材51に触媒層電極3を塗布した電解質膜2を配置した後、第2のフレーム部材52を配置する。 The first frame member 51 and the second frame member 52 are manufactured in advance by injection molding, and the electrolyte membrane 2 coated with the catalyst layer electrode 3 is arranged on the first frame member 51, and then the second frame member is formed. 52 is arranged.

第2のフレーム部材52の外側から超音波ホーン81を所定の位置に当接させ、溶融溶着部8を形成する。第1のフレーム部材51及び第2のフレーム部材52と一体化した電解質膜2を、射出成型機の金型に配置し、第3のフレーム部材53を形成する。 The ultrasonic horn 81 is brought into contact with a predetermined position from the outside of the second frame member 52 to form the melt-welded portion 8. The electrolyte membrane 2 integrated with the first frame member 51 and the second frame member 52 is placed in a mold of an injection molding machine to form a third frame member 53.

本実施の形態では、スポット状の溶融溶着部8を形成した。本実施の形態において、溶融溶着部8の形成は、超音波接合を用いた。超音波接合には精電舎工業社製の超音波接合
機(ΣG620S)を用いた。
In the present embodiment, spot-shaped melt-welded portion 8 is formed. In this embodiment, ultrasonic welding is used to form the fusion-welded portion 8. For ultrasonic bonding, an ultrasonic bonding machine (ΣG620S) manufactured by Seidensha Kogyo Co., Ltd. was used.

フレーム部材に当接させる超音波加工工具は、先端がφ0.5mmのものを用いた。フレーム部材を超音波接合する際の、接合加工条件としては、28.5kHzの振動数で、振幅は40μm、加圧力30Nで、0.25秒の加工時間で良好な接合が得られた。 The ultrasonic processing tool brought into contact with the frame member had a tip of φ0.5 mm. As the joining processing conditions for ultrasonically joining the frame members, good joining was obtained at a frequency of 28.5 kHz, an amplitude of 40 μm, a pressing force of 30 N, and a working time of 0.25 seconds.

本実施の形態では、溶融溶着部8とシール部材7の間隔は約2mmとした。溶融溶着部8とシール部材7の間隔をより狭小にすることで、発電に寄与しない領域の電解質膜量を削減できるが、超音波接合時の熱や振動により、加工部の周囲の電解質膜2を変形させるため、電解質膜2の変形した領域がシール部材7より発電面に対して内側にこないように配置するとよい。 In the present embodiment, the distance between the fusion-welded portion 8 and the seal member 7 is about 2 mm. Although the amount of the electrolyte membrane in the region that does not contribute to power generation can be reduced by further narrowing the distance between the fusion-welded portion 8 and the seal member 7, the electrolyte membrane 2 around the processed portion can be reduced due to heat and vibration during ultrasonic bonding. Therefore, it is preferable to dispose the deformed region of the electrolyte membrane 2 so as not to come inward of the sealing member 7 with respect to the power generation surface.

本実施の形態では、第1のフレーム部材51と第2のフレーム部材52の境界面を覆うフレーム部材と溶融溶着部8の加工痕を覆うフレーム部材を一体として、第3のフレーム部材53を形成している。この状態で、第1のフレーム部材51と第2のフレーム部材52の境界面を覆うフレーム部材と溶融溶着部8の加工痕を覆うフレーム部材を分離した部材として形成しても良いが、一体で形成した場合、膜電極接合体11の剛性がより向上して、ハンドリング性などがよくなる。 In the present embodiment, the third frame member 53 is formed by integrally forming the frame member that covers the boundary surface between the first frame member 51 and the second frame member 52 and the frame member that covers the processing mark of the fusion-welded portion 8. doing. In this state, the frame member that covers the boundary surface between the first frame member 51 and the second frame member 52 and the frame member that covers the processing mark of the fusion welded portion 8 may be formed as separate members, but they may be formed integrally. When formed, the rigidity of the membrane electrode assembly 11 is further improved, and the handling property and the like are improved.

本実施の形態では、第1のフレーム部材51と第2のフレーム部材52の一方の第2のフレーム部材52の表面に電解質膜2を貫通して他方の第1のフレーム部材51まで達する穴が電解質膜2の外周に点在するように凹設されたものであり、電解質膜2の外周部を、超音波ホーン81当接部分の電解質膜2側に凹部を設けた樹脂フレームで挟持して固定する。 In the present embodiment, a hole that penetrates the electrolyte membrane 2 and reaches the other first frame member 51 is formed on the surface of one of the first frame member 51 and the second frame member 52 of the second frame member 52. The electrolyte membrane 2 is recessed so as to be scattered on the outer periphery thereof, and the outer periphery of the electrolyte membrane 2 is sandwiched by a resin frame having a recess on the electrolyte membrane 2 side of the contact portion of the ultrasonic horn 81. Fix it.

また、第1のフレーム部材51と第2のフレーム部材52の一方の第1のフレーム部材51の電解質膜2側の部分に、設けられた凹部は、超音波ホーン81による穴の内径よりも大きい内径で且つ記穴の容積よりも大きい容積で、電解質膜2の主面に垂直な方向から見た場合に、溶着部が凹部の外周側にはみ出ていない構成である。 Further, the concave portion provided in the portion of the first frame member 51 and the second frame member 52 on the electrolyte membrane 2 side of the first frame member 51 is larger than the inner diameter of the hole formed by the ultrasonic horn 81. The welded portion does not protrude to the outer peripheral side of the recess when viewed from a direction perpendicular to the main surface of the electrolyte membrane 2 having an inner diameter and a volume larger than the volume of the hole.

これによって、超音波ホーン81を当接した時に熱や振動により熔けた樹脂が第1のフレーム部材51の凹部に収まり、第1のフレーム部材51と第2のフレーム部材52との間隔が広がらなくなる。凹み寸法は超音波ホーン81、樹脂によって適宜決定され特に限定はされないが、例えば、短辺1.5mm、長辺2.3mm、厚み0.1mm程度が望ましい。 As a result, when the ultrasonic horn 81 is brought into contact with the resin, the resin melted by heat or vibration is contained in the concave portion of the first frame member 51, and the distance between the first frame member 51 and the second frame member 52 is prevented from widening. .. The size of the recess is appropriately determined depending on the ultrasonic horn 81 and the resin and is not particularly limited. For example, the short side is 1.5 mm, the long side is 2.3 mm, and the thickness is about 0.1 mm.

本実施の形態では、第1のフレーム部材51、第2のフレーム部材52と第3のフレーム部材53を同一の樹脂材料で形成した。第1のフレーム部材51及び第2のフレーム部材52に、直接、第3のフレーム部材53を射出成形するため、同一の樹脂材料を用いた場合、フレーム間の接合力が高まり、膜電極接合体11の一体性が向上し、ハンドリング性が良くなる。 In the present embodiment, the first frame member 51, the second frame member 52, and the third frame member 53 are made of the same resin material. Since the third frame member 53 is directly injection-molded on the first frame member 51 and the second frame member 52, when the same resin material is used, the bonding force between the frames is increased, and the membrane electrode assembly is obtained. The unity of 11 is improved and the handling is improved.

また、本実施の形態では、第1のフレーム部材51と第2のフレーム部材52のフレーム材料として、熱可塑性樹脂を用いており、特に第1のフレーム部材51及び第2のフレーム部材52は燃料電池の発電環境に晒されることから、変性PPE、変性PPEやPPSなどの材料を用いることがより好ましい。 Further, in the present embodiment, a thermoplastic resin is used as the frame material of the first frame member 51 and the second frame member 52, and in particular, the first frame member 51 and the second frame member 52 are made of fuel. It is more preferable to use a material such as modified PPE, modified PPE or PPS because it is exposed to the power generation environment of the battery.

本実施の形態では、スポット状の溶融溶着部8を形成しているが、線上の溶融接合箇所を形成しても良く、また間欠でなくてもよい。 In the present embodiment, the spot-shaped fusion-welded portion 8 is formed, but a fusion-bonded portion on the line may be formed or may not be intermittent.

スポット状の溶融溶着部8とした場合、膜電極接合体11の組立時間が短くなり、生産性を向上することが出来る。また、連続的または断続的な溶融溶着部8を形成した場合、電解質膜2のフレーム部材への固定強度を向上することができる。 When the spot-shaped melt-welded portion 8 is used, the assembly time of the membrane electrode assembly 11 is shortened, and the productivity can be improved. Further, when the continuous or intermittent melt-welded portion 8 is formed, the fixing strength of the electrolyte membrane 2 to the frame member can be improved.

溶融溶着部8の形状は、組立環境や燃料電池の運転条件などにより、最適な形状を選択すればよい。 The shape of the fusion welding portion 8 may be selected as an optimum shape depending on the assembly environment, the operating conditions of the fuel cell, and the like.

また、本実施の形態では、電解質膜2は製膜時の設備動作の影響を受けない、縦方向と横方向で等方的な特性を持つ電解質膜2を用いたため、発電領域全周において溶融溶着部間隔82を等間隔とした。 Further, in the present embodiment, since the electrolyte membrane 2 is not affected by the equipment operation at the time of film formation and has the isotropic characteristics in the vertical and horizontal directions, the electrolyte membrane 2 is melted in the entire circumference of the power generation region. The welded portion spacing 82 was set to be equal.

電解質膜2により縦方向と横方向で異方性を持つものもあり、異方性を持つ電解質膜2においては、縦方向と横方向のそれぞれの特性に合せた間隔に調整するとよく、更に等間隔に溶融溶着部8を形成した場合は、電解質膜2が乾燥収縮もしくは湿潤膨張による溶融溶着部8への応力の集中を均等にすることができてよい。 Some of the electrolyte membranes 2 have anisotropy in the vertical and horizontal directions. In the electrolyte membrane 2 having anisotropy, it is advisable to adjust the intervals according to the respective characteristics in the vertical and horizontal directions. When the melt-welded portions 8 are formed at intervals, the electrolyte membrane 2 may be able to equalize the concentration of stress on the melt-welded portions 8 due to dry shrinkage or wet expansion.

また、本実施の形態では、シール部材7と電解質膜端部21を出来る限り近づけることで、発電に寄与しない電解質膜量を削減している。シール部材7と電解質膜端部21の間隔は、乾燥により収縮した電解質膜2がシール部材7より内側に到達しなければよく、溶融溶着部間隔82が広い場合、溶融接合されていない箇所の電解質膜2の変位は大きくなるため、シール部材7と電解質膜端部21の間隔を大きくすれば良い。シール部材7と電解質膜端部21の間隔を大きくした場合、電解質膜端部21を迂回して、一方のガスが他方の電極にリークする際のリーク経路長を長くすることがでるため、ガスリークを低減できてよい。 Further, in the present embodiment, the seal member 7 and the electrolyte membrane end portion 21 are brought as close as possible to reduce the amount of the electrolyte membrane that does not contribute to power generation. The distance between the seal member 7 and the electrolyte membrane end portion 21 may be such that the electrolyte membrane 2 contracted by drying does not reach the inside of the seal member 7. Since the displacement of the membrane 2 becomes large, the gap between the seal member 7 and the electrolyte membrane end portion 21 may be increased. When the distance between the seal member 7 and the electrolyte membrane end portion 21 is increased, the electrolyte membrane end portion 21 is bypassed and the leak path length when one gas leaks to the other electrode can be lengthened, so that the gas leak May be reduced.

本発明の膜電極接合体は、燃料ガスおよび酸化剤ガスのガスリークを防ぐことができ、さらに燃料ガスおよび酸化ガスの利用効率を高めることができるため、家庭用コージェネレーションや車載用の燃料電池として好適に用いることができる。 INDUSTRIAL APPLICABILITY The membrane electrode assembly of the present invention can prevent gas leaks of fuel gas and oxidant gas, and can further improve the utilization efficiency of fuel gas and oxidant gas, so that it can be used as a fuel cell for household cogeneration and vehicle installation. It can be used preferably.

1 単セルモジュール
2 電解質膜
3 触媒層電極
4 ガス拡散層
6 セパレータ
7 シール部材
8 溶融溶着部
11 膜電極接合体
12 発電領域
51 第1のフレーム部材
52 第2のフレーム部材
53 第3のフレーム部材
61 ガス流路
21 電解質膜端部
81 超音波ホーン
82 溶融溶着部間隔
1 Single Cell Module 2 Electrolyte Membrane 3 Catalyst Layer Electrode 4 Gas Diffusion Layer 6 Separator 7 Seal Member 8 Melt Welding Part 11 Membrane Electrode Assembly 12 Power Generation Area 51 First Frame Member 52 Second Frame Member 53 Third Frame Member 61 Gas Channel 21 Electrolyte Membrane Edge 81 Ultrasonic Horn 82 Melt Welding Part Interval

Claims (8)

電解質膜の外周部を樹脂製の第1のフレーム部材と樹脂製の第2のフレーム部材で挟持した燃料電池の膜電極接合体であって、前記第1のフレーム部材と前記第2のフレーム部材の少なくともどちらか一方の前記電解質膜側の表面に、前記フレーム部材を構成する樹脂材料及び前記電解質膜の材料とが混在する溶融溶着部の体積以上の容積を有し、かつ、底面が平面である柱状の凹部を備え
前記電解質膜は、前記凹部と対向する位置に、前記電解質膜を貫通する穴を備える、
燃料電池の膜電極接合体。
A membrane electrode assembly for a fuel cell in which an outer peripheral portion of an electrolyte membrane is sandwiched between a resin first frame member and a resin second frame member, wherein the first frame member and the second frame member are provided. of the surface of at least either of the electrolyte membrane side, have a volume more than volume of the molten weld portion and the material of the resin material and the electrolyte membrane constituting the frame member are mixed, and bottom in a plane Equipped with a columnar recess,
The electrolyte membrane has a hole penetrating the electrolyte membrane at a position facing the recess.
Fuel cell membrane electrode assembly.
前記穴は、前記第1のフレーム部材と前記第2のフレーム部材のうち、前記凹部を有していない方のフレーム部材と電解質膜を貫通して形成され、
前記凹部は、前記穴の内径よりも大きい内径と、前記穴の容積よりも大きい容積を有する、
請求項1に記載の燃料電池の膜電極接合体。
The hole is formed by penetrating one of the first frame member and the second frame member that does not have the recess and the electrolyte membrane,
The recess has an inner diameter greater than the inner diameter of the hole and a volume greater than the volume of the hole ,
The membrane electrode assembly of the fuel cell according to claim 1.
前記第1のフレーム部材と前記第2のフレーム部材は、同じ樹脂材料である、
請求項1または2に記載の燃料電池の膜電極接合体。
The first frame member and the second frame member are made of the same resin material,
The membrane electrode assembly for a fuel cell according to claim 1 or 2.
前記第1のフレーム部材と前記第2のフレーム部材の境界面及び前記溶融溶着部の加工痕を覆っている第3のフレーム部材と、を備えた、
請求項1から3のいずれか1項に記載の燃料電池の膜電極接合体。
A third frame member that covers a boundary surface between the first frame member and the second frame member and a processing mark of the fusion-welded portion,
The membrane electrode assembly of the fuel cell according to any one of claims 1 to 3.
前記第3のフレーム部材は、前記第1のフレーム部材と前記第2のフレーム部材のうちの少なくとも前記凹部を備えていない方のフレーム部材と同じ樹脂材料である、
請求項4に記載の燃料電池の膜電極接合体。
The third frame member is made of the same resin material as at least one of the first frame member and the second frame member that does not include the recess .
The membrane electrode assembly of the fuel cell according to claim 4.
請求項1からのいずれか1項に記載の燃料電池の膜電極接合体を一対のセパレーターで挟持した燃料電池セル。 A fuel cell in which the membrane electrode assembly of the fuel cell according to any one of claims 1 to 5 is sandwiched between a pair of separators. 請求項に記載の燃料電池セルが複数積層された燃料電池。 A fuel cell in which a plurality of the fuel cells according to claim 6 are stacked. 電解質膜の外周部を樹脂製の第1のフレーム部材と樹脂製の第2のフレーム部材で挟持した燃料電池の膜電極接合体であって、前記第1のフレーム部材と前記第2のフレーム部材の少なくともどちらか一方の前記電解質膜側の表面に、前記フレーム部材を構成する樹脂材料及び前記電解質膜の材料とが混在する溶融溶着部の体積以上の容積を有し、かつ、底面が平面である柱状の凹部を備え、前記電解質膜は、前記凹部と対向する位置に、前記電解質膜を貫通する穴を備える、A membrane electrode assembly for a fuel cell in which an outer peripheral portion of an electrolyte membrane is sandwiched between a resin first frame member and a resin second frame member, wherein the first frame member and the second frame member are provided. Of at least one of the surface of the electrolyte membrane side, the resin material constituting the frame member and the material of the electrolyte membrane has a volume equal to or more than the volume of the melt-bonded portion mixed, and the bottom surface is flat. A certain columnar recess is provided, and the electrolyte membrane is provided with a hole penetrating the electrolyte membrane at a position facing the recess.
燃料電池の膜電極接合体の溶着方法であって、A method for welding a membrane electrode assembly of a fuel cell, comprising:
超音波ホーンを用いて、前記溶融溶着部を前記凹部に流入させて溶着する、燃料電池の膜電極接合体の溶着方法。A method for welding a membrane electrode assembly of a fuel cell, which comprises using an ultrasonic horn to cause the melted welded portion to flow into the recessed portion for welding.
JP2017031155A 2017-02-22 2017-02-22 Fuel cell membrane electrode assembly and fuel cell Active JP6748849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017031155A JP6748849B2 (en) 2017-02-22 2017-02-22 Fuel cell membrane electrode assembly and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017031155A JP6748849B2 (en) 2017-02-22 2017-02-22 Fuel cell membrane electrode assembly and fuel cell

Publications (2)

Publication Number Publication Date
JP2018137142A JP2018137142A (en) 2018-08-30
JP6748849B2 true JP6748849B2 (en) 2020-09-02

Family

ID=63367078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017031155A Active JP6748849B2 (en) 2017-02-22 2017-02-22 Fuel cell membrane electrode assembly and fuel cell

Country Status (1)

Country Link
JP (1) JP6748849B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188365B2 (en) * 2019-11-27 2022-12-13 トヨタ自動車株式会社 Fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2018137142A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6721053B2 (en) Power storage device and method of manufacturing power storage device
WO2014147926A1 (en) Single cell module for solid polymer fuel cells, and solid polymer fuel cell
JPWO2002043172A1 (en) Components for fuel cells
JPWO2019021980A1 (en) Battery module
CA2910082C (en) Insulating structure, fuel cell and fuel cell stack
JP2017212126A (en) Fuel cell
JP2006210234A (en) Constituent member of fuel cell
JP2014132548A (en) Fuel battery
JP2006236957A (en) Constituent member for fuel cell
JP6624200B2 (en) Fuel cell
JP2017168364A (en) Step difference mea with resin frame for fuel cell and manufacturing method of the same
JP2008171613A (en) Fuel cells
JP2017079170A (en) Electrolyte membrane-electrode structure with resin frame for fuel cell and method therefor
JPH07235314A (en) Cell for solid high polymer fuel cell and its manufacture
JP6748849B2 (en) Fuel cell membrane electrode assembly and fuel cell
JP7015184B2 (en) Gas diffusion layer integrated gasket and fuel cell cell member
CN112310431B (en) Elastomeric cell frame for fuel cell, method of manufacturing the same, and unit cell
JP7257851B2 (en) Elastic cell frame for fuel cell, manufacturing method thereof, and unit cell using same
JP5575345B1 (en) Single polymer module of polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP6857812B2 (en) Method for manufacturing electrolyte membrane-electrode-frame joint
KR20200132294A (en) Elastomer cell frame for fuel cell and Manufacturing method thereof and Fuel cell stack comprising thereof
JP6150060B2 (en) Membrane electrode assembly with frame, single cell for fuel cell and fuel cell stack
JP2015018662A (en) Unit cell structure, manufacturing method for unit cell and unit cell manufactured by that manufacturing method
JP2010092733A (en) Membrane-electrode assembly, and method and apparatus for manufacturing the same
KR102683799B1 (en) Elastomer cell frame for fuel cell and manufacturing method thereof and unit cell comprising thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R151 Written notification of patent or utility model registration

Ref document number: 6748849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151