JP6855657B2 - Power generation system using hydrogen and hydrogen generator - Google Patents

Power generation system using hydrogen and hydrogen generator Download PDF

Info

Publication number
JP6855657B2
JP6855657B2 JP2018127443A JP2018127443A JP6855657B2 JP 6855657 B2 JP6855657 B2 JP 6855657B2 JP 2018127443 A JP2018127443 A JP 2018127443A JP 2018127443 A JP2018127443 A JP 2018127443A JP 6855657 B2 JP6855657 B2 JP 6855657B2
Authority
JP
Japan
Prior art keywords
aqueous solution
raw material
hydrogen
storage unit
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018127443A
Other languages
Japanese (ja)
Other versions
JP2020007173A (en
JP2020007173A5 (en
Inventor
力 滝沢
力 滝沢
峯夫 森元
峯夫 森元
坂本 雄一
雄一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SE Corp
Original Assignee
SE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SE Corp filed Critical SE Corp
Priority to JP2018127443A priority Critical patent/JP6855657B2/en
Priority to PCT/JP2019/019353 priority patent/WO2020008735A1/en
Publication of JP2020007173A publication Critical patent/JP2020007173A/en
Publication of JP2020007173A5 publication Critical patent/JP2020007173A5/ja
Application granted granted Critical
Publication of JP6855657B2 publication Critical patent/JP6855657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)

Description

本発明は水素を用いた発電システム、及び、水素発生装置に関する。 The present invention relates to a power generation system using hydrogen and a hydrogen generator.

特許文献1には、単位時間当たりの水素発生量が安定しないと、発生した水素を燃料電池に供給して発電するような場合、電力の出力が安定しなくなるという問題に対応して、水素化マグネシウムの加水分解反応が行われる反応容器を備え、該反応容器へ水又は酸性溶液を供給することによって、水素を発生させる水素発生装置において、反応容器の底部に、水素化マグネシウム装填用の高さが異なる複数の筒部が立設してあり、更に、最も高い筒部の上方から、該筒部に装填された水素化マグネシウムに水又は酸性溶液を滴下する滴下部を備えることを特徴とする水素発生装置が開示されている。 Patent Document 1 describes hydrogenation in response to the problem that if the amount of hydrogen generated per unit time is not stable, the output of hydrogen becomes unstable when the generated hydrogen is supplied to a fuel cell to generate power. In a hydrogen generator that is provided with a reaction vessel in which a magnesium hydrolysis reaction is carried out and generates hydrogen by supplying water or an acidic solution to the reaction vessel, a height for loading magnesium hydride is provided at the bottom of the reaction vessel. It is characterized in that a plurality of tubular portions having different characteristics are erected, and further, a dropping portion for dropping water or an acidic solution onto the magnesium hydride loaded in the tubular portion is provided from above the highest tubular portion. A hydrogen generator is disclosed.

そして、特許文献1では、高さが高い筒部に水又は酸性溶液が滴下されるため、最も高い筒部に装填された水素化マグネシウムから加水分解反応が開始され、水素を発生し、水又は酸性溶液の滴下が続くと、最も高い筒部から水又は酸性溶液が溢れて、次に高さが高い筒部へ水又は酸性溶液が供給され、水素を発生することで、単位時間当たりの水素発生量の変動を抑えて、水素を安定的に生成することが可能になることが説明されている。 Then, in Patent Document 1, since water or an acidic solution is dropped on the high cylinder portion, the hydrolysis reaction is started from the magnesium hydride loaded in the highest cylinder portion to generate hydrogen, and water or water or When the dripping of the acidic solution continues, water or the acidic solution overflows from the highest cylinder, water or the acidic solution is supplied to the next tallest cylinder, and hydrogen is generated to generate hydrogen per unit time. It is explained that it is possible to stably generate hydrogen by suppressing fluctuations in the amount of hydrogen generated.

特開2013−133232号公報Japanese Unexamined Patent Publication No. 2013-133232

ところで、例えば、水素化マグネシウムに水を滴下させ、加水分解反応で水素が発生すると、副生成物として水酸化マグネシウムが生成されることになる。 By the way, for example, when water is dropped on magnesium hydride and hydrogen is generated by a hydrolysis reaction, magnesium hydroxide is produced as a by-product.

このため、水素化マグネシウムが装填された筒部に水を滴下させると、充填された水素化マグネシウムの表面上には、水の滴下によって生成された水酸化マグネシウムの層が形成される。 Therefore, when water is dropped onto the cylinder portion loaded with magnesium hydride, a layer of magnesium hydroxide produced by the dropping of water is formed on the surface of the filled magnesium hydride.

そうすると、後続の水の滴下の際に、水素化マグネシウムの加水分解反応が阻害され、効率よく、水素を発生できないおそれがある。 Then, at the time of subsequent dropping of water, the hydrolysis reaction of magnesium hydride may be inhibited, and hydrogen may not be generated efficiently.

本発明は、このような事情に鑑みてなされたものであり、水素の発生量の制御が行いやすく、効率よく水素を発生させることが可能な水素発生装置、及び、水素発生装置で発生した水素を用いた発電システムを提供することを目的とする。 The present invention has been made in view of such circumstances, and is a hydrogen generator capable of easily controlling the amount of hydrogen generated and efficiently generating hydrogen, and hydrogen generated by the hydrogen generator. It is an object of the present invention to provide a power generation system using.

本発明は、上記目的を達成するために、以下の構成によって把握される。
(1)本発明の発電システムは、水素を用いた発電システムであって、前記発電システムは、発電装置と、前記発電装置に供給する前記水素を発生させる水素発生装置と、を備え、前記水素発生装置は、水溶液を貯蔵する水溶液貯蔵部と、前記水溶液との反応で前記水素の発生が可能な状態のマグネシウムを含む原料を貯蔵する原料貯蔵部と、前記原料貯蔵部から前記水溶液貯蔵部に向けて前記原料を供給する原料供給機構と、を備える。
The present invention is grasped by the following configuration in order to achieve the above object.
(1) The power generation system of the present invention is a power generation system using hydrogen, and the power generation system includes a power generation device and a hydrogen generator for generating the hydrogen supplied to the power generation device, and the hydrogen. The generator is an aqueous solution storage unit that stores an aqueous solution, a raw material storage unit that stores a raw material containing magnesium in a state in which hydrogen can be generated by a reaction with the aqueous solution, and the raw material storage unit to the aqueous solution storage unit. It is provided with a raw material supply mechanism for supplying the raw material toward the subject.

(2)上記(1)の構成において、前記水溶液貯蔵部は、前記水溶液より上側となる前記水溶液の存在しない上部空間を備え、前記原料供給機構は、前記上部空間側から前記水溶液に向けて前記原料を供給するように設けられており、前記水素発生装置は、前記上部空間の圧力を測定する圧力測定装置と、前記圧力測定装置の圧力の測定結果に基づいて、前記原料供給機構を駆動させ、前記水溶液に向けて供給する前記原料の供給量を制御する制御部と、を備える。 (2) In the configuration of the above (1), the aqueous solution storage portion includes an upper space above the aqueous solution in which the aqueous solution does not exist, and the raw material supply mechanism is directed from the upper space side toward the aqueous solution. The hydrogen generator is provided to supply the raw material, and the hydrogen generator drives the raw material supply mechanism based on the pressure measuring device for measuring the pressure in the upper space and the pressure measurement result of the pressure measuring device. A control unit that controls the supply amount of the raw material to be supplied toward the aqueous solution.

(3)上記(2)の構成において、前記水溶液貯蔵部は、前記上部空間の下側となる前記水溶液の存在する下部空間と、前記下部空間内を上下に仕切る仕切部と、前記仕切部より下側に設けられ、前記水溶液を排水する排水口と、前記仕切部より上側に設けられ、前記水溶液を供給する給水口と、を備え、前記仕切部は、前記原料と前記水溶液との反応で生成した副生成物が前記仕切部より下側に沈殿可能に設けられた複数の貫通孔を備える。 (3) In the configuration of the above (2), the aqueous solution storage portion is formed by a lower space below the upper space in which the aqueous solution exists, a partition portion that vertically partitions the lower space, and the partition portion. A drainage port provided on the lower side for draining the aqueous solution and a water supply port provided on the upper side of the partition portion for supplying the aqueous solution are provided, and the partition portion is provided by a reaction between the raw material and the aqueous solution. The produced by-product is provided with a plurality of through holes provided so as to be able to settle below the partition portion.

(4)上記(3)の構成において、前記水素発生装置は、前記排水口からの前記水溶液の排水を制御する排水制御弁と、前記給水口からの前記水溶液の給水を制御する給水制御弁と、を備え、前記制御部は、前記水溶液に向けて供給する前記原料の供給量に基づいて、前記排水制御弁、及び、前記給水制御弁を制御する。 (4) In the configuration of (3) above, the hydrogen generator includes a drainage control valve that controls the drainage of the aqueous solution from the drainage port and a water supply control valve that controls the supply of the aqueous solution from the water supply port. The control unit controls the drainage control valve and the water supply control valve based on the supply amount of the raw material to be supplied toward the aqueous solution.

(5)上記(1)から(4)のいずれか1つの構成において、前記発電システムは、前記水素が前記水溶液貯蔵部から前記発電装置に至るまでの間に設けられ、前記水溶液貯蔵部で発生した前記水素を貯蔵できるバッファ機構を備える。 (5) In any one of the above configurations (1) to (4), in the power generation system, the hydrogen is provided between the aqueous solution storage unit and the power generation device, and is generated in the aqueous solution storage unit. It is provided with a buffer mechanism capable of storing the hydrogen.

(6)上記(5)の構成において、前記発電システムは、前記水素が前記水溶液貯蔵部から前記発電装置及び前記バッファ機構に至るまでの間に設けられた純化機構を備え、前記純化機構は、第1脱水部及び第1不純物気体除去部を有する第1純化部と、第2脱水部及び第2不純物気体除去部を有する第2純化部と、を備え、前記第1純化部を通過させて前記水素を前記発電装置又は前記バッファ機構に供給するときに前記第2純化部の前記第2脱水部を乾燥処理可能とされ、前記第2純化部を通過させて前記水素を前記発電装置又は前記バッファ機構に供給するときに前記第1純化部の前記第1脱水部を乾燥処理可能とされている。 (6) In the configuration of (5) above, the power generation system includes a purification mechanism provided between the hydrogen storage unit, the power generation device, and the buffer mechanism. It is provided with a first purification unit having a first dehydration unit and a first impurity gas removal unit, and a second purification unit having a second dehydration unit and a second impurity gas removal unit, and is passed through the first purification unit. When the hydrogen is supplied to the power generation device or the buffer mechanism, the second dehydration section of the second purification section can be dried, and the hydrogen is passed through the second purification section to the power generation device or the power generation device or the said. When supplying to the buffer mechanism, the first dehydrated portion of the first purified portion can be dried.

(7)上記(1)から(4)のいずれか1つの構成において、前記発電システムは、前記水素が前記水溶液貯蔵部から前記発電装置に至るまでの間に設けられた純化機構を備え、前記純化機構は、第1脱水部及び第1不純物気体除去部を有する第1純化部と、第2脱水部及び第2不純物気体除去部を有する第2純化部と、を備え、前記第1純化部を通過させて前記水素を前記発電装置に供給するときに前記第2純化部の前記第2脱水部が乾燥処理可能とされ、前記第2純化部を通過させて前記水素を前記発電装置に供給するときに前記第1純化部の前記第1脱水部が乾燥処理可能とされている。 (7) In any one of the configurations (1) to (4), the power generation system includes a purification mechanism provided between the hydrogen storage unit and the power generation device. The purification mechanism includes a first purification unit having a first dehydration unit and a first impurity gas removal unit, and a second purification unit having a second dehydration unit and a second impurity gas removal unit, and the first purification unit. When the hydrogen is supplied to the power generation device, the second dehydration section of the second purification section can be dried, and the hydrogen is supplied to the power generation device through the second purification section. At that time, the first dehydrated portion of the first purified portion can be dried.

(8)本発明の水素発生装置は、水溶液を貯蔵する水溶液貯蔵部と、前記水溶液との反応で水素の発生が可能な状態のマグネシウムを含む原料を貯蔵する原料貯蔵部と、前記原料貯蔵部から前記水溶液貯蔵部に向けて前記原料を供給する原料供給機構と、を備える。 (8) The hydrogen generator of the present invention has an aqueous solution storage unit for storing an aqueous solution, a raw material storage unit for storing a raw material containing magnesium in a state where hydrogen can be generated by reaction with the aqueous solution, and the raw material storage unit. A raw material supply mechanism for supplying the raw material to the aqueous solution storage unit is provided.

(9)上記(8)の構成において、前記水溶液貯蔵部は、前記水溶液より上側となる前記水溶液の存在しない上部空間を備え、前記原料供給機構は、前記上部空間側から前記水溶液に向けて前記原料を供給するように設けられており、前記水素発生装置は、前記上部空間の圧力を測定する圧力測定装置と、前記圧力測定装置の圧力の測定結果に基づいて、前記原料供給機構を駆動させ、前記水溶液に向けて供給する前記原料の供給量を制御する制御部と、を備える。 (9) In the configuration of the above (8), the aqueous solution storage portion includes an upper space above the aqueous solution in which the aqueous solution does not exist, and the raw material supply mechanism is directed from the upper space side toward the aqueous solution. The hydrogen generator is provided to supply the raw material, and the hydrogen generator drives the raw material supply mechanism based on the pressure measuring device for measuring the pressure in the upper space and the pressure measurement result of the pressure measuring device. A control unit that controls the supply amount of the raw material to be supplied toward the aqueous solution.

(10)上記(9)の構成において、前記水溶液貯蔵部は、前記上部空間の下側となる前記水溶液の存在する下部空間と、前記下部空間内を上下に仕切る仕切部と、前記仕切部より下側に設けられ、前記水溶液を排水する排水口と、前記仕切部より上側に設けられ、前記水溶液を供給する給水口と、を備え、前記仕切部は、前記原料と前記水溶液との反応で生成した副生成物が前記仕切部より下側に沈殿可能に設けられた複数の貫通孔を備える。 (10) In the configuration of the above (9), the aqueous solution storage portion is formed by a lower space below the upper space in which the aqueous solution exists, a partition portion that vertically partitions the lower space, and the partition portion. A drainage port provided on the lower side for draining the aqueous solution and a water supply port provided on the upper side of the partition portion for supplying the aqueous solution are provided, and the partition portion is provided by a reaction between the raw material and the aqueous solution. The produced by-product is provided with a plurality of through holes provided so as to be able to settle below the partition portion.

(11)上記(10)の構成において、前記水素発生装置は、前記排水口から排水される前記水溶液の排水量を制御する排水制御弁と、前記給水口から給水される前記水溶液の給水量を制御する給水制御弁と、を備え、前記制御部は、前記水溶液に向けて供給する前記原料の供給量に基づいて、前記排水制御弁、及び、前記給水制御弁を制御する。 (11) In the configuration of (10) above, the hydrogen generator controls a drainage control valve that controls the amount of drainage of the aqueous solution that is drained from the drainage port and a water supply amount of the aqueous solution that is supplied from the water supply port. The control unit controls the drainage control valve and the water supply control valve based on the supply amount of the raw material to be supplied toward the aqueous solution.

本発明によれば、水素の発生量の制御が行いやすく、効率よく水素を発生させることが可能な水素発生装置、及び、水素発生装置で発生した水素を用いた発電システムを提供することができる。 According to the present invention, it is possible to provide a hydrogen generator capable of easily controlling the amount of hydrogen generated and efficiently generating hydrogen, and a power generation system using hydrogen generated by the hydrogen generator. ..

本発明に係る第1実施形態の発電システムを説明するための断面図である。It is sectional drawing for demonstrating the power generation system of 1st Embodiment which concerns on this invention. 本発明に係る第2実施形態の発電システムを説明するための断面図である。It is sectional drawing for demonstrating the power generation system of 2nd Embodiment which concerns on this invention.

以下、添付図面を参照して、本発明を実施するための形態(以下、実施形態)について詳細に説明する。
なお、実施形態の説明の全体を通して同じ要素には同じ番号を付している。
Hereinafter, embodiments for carrying out the present invention (hereinafter, embodiments) will be described in detail with reference to the accompanying drawings.
The same elements are numbered the same throughout the description of the embodiment.

(第1実施形態)
図1は、本発明に係る第1実施形態の発電システム1を説明するための断面図である。
なお、以下では、発電システム1の説明を行いながら、本発明に係る第1実施形態の水素発生装置2の説明も行う。
(First Embodiment)
FIG. 1 is a cross-sectional view for explaining the power generation system 1 of the first embodiment according to the present invention.
In the following, while explaining the power generation system 1, the hydrogen generator 2 of the first embodiment according to the present invention will also be described.

図1に示すように、発電システム1は、発電装置(図示せず)と、これから詳細に説明する、発電装置に供給する水素を発生させる水素発生装置2と、を備えている。 As shown in FIG. 1, the power generation system 1 includes a power generation device (not shown) and a hydrogen generator 2 for generating hydrogen to be supplied to the power generation device, which will be described in detail below.

図示しない発電装置は、例えば、本実施形態では、水素を燃料としてタービンを駆動させる一般的なタービン発電機を想定している。
ただし、後述する別の実施形態のように、図示しない発電装置は燃料電池であってもよい。
The power generation device (not shown) assumes, for example, a general turbine generator that drives a turbine using hydrogen as fuel in the present embodiment.
However, as in another embodiment described later, the power generation device (not shown) may be a fuel cell.

水素発生装置2は、水溶液11を貯蔵する水溶液貯蔵部10と、水溶液11との反応で水素の発生が可能な状態のマグネシウムを含む原料21を貯蔵する原料貯蔵部20と、原料貯蔵部20から水溶液貯蔵部10に向けて原料21を供給する原料供給機構30と、を備えている。 The hydrogen generator 2 is derived from the aqueous solution storage unit 10 for storing the aqueous solution 11, the raw material storage unit 20 for storing the raw material 21 containing magnesium in a state where hydrogen can be generated by the reaction with the aqueous solution 11, and the raw material storage unit 20. A raw material supply mechanism 30 for supplying the raw material 21 to the aqueous solution storage unit 10 is provided.

水溶液11は、水であってもよいし、アンモニア等を含有するアルカリ性の水溶液であってもよいし、塩酸や硝酸等の酸性の水溶液であってもよい。
なお、発電システム1を稼働させるときのランニングコストの面では、水溶液11は水である方が有利であり、一方、原料21との反応性の面では、水溶液11はアンモニウムイオンを含むアルカリ性の水溶液、もしくは塩酸等の酸性の水溶液の方が有利である。
The aqueous solution 11 may be water, an alkaline aqueous solution containing ammonia or the like, or an acidic aqueous solution such as hydrochloric acid or nitric acid.
In terms of running cost when operating the power generation system 1, it is advantageous that the aqueous solution 11 is water, while in terms of reactivity with the raw material 21, the aqueous solution 11 is an alkaline aqueous solution containing ammonium ions. Alternatively, an acidic aqueous solution such as hydrochloric acid is more advantageous.

原料21は、水溶液11との反応性を高めるため、平均粒子径が小さい粒子状(マイクロ粒子やナノ粒子の状態)であることが好ましく、例えば、水溶液11との反応で水素の発生が可能な状態のマグネシウムとしては、金属マグネシウム、水素化マグネシウム等があげられる。 The raw material 21 is preferably in the form of particles having a small average particle size (in the state of microparticles or nanoparticles) in order to enhance the reactivity with the aqueous solution 11, and for example, hydrogen can be generated by the reaction with the aqueous solution 11. Examples of the magnesium in the state include metallic magnesium, magnesium hydride and the like.

ただし、粒子と言っても形状が球状であることを限定するものではなく、各粒子の最大外径を平均したときの平均外径がマイクロメータオーダーの場合はマイクロ粒子であり、マイクロメータオーダーよりも小さい場合(サブミクロン含む)はナノ粒子であるものと解されるべきである。 However, the term "particle" does not limit the shape to be spherical, and if the average outer diameter when averaging the maximum outer diameters of each particle is on the order of micrometers, it is a microparticle, which is higher than the order of micrometer. If it is also small (including submicrons), it should be understood as a nanoparticle.

なお、原料21は金属マグネシウムと水素化マグネシウムの混合されたものであってもよい。
また、原料21には、金属マグネシウムや水素化マグネシウムを生成するために用いた材料が金属マグネシウムや水素化マグネシウムにならずに残留して一部含まれているものであってもよい。
The raw material 21 may be a mixture of metallic magnesium and magnesium hydride.
Further, the raw material 21 may contain a part of the material used for producing the metallic magnesium or the hydrogenated magnesium without becoming the metallic magnesium or the hydrogenated magnesium.

水溶液貯蔵部10は、原料21と水溶液11が反応する反応室としても機能し、水溶液11及び反応で発生した水素等が外部に漏洩しない密閉構造の容器を構成するようになっている。 The aqueous solution storage unit 10 also functions as a reaction chamber in which the raw material 21 and the aqueous solution 11 react with each other, and constitutes a container having a closed structure in which the aqueous solution 11 and hydrogen generated in the reaction do not leak to the outside.

水溶液貯蔵部10には、水溶液11より上側となる水溶液11の存在しない上部空間USが形成されるように、水溶液11の給水が行われることで、水溶液貯蔵部10は、水溶液11より上側となる水溶液11の存在しない上部空間USを備えるものになっている。 The aqueous solution storage unit 10 is above the aqueous solution 11 by supplying water to the aqueous solution 11 so that an upper space US in which the aqueous solution 11 does not exist is formed in the aqueous solution storage unit 10. It is provided with an upper space US in which the aqueous solution 11 does not exist.

具体的に上部空間USを形成する構成について説明すると、まず、水溶液貯蔵部10は、水溶液11の水面LSFの上限位置を決めるために設けられ、水面LSFを検知する上側レベルセンサ12と、水溶液11の水面LSFの下限位置を決めるために設けられ、水面LSFを検知する下側レベルセンサ13と、を備えている。 Specifically, the configuration for forming the upper space US will be described. First, the aqueous solution storage unit 10 is provided to determine the upper limit position of the water surface LSF of the aqueous solution 11, and the upper level sensor 12 for detecting the water surface LSF and the aqueous solution 11 It is provided to determine the lower limit position of the water surface LSF, and includes a lower level sensor 13 for detecting the water surface LSF.

また、水溶液貯蔵部10は、上部空間USの下側となる水溶液11の存在する下部空間LSと、下部空間LS内を上下に仕切る仕切部14と、仕切部14より下側に設けられ、水溶液11を排水する排水口15と、仕切部14より上側に設けられ、水溶液11を供給する給水口16と、を備えるとともに、仕切部14は、水溶液11が通過可能な複数の貫通孔14Aを備えている。 Further, the aqueous solution storage portion 10 is provided below the lower space LS in which the aqueous solution 11 is located below the upper space US, the partition portion 14 that partitions the lower space LS vertically, and the aqueous solution 14 below the partition portion 14. A drainage port 15 for draining the water 11 and a water supply port 16 provided above the partition portion 14 for supplying the aqueous solution 11 are provided, and the partition portion 14 is provided with a plurality of through holes 14A through which the aqueous solution 11 can pass. ing.

そして、水素発生装置2は、排水口15に接続され、水溶液貯蔵部10内の水溶液11を排水するための排水ライン15A(排水配管ともいう。)と、排水口15寄りの排水ライン15A上に設けられ、排水口15からの水溶液11の排水(排水の有無)を制御する排水制御弁15Bと、を備えている。 The hydrogen generator 2 is connected to the drainage port 15 and is located on the drainage line 15A (also referred to as a drainage pipe) for draining the aqueous solution 11 in the aqueous solution storage unit 10 and the drainage line 15A near the drainage port 15. It is provided with a drainage control valve 15B for controlling the drainage (presence or absence of drainage) of the aqueous solution 11 from the drainage port 15.

同様に、水素発生装置2は、給水口16に接続され、水溶液貯蔵部10内に新しい水溶液11を供給するための給水ライン16A(給水配管ともいう。)と、給水口16寄りの給水ライン16A上に設けられ、給水口16からの水溶液11の給水(給水の有無)を制御する給水制御弁16Bと、を備えている。 Similarly, the hydrogen generator 2 is connected to the water supply port 16 and has a water supply line 16A (also referred to as a water supply pipe) for supplying a new aqueous solution 11 into the aqueous solution storage unit 10 and a water supply line 16A near the water supply port 16. It is provided above and includes a water supply control valve 16B for controlling the water supply (presence / absence of water supply) of the aqueous solution 11 from the water supply port 16.

このため、後ほど説明する排給水する所定のタイミングになると、図示しない水素発生装置2の制御部(以下、単に制御部という。)が、まず、排水制御弁15Bを開にして、水溶液貯蔵部10内の水溶液11の排水を行った後、排水制御弁15Bを閉にするとともに、給水制御弁16Bを開にして水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置するように、水溶液貯蔵部10内に水溶液11を給水して給水制御弁16Bを、再び、閉にする。 Therefore, at a predetermined timing for discharging and supplying water, which will be described later, the control unit (hereinafter, simply referred to as the control unit) of the hydrogen generator 2 (not shown) first opens the drainage control valve 15B and the aqueous solution storage unit 10. After draining the aqueous solution 11 inside, the drainage control valve 15B is closed and the water supply control valve 16B is opened so that the water surface LSF of the aqueous solution 11 is located between the upper level sensor 12 and the lower level sensor 13. As a result, the aqueous solution 11 is supplied into the aqueous solution storage unit 10 and the water supply control valve 16B is closed again.

例えば、排水時には、下側レベルセンサ13が水溶液11の水面LSFを検知したのを基準にして、仕切部14のところまで水溶液11の水面LSFが低下する程度の水溶液11の排水を行う。 For example, at the time of drainage, the lower level sensor 13 detects the water surface LSF of the aqueous solution 11, and the aqueous solution 11 is drained to the extent that the water surface LSF of the aqueous solution 11 is lowered to the partition portion 14.

具体的には、排水制御弁15Bを開にしたときの単位時間当たりの排水量は、あらかじめ調べておくことができるため、下側レベルセンサ13が水溶液11の水面LSFを検知したのをスタート点に仕切部14のところまで水溶液11の水面LSFが低下するのに必要な排水量の水溶液11の排水に係る時間が経過したことをもって、排水制御弁15Bを閉にすればよい。 Specifically, since the amount of drainage per unit time when the drainage control valve 15B is opened can be checked in advance, the starting point is that the lower level sensor 13 detects the water surface LSF of the aqueous solution 11. The drainage control valve 15B may be closed when the time for draining the aqueous solution 11 required for the water surface LSF of the aqueous solution 11 to decrease to the partition portion 14 has elapsed.

そして、その水溶液11の排水が終わった後、水溶液11の給水を開始し、下側レベルセンサ13が水溶液11の水面LSFを検知したのを基準にして、水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置する程度の水溶液11の給水を行ったところで給水を終了するようにし、水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置することで、水溶液貯蔵部10が水溶液11より上側となる水溶液11の存在しない上部空間USを備えるものとされている。 Then, after the drainage of the aqueous solution 11 is completed, the water supply of the aqueous solution 11 is started, and the water surface LSF of the aqueous solution 11 is the upper level sensor 12 based on the detection of the water surface LSF of the aqueous solution 11 by the lower level sensor 13. The water supply is terminated when the aqueous solution 11 is supplied to the extent that it is located between the upper level sensor 13 and the lower level sensor 13, and the water surface LSF of the aqueous solution 11 is located between the upper level sensor 12 and the lower level sensor 13. By doing so, the aqueous solution storage portion 10 is provided with an upper space US in which the aqueous solution 11 does not exist, which is above the aqueous solution 11.

具体的には、給水制御弁16Bを開にしたときの単位時間当たりの給水量は、あらかじめ調べておくことができるため、下側レベルセンサ13が水溶液11の水面LSFを検知したのをスタート点に水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置するのに必要な給水量の水溶液11の給水に係る時間が経過したことをもって、給水制御弁16Bを閉にすればよい。 Specifically, since the amount of water supplied per unit time when the water supply control valve 16B is opened can be checked in advance, the starting point is that the lower level sensor 13 detects the water surface LSF of the aqueous solution 11. The water supply control valve 16B is closed when the time required to supply the water surface LSF of the aqueous solution 11 to be located between the upper level sensor 12 and the lower level sensor 13 has elapsed. do it.

なお、排給水する所定のタイミング以外のときに、上側レベルセンサ12が水溶液11の水面LSFを検知すると、図示しない制御部は、排水制御弁15Bを開にして、水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置する程度の水溶液11の排水を行った後、排水制御弁15Bを閉にする。 When the upper level sensor 12 detects the water surface LSF of the aqueous solution 11 at a time other than the predetermined timing for discharging and supplying water, the control unit (not shown) opens the drainage control valve 15B and the water surface LSF of the aqueous solution 11 is at the upper level. After draining the aqueous solution 11 located between the sensor 12 and the lower level sensor 13, the drain control valve 15B is closed.

逆に、排給水する所定のタイミング以外のときに、下側レベルセンサ13が水溶液11の水面LSFを検知すると、図示しない制御部は、給水制御弁16Bを開にして、水溶液11の水面LSFが上側レベルセンサ12と下側レベルセンサ13との間に位置する程度の水溶液11の給水を行った後、給水制御弁16Bを閉にする。 On the contrary, when the lower level sensor 13 detects the water surface LSF of the aqueous solution 11 at a time other than the predetermined timing of discharging water, the control unit (not shown) opens the water supply control valve 16B and the water surface LSF of the aqueous solution 11 is released. After supplying water to the extent that the aqueous solution 11 is located between the upper level sensor 12 and the lower level sensor 13, the water supply control valve 16B is closed.

そして、上述した仕切部14の複数の貫通孔14Aの内径が原料21と水溶液11との反応で生成する水酸化マグネシウム等の副生成物の通過を妨げない大きさとされている。 The inner diameters of the plurality of through holes 14A of the partition portion 14 described above are set to a size that does not hinder the passage of by-products such as magnesium hydroxide produced by the reaction between the raw material 21 and the aqueous solution 11.

つまり、仕切部14は、原料21と水溶液11との反応で生成した副生成物が仕切部14より下側に沈殿可能に設けられた複数の貫通孔14Aを備えるものになっている。 That is, the partition portion 14 is provided with a plurality of through holes 14A provided so that the by-products produced by the reaction between the raw material 21 and the aqueous solution 11 can be precipitated below the partition portion 14.

このため、仕切部14より下側に設けられた排水口15からは、副生成物の含有濃度の高い水溶液11が排水される。 Therefore, the aqueous solution 11 having a high concentration of by-products is drained from the drain port 15 provided below the partition portion 14.

なお、仕切部14の複数の貫通孔14Aの内径は、仮に、原料21が仕切部14より下側に沈殿して、仕切部14より下側で水素が発生したときに、その水素による気泡が邪魔されずに仕切部14より上側に通過できる、又は、仕切部14の下面に一時的に水素溜まりができたとしても、自然と仕切部14の上側に移動することになる程度の大きさにもなっている。 The inner diameters of the plurality of through holes 14A of the partition portion 14 are such that when the raw material 21 is settled below the partition portion 14 and hydrogen is generated below the partition portion 14, bubbles due to the hydrogen are generated. It can pass above the partition 14 without being disturbed, or even if hydrogen is temporarily accumulated on the lower surface of the partition 14, it will naturally move to the upper side of the partition 14. It is also.

一方、図1に示すように、水素発生装置2は、仕切部14より上側の水溶液11を攪拌する攪拌機構40を備えている。 On the other hand, as shown in FIG. 1, the hydrogen generator 2 includes a stirring mechanism 40 for stirring the aqueous solution 11 above the partition portion 14.

具体的には、攪拌機構40は、水溶液貯蔵部10の上部の壁部の外側に設けられたモータ41と、仕切部14より上側の水溶液11内に配置され、水溶液11を攪拌するプロペラ42と、モータ41の回転力をプロペラ42に伝達し、水溶液11を攪拌するようにプロペラ42を回転させるシャフト43と、を備えている。
なお、シャフト43が水溶液貯蔵部10内に挿入される挿入部は、回転を阻害せず、機密を維持可能な機密構造とされている。
Specifically, the stirring mechanism 40 includes a motor 41 provided on the outside of the upper wall portion of the aqueous solution storage portion 10 and a propeller 42 arranged in the aqueous solution 11 above the partition portion 14 to stir the aqueous solution 11. A shaft 43 that transmits the rotational force of the motor 41 to the propeller 42 and rotates the propeller 42 so as to stir the aqueous solution 11 is provided.
The insertion portion into which the shaft 43 is inserted into the aqueous solution storage portion 10 has a confidential structure that does not hinder rotation and can maintain confidentiality.

この攪拌機構40は、水溶液11と反応していない原料21が仕切部14上に溜まるのを抑制するために設けられているものであり、後ほど説明するように、本発明の構成によれば、原料21と水溶液11の反応効率が高いため、必ずしも必要というわけではない。 The stirring mechanism 40 is provided to prevent the raw material 21 that has not reacted with the aqueous solution 11 from accumulating on the partition portion 14, and as will be described later, according to the configuration of the present invention. It is not always necessary because the reaction efficiency between the raw material 21 and the aqueous solution 11 is high.

そして、図示しない制御部は、定期的に攪拌機構40を駆動させ、原料21と水溶液11の反応を促進する。
なお、攪拌機構40を、常時、駆動させるようにしてもよいが、定期的に駆動させることで、仕切部14より下側に副生成物が沈殿しやすくすることができ、仕切部14より上側の水溶液11中の副生成物の含有濃度を低下させ、原料21と水溶液11の反応効率を高めることができる。
Then, a control unit (not shown) periodically drives the stirring mechanism 40 to promote the reaction between the raw material 21 and the aqueous solution 11.
The stirring mechanism 40 may be driven at all times, but by periodically driving the stirring mechanism 40, by-products can be easily settled below the partition portion 14 and above the partition portion 14. It is possible to reduce the concentration of by-products in the aqueous solution 11 and increase the reaction efficiency between the raw material 21 and the aqueous solution 11.

また、仕切部14が設けられていることで、攪拌機構40を駆動させたときに、仕切部14よりも下側に沈殿した副生成物が巻き上げられて、仕切部14より上側の水溶液11中の副生成物の含有濃度が上昇することを抑制することができるため、攪拌機構40の駆動により、原料21と水溶液11の反応効率が低下するのを抑制することができる。 Further, since the partition portion 14 is provided, when the stirring mechanism 40 is driven, the by-products that have settled below the partition portion 14 are wound up and are contained in the aqueous solution 11 above the partition portion 14. Since it is possible to suppress an increase in the content concentration of the by-product of the above, it is possible to suppress a decrease in the reaction efficiency between the raw material 21 and the aqueous solution 11 by driving the stirring mechanism 40.

一方、水素発生装置2は、上部空間USに連通するように水溶液貯蔵部10に接続された緊急排気ライン50(緊急排気配管ともいう。)と、緊急排気ライン50の上部空間USに連通する連通部寄りの位置に設けられ、緊急排気の有無を制御する電磁弁51と、電磁弁51から水溶液貯蔵部10に至るまでの間の緊急排気ライン50上に接続され、上部空間USの圧力を測定する圧力測定装置52(例えば、デジタルマノスターゲージ)と、を備えている。 On the other hand, the hydrogen generator 2 communicates with the emergency exhaust line 50 (also referred to as an emergency exhaust pipe) connected to the aqueous solution storage unit 10 so as to communicate with the upper space US and the upper space US of the emergency exhaust line 50. The electromagnetic valve 51, which is provided near the part and controls the presence or absence of emergency exhaust, is connected to the emergency exhaust line 50 between the electromagnetic valve 51 and the aqueous solution storage portion 10, and measures the pressure in the upper space US. A pressure measuring device 52 (for example, a digital manostar gauge) is provided.

したがって、上部空間USの圧力を測定する圧力測定装置52の圧力測定の結果が、異常に高い圧力を示した場合には、図示しない制御部が、電磁弁51を開にすることで上部空間US内の圧力が所定の第1圧力(求められる一次圧)になるように降圧制御を行う。
なお、所定の第1圧力(求められる一次圧)になれば、図示しない制御部は、再び、電磁弁51を閉の状態にする。
Therefore, when the result of the pressure measurement of the pressure measuring device 52 for measuring the pressure of the upper space US shows an abnormally high pressure, a control unit (not shown) opens the electromagnetic valve 51 to open the upper space US. The step-down control is performed so that the internal pressure becomes a predetermined first pressure (required primary pressure).
When the predetermined first pressure (required primary pressure) is reached, the control unit (not shown) closes the solenoid valve 51 again.

原料貯蔵部20は、上側に原料21の充填作業のときに開閉される作業扉22を有しているが、この作業扉22を閉めると、密閉構造の容器を構成するようになっている。 The raw material storage unit 20 has a work door 22 on the upper side which is opened and closed when the raw material 21 is filled, and when the work door 22 is closed, a container having a closed structure is formed.

また、原料貯蔵部20は、作業扉22に隣接して上側に設けられ、貯蔵している原料21の表面までの距離を測定する距離測定器24(例えば、変位センサ)を備えており、この距離測定器24が測定する原料21までの距離が長くなることで原料21を追加する時期の把握ができるようになっている。 Further, the raw material storage unit 20 is provided on the upper side adjacent to the work door 22 and includes a distance measuring device 24 (for example, a displacement sensor) for measuring the distance to the surface of the stored raw material 21. By increasing the distance to the raw material 21 measured by the distance measuring device 24, it is possible to grasp when to add the raw material 21.

なお、原料21は水溶液11のように表面が必ずしもフラットに近い状態になるとは言えないが、後述する原料供給機構30の駆動によって、原料21全体に振動等が発生するため、比較的フラットな状態を保つことができ、距離測定器24が測定する原料21までの距離の測定結果は、原料21を追加する時期の一つの目安とすることができる。 The surface of the raw material 21 is not necessarily in a state close to flat like the aqueous solution 11, but the raw material 21 is in a relatively flat state because vibration or the like is generated in the entire raw material 21 by driving the raw material supply mechanism 30 described later. The measurement result of the distance to the raw material 21 measured by the distance measuring device 24 can be used as a guideline for the time when the raw material 21 is added.

ただし、後述するように、本実施形態では、水溶液11に供給された原料21の供給量を把握できるため、水溶液11に供給された原料21の供給量が所定の分量に到達したことを基準として原料21を追加するようにしてもよく、この場合、距離測定器24は不要となる。 However, as will be described later, in the present embodiment, since the supply amount of the raw material 21 supplied to the aqueous solution 11 can be grasped, the supply amount of the raw material 21 supplied to the aqueous solution 11 has reached a predetermined amount as a reference. The raw material 21 may be added, in which case the distance measuring device 24 becomes unnecessary.

そして、原料貯蔵部20は、底部の壁部の少なくとも一部が、水溶液貯蔵部10の上部の壁部の外側と密着するように設けられ、その密着している箇所の底部の壁部には、底部の壁部を貫通する原料21を水溶液貯蔵部10内に供給するための原料供給孔23が形成されている。 The raw material storage section 20 is provided so that at least a part of the bottom wall portion is in close contact with the outside of the upper wall portion of the aqueous solution storage section 10, and the bottom wall portion of the close contact portion is provided. A raw material supply hole 23 for supplying the raw material 21 penetrating the bottom wall into the aqueous solution storage portion 10 is formed.

また、水溶液貯蔵部10も原料貯蔵部20の原料供給孔23に対応する位置に、上部の壁部を貫通する原料21を受け入れるための原料受入孔17が形成されている。 Further, the aqueous solution storage unit 10 is also formed with a raw material receiving hole 17 for receiving the raw material 21 penetrating the upper wall portion at a position corresponding to the raw material supply hole 23 of the raw material storage unit 20.

一方、原料貯蔵部20内には、原料供給機構30が設けられている。
具体的には、原料供給機構30は、原料貯蔵部20の上部の壁部の内側に設置されたモータ31と、原料貯蔵部20の底部の壁部の内側に隣接して配置され、原料21を原料供給孔23の位置に運搬する円板32と、モータ31の回転力を円板32に伝達し、円板32を回転させるシャフト33と、を備えている。
On the other hand, the raw material supply mechanism 30 is provided in the raw material storage unit 20.
Specifically, the raw material supply mechanism 30 is arranged adjacent to the motor 31 installed inside the upper wall portion of the raw material storage unit 20 and the inside of the bottom wall portion of the raw material storage unit 20, and the raw material 21 It is provided with a disk 32 for transporting the motor 31 to the position of the raw material supply hole 23, and a shaft 33 for transmitting the rotational force of the motor 31 to the disk 32 to rotate the disk 32.

なお、図示を省略しているが、原料貯蔵部20は、原料供給機構30を内蔵させる作業のために、底部とそれよりも上側の部分が分離可能に構成され、それらを一体化して形成されたものになっている。 Although not shown, the raw material storage unit 20 is formed so that the bottom portion and the portion above the raw material supply mechanism 30 are separably configured for the work of incorporating the raw material supply mechanism 30 and integrated with each other. It has become a raw material.

そして、図1の左側に点線枠で囲んで示す円板32の斜視図のように、円板32は、回転中心Oを挟んで対向し、回転中心Oからほぼ同じ距離離れた位置に位置する、一対の貫通孔(貫通孔32Aと貫通孔32B)が形成されている。 Then, as shown in the perspective view of the disk 32 surrounded by the dotted line frame on the left side of FIG. 1, the disk 32 faces the rotation center O with the rotation center O in between, and is located at a position substantially the same distance from the rotation center O. , A pair of through holes (through hole 32A and through hole 32B) are formed.

ここで、図1を見るとわかるように、原料貯蔵部20は、原料供給孔23に対応する部分の上側に、円板32の一部を受け入れる横方向に窪んだ凹部を備えており、その凹部に位置する円板32の貫通孔(貫通孔32B参照)の上側の開口に凹部の内面が近接して開口をほぼ塞いだ状態となるようになっている。 Here, as can be seen from FIG. 1, the raw material storage unit 20 is provided with a laterally recessed recess for receiving a part of the disk 32 on the upper side of the portion corresponding to the raw material supply hole 23. The inner surface of the recess is close to the opening on the upper side of the through hole (see the through hole 32B) of the disk 32 located in the recess so that the opening is substantially closed.

このため、上部空間US内の気体(主に水素)が原料貯蔵部20側に侵入しようとしても原料供給孔23上に円板32の貫通孔(貫通孔32B参照)の開口が位置するときには、その開口がほぼ閉塞状態であるため、上部空間US内の気体(主に水素)が原料貯蔵部20側に侵入できないようになっている。 Therefore, even if the gas (mainly hydrogen) in the upper space US tries to enter the raw material storage portion 20, when the opening of the through hole (see through hole 32B) of the disk 32 is located on the raw material supply hole 23, Since the opening is almost closed, the gas (mainly hydrogen) in the upper space US cannot enter the raw material storage unit 20 side.

そして、その円板32の一部を受け入れる横方向に窪んだ凹部以外の位置に円板32の貫通孔(貫通孔32A、貫通孔32B)が位置(例えば、貫通孔32Aの位置参照)するときに、この貫通孔(貫通孔32A参照)内に原料21が入り込み、円板32が回転して円板32の一部を受け入れる横方向に窪んだ凹部の位置に貫通孔(貫通孔32A、貫通孔32B)が位置(貫通孔32Bの位置参照)するようになると、貫通孔(貫通孔32A、貫通孔32B)内に充填された原料21が、原料供給孔23及び原料受入孔17を介して、上部空間US側から水溶液11に向けて供給されることになる。 Then, when the through holes (through holes 32A, through holes 32B) of the disk 32 are positioned (see, for example, the positions of the through holes 32A) at positions other than the recesses recessed in the lateral direction that receive a part of the disk 32. The raw material 21 enters the through hole (see through hole 32A), and the through hole (through hole 32A, through hole 32A, through) is located at a position of a recess that is recessed in the lateral direction to receive a part of the disk 32 by rotating the disk 32. When the hole 32B) is positioned (see the position of the through hole 32B), the raw material 21 filled in the through hole (through hole 32A, through hole 32B) passes through the raw material supply hole 23 and the raw material receiving hole 17. , It will be supplied from the upper space US side toward the aqueous solution 11.

また、本実施形態では、水素発生装置2が、原料貯蔵部20の原料21より上側の原料21の存在しない上側空間US1の圧力を測定する圧力測定装置61(例えば、デジタルマノスターゲージ)と、上側空間US1に気体(例えば、露点の低い窒素等の活性の低いガスや露点の低いヘリウム、アルゴン等の不活性ガス)を供給する気体供給ライン62(気体供給配管ともいう。)と、気体供給ライン62上に設けられ、上側空間US1への気体の供給の有無を制御する電磁弁63と、を備えている。 Further, in the present embodiment, the hydrogen generator 2 includes a pressure measuring device 61 (for example, a digital manostar gauge) for measuring the pressure of the upper space US1 in which the raw material 21 above the raw material 21 of the raw material storage unit 20 does not exist. A gas supply line 62 (also referred to as a gas supply pipe) for supplying a gas (for example, a low-activity gas such as nitrogen having a low dew point or an inert gas such as helium or argon having a low dew point) to the upper space US1 and a gas supply. It is provided on the line 62 and includes an electromagnetic valve 63 for controlling the presence / absence of gas supply to the upper space US1.

そして、図示しない制御部は、上側空間US1の圧力測定装置61が測定する圧力の測定結果に基づいて、上側空間US1内の圧力が所定の圧力(例えば、水溶液貯蔵部10の上部空間US内の圧力と同程度の圧力)となるように、電磁弁63の開閉制御を行う。 Then, in the control unit (not shown), the pressure in the upper space US1 is a predetermined pressure (for example, in the upper space US of the aqueous solution storage unit 10) based on the measurement result of the pressure measured by the pressure measuring device 61 in the upper space US1. The opening / closing control of the electromagnetic valve 63 is performed so that the pressure becomes the same as the pressure).

なお、図示は省略しているが、水素発生装置2は、上側空間US1内の気体を排気する気体排気ライン(気体供給配管ともいう。)と、その気体排気ラインを通じて上側空間US1内の気体の排気の有無を制御する電磁弁も有している。 Although not shown, the hydrogen generator 2 has a gas exhaust line (also referred to as a gas supply pipe) for exhausting gas in the upper space US1 and gas in the upper space US1 through the gas exhaust line. It also has an electromagnetic valve that controls the presence or absence of exhaust.

したがって、より正確には、図示しない制御部が、上述した電磁弁63と気体の排気の有無を制御する電磁弁とを制御することで上側空間US1内の圧力が所定の圧力(例えば、水溶液貯蔵部10の上部空間US内の圧力と同程度の圧力)となるように制御される。 Therefore, more accurately, a control unit (not shown) controls the above-mentioned solenoid valve 63 and the solenoid valve that controls the presence or absence of gas exhaust, so that the pressure in the upper space US1 becomes a predetermined pressure (for example, aqueous solution storage). The pressure is controlled to be about the same as the pressure in the upper space US of the portion 10.

そして、上側空間US1が昇圧されていることで、より一層、上部空間US内の気体(主に水素)が原料貯蔵部20側に侵入するのを抑制できるとともに、円板32の一部を受け入れる横方向に窪んだ凹部以外の位置に円板32の貫通孔(貫通孔32A、貫通孔32B)が位置(例えば、貫通孔32Aの位置参照)するときに、この貫通孔(貫通孔32A、貫通孔32B)内に原料21が効率的に入り込む。 By boosting the pressure of the upper space US1, it is possible to further suppress the invasion of gas (mainly hydrogen) in the upper space US into the raw material storage unit 20 side, and accept a part of the disk 32. When the through hole (through hole 32A, through hole 32B) of the disk 32 is located at a position other than the recess recessed in the lateral direction (see, for example, the position of the through hole 32A), this through hole (through hole 32A, through) The raw material 21 efficiently enters the hole 32B).

なお、本実施形態では、円板32の一部を受け入れる横方向に窪んだ凹部の位置に貫通孔(貫通孔32A、貫通孔32B)が位置するようになると、貫通孔(貫通孔32A、貫通孔32B)内に充填された原料21が、自重で原料供給孔23及び原料受入孔17を介して、上部空間US側から水溶液11に向けて落下することで水溶液11に供給されるものとしている。 In the present embodiment, when the through hole (through hole 32A, through hole 32B) is located at the position of the recess that is recessed in the lateral direction to receive a part of the disk 32, the through hole (through hole 32A, through hole 32A, through hole 32B) is formed. The raw material 21 filled in the hole 32B) is supplied to the aqueous solution 11 by dropping from the upper space US side toward the aqueous solution 11 through the raw material supply hole 23 and the raw material receiving hole 17 by its own weight. ..

しかし、水素発生装置2が、原料供給孔23及び原料受入孔17の直上に位置する貫通孔(貫通孔32A、貫通孔32B)に対して棒状体を挿入し、貫通孔(貫通孔32A、貫通孔32B)内の原料21を強制的に押し出す原料押出機構を備えるものとしてもよく、そうすることで、確実に原料21を水溶液11に向けて供給することが可能となる。 However, the hydrogen generator 2 inserts a rod-shaped body into the through holes (through holes 32A, through holes 32B) located directly above the raw material supply holes 23 and the raw material receiving holes 17, and the through holes (through holes 32A, through holes 32A, through holes 32B) are inserted. A raw material extrusion mechanism for forcibly extruding the raw material 21 in the hole 32B) may be provided, so that the raw material 21 can be reliably supplied toward the aqueous solution 11.

このような原料押出機構を設ける場合には、円板32の貫通孔(貫通孔32A、貫通孔32B)が原料供給孔23及び原料受入孔17の直上に位置するところで円板32の回転を停止し、その貫通孔(貫通孔32A、貫通孔32B)に棒状体を挿入して原料21を水溶液11に向けて供給した後、その貫通孔(貫通孔32A、貫通孔32B)から棒状体を抜いて、再び、円板32を回転させるという動作を繰り返すことになる。 When such a raw material extrusion mechanism is provided, the rotation of the disk 32 is stopped when the through holes (through holes 32A, through holes 32B) of the disk 32 are located directly above the raw material supply hole 23 and the raw material receiving hole 17. Then, a rod-shaped body is inserted into the through hole (through hole 32A, through hole 32B) to supply the raw material 21 toward the aqueous solution 11, and then the rod-shaped body is pulled out from the through hole (through hole 32A, through hole 32B). Then, the operation of rotating the disk 32 is repeated again.

なお、本実施形態では、先に説明したように、円板32の回転中心Oを挟んで対向し、回転中心Oからほぼ同じ距離離れた位置に、一対の貫通孔(貫通孔32Aと貫通孔32B)が形成されたものとしたが、これに限定される必要はない。 In the present embodiment, as described above, a pair of through holes (through hole 32A and through hole) are located at positions facing each other with the rotation center O of the disk 32 sandwiched and substantially the same distance from the rotation center O. It is assumed that 32B) is formed, but it is not necessary to be limited to this.

例えば、回転中心Oからほぼ同じ距離離れた位置に、同じサイズの貫通孔が円板32の回転方向に均等間隔で3つ(この場合、円板32の周方向で見た隣接する貫通孔間の角度ピッチは120°ピッチとなる。)を設けるようにしてもよく、回転方向に均等間隔で4つの貫通孔(この場合、円板32の周方向で見た隣接する貫通孔間の角度ピッチは90°ピッチとなる。)を設けるようにしてもよい。 For example, at a position approximately the same distance from the center of rotation O, three through holes of the same size are evenly spaced in the rotation direction of the disk 32 (in this case, between adjacent through holes viewed in the circumferential direction of the disk 32). The angular pitch of the disk 32 may be 120 ° pitch), and four through holes (in this case, the angular pitch between adjacent through holes seen in the circumferential direction of the disk 32) may be provided at equal intervals in the rotation direction. Has a 90 ° pitch.) May be provided.

また、貫通孔が1つであったとしても、その1つの貫通孔が円板32の一部を受け入れる横方向に窪んだ凹部以外の位置と、円板32の一部を受け入れる横方向に窪んだ凹部の位置と、に交互に位置するように制御すれば原料21を水溶液11に供給することが可能であるため問題はない。 Further, even if there is only one through hole, the one through hole is recessed in a position other than a laterally recessed portion that accepts a part of the disk 32 and a laterally recessed portion that accepts a part of the disk 32. There is no problem because the raw material 21 can be supplied to the aqueous solution 11 if the positions of the recesses are controlled so as to be alternately located.

ただし、貫通孔の数が多くなると、円板32の一部を受け入れる横方向に窪んだ凹部が形成し難くなるので、貫通孔の数は4つ以下であることが好ましい。 However, as the number of through holes increases, it becomes difficult to form recesses recessed in the lateral direction to receive a part of the disk 32. Therefore, the number of through holes is preferably 4 or less.

また、貫通孔のサイズは、発生させる水素量に応じた原料21を供給できるサイズが選択されればよい。
例えば、水素化マグネシウムの質量(1mol当たりの重さ)は26.32gであり、水素化マグネシウムの密度は2.36g/cm程度であるので、体積約11.2cm弱(約1mol)の水素化マグネシウムからなる原料21を水溶液11に投入すれば、標準状態で45リットル弱(約2mol)の水素が発生する。
Further, as the size of the through hole, a size capable of supplying the raw material 21 according to the amount of hydrogen to be generated may be selected.
For example, the mass of the magnesium hydride (weight per 1 mol) is 26.32G, the density of the magnesium hydride is about 2.36 g / cm 3, a volume of about 11.2 cm 3 weak (about 1 mol) When the raw material 21 made of hydrogenated magnesium is added to the aqueous solution 11, a little less than 45 liters (about 2 mol) of hydrogen is generated in a standard state.

そして、10MW程度の発電を行う水素ガスタービン型の発電装置で約0.6憶m/年の水素を使用すると考えると、1分当たり約114mの水素が必要になり、これに対応する貫通孔を一例として考えれば、以下のようになる。 Considering that a hydrogen gas turbine type power generator that generates about 10 MW uses about 60 million m 3 / year of hydrogen, about 114 m 3 of hydrogen is required per minute, which corresponds to this. Considering the through hole as an example, it is as follows.

例えば、円板32の厚さを約10cmとし、円板32の直径を約70cmとして、回転中心Oから約10cmオフセットした位置に、直径が約21cmの貫通孔の内側の端(貫通孔の中心は回転中心Oから約20.5cmオフセット)が位置するディメンジョンを考えれば、その貫通孔の容積は約3346cm弱となる。 For example, the thickness of the disk 32 is about 10 cm, the diameter of the disk 32 is about 70 cm, and the inner end of the through hole having a diameter of about 21 cm (the center of the through hole) is located at a position offset by about 10 cm from the center of rotation O. Considering the dimension in which the center of rotation O is located at an offset of about 20.5 cm), the volume of the through hole is about 3346 cm and a little less than 3.

このため、上記のようなディメンジョンの貫通孔には、約300mol(=3346[cm]/11.2[cm])程度の原料21が充填できることになり、この分量の水素化マグネシウムからなる原料21を水溶液11に投入したとすれば、約600mol(約13.4m)の水素が発生することになる。 Therefore, the through hole of the dimension as described above can be filled with the raw material 21 of about 300 mol (= 3346 [cm 3 ] / 11.2 [cm 3 ]), and is composed of this amount of magnesium hydride. If the raw material 21 is put into the aqueous solution 11, about 600 mol (about 13.4 m 3 ) of hydrogen will be generated.

そうすると、本実施形態の貫通孔32A、貫通孔32Bのように、円板32に貫通孔を2つ設けた場合を考えれば、1回転当たりに2回貫通孔(貫通孔32Aが1回、貫通孔32Bが1回)から原料21が水溶液11に供給されることになるので、円板32を12秒で1回転(1分間5回転)させると、1分間当たりでは、10回水溶液11に向けて原料21が供給されることになり、十分に1分当たり114mを超える水素(約134m)を発生させるだけの原料21を供給することができる。 Then, considering the case where two through holes are provided in the disk 32 as in the through holes 32A and 32B of the present embodiment, the through holes (through holes 32A once penetrate through) per rotation. Since the raw material 21 is supplied to the aqueous solution 11 from the hole 32B once), if the disk 32 is rotated once in 12 seconds (5 rotations per minute), the disk 32 is directed to the aqueous solution 11 10 times per minute. The raw material 21 is supplied, and the raw material 21 that sufficiently generates more than 114 m 3 of hydrogen (about 134 m 3 ) per minute can be supplied.

したがって、小型(約1万KW)の水素ガスタービン型の発電装置を想定する場合、円板32に2つの貫通孔を設けるようにすれば、その貫通孔の容積は、約3346cm弱でよいと考えられる。 Therefore, when assuming a small (about 10,000 kW) hydrogen gas turbine type power generation device, if the disk 32 is provided with two through holes, the volume of the through holes may be about 3346 cm 3 or less. it is conceivable that.

ただし、発電装置の発電量が大きくなれば、必要な原料21の供給量が増加することになるため、発電量が10倍程度の発電装置までを想定するとすれば、貫通孔の容積は、約33460cm弱までを想定しておくことが好ましい。 However, if the power generation amount of the power generation device increases, the supply amount of the required raw material 21 will increase. Therefore, assuming that the power generation amount is up to about 10 times, the volume of the through hole is about. It is preferable to assume up to 33,460 cm and a little less than 3.

したがって、貫通孔の容積は、3000cmから35000cm程度とすることが好ましい。
なお、このことを考えれば、原料供給機構30は、1分当たり、100mから1000m程度の水素を発生させることができる原料21を水溶液11に供給できることが好ましい。
Accordingly, the volume of the through-hole is preferably in a 35,000 3 order of 3000 cm 3.
Considering this, it is preferable that the raw material supply mechanism 30 can supply the raw material 21 capable of generating about 100 m 3 to 1000 m 3 of hydrogen per minute to the aqueous solution 11.

なお、上述した原料供給機構30は、あくまでも一例であって、原料供給機構30は、上部空間US側から水溶液11に向けて原料21を供給するように設けられ、原料21が上部空間US側から水溶液11に向けて供給できるような構成であればよい。 The raw material supply mechanism 30 described above is merely an example, and the raw material supply mechanism 30 is provided so as to supply the raw material 21 from the upper space US side toward the aqueous solution 11, and the raw material 21 is provided from the upper space US side. Any configuration may be used as long as it can be supplied toward the aqueous solution 11.

一方、本実施形態では、図示しない制御部が、水溶液貯蔵部10の上部空間USの圧力を測定する圧力測定装置52の圧力の測定結果に基づいて、原料供給機構30のモータ31を駆動させ、上部空間US内の圧力が所定の第1圧力(求められる一次圧)となるように、水溶液11に向けて供給する原料21の供給量を制御するものになっている。 On the other hand, in the present embodiment, a control unit (not shown) drives the motor 31 of the raw material supply mechanism 30 based on the pressure measurement result of the pressure measuring device 52 that measures the pressure of the upper space US of the aqueous solution storage unit 10. The supply amount of the raw material 21 supplied toward the aqueous solution 11 is controlled so that the pressure in the upper space US becomes a predetermined first pressure (obtained primary pressure).

このように、図示しない制御部が、水溶液11に向けて供給する原料21の供給量を制御しているため、図示しない制御部は、どれだけの原料21が水溶液11に供給されたのかを把握することが可能であり、水溶液11に供給されたトータルの原料21の供給量から水溶液11中の水酸化マグネシウム等の副生成物の含有濃度の増加を予想(例えば実験的に濃度変化のデータを採取しておき、そのデータに基づいて予想)することが可能である。
なお、このような実験的な手法に代えて、副生成物の含有濃度の増加予想を理論計算で行うこともできる。
In this way, since the control unit (not shown) controls the supply amount of the raw material 21 supplied toward the aqueous solution 11, the control unit (not shown) grasps how much raw material 21 is supplied to the aqueous solution 11. It is possible to predict an increase in the concentration of by-products such as magnesium hydroxide in the aqueous solution 11 from the total amount of the raw material 21 supplied to the aqueous solution 11 (for example, experimentally obtain data on the concentration change). It is possible to collect it and make a prediction based on the data.
Instead of such an experimental method, it is possible to predict the increase in the concentration of by-products by theoretical calculation.

そこで、図示しない制御部は、水溶液11に向けて供給する原料21の供給量に基づいて、先ほど説明したように、排水制御弁15B、及び、給水制御弁16Bを制御し、本実施形態では、原料21と水溶液11の反応効率が低下しないように、水溶液11中の副生成物の含有濃度が高くなり過ぎないようにする管理を行っている。 Therefore, the control unit (not shown) controls the drainage control valve 15B and the water supply control valve 16B as described above based on the supply amount of the raw material 21 supplied toward the aqueous solution 11, and in the present embodiment, the control unit controls the drainage control valve 15B and the water supply control valve 16B. Control is performed so that the concentration of by-products in the aqueous solution 11 does not become too high so that the reaction efficiency between the raw material 21 and the aqueous solution 11 does not decrease.

一方、図1に示すように、水溶液貯蔵部10は、上部空間US内の水素を発電装置(図示せず)に向けて排出するための水素排出口18を備えており、発電システム1は、水素排出口18に接続され、水溶液貯蔵部10で発生した水素を発電装置(図示せず)に供給する水素供給部70(水素供給主配管ともいう。)を備えている。 On the other hand, as shown in FIG. 1, the aqueous solution storage unit 10 is provided with a hydrogen discharge port 18 for discharging hydrogen in the upper space US toward a power generation device (not shown), and the power generation system 1 is provided with a hydrogen discharge port 18. It is connected to a hydrogen discharge port 18 and includes a hydrogen supply unit 70 (also referred to as a hydrogen supply main pipe) that supplies hydrogen generated in the aqueous solution storage unit 10 to a power generation device (not shown).

また、発電システム1は、水素供給部70上の水素排出口18寄りの位置に設けられ、水素排出口18からの水素の排出の有無を制御する電磁弁71と、電磁弁71よりも水素排出口18から離れた水素供給部70上に設けられた減圧弁72と、減圧弁72よりも更に水素排出口18から離れた水素供給部70上に設けられた電磁弁73と、を備えている。 Further, the power generation system 1 is provided at a position closer to the hydrogen discharge port 18 on the hydrogen supply unit 70, and has an electromagnetic valve 71 that controls the presence or absence of hydrogen discharge from the hydrogen discharge port 18, and hydrogen discharge from the electromagnetic valve 71. It includes a pressure reducing valve 72 provided on the hydrogen supply unit 70 away from the outlet 18, and a solenoid valve 73 provided on the hydrogen supply unit 70 further away from the hydrogen discharge port 18 than the pressure reducing valve 72. ..

なお、減圧弁72は、上部空間US内の所定の第1圧力(求められる一次圧)から図示しない発電装置に供給するための所定の第2圧力(求められる二次圧)に水素の圧力を減圧するためのものである。 The pressure reducing valve 72 applies a hydrogen pressure from a predetermined first pressure (obtained primary pressure) in the upper space US to a predetermined second pressure (desired secondary pressure) for supplying to a power generation device (not shown). It is for depressurizing.

さらに、発電システム1は、図示しない発電装置に水素を供給可能に貯蔵するバッファ機構3を備えている。 Further, the power generation system 1 includes a buffer mechanism 3 that can supply hydrogen to a power generation device (not shown).

具体的には、バッファ機構3は、バッファタンク80と、一端が水素供給部70の減圧弁72と電磁弁73の間の位置に接続されるとともに他端がバッファタンク80に接続され、水素をバッファタンク80に引き込むための引込分岐ライン81(分岐配管ともいう。)と、引込分岐ライン81上に設けられた昇圧装置82と、昇圧装置82とバッファタンク80の間の引込分岐ライン81上に設けられた電磁弁83と、を備えている。 Specifically, the buffer mechanism 3 is connected to the buffer tank 80 at a position where one end is connected between the pressure reducing valve 72 and the solenoid valve 73 of the hydrogen supply unit 70 and the other end is connected to the buffer tank 80 to supply hydrogen. On the lead-in branch line 81 (also referred to as a branch pipe) for drawing into the buffer tank 80, the booster 82 provided on the lead-in branch line 81, and the lead-in branch line 81 between the booster 82 and the buffer tank 80. The solenoid valve 83 provided is provided.

また、バッファ機構3は、一端がバッファタンク80に接続されるとともに他端が電磁弁73よりも図示しない発電装置側となる水素供給部70に接続され、水素をバッファタンク80から水素供給部70に戻すための返送ライン84(返送配管ともいう。)と、返送ライン84上に設けられた電磁弁85と、電磁弁85と水素供給部70の間の返送ライン84上に設けられた減圧弁86と、を備えている。 Further, one end of the buffer mechanism 3 is connected to the buffer tank 80, and the other end is connected to a hydrogen supply unit 70 which is on the power generation device side (not shown) than the solenoid valve 73, and hydrogen is transferred from the buffer tank 80 to the hydrogen supply unit 70. A return line 84 (also referred to as a return pipe) for returning to the hydrogen, an electromagnetic valve 85 provided on the return line 84, and a pressure reducing valve provided on the return line 84 between the electromagnetic valve 85 and the hydrogen supply unit 70. It is equipped with 86.

なお、減圧弁86も先ほどの減圧弁72と同様に、バッファタンク80の後述する圧力から図示しない発電装置に供給するための所定の第2圧力(求められる二次圧)に水素の圧力を減圧するためのものである。 Similarly to the pressure reducing valve 72, the pressure reducing valve 86 also reduces the pressure of hydrogen from the pressure described later in the buffer tank 80 to a predetermined second pressure (obtained secondary pressure) for supplying to a power generation device (not shown). It is for doing.

そして、バッファ機構3には、図示しない発電装置からの水素の供給要求がないときを利用して水素の充填処理が行われる。 Then, the buffer mechanism 3 is filled with hydrogen by utilizing the case where there is no request for hydrogen supply from a power generation device (not shown).

具体的には、図示しない制御部によって、電磁弁71及び電磁弁83が開とされるとともに、電磁弁73及び電磁弁85が閉とされる制御が行われ、更に、制御部によって、水素発生装置2が水素を発生させるように制御が行われるとともに、昇圧装置82の駆動制御が行われる。 Specifically, a control unit (not shown) opens the solenoid valve 71 and the solenoid valve 83, controls the solenoid valve 73 and the solenoid valve 85 to close, and the control unit generates hydrogen. Control is performed so that the device 2 generates hydrogen, and drive control of the booster device 82 is performed.

このため、水素発生装置2で発生した水素は、減圧弁72によって所定の第2圧力(求められる二次圧)の状態で引込分岐ライン81に供給されるが、昇圧装置82によって昇圧が行われるので、バッファタンク80内の圧力が上部空間US内の所定の第1圧力(求められる一次圧)と同様の第1圧力又は第1圧力よりも高めの所定の第3圧力となるように、バッファタンク80に水素を充填することができる。 Therefore, the hydrogen generated by the hydrogen generator 2 is supplied to the lead-in branch line 81 in a state of a predetermined second pressure (obtained secondary pressure) by the pressure reducing valve 72, but the pressure is increased by the booster 82. Therefore, the buffer so that the pressure in the buffer tank 80 becomes a predetermined first pressure similar to the predetermined first pressure (obtained primary pressure) in the upper space US or a predetermined third pressure higher than the first pressure. The tank 80 can be filled with hydrogen.

なお、バッファ機構3は、バッファタンク80内の圧力を測定する圧力測定装置87(例えば、デジタルマノスターゲージ)を備えており、上述したバッファタンク80への水素の充填処理は、この圧力測定装置87が測定するバッファタンク80内の圧力の測定結果に基づいて、第1圧力又は第1圧力よりも高めの所定の第3圧力となるように、行われ、目標の圧力になれば、水素発生装置2の駆動が停止されるとともに、電磁弁71及び電磁弁83が閉とされる。 The buffer mechanism 3 is provided with a pressure measuring device 87 (for example, a digital manostar gauge) for measuring the pressure in the buffer tank 80, and the above-mentioned filling process of hydrogen in the buffer tank 80 is performed by this pressure measuring device. Based on the measurement result of the pressure in the buffer tank 80 measured by 87, the pressure is adjusted to be the first pressure or a predetermined third pressure higher than the first pressure, and when the target pressure is reached, hydrogen is generated. The drive of the device 2 is stopped, and the electromagnetic valve 71 and the electromagnetic valve 83 are closed.

また、バッファ機構3は、バッファタンク80と緊急排気ライン50を接続する接続ライン88(接続配管ともいう。)と、接続ライン88上に設けられ、緊急排気の有無を制御する電磁弁89と、を備えており、圧力測定装置87が測定するバッファタンク80内の圧力の測定結果が異常に高い圧力を示した場合には、図示しない制御部が、電磁弁89を開にすることでバッファタンク80内の圧力が、先に説明した第1圧力又は第1圧力よりも高めの所定の第3圧力になるように降圧制御を行う。 Further, the buffer mechanism 3 includes a connection line 88 (also referred to as a connection pipe) that connects the buffer tank 80 and the emergency exhaust line 50, an electromagnetic valve 89 that is provided on the connection line 88 and controls the presence or absence of emergency exhaust. When the measurement result of the pressure in the buffer tank 80 measured by the pressure measuring device 87 shows an abnormally high pressure, a control unit (not shown) opens the electromagnetic valve 89 to open the buffer tank. The step-down control is performed so that the pressure in 80 becomes a predetermined third pressure higher than the first pressure or the first pressure described above.

ただし、本実施形態では、水素供給部70から分岐する形態でバッファ機構3を設ける場合について示したが、バッファ機構3は、水素供給部70上に設けられるものとしてもよい。 However, in the present embodiment, the case where the buffer mechanism 3 is provided in a form of branching from the hydrogen supply unit 70 is shown, but the buffer mechanism 3 may be provided on the hydrogen supply unit 70.

例えば、バッファ機構3の変形例としては、減圧弁72を省略し、電磁弁71と電磁弁73の間の水素供給部70上に水溶液貯蔵部10側から図示しない発電装置側に向けて、電磁弁83、バッファタンク80を設けるとともに、電磁弁73よりも発電装置側となる水素供給部70上に減圧弁86を設けるような構成が考えられ、この場合には、水溶液貯蔵部10で発生した水素が、必ず、バッファ機構3を介して発電装置に供給されることになる。 For example, as a modification of the buffer mechanism 3, the pressure reducing valve 72 is omitted, and electromagnetic waves are applied to the hydrogen supply unit 70 between the solenoid valve 71 and the solenoid valve 73 from the aqueous solution storage unit 10 side toward the power generation device side (not shown). It is conceivable that the valve 83 and the buffer tank 80 are provided and the pressure reducing valve 86 is provided on the hydrogen supply unit 70 that is closer to the power generation device than the solenoid valve 73. In this case, the pressure reducing valve 86 is provided in the aqueous solution storage unit 10. Hydrogen is always supplied to the power generation device via the buffer mechanism 3.

そして、バッファ機構3は、本実施形態、及び、変形例のどちらにおいても、水素が水溶液貯蔵部10から図示しない発電装置に至るまでの間に設けられ、水溶液貯蔵部10で発生した水素を貯蔵できるようにされることになる。 Then, in both the present embodiment and the modified example, the buffer mechanism 3 is provided between the aqueous solution storage unit 10 and the power generation device (not shown), and stores the hydrogen generated in the aqueous solution storage unit 10. You will be able to do it.

なお、このバッファ機構3の変形例の場合でも、バッファ機構3がバッファタンク80内の圧力を測定する圧力測定装置87(例えば、デジタルマノスターゲージ)と、バッファタンク80と緊急排気ライン50を接続する接続ライン88(接続配管ともいう。)と、接続ライン88上に設けられ、緊急排気の有無を制御する電磁弁89と、を備えるものとすることが好ましく、水素供給部70上に設けられることになる電磁弁83と電磁弁71の間の水素供給部70上に昇圧装置82を設けるようにしてもよい。 Even in the case of the modification of the buffer mechanism 3, the buffer mechanism 3 connects the pressure measuring device 87 (for example, a digital manostar gauge) for measuring the pressure in the buffer tank 80, the buffer tank 80, and the emergency exhaust line 50. It is preferable that the connection line 88 (also referred to as a connection pipe) to be connected and an electromagnetic valve 89 provided on the connection line 88 to control the presence or absence of emergency exhaust are provided, and are provided on the hydrogen supply unit 70. A booster 82 may be provided on the hydrogen supply unit 70 between the electromagnetic valve 83 and the electromagnetic valve 71.

また、バッファ機構3の制御は、水素発生装置2の制御部が行う方がシンプルなものとなると考えられるため、水素発生装置2がバッファ機構3を含むとともに、水素発生装置2がそのバッファ機構3との関連で必要な位置までの水素供給部70を含むものであってもよい。 Further, since it is considered that the control of the buffer mechanism 3 is simpler to be performed by the control unit of the hydrogen generator 2, the hydrogen generator 2 includes the buffer mechanism 3 and the hydrogen generator 2 includes the buffer mechanism 3. It may include a hydrogen supply unit 70 up to a position required in relation to the above.

次に、以上のような構成からなる発電システム1の動作等について説明する。
ただし、これまでの説明で細部の動作については十分に理解が得られる説明を行っているため、主要な動作についてだけ説明するものとする。
また、以下では、既にバッファタンク80に水素が充填されているものとして説明する。
Next, the operation and the like of the power generation system 1 having the above configuration will be described.
However, since the explanations so far have given a sufficient understanding of the detailed operations, only the main operations will be described.
Further, in the following, it is assumed that the buffer tank 80 is already filled with hydrogen.

例えば、図示しない発電装置から水素発生装置2に水素供給の要求(指令)が届くと、水素発生装置2の制御部は、水溶液貯蔵部10の上部空間US内の圧力を確認し、上部空間US内の圧力が所定の第1圧力(求められる一次圧)前後の圧力になっていれば、電磁弁71及び電磁弁73を開にして、発電装置への水素の供給を開始するとともに、その水素の供給によって減少する水溶液貯蔵部10の上部空間US内の圧力を所定の第1圧力(求められる一次圧)に保つように原料供給機構30の駆動を制御する。 For example, when a request (command) for hydrogen supply arrives from a power generation device (not shown) to the hydrogen generator 2, the control unit of the hydrogen generator 2 confirms the pressure in the upper space US of the aqueous solution storage unit 10, and the upper space US If the pressure inside is around the predetermined first pressure (required primary pressure), the electromagnetic valve 71 and the electromagnetic valve 73 are opened to start supplying hydrogen to the power generation device and the hydrogen. The drive of the raw material supply mechanism 30 is controlled so as to keep the pressure in the upper space US of the aqueous solution storage portion 10 which is reduced by the supply of hydrogen at a predetermined first pressure (obtained primary pressure).

一方、水素発生装置2の制御部は、水溶液貯蔵部10の上部空間US内の圧力を確認した結果、上部空間US内の圧力が低すぎる場合、電磁弁85を開にしてバッファタンク80内の水素が図示しない発電装置に供給されるようにするとともに、水溶液貯蔵部10の上部空間US内の圧力が所定の第1圧力(求められる一次圧)になるように原料供給機構30の駆動を制御する。 On the other hand, when the control unit of the hydrogen generator 2 confirms the pressure in the upper space US of the aqueous solution storage unit 10 and the pressure in the upper space US is too low, the electromagnetic valve 85 is opened and the inside of the buffer tank 80 is opened. The drive of the raw material supply mechanism 30 is controlled so that hydrogen is supplied to a power generation device (not shown) and the pressure in the upper space US of the aqueous solution storage unit 10 becomes a predetermined first pressure (desired primary pressure). To do.

本実施形態の場合、水溶液貯蔵部10に貯められた大量の水溶液11に向けて原料21を供給することになるため、原料21と水溶液11の反応で水酸化マグネシウム等の副生成物が生成したとしても、その副生成物は、水溶液11内に速やかに拡散するため、反応が阻害されることなく、効率よく速やかに反応が進むため、水溶液貯蔵部10の上部空間US内の圧力を短時間で所定の第1圧力(求められる一次圧)にすることができる。 In the case of the present embodiment, since the raw material 21 is supplied to the large amount of the aqueous solution 11 stored in the aqueous solution storage portion 10, a by-product such as magnesium hydroxide is produced by the reaction between the raw material 21 and the aqueous solution 11. Even so, since the by-product rapidly diffuses into the aqueous solution 11, the reaction proceeds efficiently and quickly without hindering the reaction, so that the pressure in the upper space US of the aqueous solution storage portion 10 is reduced for a short time. Can be set to a predetermined first pressure (required primary pressure).

そして、水素発生装置2の制御部は、水溶液貯蔵部10の上部空間US内の圧力が所定の第1圧力(求められる一次圧)になると、電磁弁71及び電磁弁73を開にするとともに、電磁弁85を閉にして、図示しない発電装置への水素の供給をバッファタンク80から水溶液貯蔵部10に切り替える。 Then, the control unit of the hydrogen generator 2 opens the solenoid valve 71 and the solenoid valve 73 when the pressure in the upper space US of the aqueous solution storage unit 10 reaches a predetermined first pressure (required primary pressure), and at the same time, The solenoid valve 85 is closed, and the supply of hydrogen to the power generation device (not shown) is switched from the buffer tank 80 to the aqueous solution storage unit 10.

なお、上述のように、本実施形態では、原料21と水溶液11の反応効率が良いため、図示しない発電装置に水素を供給することに伴う水溶液貯蔵部10の上部空間US内の圧力の低下を抑制するための制御も行いやすい。 As described above, in the present embodiment, since the reaction efficiency between the raw material 21 and the aqueous solution 11 is good, the pressure in the upper space US of the aqueous solution storage portion 10 due to the supply of hydrogen to the power generation device (not shown) is reduced. It is easy to control for suppression.

また、十分に用意された水溶液11に向けて原料21を供給する形態であるため、その高い反応効率を持続的に維持することが可能である。 Further, since the raw material 21 is supplied to the sufficiently prepared aqueous solution 11, its high reaction efficiency can be continuously maintained.

一方、水素発生装置2の制御部は、水溶液貯蔵部10から図示しない発電装置に水素を供給する状態のときに、何らかの原因で水溶液貯蔵部10の上部空間US内の圧力が水素の供給に適さない圧力まで低下しそうな場合、再び、電磁弁71を閉にするとともに電磁弁85を開にして、発電装置への水素の供給を停止させることなく、水溶液貯蔵部10の上部空間US内の圧力の復旧を行う。 On the other hand, when the control unit of the hydrogen generator 2 is in a state of supplying hydrogen from the aqueous solution storage unit 10 to a power generation device (not shown), the pressure in the upper space US of the aqueous solution storage unit 10 is suitable for supplying hydrogen for some reason. When the pressure is likely to drop to no pressure, the pressure in the upper space US of the aqueous solution storage portion 10 is closed again by closing the electromagnetic valve 71 and opening the electromagnetic valve 85 without stopping the supply of hydrogen to the power generation device. To restore.

そして、水素発生装置2の制御部は、図示しない発電装置から水素の供給停止の要求(指令)を受けると、水素発生装置2の動作を停止させる前に、バッファタンク80内の圧力を確認し、バッファタンク80に水素の充填が必要であれば、その充填を行ってから水素発生装置2の動作を停止させる処理を行う。
一方、水素発生装置2の制御部は、バッファタンク80に水素の充填が必要ない場合には、充填を行わずに水素発生装置2の動作を停止させる処理を行う。
Then, when the control unit of the hydrogen generator 2 receives a request (command) for stopping the supply of hydrogen from a power generation device (not shown), the control unit confirms the pressure in the buffer tank 80 before stopping the operation of the hydrogen generator 2. If the buffer tank 80 needs to be filled with hydrogen, the buffer tank 80 is filled and then the operation of the hydrogen generator 2 is stopped.
On the other hand, when the buffer tank 80 does not need to be filled with hydrogen, the control unit of the hydrogen generator 2 performs a process of stopping the operation of the hydrogen generator 2 without filling the buffer tank 80.

なお、本実施形態では、バッファ機構3を設けることで、図示しない発電装置への水素の供給開始時の水素供給の迅速性、及び、水素供給中の水素供給量安定性を、一層、高めたものになっている。 In the present embodiment, by providing the buffer mechanism 3, the speed of hydrogen supply at the start of hydrogen supply to the power generation device (not shown) and the stability of the hydrogen supply amount during hydrogen supply are further improved. It has become a thing.

しかしながら、先に説明したように、本実施形態では、水溶液貯蔵部10に貯められた大量の水溶液11に向けて原料21を供給することで、原料21と水溶液11の反応効率が高いものとなっており、図示しない発電装置への水素の供給開始時において、速やかに必要な量の水素を発生させやすく、また、水素供給中の水素供給量の制御性も高いものとなっているため、バッファ機構3を設けることが必須の要件というわけではなく、バッファ機構3を省略してもよい。
なお、さらに、原料21と水溶液11の反応効率が高いものとするために、水素発生装置2が水溶液11の温度を高める温調手段(例えば、水溶液11が沸騰しない程度の温度範囲内で水溶液11を加熱する温調手段)を備えていてもよい。
However, as described above, in the present embodiment, by supplying the raw material 21 toward the large amount of the aqueous solution 11 stored in the aqueous solution storage unit 10, the reaction efficiency between the raw material 21 and the aqueous solution 11 becomes high. Therefore, it is easy to quickly generate the required amount of hydrogen at the start of hydrogen supply to the power generation device (not shown), and the controllability of the hydrogen supply amount during hydrogen supply is also high, so that the buffer is used. It is not an essential requirement to provide the mechanism 3, and the buffer mechanism 3 may be omitted.
Further, in order to make the reaction efficiency between the raw material 21 and the aqueous solution 11 high, the hydrogen generator 2 raises the temperature of the aqueous solution 11 (for example, the aqueous solution 11 is within a temperature range in which the aqueous solution 11 does not boil. It may be provided with a temperature control means) for heating.

(第2実施形態)
次に図2を参照しながら第2実施形態の発電システム1について説明する。
図2は、本発明に係る第2実施形態の発電システム1を説明するための断面図である。
(Second Embodiment)
Next, the power generation system 1 of the second embodiment will be described with reference to FIG.
FIG. 2 is a cross-sectional view for explaining the power generation system 1 of the second embodiment according to the present invention.

第1実施形態では、図示しない発電装置が水素を燃料としてタービンを駆動させるタービン発電機を想定していた。 In the first embodiment, a turbine generator in which a power generation device (not shown) drives a turbine using hydrogen as fuel is assumed.

一方、第2実施形態では、図示しない発電装置が一般的な燃料電池である場合を想定しており、第1実施形態の構成に対して、発電装置に燃料電池を用いる場合に適する構成を付加したものになっている。 On the other hand, in the second embodiment, it is assumed that the power generation device (not shown) is a general fuel cell, and a configuration suitable for using a fuel cell as the power generation device is added to the configuration of the first embodiment. It has become something that has been done.

このため第2実施形態の発電システム1も基本的な構成は、第1実施形態と同様であるため、以下では、主に異なる点について説明し、同様の点については説明を省略する場合がある。 Therefore, since the basic configuration of the power generation system 1 of the second embodiment is the same as that of the first embodiment, mainly different points will be described below, and the same points may be omitted. ..

図2に示すように、第2実施形態の発電システム1は、第1実施形態の構成に加え、減圧弁72からバッファ機構3(より具体的には、引込分岐ライン81)に至るまでに水溶液貯蔵部10から図示しない発電装置(及びバッファ機構3)に向かって供給される水素の純度を高める純化機構4を備えている。 As shown in FIG. 2, in the power generation system 1 of the second embodiment, in addition to the configuration of the first embodiment, an aqueous solution is provided from the pressure reducing valve 72 to the buffer mechanism 3 (more specifically, the lead-in branch line 81). A purification mechanism 4 for increasing the purity of hydrogen supplied from the storage unit 10 to a power generation device (and a buffer mechanism 3) (not shown) is provided.

なお、純化機構4の制御は、水素発生装置2の制御部が行う方がシンプルなものとなると考えられるため、水素発生装置2が純化機構4を含むものであってもよい。 Since it is considered that the control of the purification mechanism 4 is simpler to be performed by the control unit of the hydrogen generator 2, the hydrogen generator 2 may include the purification mechanism 4.

純化機構4は、減圧弁72と引込分岐ライン81の間の水素供給部70上に設けられた第1脱水部91A(例えば、モレキュラーシーブ)と、第1脱水部91Aよりも引込分岐ライン81側となる水素供給部70上に設けられた第1不純物気体除去部92Aと、減圧弁72と第1脱水部91Aの間の水素供給部70上に設けられた第1上流側電磁弁93Aと、第1不純物気体除去部92Aと引込分岐ライン81の間の水素供給部70上に設けられた第1下流側電磁弁94Aと、を備えている。 The purification mechanism 4 includes a first dehydration section 91A (for example, a molecular sieve) provided on the hydrogen supply section 70 between the pressure reducing valve 72 and the lead-in branch line 81, and a lead-in branch line 81 side of the first dehydration section 91A. A first impurity gas removing section 92A provided on the hydrogen supply section 70, and a first upstream solenoid valve 93A provided on the hydrogen supply section 70 between the pressure reducing valve 72 and the first dehydration section 91A. A first downstream solenoid valve 94A provided on the hydrogen supply unit 70 between the first impurity gas removing unit 92A and the lead-in branch line 81 is provided.

なお、第1脱水部91Aと第1不純物気体除去部92Aとが純化機構4の第1純化部として機能する。
また、第1実施形態で触れたように、バッファ機構3は省略可能であるため、この場合には、引込分岐ライン81や電磁弁73は不要となる。
The first dehydration unit 91A and the first impurity gas removal unit 92A function as the first purification unit of the purification mechanism 4.
Further, as mentioned in the first embodiment, since the buffer mechanism 3 can be omitted, in this case, the lead-in branch line 81 and the solenoid valve 73 are unnecessary.

このため、バッファ機構3が省略される場合には、純化機構4は、減圧弁72と減圧弁72よりも図示しない発電装置の間の水素供給部70上に設けられた第1脱水部91A(例えば、モレキュラーシーブ)と、第1脱水部91Aよりも図示しない発電装置側となる水素供給部70上に設けられた第1不純物気体除去部92Aと、減圧弁72と第1脱水部91Aの間の水素供給部70上に設けられた第1上流側電磁弁93Aと、第1不純物気体除去部92Aと図示しない発電装置の間の水素供給部70上に設けられた第1下流側電磁弁94Aと、を備えるものとなる。 Therefore, when the buffer mechanism 3 is omitted, the purification mechanism 4 is provided on the hydrogen supply unit 70 between the pressure reducing valve 72 and the power generation device (not shown) than the pressure reducing valve 72. For example, between the molecular sieve), the first impurity gas removing section 92A provided on the hydrogen supply section 70 on the power generation device side (not shown) side of the first dehydration section 91A, and the pressure reducing valve 72 and the first dehydration section 91A. The first upstream solenoid valve 93A provided on the hydrogen supply unit 70 of the above, and the first downstream solenoid valve 94A provided on the hydrogen supply unit 70 between the first impurity gas removing unit 92A and the power generation device (not shown). And will be provided.

例えば、本実施形態では、第1脱水部91Aに低温(例えば100℃以下程度)で露点の低い加熱気体を供給することで乾燥処理が可能なシリカゲル系のモレキュラーシーブを用いている。 For example, in the present embodiment, a silica gel-based molecular sieve capable of drying treatment is used by supplying a heated gas having a low dew point at a low temperature (for example, about 100 ° C. or lower) to the first dehydration unit 91A.

このため、本実施形態では、純化機構4が、乾燥気体(例えば露点の低い窒素等の活性の低いガスや露点の低いヘリウム、アルゴン等の不活性ガス)の第1脱水部91Aへの供給の有無を制御する第1供給制御電磁弁95Aを有し、第1脱水部91Aと第1不純物気体除去部92Aの間の水素供給部70に接続された乾燥気体供給ライン95(乾燥気体供給配管ともいう。)と、乾燥気体を排気するときに開とされる第1排気制御電磁弁96Aを有し、第1上流側電磁弁93Aと第1脱水部91Aの間の水素供給部70に接続された乾燥気体排気ライン96(乾燥気体排気配管ともいう。)と、を備え、後ほど説明するように、一旦、第1脱水部91Aが水分を吸収しても、第1脱水部91Aの乾燥処理を行うことで水分の吸収性能を再生できるようになっている。
なお、乾燥気体は図示しない加熱装置で若干加熱され、室温(例えば25℃)より高い温度(例えば、50℃以上)であって100℃以下の温度の状態で供給される。
Therefore, in the present embodiment, the purification mechanism 4 supplies a dry gas (for example, a low-activity gas such as nitrogen having a low dew point or an inert gas such as helium or argon having a low dew point) to the first dehydration section 91A. A dry gas supply line 95 (also a dry gas supply pipe) having a first supply control solenoid valve 95A for controlling the presence or absence and connected to a hydrogen supply unit 70 between the first dehydration unit 91A and the first impurity gas removal unit 92A. It has a first exhaust control solenoid valve 96A that is opened when the dry gas is exhausted, and is connected to a hydrogen supply section 70 between the first upstream solenoid valve 93A and the first dehydration section 91A. A dry gas exhaust line 96 (also referred to as a dry gas exhaust pipe) is provided, and as will be described later, even if the first dehydration section 91A once absorbs water, the first dehydration section 91A is dried. By doing so, the water absorption performance can be regenerated.
The dry gas is slightly heated by a heating device (not shown), and is supplied at a temperature higher than room temperature (for example, 25 ° C.) (for example, 50 ° C. or higher) and at a temperature of 100 ° C. or lower.

また、本実施形態では、第1不純物気体除去部92Aに、例えば、原料21を生成するための材料に塩化マグネシウムが用いられている場合、原料21を生成するときに、未反応の状態で原料21内に残留している塩化マグネシウム中の塩素に関連して発生する不純物気体(例えば、塩素ガス、塩酸ガス等)を除去できるケミカルフィルタを用いている。
なお、本実施形態では、第1不純物気体除去部92Aとして、塩素ガスを除去するフィルタと塩酸ガスを除去するフィルタを直列で並べるようにしている。
Further, in the present embodiment, when magnesium chloride is used as the material for producing the raw material 21 in the first impurity gas removing unit 92A, for example, when the raw material 21 is produced, the raw material is in an unreacted state. A chemical filter capable of removing impurity gases (for example, chlorine gas, hydrochloric acid gas, etc.) generated in relation to chlorine in magnesium chloride remaining in 21 is used.
In the present embodiment, the filter for removing chlorine gas and the filter for removing hydrochloric acid gas are arranged in series as the first impurity gas removing unit 92A.

ただし、第1不純物気体除去部92Aは、水溶液貯蔵部10で水素を発生させたときに、発生する不純物気体を除去することを目的としているので、どのようなケミカルフィルタを用いるかは、原料21や水溶液11に合わせて選択される。 However, since the first impurity gas removing unit 92A aims to remove the impurity gas generated when hydrogen is generated in the aqueous solution storage unit 10, what kind of chemical filter is used depends on the raw material 21. It is selected according to the aqueous solution 11 and the aqueous solution 11.

一方、本実施形態では、純化機構4は、一端が減圧弁72と第1上流側電磁弁93Aの間の水素供給部70に接続されるとともに、他端が第1下流側電磁弁94Aと引込分岐ライン81の間の水素供給部70に接続された迂回ライン70A(迂回配管ともいう。)を備えている。 On the other hand, in the present embodiment, one end of the purification mechanism 4 is connected to the hydrogen supply unit 70 between the pressure reducing valve 72 and the first upstream solenoid valve 93A, and the other end is retracted with the first downstream solenoid valve 94A. A detour line 70A (also referred to as a detour pipe) connected to the hydrogen supply unit 70 between the branch lines 81 is provided.

なお、先に触れたように、バッファ機構3は省略可能であるため、この場合には、引込分岐ライン81や電磁弁73は不要となるため、迂回ライン70Aの他端は、第1下流側電磁弁94Aよりも図示しない発電装置側の水素供給部70に接続されたものとなる。 As mentioned earlier, since the buffer mechanism 3 can be omitted, in this case, the lead-in branch line 81 and the solenoid valve 73 are unnecessary, so that the other end of the bypass line 70A is on the first downstream side. It is connected to the hydrogen supply unit 70 on the power generation device side, which is not shown, than the solenoid valve 94A.

そして、純化機構4は、迂回ライン70A上に設けられた第2脱水部91B(例えば、モレキュラーシーブ)と、第2脱水部91Bよりも図示しない発電装置側となる迂回ライン70A上に設けられた第2不純物気体除去部92Bと、第2脱水部91Bより減圧弁72側の迂回ライン70A上(第2脱水部91Bより迂回ライン70Aの一端側の迂回ライン70A上)に設けられた第2上流側電磁弁93Bと、第2不純物気体除去部92Bより図示しない発電装置側の迂回ライン70A上(第2不純物気体除去部92Bより迂回ライン70Aの他端側の迂回ライン70A上)に設けられた第2下流側電磁弁94Bと、を備えている。 The purification mechanism 4 is provided on a second dehydration section 91B (for example, a molecular sieve) provided on the bypass line 70A and a bypass line 70A on the power generation device side (not shown) on the second dehydration section 91B. The second upstream of the second impurity gas removing section 92B and the second upstream provided on the bypass line 70A on the pressure reducing valve 72 side of the second dehydration section 91B (on the bypass line 70A on one end side of the bypass line 70A from the second dehydration section 91B). The side solenoid valve 93B and the second impurity gas removing unit 92B are provided on the detour line 70A on the power generation device side (on the detour line 70A on the other end side of the detour line 70A from the second impurity gas removing unit 92B). It is provided with a second downstream solenoid valve 94B.

なお、第2脱水部91Bと第2不純物気体除去部92Bとが第1純化部と同様の役目を果たす純化機構4の第2純化部として機能し、第2脱水部91Bには、第1脱水部91Aと同様に、低温(例えば100℃以下程度)で露点の低い加熱気体を供給することで乾燥処理が可能なシリカゲル系のモレキュラーシーブが用いられている。 The second dehydration section 91B and the second impurity gas removal section 92B function as the second purification section of the purification mechanism 4 which plays the same role as the first purification section, and the second dehydration section 91B has the first dehydration section. Similar to Part 91A, a silica gel-based molecular sieve capable of drying treatment by supplying a heated gas having a low dew point at a low temperature (for example, about 100 ° C. or lower) is used.

また、第2不純物気体除去部92Bにも第1不純物気体除去部92Aと同様に、塩素ガス、塩酸ガス等を除去できるケミカルフィルタが用いられ、具体的な構成においても、塩素ガスを除去するフィルタと塩酸ガスを除去するフィルタを直列で並べるものとしている。 Similarly to the first impurity gas removing section 92A, the second impurity gas removing section 92B also uses a chemical filter capable of removing chlorine gas, hydrochloric acid gas, etc., and even in a specific configuration, a filter that removes chlorine gas. And filters that remove hydrochloric acid gas are arranged in series.

そして、乾燥気体供給ライン95が第2脱水部91Bと第2不純物気体除去部92Bの間の迂回ライン70Aに接続されるとともに、乾燥気体排気ライン96が第2上流側電磁弁93Bと第2脱水部91Bの間の迂回ライン70Aに接続され、純化機構4が、第1供給制御電磁弁95Aより迂回ライン70A側の乾燥気体供給ライン95上に設けられ、乾燥気体(例えば露点の低い窒素等の活性の低いガスや露点の低いヘリウム、アルゴン等の不活性ガス)の第2脱水部91Bへの供給の有無を制御する第2供給制御電磁弁95Bと、乾燥気体排気ライン96の第1排気制御電磁弁96Aより迂回ライン70A側の乾燥気体排気ライン96上に設けられ、乾燥気体を排気するときに開とされる第2排気制御電磁弁96Bと、を備えるものになっている。 Then, the dry gas supply line 95 is connected to the detour line 70A between the second dehydration section 91B and the second impurity gas removal section 92B, and the dry gas exhaust line 96 is connected to the second upstream electromagnetic valve 93B and the second dehydration. It is connected to the detour line 70A between the parts 91B, and the purification mechanism 4 is provided on the dry gas supply line 95 on the detour line 70A side of the first supply control electromagnetic valve 95A, and the dry gas (for example, nitrogen having a low dew point) is provided. A second supply control electromagnetic valve 95B that controls whether or not a low-activity gas or an inert gas such as helium or argon having a low dew point is supplied to the second dehydration section 91B, and a first exhaust control of the dry gas exhaust line 96. A second exhaust control electromagnetic valve 96B, which is provided on the dry gas exhaust line 96 on the bypass line 70A side of the electromagnetic valve 96A and is opened when the dry gas is exhausted, is provided.

なお、乾燥気体供給ライン95への乾燥気体の供給は、第1供給制御電磁弁95Aと第2供給制御電磁弁95Bの間の乾燥気体供給ライン95の位置で行われるようになっており、乾燥気体排気ライン96からの乾燥気体の排気は、第1排気制御電磁弁96Aと第2排気制御電磁弁96Bの間の乾燥気体排気ライン96の位置で行われるようになっている。 The dry gas is supplied to the dry gas supply line 95 at the position of the dry gas supply line 95 between the first supply control solenoid valve 95A and the second supply control solenoid valve 95B. The exhaust of the dry gas from the gas exhaust line 96 is performed at the position of the dry gas exhaust line 96 between the first exhaust control solenoid valve 96A and the second exhaust control solenoid valve 96B.

したがって、第2脱水部91Bにおいても、一旦、第2脱水部91Bが水分を吸収しても、第2脱水部91Bの乾燥処理を行うことで水分の吸収性能を再生できるようになっている。 Therefore, even in the second dehydration section 91B, even if the second dehydration section 91B once absorbs water, the moisture absorption performance can be regenerated by performing the drying treatment of the second dehydration section 91B.

次に、純化機構4の動作について説明する。
なお、この動作の説明は、水素が水溶液貯蔵部10から図示しない発電装置又はバッファタンク80に向けて供給されている状態であることを前提として行い、第1実施形態で説明した水素の供給開始時等の説明は省略するものとする。
Next, the operation of the purification mechanism 4 will be described.
The explanation of this operation is performed on the premise that hydrogen is being supplied from the aqueous solution storage unit 10 to the power generation device or the buffer tank 80 (not shown), and the hydrogen supply start described in the first embodiment is started. The explanation of the time etc. shall be omitted.

例えば、水素発生装置2の制御部は、第1上流側電磁弁93A及び第1下流側電磁弁94Aを開とし、第2上流側電磁弁93B、第2下流側電磁弁94B、第1供給制御電磁弁95A、及び、第1排気制御電磁弁96Aを閉として、水素が純化機構4の第1純化部(第1脱水部91A及び第1不純物気体除去部92A)を通過して図示しない発電装置に供給されるように制御しているときには、乾燥気体が第2脱水部91Bを通過するように、第2供給制御電磁弁95B、及び、第2排気制御電磁弁96Bを開とする制御も行う。 For example, the control unit of the hydrogen generator 2 opens the first upstream solenoid valve 93A and the first downstream solenoid valve 94A, and opens the second upstream solenoid valve 93B, the second downstream solenoid valve 94B, and the first supply control. A power generation device (not shown) in which hydrogen passes through the first purification unit (first dehydration unit 91A and first impurity gas removal unit 92A) of the purification mechanism 4 with the solenoid valve 95A and the first exhaust control solenoid valve 96A closed. The second supply control solenoid valve 95B and the second exhaust control solenoid valve 96B are also controlled to be opened so that the dry gas passes through the second dehydration section 91B. ..

したがって、第1脱水部91Aが水素中の水分を吸収するように動作している間に、第2脱水部91Bの乾燥処理が行われ、第2脱水部91Bの水分を吸収する性能が再生される。 Therefore, while the first dehydration section 91A is operating to absorb the water in the hydrogen, the second dehydration section 91B is dried, and the ability of the second dehydration section 91B to absorb the water is regenerated. To.

一方、水素発生装置2の制御部は、所定の量の水素が第1脱水部91Aを通過すると、第2上流側電磁弁93B、及び、第2下流側電磁弁94Bを開とし、第1上流側電磁弁93A、第1下流側電磁弁94A、第2供給制御電磁弁95B、及び、第2排気制御電磁弁96Bを閉として、水素が純化機構4の第2純化部(第2脱水部91B及び第2不純物気体除去部92B)を通過して図示しない発電装置に供給されるように制御を切り替え、このときには、乾燥気体が第1脱水部91Aを通過するように、水素発生装置2の制御部は、第1供給制御電磁弁95A、及び、第1排気制御電磁弁96Aを開とする制御も行う。 On the other hand, when a predetermined amount of hydrogen passes through the first dehydration section 91A, the control unit of the hydrogen generator 2 opens the second upstream solenoid valve 93B and the second downstream solenoid valve 94B, and opens the first upstream solenoid valve 94B. The side solenoid valve 93A, the first downstream solenoid valve 94A, the second supply control solenoid valve 95B, and the second exhaust control solenoid valve 96B are closed, and the hydrogen purifies the second purification part (second dehydration part 91B) of the purification mechanism 4. And the control is switched so that the dry gas passes through the second impurity gas removing unit 92B) and is supplied to the power generation device (not shown). At this time, the control of the hydrogen generator 2 is performed so that the dry gas passes through the first dehydration unit 91A. The unit also controls to open the first supply control solenoid valve 95A and the first exhaust control solenoid valve 96A.

したがって、第2脱水部91Bが水素中の水分を吸収するように動作している間に、第1脱水部91Aの乾燥処理が行われ、第1脱水部91Aの水分を吸収する性能が再生される。 Therefore, while the second dehydration section 91B is operating to absorb the water in the hydrogen, the first dehydration section 91A is dried, and the ability of the first dehydration section 91A to absorb the water is regenerated. To.

このように、純化機構4が、第1純化部(第1脱水部91A及び第1不純物気体除去部92A)と、第2純化部(第2脱水部91B及び第2不純物気体除去部92B)と、を備えるものとし、第1純化部を通過させて水素を図示しない発電装置又はバッファタンク80に供給するときに第2純化部の第2脱水部91Bが乾燥処理可能とされ、第2純化部を通過させて水素を図示しない発電装置又はバッファタンク80に供給するときに第1純化部の第1脱水部91Aが乾燥処理可能とされているので、水素の図示しない発電装置又はバッファタンク80への供給を停止させることなく、第1脱水部91A、及び、第2脱水部91Bの再生処理を行うことができるようになっている。 As described above, the purification mechanism 4 includes the first purification unit (first dehydration unit 91A and first impurity gas removal unit 92A) and the second purification unit (second dehydration unit 91B and second impurity gas removal unit 92B). , And when hydrogen is supplied to a power generation device or a buffer tank 80 (not shown) through the first purification unit, the second dehydration unit 91B of the second purification unit can be dried and processed, and the second purification unit can be dried. Since the first dehydration unit 91A of the first purification unit can be dried when the hydrogen is supplied to the power generation device or buffer tank 80 (not shown), the hydrogen is supplied to the power generation device or buffer tank 80 (not shown). The first dehydration section 91A and the second dehydration section 91B can be regenerated without stopping the supply of the gas.

また、必要に応じて、第1純化部を通過させて水素を図示しない発電装置又はバッファタンク80に供給するときに第2純化部の第2不純物気体除去部92Bを交換し、第2純化部を通過させて水素を図示しない発電装置又はバッファタンク80に供給するときに第1純化部の第1不純物気体除去部92Aを交換することも可能なため、第1不純物気体除去部92A、及び、第2不純物気体除去部92Bの交換作業も水素の図示しない発電装置又はバッファタンク80への供給を停止させることなく行うことができる。 Further, if necessary, when hydrogen is supplied to a power generation device or a buffer tank 80 (not shown) by passing through the first purification unit, the second impurity gas removal unit 92B of the second purification unit is replaced, and the second purification unit is replaced. Since it is possible to replace the first impurity gas removing section 92A of the first purification section when hydrogen is supplied to a power generation device or a buffer tank 80 (not shown), the first impurity gas removing section 92A and the first impurity gas removing section 92A and The replacement work of the second impurity gas removing unit 92B can also be performed without stopping the supply of hydrogen to the power generation device or the buffer tank 80 (not shown).

そして、水素が水溶液貯蔵部10から図示しない発電装置及びバッファ機構3に至るまでの間に、純化機構4が設けられているため、発電装置である燃料電池に純度の高い水素を供給することができる。 Since the purification mechanism 4 is provided between the aqueous solution storage unit 10 and the power generation device and the buffer mechanism 3 (not shown), it is possible to supply high-purity hydrogen to the fuel cell which is the power generation device. it can.

以上、具体的な実施形態に基づいて、本発明について説明してきたが、本発明は、上記の具体的な実施形態に限定されるものではなく、適宜、変形や改良を施したものも本発明の技術的範囲に含まれるものであり、そのことは、当業者にとって特許請求の範囲の記載から明らかである。 Although the present invention has been described above based on the specific embodiments, the present invention is not limited to the above-mentioned specific embodiments, and the present invention may be appropriately modified or improved. It is included in the technical scope of the above, which is clear to those skilled in the art from the description of the scope of claims.

1 発電システム
2 水素発生装置
3 バッファ機構
4 純化機構
10 水溶液貯蔵部
11 水溶液
12 上側レベルセンサ
13 下側レベルセンサ
14 仕切部
14A 貫通孔
15 排水口
15A 排水ライン
15B 排水制御弁
16 給水口
16A 給水ライン
16B 給水制御弁
17 原料受入孔
18 水素排出口
20 原料貯蔵部
21 原料
22 作業扉
23 原料供給孔
24 距離測定器
30 原料供給機構
31 モータ
32 円板
32A、32B 貫通孔
33 シャフト
40 攪拌機構
41 モータ
42 プロペラ
43 シャフト
50 緊急排気ライン
51 電磁弁
52 圧力測定装置
61 圧力測定装置
62 気体供給ライン
63 電磁弁
70 水素供給部
70A 迂回ライン
71 電磁弁
72 減圧弁
73 電磁弁
80 バッファタンク
81 引込分岐ライン
82 昇圧装置
83 電磁弁
84 返送ライン
85 電磁弁
86 減圧弁
87 圧力測定装置
88 接続ライン
89 電磁弁
91A 第1脱水部
91B 第2脱水部
92A 第1不純物気体除去部
92B 第2不純物気体除去部
93A 第1上流側電磁弁
93B 第2上流側電磁弁
94A 第1下流側電磁弁
94B 第2下流側電磁弁
95 乾燥気体供給ライン
95A 第1供給制御電磁弁
95B 第2供給制御電磁弁
96 乾燥気体排気ライン
96A 第1排気制御電磁弁
96B 第2排気制御電磁弁
LS 下部空間
LSF 水面
O 回転中心
US 上部空間
US1 上側空間
1 Power generation system 2 Hydrogen generator 3 Buffer mechanism 4 Purification mechanism 10 Aqueous storage part 11 Aqueous solution 12 Upper level sensor 13 Lower level sensor 14 Partition 14A Through hole 15 Drain port 15A Drain line 15B Drain control valve 16 Water supply port 16A Water supply line 16B Water supply control valve 17 Raw material receiving hole 18 Hydrogen discharge port 20 Raw material storage 21 Raw material 22 Work door 23 Raw material supply hole 24 Distance measuring device 30 Raw material supply mechanism 31 Motor 32 Disc 32A, 32B Through hole 33 Shaft 40 Stirring mechanism 41 Motor 42 Propeller 43 Shaft 50 Emergency exhaust line 51 Solenoid valve 52 Pressure measuring device 61 Pressure measuring device 62 Gas supply line 63 Electromagnetic valve 70 Hydrogen supply unit 70A Bypass line 71 Solenoid valve 72 Solenoid valve 73 Solenoid valve 80 Buffer tank 81 Pull-in branch line 82 Booster 83 Solenoid valve 84 Return line 85 Solenoid valve 86 Pressure reducing valve 87 Pressure measuring device 88 Connection line 89 Solenoid valve 91A 1st dehydration unit 91B 2nd dehydration unit 92A 1st impurity gas removal unit 92B 2nd impurity gas removal unit 93A 1 Upstream solenoid valve 93B 2nd upstream solenoid valve 94A 1st downstream solenoid valve 94B 2nd downstream solenoid valve 95 Dry gas supply line 95A 1st supply control solenoid valve 95B 2nd supply control solenoid valve 96 Dry gas exhaust line 96A 1st exhaust control solenoid valve 96B 2nd exhaust control solenoid valve LS Lower space LSF Water surface O Rotation center US Upper space US1 Upper space

Claims (8)

水素を用いた発電システムであって、
前記発電システムは、
発電装置と、
前記発電装置に供給する前記水素を発生させる水素発生装置と、を備え、
前記水素発生装置は、
水溶液を貯蔵する水溶液貯蔵部と、
前記水溶液との反応で前記水素の発生が可能な状態のマグネシウムを含む原料を貯蔵する原料貯蔵部と、
前記原料貯蔵部から前記水溶液貯蔵部に向けて前記原料を供給する原料供給機構と、を備え、
前記水溶液貯蔵部は、
前記水溶液より上側となる前記水溶液の存在しない上部空間と、
前記上部空間の下側となる前記水溶液の存在する下部空間と、
前記下部空間内を上下に仕切る仕切部と、を備え、
前記仕切部は、前記原料と前記水溶液との反応で生成した副生成物が前記仕切部より下側に沈殿可能に設けられた複数の貫通孔を備えることを特徴とする発電システム。
A power generation system that uses hydrogen
The power generation system
Power generator and
A hydrogen generator that generates the hydrogen to be supplied to the power generation device is provided.
The hydrogen generator
An aqueous solution storage unit that stores the aqueous solution and
A raw material storage unit that stores a raw material containing magnesium in a state in which hydrogen can be generated by reaction with the aqueous solution, and a raw material storage unit.
A raw material supply mechanism for supplying the raw material from the raw material storage unit to the aqueous solution storage unit is provided.
The aqueous solution storage unit
The upper space above the aqueous solution in which the aqueous solution does not exist,
The lower space in which the aqueous solution exists, which is below the upper space, and
A partition portion that divides the lower space into upper and lower parts is provided.
The partition portion is a power generation system including a plurality of through holes provided so that by-products produced by the reaction of the raw material and the aqueous solution can be precipitated below the partition portion.
前記水溶液貯蔵部は、
前記仕切部より下側に設けられ、前記水溶液を排水する排水口と、
前記仕切部より上側に設けられ、前記水溶液を供給する給水口と、を備え、
前記水素発生装置は、
前記排水口からの前記水溶液の排水を制御する排水制御弁と、
前記給水口からの前記水溶液の給水を制御する給水制御弁と、
前記水溶液に向けて供給する前記原料の供給量に基づいて、前記排水制御弁、及び、前記給水制御弁を制御する制御部と、を備えることを特徴とする請求項1に記載の発電システム。
The aqueous solution storage unit
A drainage port provided below the partition for draining the aqueous solution,
It is provided above the partition and is provided with a water supply port for supplying the aqueous solution.
The hydrogen generator
A drainage control valve that controls the drainage of the aqueous solution from the drainage port,
A water supply control valve that controls the supply of the aqueous solution from the water supply port, and
The power generation system according to claim 1, further comprising a drainage control valve and a control unit that controls the water supply control valve based on the supply amount of the raw material supplied toward the aqueous solution.
前記原料供給機構は、前記上部空間側から前記水溶液に向けて前記原料を供給するように設けられており、
前記水素発生装置は、
前記上部空間の圧力を測定する圧力測定装置と、
前記圧力測定装置の圧力の測定結果に基づいて、前記原料供給機構を駆動させ、前記水溶液に向けて供給する前記原料の供給量を制御する制御部と、を備えることを特徴とする請求項1又は請求項2に記載の発電システム。
The raw material supply mechanism is provided so as to supply the raw material from the upper space side toward the aqueous solution.
The hydrogen generator
A pressure measuring device for measuring the pressure in the upper space and
Claim 1 is characterized in that it includes a control unit that drives the raw material supply mechanism and controls the supply amount of the raw material to be supplied toward the aqueous solution based on the pressure measurement result of the pressure measuring device. Alternatively, the power generation system according to claim 2.
水素を用いた発電システムであって、
前記発電システムは、
発電装置と、
前記発電装置に供給する前記水素を発生させる水素発生装置と、を備え、
前記水素発生装置は、
水溶液を貯蔵する水溶液貯蔵部と、
前記水溶液との反応で前記水素の発生が可能な状態のマグネシウムを含む原料を貯蔵する原料貯蔵部と、
前記原料貯蔵部から前記水溶液貯蔵部に向けて前記原料を供給する原料供給機構と、を備え、
さらに、前記発電システムは、
前記水素が前記水溶液貯蔵部から前記発電装置に至るまでの間に設けられ、前記水溶液貯蔵部で発生した前記水素を貯蔵できるバッファ機構と、
前記水素が前記水溶液貯蔵部から前記発電装置及び前記バッファ機構に至るまでの間に設けられた純化機構と、を備え、
前記純化機構は、
第1脱水部及び第1不純物気体除去部を有する第1純化部と、
第2脱水部及び第2不純物気体除去部を有する第2純化部と、を備え、
前記第1純化部を通過させて前記水素を前記発電装置又は前記バッファ機構に供給するときに前記第2純化部の前記第2脱水部を乾燥処理可能とされ、前記第2純化部を通過させて前記水素を前記発電装置又は前記バッファ機構に供給するときに前記第1純化部の前記第1脱水部を乾燥処理可能とされており、
前記水溶液貯蔵部は、前記水溶液より上側となる前記水溶液の存在しない上部空間を備え、
前記原料供給機構は、前記上部空間側から前記水溶液に向けて前記原料を供給するように設けられており、
前記水素発生装置は、
前記上部空間の圧力を測定する圧力測定装置と、
前記圧力測定装置の圧力の測定結果に基づいて、前記原料供給機構を駆動させ、前記水溶液に向けて供給する前記原料の供給量を制御する制御部と、を備えることを特徴とする発電システム。
A power generation system that uses hydrogen
The power generation system
Power generator and
A hydrogen generator that generates the hydrogen to be supplied to the power generation device is provided.
The hydrogen generator
An aqueous solution storage unit that stores the aqueous solution and
A raw material storage unit that stores a raw material containing magnesium in a state in which hydrogen can be generated by reaction with the aqueous solution, and a raw material storage unit.
A raw material supply mechanism for supplying the raw material from the raw material storage unit to the aqueous solution storage unit is provided.
Further, the power generation system
A buffer mechanism in which the hydrogen is provided between the aqueous solution storage unit and the power generation device and can store the hydrogen generated in the aqueous solution storage unit.
A purification mechanism provided between the hydrogen storage unit, the power generation device, and the buffer mechanism is provided.
The purification mechanism is
A first purification unit having a first dehydration unit and a first impurity gas removal unit,
A second purification unit having a second dehydration unit and a second impurity gas removal unit is provided.
When the hydrogen is supplied to the power generation device or the buffer mechanism by passing through the first purification section, the second dehydration section of the second purification section can be dried and passed through the second purification section. When the hydrogen is supplied to the power generation device or the buffer mechanism, the first dehydration section of the first purification section can be dried .
The aqueous solution storage unit includes an upper space above the aqueous solution in which the aqueous solution does not exist.
The raw material supply mechanism is provided so as to supply the raw material from the upper space side toward the aqueous solution.
The hydrogen generator
A pressure measuring device for measuring the pressure in the upper space and
A power generation system including a control unit that drives the raw material supply mechanism and controls the supply amount of the raw material to be supplied toward the aqueous solution based on the pressure measurement result of the pressure measuring device.
水素を用いた発電システムであって、
前記発電システムは、
発電装置と、
前記発電装置に供給する前記水素を発生させる水素発生装置と、を備え、
前記水素発生装置は、
水溶液を貯蔵する水溶液貯蔵部と、
前記水溶液との反応で前記水素の発生が可能な状態のマグネシウムを含む原料を貯蔵する原料貯蔵部と、
前記原料貯蔵部から前記水溶液貯蔵部に向けて前記原料を供給する原料供給機構と、を備え、
さらに、前記発電システムは、前記水素が前記水溶液貯蔵部から前記発電装置に至るまでの間に設けられた純化機構を備え、
前記純化機構は、
第1脱水部及び第1不純物気体除去部を有する第1純化部と、
第2脱水部及び第2不純物気体除去部を有する第2純化部と、を備え、
前記第1純化部を通過させて前記水素を前記発電装置に供給するときに前記第2純化部の前記第2脱水部が乾燥処理可能とされ、前記第2純化部を通過させて前記水素を前記発電装置に供給するときに前記第1純化部の前記第1脱水部が乾燥処理可能とされており、
前記水溶液貯蔵部は、前記水溶液より上側となる前記水溶液の存在しない上部空間を備え、
前記原料供給機構は、前記上部空間側から前記水溶液に向けて前記原料を供給するように設けられており、
前記水素発生装置は、
前記上部空間の圧力を測定する圧力測定装置と、
前記圧力測定装置の圧力の測定結果に基づいて、前記原料供給機構を駆動させ、前記水溶液に向けて供給する前記原料の供給量を制御する制御部と、を備えることを特徴とする発電システム。
A power generation system that uses hydrogen
The power generation system
Power generator and
A hydrogen generator that generates the hydrogen to be supplied to the power generation device is provided.
The hydrogen generator
An aqueous solution storage unit that stores the aqueous solution and
A raw material storage unit that stores a raw material containing magnesium in a state in which hydrogen can be generated by reaction with the aqueous solution, and a raw material storage unit.
A raw material supply mechanism for supplying the raw material from the raw material storage unit to the aqueous solution storage unit is provided.
Further, the power generation system includes a purification mechanism provided between the hydrogen storage unit and the power generation device.
The purification mechanism is
A first purification unit having a first dehydration unit and a first impurity gas removal unit,
A second purification unit having a second dehydration unit and a second impurity gas removal unit is provided.
When the hydrogen is supplied to the power generation device by passing through the first purification section, the second dehydration section of the second purification section can be dried, and the hydrogen is passed through the second purification section. When the power generation device is supplied, the first dehydration section of the first purification section can be dried .
The aqueous solution storage unit includes an upper space above the aqueous solution in which the aqueous solution does not exist.
The raw material supply mechanism is provided so as to supply the raw material from the upper space side toward the aqueous solution.
The hydrogen generator
A pressure measuring device for measuring the pressure in the upper space and
A power generation system including a control unit that drives the raw material supply mechanism and controls the supply amount of the raw material to be supplied toward the aqueous solution based on the pressure measurement result of the pressure measuring device.
水素発生装置であって、
前記水素発生装置は、
水溶液を貯蔵する水溶液貯蔵部と、
前記水溶液との反応で水素の発生が可能な状態のマグネシウムを含む原料を貯蔵する原料貯蔵部と、
前記原料貯蔵部から前記水溶液貯蔵部に向けて前記原料を供給する原料供給機構と、を備え、
前記水溶液貯蔵部は、
前記水溶液より上側となる前記水溶液の存在しない上部空間と、
前記上部空間の下側となる前記水溶液の存在する下部空間と、
前記下部空間内を上下に仕切る仕切部と、を備え、
前記仕切部は、前記原料と前記水溶液との反応で生成した副生成物が前記仕切部より下側に沈殿可能に設けられた複数の貫通孔を備えることを特徴とする水素発生装置。
It ’s a hydrogen generator,
The hydrogen generator
An aqueous solution storage unit that stores the aqueous solution and
A raw material storage unit that stores a raw material containing magnesium in a state where hydrogen can be generated by reaction with the aqueous solution, and a raw material storage unit.
A raw material supply mechanism for supplying the raw material from the raw material storage unit to the aqueous solution storage unit is provided.
The aqueous solution storage unit
The upper space above the aqueous solution in which the aqueous solution does not exist,
The lower space in which the aqueous solution exists, which is below the upper space, and
A partition portion that divides the lower space into upper and lower parts is provided.
The partition portion is a hydrogen generator including a plurality of through holes provided so that by-products produced by the reaction of the raw material and the aqueous solution can be precipitated below the partition portion.
前記原料供給機構は、前記上部空間側から前記水溶液に向けて前記原料を供給するように設けられており、
前記水素発生装置は、
前記上部空間の圧力を測定する圧力測定装置と、
前記圧力測定装置の圧力の測定結果に基づいて、前記原料供給機構を駆動させ、前記水溶液に向けて供給する前記原料の供給量を制御する制御部と、を備えることを特徴とする請求項6に記載の水素発生装置。
The raw material supply mechanism is provided so as to supply the raw material from the upper space side toward the aqueous solution.
The hydrogen generator
A pressure measuring device for measuring the pressure in the upper space and
6. A claim 6 comprising a control unit that drives the raw material supply mechanism and controls the supply amount of the raw material to be supplied toward the aqueous solution based on the pressure measurement result of the pressure measuring device. The hydrogen generator according to.
前記水溶液貯蔵部は、
前記仕切部より下側に設けられ、前記水溶液を排水する排水口と、
前記仕切部より上側に設けられ、前記水溶液を供給する給水口と、を備え、
前記水素発生装置は、
前記排水口から排水される前記水溶液の排水量を制御する排水制御弁と、
前記給水口から給水される前記水溶液の給水量を制御する給水制御弁と、
前記水溶液に向けて供給する前記原料の供給量に基づいて、前記排水制御弁、及び、前記給水制御弁を制御する制御部と、を備えることを特徴とする請求項6に記載の水素発生装置。
The aqueous solution storage unit
A drainage port provided below the partition for draining the aqueous solution,
It is provided above the partition and is provided with a water supply port for supplying the aqueous solution.
The hydrogen generator
A drainage control valve that controls the amount of drainage of the aqueous solution drained from the drainage port,
A water supply control valve that controls the amount of water supplied from the aqueous solution supplied from the water supply port, and
The hydrogen generator according to claim 6 , further comprising a drainage control valve and a control unit for controlling the water supply control valve based on the amount of the raw material supplied toward the aqueous solution. ..
JP2018127443A 2018-07-04 2018-07-04 Power generation system using hydrogen and hydrogen generator Active JP6855657B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018127443A JP6855657B2 (en) 2018-07-04 2018-07-04 Power generation system using hydrogen and hydrogen generator
PCT/JP2019/019353 WO2020008735A1 (en) 2018-07-04 2019-05-15 Power generation system using hydrogen, and hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018127443A JP6855657B2 (en) 2018-07-04 2018-07-04 Power generation system using hydrogen and hydrogen generator

Publications (3)

Publication Number Publication Date
JP2020007173A JP2020007173A (en) 2020-01-16
JP2020007173A5 JP2020007173A5 (en) 2020-09-10
JP6855657B2 true JP6855657B2 (en) 2021-04-07

Family

ID=69059571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018127443A Active JP6855657B2 (en) 2018-07-04 2018-07-04 Power generation system using hydrogen and hydrogen generator

Country Status (2)

Country Link
JP (1) JP6855657B2 (en)
WO (1) WO2020008735A1 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2244944B2 (en) * 1972-09-13 1976-06-10 Siemens AG, 1000 Berlin und 8000 München METHOD FOR GENERATING HYDROGEN
JP4792632B2 (en) * 2000-11-15 2011-10-12 トヨタ自動車株式会社 Hydrogen gas generator
JP3909001B2 (en) * 2002-01-24 2007-04-25 株式会社荏原製作所 Fuel cell power generation system receiving hydrogen gas from hypochlorite generator
JP2003221202A (en) * 2002-01-30 2003-08-05 Honda Motor Co Ltd Hydrogen generating device
JP2004210591A (en) * 2002-12-27 2004-07-29 Itec Co Ltd Apparatus and method of producing gaseous hydrogen
JP4814024B2 (en) * 2006-09-04 2011-11-09 株式会社神戸製鋼所 PSA equipment for high-purity hydrogen gas production
CN102300804B (en) * 2009-01-27 2015-04-29 H2燃料系统有限公司 Method, device and fuel for hydrogen generation
US8790618B2 (en) * 2009-12-17 2014-07-29 Dcns Sa Systems and methods for initiating operation of pressure swing adsorption systems and hydrogen-producing fuel processing systems incorporating the same
JP5497543B2 (en) * 2010-06-09 2014-05-21 愛三工業株式会社 Hydrogen generator
KR20150028294A (en) * 2012-06-19 2015-03-13 바이오 코크 랩. 씨오., 엘티디. Hydrogen generating device
WO2014002988A1 (en) * 2012-06-25 2014-01-03 日産自動車株式会社 Water electrolysis system
ES2718734T3 (en) * 2014-08-29 2019-07-04 Nuvera Fuel Cells Llc Drying method of a mixture of hydrogen gas produced by an electrochemical hydrogen compressor
CN104555916B (en) * 2015-01-09 2016-08-31 南京工业大学 Continuous controllable magnesium hydride hydrolysis hydrogen production device and method for producing hydrogen by using same
GB201514216D0 (en) * 2015-08-12 2015-09-23 Ihod Ltd An apparatus for generating hydrogen
JP6571588B2 (en) * 2016-05-20 2019-09-04 株式会社神戸製鋼所 Hydrogen gas production method and hydrogen gas production apparatus
JP6634349B2 (en) * 2016-06-23 2020-01-22 ハリマ化成株式会社 Hydrogen generator and power generator
KR102579658B1 (en) * 2016-09-09 2023-09-15 한화오션 주식회사 Metallic fuel hydrogen generation system of underwater moving body

Also Published As

Publication number Publication date
JP2020007173A (en) 2020-01-16
WO2020008735A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP7132662B2 (en) Fuel cell system and method of purging and draining during shutdown and start-up
EP0970916B1 (en) Ozone storage system
JP3333877B2 (en) Application of fuel cell to power generation system
JPWO2020110758A1 (en) Hydrogen generation system, power generation system, hydrogen generation method, and power generation method
JP6855657B2 (en) Power generation system using hydrogen and hydrogen generator
AU2012265736B2 (en) Carbon dioxide separating and capturing apparatus
JP6742656B2 (en) Power generation system
CN207419155U (en) A kind of paper deacidification system with rotary bracket
JP2008243594A (en) Fuel cell device
US9970343B2 (en) Exhaust gas purification apparatus for internal combustion engine
JP2004124148A (en) Method for controlling pressure of generated hydrogen, and hydrogen-generating apparatus
KR20160043063A (en) Process for filling a sorption store with gas
JP2004127748A (en) Fuel cell system
JP2007326742A (en) Manufacturing method of hydrogen
CN112747249B (en) Hydrogen-storage alloy hydrogen-filling and activating treatment device
JP2011121826A (en) Manufacturing method for hydrogen and manufacturing device of hydrogen and fuel cell system
JP2006286544A (en) Fuel cell system
JP2009117139A (en) Fuel cell system
JPH0218870A (en) Operation stop method for fuel cell power generating device
JP2002017825A (en) Steam sterilizing device
JP5084166B2 (en) Hydrogen production equipment
JP2009181700A (en) Fuel battery device
JPH02283602A (en) Storage tank of reversible solute and its use
CN106698337A (en) Spiral-flow type gas-liquid separator for hydrogen production from sodium borohydride
JP5818619B2 (en) Slurry catalyst solution adhesion device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200729

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200729

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210212

R150 Certificate of patent or registration of utility model

Ref document number: 6855657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250