JP6855211B2 - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP6855211B2
JP6855211B2 JP2016210087A JP2016210087A JP6855211B2 JP 6855211 B2 JP6855211 B2 JP 6855211B2 JP 2016210087 A JP2016210087 A JP 2016210087A JP 2016210087 A JP2016210087 A JP 2016210087A JP 6855211 B2 JP6855211 B2 JP 6855211B2
Authority
JP
Japan
Prior art keywords
expansion chamber
power supply
supply device
throttle opening
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016210087A
Other languages
Japanese (ja)
Other versions
JP2018073561A (en
Inventor
直剛 吉田
直剛 吉田
拓也 江頭
拓也 江頭
安井 俊介
俊介 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2016210087A priority Critical patent/JP6855211B2/en
Publication of JP2018073561A publication Critical patent/JP2018073561A/en
Application granted granted Critical
Publication of JP6855211B2 publication Critical patent/JP6855211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

本発明は、二次電池の排気弁に排出ダクトを連結して、開弁する排気弁から排出される高温ガスを排出ダクトで外部に排出するようにしてなる電源装置に関し、とくに高温のガスを安全に外部に排気できる電源装置に関する。 The present invention relates to a power supply device in which an exhaust duct is connected to an exhaust valve of a secondary battery so that high-temperature gas discharged from an exhaust valve that opens is discharged to the outside through the exhaust duct, and particularly high-temperature gas is discharged. Regarding power supply devices that can be safely exhausted to the outside.

二次電池を備える電源装置は、電池の外装缶が破裂するのを防止するために外装缶に排気弁を設けている。排気弁は、外装缶の内圧が閾値圧力よりも高くなると開弁して、内圧上昇による外装缶の破裂を防止する。開弁する排気弁の高温ガスを外部に排出するために、電池の排気弁に排気ダクトを連結している電源装置は開発されている。(特許文献1〜3参照) A power supply device including a secondary battery is provided with an exhaust valve on the outer can to prevent the outer can of the battery from exploding. The exhaust valve opens when the internal pressure of the outer can becomes higher than the threshold pressure to prevent the outer can from bursting due to an increase in the internal pressure. In order to exhaust the high temperature gas of the exhaust valve to be opened to the outside, a power supply device in which an exhaust duct is connected to the exhaust valve of the battery has been developed. (See Patent Documents 1 to 3)

これ等従来の電源装置は、電池の排気弁に排気ダクトを連結して、開弁する排気弁からの高温ガスを外部に排出している。一方で近年、エネルギー密度が高い電池が開発されている。エネルギー密度が高い電池は、電池のエネルギー密度の増加に伴い、排気弁から排出されるガスの温度が高くなったり、排気弁から排出されるガスの量が増加したりする傾向がある。そのため、排気弁から排出されたガスが排気ダクトを通過する間に温度を低下させることが重要になるが、排気ダクトが長くなり、電源装置が大型化する問題がある。 In these conventional power supply devices, an exhaust duct is connected to the exhaust valve of the battery, and high-temperature gas from the exhaust valve that opens is discharged to the outside. On the other hand, in recent years, batteries with high energy density have been developed. In a battery having a high energy density, the temperature of the gas discharged from the exhaust valve tends to increase or the amount of gas discharged from the exhaust valve tends to increase as the energy density of the battery increases. Therefore, it is important to lower the temperature while the gas discharged from the exhaust valve passes through the exhaust duct, but there is a problem that the exhaust duct becomes long and the power supply device becomes large.

国際公開第2012/014449号International Publication No. 2012/014449 特開2016−81793号公報Japanese Unexamined Patent Publication No. 2016-81793 特開2011−70872号公報Japanese Unexamined Patent Publication No. 2011-70872

本発明は、従来の電源装置が有する以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、極めて簡単な構造で高温のガスの温度を低くして安全に排出できる電源装置を提供することにある。 The present invention has been developed for the purpose of solving the above-mentioned drawbacks of the conventional power supply device. An important object of the present invention is to provide a power supply device having an extremely simple structure that can lower the temperature of a high-temperature gas and safely discharge the gas.

課題を解決するための手段及び発明の効果Means for Solving Problems and Effects of Invention

本発明の電源装置は、閾値圧力より高くなると開弁してガスを排出する排気弁を有する二次電池と、二次電池の排気弁に連結してする排出ダクトとを備える。排出ダクトは、複数の膨張チャンバと複数の絞り開口とを有し、風上側の膨張チャンバの排出口と風下側の膨張チャンバの流入口とが絞り開口を介して連結されて、膨張チャンバと絞り開口は互いに直列に連結され、開弁する排気弁から噴出されるガスが、膨張チャンバと絞り開口とを交互に通過して外部に向かって排出される。 The power supply device of the present invention includes a secondary battery having an exhaust valve that opens when the pressure becomes higher than the threshold pressure and discharges gas, and an exhaust duct connected to the exhaust valve of the secondary battery. The discharge duct has a plurality of expansion chambers and a plurality of throttle openings, and the discharge port of the expansion chamber on the wind side and the inflow port of the expansion chamber on the leeward side are connected via the throttle opening to connect the expansion chamber and the throttle. The openings are connected in series with each other, and the gas ejected from the exhaust valve that opens is alternately passed through the expansion chamber and the throttle opening and discharged to the outside.

以上の電源装置は、電源装置の大型化を抑制しながら、極めて簡単な構造で排気弁から排出される高温ガスの温度を低下させることができる特徴がある。それは、以上の電源装置の排出ダクトが、複数の膨張チャンバと複数の絞り開口とを交互に連結して直列に連結しているので、膨張チャンバと絞り開口とを交互に通過する高温ガスは、絞り開口から膨張チャンバに流入する毎に膨張して温度が下がるからである。この構成によると、流路の断面積変化させることで、電源装置の大型化を抑制しながら、ガスの温度を低下させることができる。とくに、複数の膨張チャンバと絞り開口を設けているので、絞り開口から膨張チャンバに流入する毎に高温ガスが膨張して次第に温度が下がり、最後の膨張チャンバから排出されるときには充分に温度が低下して安全に排出される。さらに、開弁した排気弁から排出される高温ガスは、絞り開口から膨張チャンバに流入するときに、膨張チャンバ内の空気に混合されることによっても温度が低下する。また、絞り開口から膨張チャンバ内に流入される高温ガスは、絞り開口を通過して膨張チャンバに速い流速で噴射される。高速流動する高温ガスは、膨張チャンバ内の空気を効率よく撹拌し、チャンバー内の常温空気と十分に混合されてさらに温度は低下する。さらにまた、膨張チャンバと絞り開口とを交互に複数回に繰り返し通過して流速が低下するので、排気弁から勢いよく噴射される高温ガスの流速を低下し、温度の低いガスとして排出して安全性を向上する。 The above power supply device has a feature that the temperature of the high temperature gas discharged from the exhaust valve can be lowered with an extremely simple structure while suppressing the increase in size of the power supply device. That is, since the discharge duct of the above power supply device alternately connects the plurality of expansion chambers and the plurality of throttle openings and connects them in series, the high temperature gas passing through the expansion chambers and the throttle openings alternately is not allowed. This is because each time it flows into the expansion chamber from the aperture opening, it expands and the temperature drops. According to this configuration, the temperature of the gas can be lowered while suppressing the increase in size of the power supply device by changing the cross-sectional area of the flow path. In particular, since a plurality of expansion chambers and throttle openings are provided, the high temperature gas expands and gradually lowers in temperature each time it flows into the expansion chamber from the throttle openings, and the temperature drops sufficiently when it is discharged from the last expansion chamber. And safely discharged. Further, when the high temperature gas discharged from the opened exhaust valve flows into the expansion chamber through the throttle opening, the temperature is also lowered by being mixed with the air in the expansion chamber. Further, the high temperature gas flowing into the expansion chamber from the throttle opening passes through the throttle opening and is injected into the expansion chamber at a high flow velocity. The high-temperature gas flowing at high speed efficiently agitates the air in the expansion chamber, and is sufficiently mixed with the normal temperature air in the chamber to further lower the temperature. Furthermore, since the flow velocity is reduced by alternately passing through the expansion chamber and the throttle opening multiple times, the flow velocity of the high-temperature gas jetted vigorously from the exhaust valve is reduced, and the gas is discharged as a low-temperature gas for safety. Improve sex.

本発明の電源装置は、複数の膨張チャンバと複数の絞り開口とを交互に直列に連結している排出ダクトから高温ガスを排出するので、高温ガスを、絞り開口と膨張チャンバとを交互に通過させて減速し、さらに、絞り開口から膨張チャンバに流入する毎に膨張して温度を低下して、排出ダクトから温度の低いガスを低速流速して排出する。
すなわち、以上の電源装置は、排気弁から噴出される高温ガスを、膨張で温度を低下し、チャンバー内の常温空気に混合して温度を低下し、温度むらのない低温のガスとして安全に排出する特徴を実現する。
Since the power supply device of the present invention discharges the high temperature gas from the discharge duct in which the plurality of expansion chambers and the plurality of throttle openings are alternately connected in series, the high temperature gas passes alternately between the diaphragm openings and the expansion chambers. The gas is decelerated by causing it to decelerate, and each time it flows into the expansion chamber from the throttle opening, it expands to lower the temperature, and the low-temperature gas is discharged from the discharge duct at a low speed.
That is, in the above power supply device, the high temperature gas ejected from the exhaust valve is lowered by expansion, mixed with the room temperature air in the chamber to lower the temperature, and safely discharged as a low temperature gas with no uneven temperature. Realize the characteristics to be used.

以上の特徴は、大容量の電源装置において特に大切である。それは、排気弁から噴射される高温ガスが、空気中に噴出されて自然発火をする弊害は、あらゆる用途において阻止することが要求されるからである。二次電池の排気弁が開弁する確率が極めて低い。膨大な数の電源装置が製造されて廃棄されるまでにほとんど発生しない。このことから、排気弁が開弁して噴射する高温ガスの自然発火を阻止する構造は低コストに実現することが大切である。 The above features are particularly important in a large-capacity power supply device. This is because it is required to prevent the harmful effect that the high temperature gas injected from the exhaust valve is ejected into the air and spontaneously ignites in all applications. The probability that the exhaust valve of the secondary battery will open is extremely low. It rarely occurs before a huge number of power supplies are manufactured and discarded. For this reason, it is important to realize a structure that prevents spontaneous combustion of the high-temperature gas that the exhaust valve opens and injects at low cost.

本発明の電源装置は、膨張チャンバを、両端を閉塞してなる細長い中空状として、膨張チャンバの側面の非対向位置に流入口と排出口とを設ける構造とすることができる。 The power supply device of the present invention may have a structure in which the expansion chamber is formed into an elongated hollow shape having both ends closed, and an inflow port and an outlet are provided at non-opposing positions on the side surfaces of the expansion chamber.

以上の電源装置の排出ダクトは、流入口から膨張チャンバに流入される高温ガスが膨張チャンバの内側面に衝突して方向転換して排出口から排出されるので、膨張チャンバから絞り開口に流入する高温ガスは、膨張チャンバの内部で方向転換して絞り開口に流入し、さらに絞り開口を通過して膨張チャンバに流入される高温ガスは、膨張チャンバの内側面に衝突して方向転換し、また内側面に衝突することで減速され、さらに高温ガスと膨張チャンバ内の常温空気とが効率よく撹拌されて温度斑なく、温度が低下れて排出される。また、以上の構造は極めて簡単な構造としながら、内壁に高温ガスを衝突させて減速させるので、安全に排出できる特徴も実現する。 In the discharge duct of the above power supply device, the high temperature gas flowing into the expansion chamber from the inflow port collides with the inner surface of the expansion chamber, changes direction, and is discharged from the discharge port. The hot gas changes direction inside the expansion chamber and flows into the throttle opening, and the high temperature gas that passes through the throttle opening and flows into the expansion chamber collides with the inner surface of the expansion chamber and changes direction, and also It is decelerated by colliding with the inner surface, and the high temperature gas and the normal temperature air in the expansion chamber are efficiently agitated, and the temperature is lowered and discharged without temperature unevenness. In addition, while the above structure is an extremely simple structure, a high-temperature gas collides with the inner wall to decelerate the speed, so that a feature that can be safely discharged is also realized.

本発明の電源装置の排出ダクトは、二次電池の排気弁に連結している第1の膨張チャンバと、第1の膨張チャンバに絞り開口を介して連結してなる第2の膨張チャンバとを備え、第1の膨張チャンバと第2の膨張チャンバを互いに平行な姿勢で隣接して配置することができる。 The exhaust duct of the power supply device of the present invention comprises a first expansion chamber connected to the exhaust valve of the secondary battery and a second expansion chamber connected to the first expansion chamber via a throttle opening. The first expansion chamber and the second expansion chamber can be arranged adjacent to each other in a posture parallel to each other.

以上の電源装置は、排出ダクトに設けている第1の膨張チャンバと第2の膨張チャンバを平行姿勢で隣接して配設するので、排出ダクトを狭いスペースに配置して高温ガスを安全に排出できる特徴がある。 In the above power supply device, since the first expansion chamber and the second expansion chamber provided in the discharge duct are arranged adjacent to each other in a parallel posture, the discharge duct is arranged in a narrow space to safely discharge high temperature gas. There are features that can be done.

本発明の電源装置は、排出ダクトに、二次電池の排気弁に連結してなる第1の膨張チャンバと、第1の膨張チャンバに絞り開口を介して連結してなる第2の膨張チャンバと、第2の膨張チャンバに絞り開口を介して連結してなる第3の膨張チャンバとを設け、第1の膨張チャンバと第2の膨張チャンバとを互いに平行な姿勢で隣接して配置し、第2の膨張チャンバには第1の膨張チャンバから突出する突出部を設け、第3の膨張チャンバを、第2の膨張チャンバの突出部表面と第1の膨張チャンバ端部とに隣接して配置することができる。 The power supply device of the present invention has a first expansion chamber connected to the exhaust valve of the secondary battery to the discharge duct, and a second expansion chamber connected to the first expansion chamber via a throttle opening. , A third expansion chamber formed by connecting the second expansion chamber via a throttle opening is provided, and the first expansion chamber and the second expansion chamber are arranged adjacent to each other in a posture parallel to each other. The second expansion chamber is provided with a protrusion protruding from the first expansion chamber, and the third expansion chamber is arranged adjacent to the surface of the protrusion of the second expansion chamber and the end of the first expansion chamber. be able to.

以上の電源装置は、第1ないし第3の膨張チャンバを設けてなる排出ダクトで排気弁から排出される高温ガスをより安全に排出しながら、第1ないし第3の膨張チャンバを狭いスペースに効率よみ配置できる特徴がある。 The above power supply device efficiently discharges the first to third expansion chambers in a narrow space while more safely discharging the high temperature gas discharged from the exhaust valve by the discharge duct provided with the first to third expansion chambers. There is a feature that it can be read and placed.

本発明の電源装置は、第1膨張チャンバの長手方向に並べて、二次電池の排気弁を連結する流入口を開口することができる。 The power supply device of the present invention can be arranged in the longitudinal direction of the first expansion chamber to open the inflow port connecting the exhaust valve of the secondary battery.

以上の電源装置は、第1の膨張チャンバに複数の二次電池の排気弁を連結して、何れかの排気弁から排出される高温ガスを第1の膨張チャンバで温度低下させて、さらに風下側の膨張チャンバに排出できる特徴がある。 In the above power supply device, the exhaust valves of a plurality of secondary batteries are connected to the first expansion chamber, the temperature of the high temperature gas discharged from any of the exhaust valves is lowered in the first expansion chamber, and the temperature is further lowered. It has the feature that it can be discharged to the expansion chamber on the side.

本発明の電源装置は、一端を絞り開口に連結して、他端を風下側の膨張チャンバに連結してなる細管を設け、開弁する排気弁から排出されるガスが絞り開口を高速流動する負圧で、細管で風下側の膨張チャンバのガスを絞り開口に循環させる構造とすることができる。 The power supply device of the present invention is provided with a thin tube having one end connected to the throttle opening and the other end connected to the expansion chamber on the leeward side, and the gas discharged from the exhaust valve to be opened flows at high speed through the throttle opening. With a negative pressure, a thin tube can be used to circulate the gas in the expansion chamber on the leeward side to the throttle opening.

以上の電源装置は、高温ガスの温度をより低くして排出できる特徴がある。それは、細管でもって風下側の膨張チャンバ内の空気を絞り開口に循環して、高温ガスをより効果的に膨張チャンバ内の空気に撹拌して排出できるからである。また、細管が排出側の膨張チャンバ内の空気を絞り開口に流入して高温ガスに混合して膨張チャンバに排出するので、温度の低い風下側の膨張チャンバ内の空気を高温ガスに混合してより低温にできる特徴も実現する。さらに、細管を介して膨張チャンバ内の空気を絞り開口に流入させるので、絞り開口から膨張チャンバに流入する高温ガスの流速を速くして、膨張チャンバ内でより効率よく撹拌して、高温ガスを均一に温度低下して排出できる特徴も実現する。 The above power supply device has a feature that the temperature of the high temperature gas can be lowered and discharged. This is because the air in the expansion chamber on the leeward side can be circulated to the throttle opening by the thin tube, and the high temperature gas can be more effectively agitated and discharged to the air in the expansion chamber. Further, since the thin tube flows the air in the expansion chamber on the discharge side into the throttle opening, mixes it with the high temperature gas and discharges it to the expansion chamber, the air in the expansion chamber on the leeward side with a low temperature is mixed with the high temperature gas. It also realizes the feature that the temperature can be lowered. Further, since the air in the expansion chamber is made to flow into the throttle opening through the thin tube, the flow velocity of the high temperature gas flowing into the expansion chamber from the throttle opening is increased, and the high temperature gas is agitated more efficiently in the expansion chamber to allow the high temperature gas to flow. It also realizes the feature that the temperature can be lowered uniformly and discharged.

本発明の電源装置は、二次電池を非水系電解液二次電池とすることができ、また、膨張チャンバの内容積を二次電池の内容積よりも大きくすることができる。 In the power supply device of the present invention, the secondary battery can be a non-aqueous electrolyte secondary battery, and the internal volume of the expansion chamber can be made larger than the internal volume of the secondary battery.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。 Hereinafter, examples of the present invention will be described with reference to the drawings. However, the examples shown below exemplify a power supply device for embodying the technical idea of the present invention, and the present invention does not specify the power supply device as the following.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。 Further, in order to make it easier to understand the scope of claims, this specification shows the numbers corresponding to the members shown in the examples in "Claims" and "Columns for means for solving problems". It is added to the member. However, the members shown in the claims are by no means specified as the members of the examples.

図1の電源装置は、複数の二次電池1と、各々の二次電池1の排気弁2に連結している排出ダクト3とを備える。二次電池1は並列に接続して出力電流を大きく、直列に接続して出力電圧を高くできるので、電源装置の用途に最適な出力電圧と出力電流とするために、二次電池1を並列に接続する個数と、直列に接続する個数とを特定している。たとえば、ハイブリッドカーや電動車両に搭載されて走行モータに電力を供給する電源装置は、最大出力電流を数百A、出力電圧を数百Vとするように二次電池1を接続している。 The power supply device of FIG. 1 includes a plurality of secondary batteries 1 and an exhaust duct 3 connected to an exhaust valve 2 of each secondary battery 1. Since the secondary batteries 1 can be connected in parallel to increase the output current and can be connected in series to increase the output voltage, the secondary batteries 1 can be connected in parallel to obtain the optimum output voltage and output current for the application of the power supply device. The number to be connected to and the number to be connected in series are specified. For example, a power supply device mounted on a hybrid car or an electric vehicle to supply electric power to a traveling motor has a secondary battery 1 connected so that a maximum output current is several hundred A and an output voltage is several hundred V.

二次電池1はリチウムイオン二次電池である。リチウムイオン二次電池などの非水系電解液二次電池は重量と体積に対する充放電容量が大きく、電源装置を小型軽量化して充放電容量を大きくできる。ただし、本発明の電源装置は、二次電池1をリチウムイオン二次電池などの非水系電解液二次電池には特定せず、現在使用されあるいはこれから開発される全ての二次電池1を使用できる。リチウムイオン二次電池などの非水系電解液二次電池は排出されるガスの温度が特に高いので、ガスを温度低下して排出することは大切であるが、他の二次電池1においても、排気弁2は異常な使用環境で開弁することから、排気弁2から排出されるガスは、排出ダクト3でガス温度を低下して安全に排出することが極めて大切である。排出ダクト3は、排出ガスの温度を低下して排出するために膨張チャンバ4と絞り開口5とを直列に連結している。 The secondary battery 1 is a lithium ion secondary battery. Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have a large charge / discharge capacity with respect to weight and volume, and the power supply device can be made smaller and lighter to increase the charge / discharge capacity. However, the power supply device of the present invention does not specify the secondary battery 1 as a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and uses all the secondary batteries 1 currently used or will be developed in the future. it can. Since the temperature of the exhaust gas of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery is particularly high, it is important to lower the temperature of the gas and discharge the gas. Since the exhaust valve 2 opens in an abnormal usage environment, it is extremely important that the gas discharged from the exhaust valve 2 is safely discharged by lowering the gas temperature in the exhaust duct 3. The discharge duct 3 connects the expansion chamber 4 and the throttle opening 5 in series in order to lower the temperature of the exhaust gas and discharge the gas.

図2と図3は、高温ガスの温度を低下して排出する排出ダクトの内部におけるガスの流動状態を示す断面図である。 2 and 3 are cross-sectional views showing the flow state of the gas inside the discharge duct that lowers the temperature of the high-temperature gas and discharges it.

図2の膨張チャンバ4は、排出口6と非対向位置に配置している流入口7から高温ガスが内部に流入する。流入口7から膨張チャンバ4内に流入する高温ガスは、図2の断面図に示すように、流入口7との対向位置にある中空室の内側壁に衝突して減速され、さらに周囲に分散されて膨張チャンバ4内の空気に混合されて温度は低下する。高温ガスの温度よりも膨張チャンバ4内の空気温度が低いからである。さらに、高温ガスは、絞り開口5から膨張チャンバ4に噴射されるときに膨張して温度は低下する。排出ダクト3は、複数の絞り開口5と複数の膨張チャンバ4を直列に連結しているので、絞り開口から膨張チャンバに流入する毎に膨張して温度が次第に低下する。したがって、排出ダクト3から排出されるガスは、膨張を繰り返して温度が低下し、さらに膨張チャンバ内の空気に混合されて温度はさらに低下する。 In the expansion chamber 4 of FIG. 2, high-temperature gas flows into the inside from the inflow port 7 arranged at a position not opposed to the discharge port 6. As shown in the cross-sectional view of FIG. 2, the high-temperature gas flowing into the expansion chamber 4 from the inflow port 7 collides with the inner wall surface of the hollow chamber located at a position facing the inflow port 7, is decelerated, and is further dispersed to the surroundings. Then, it is mixed with the air in the expansion chamber 4 and the temperature is lowered. This is because the temperature of the air in the expansion chamber 4 is lower than the temperature of the hot gas. Further, the high temperature gas expands and the temperature drops when it is injected from the throttle opening 5 into the expansion chamber 4. Since the discharge duct 3 connects the plurality of throttle openings 5 and the plurality of expansion chambers 4 in series, it expands each time it flows into the expansion chamber from the throttle openings and the temperature gradually decreases. Therefore, the gas discharged from the discharge duct 3 repeatedly expands to lower the temperature, and is further mixed with the air in the expansion chamber to further lower the temperature.

図3の膨張チャンバ4はガスの流動方向に細長い形状で、排出口6と非対向位置に配置している流入口7から高温ガスを内部に流入させる。流入口7から膨張チャンバ4に流入する高温ガスは、流入口7との対向位置にある中空室の内側壁に衝突して減速され、周囲に分散されて流動方向を変更する。この膨張チャンバ4はガスの流動方向に細長いので、両側に分散された高温ガスは、中空室内を長手方向に流動して両端に衝突して180度方向転換する。180度方向転換して中空室の長手方向を逆流する高温ガスは、両端に向かって流動する高温ガスに衝突して混合されて排出口6から排出される。この膨張チャンバ4は、高温ガスを内面に衝突させることで方向転換して減速し、また膨張チャンバ4内の空気に混合して温度を低下させ、さらに絞り開口5から膨張チャンバ4に流入されるときの膨張で温度を低下させる。 The expansion chamber 4 of FIG. 3 has an elongated shape in the gas flow direction, and allows high-temperature gas to flow into the inside from an inflow port 7 arranged at a position not opposed to the discharge port 6. The high-temperature gas flowing into the expansion chamber 4 from the inflow port 7 collides with the inner wall surface of the hollow chamber at a position facing the inflow port 7 and is decelerated, and is dispersed to the surroundings to change the flow direction. Since the expansion chamber 4 is elongated in the gas flow direction, the high temperature gas dispersed on both sides flows in the longitudinal direction in the hollow chamber and collides with both ends to change the direction by 180 degrees. The high-temperature gas that changes its direction by 180 degrees and flows back in the longitudinal direction of the hollow chamber collides with the high-temperature gas flowing toward both ends, is mixed, and is discharged from the discharge port 6. The expansion chamber 4 changes direction and decelerates by colliding the high temperature gas with the inner surface, mixes with the air in the expansion chamber 4 to lower the temperature, and further flows into the expansion chamber 4 through the throttle opening 5. When it expands, it lowers the temperature.

図4ないし図6の断面図に示す排出ダクトは、図2と図3の動作原理で高温ガスの温度を低下させる第1〜第3の膨張チャンバ4を備える。この排出ダクトは、二次電池1(円形の鎖線で示す)の排気弁2に連結して、開弁する排気弁2から排出されるガスを外部に排出する。排気弁2は、内圧が閾値圧力を超える状態で開弁されるので、この状態において電池は異常な使用環境にあり、排気弁2からは高温のガスが勢いよく噴射される。 The discharge duct shown in the cross-sectional view of FIGS. 4 to 6 includes first to third expansion chambers 4 for lowering the temperature of the high temperature gas according to the operating principle of FIGS. 2 and 3. This discharge duct is connected to the exhaust valve 2 of the secondary battery 1 (indicated by a circular chain wire), and the gas discharged from the exhaust valve 2 that opens is discharged to the outside. Since the exhaust valve 2 is opened in a state where the internal pressure exceeds the threshold pressure, the battery is in an abnormal usage environment in this state, and high-temperature gas is vigorously injected from the exhaust valve 2.

これ等の図に示す排出ダクト3は、複数の膨張チャンバ4と複数の絞り開口5とを備える。排出ダクト3は、風上側の膨張チャンバ4の排出口6と、風下側の膨張チャンバ4の流入口7とを絞り開口5を介して連結して、膨張チャンバ4と絞り開口5とを互いに直列に連結している。この排出ダクト3は、開弁する排気弁2から噴出される高温ガスを、複数の膨張チャンバ4と絞り開口5とを交互に通過させて温度を低下させて安全に外部に排出する。 The discharge duct 3 shown in these figures includes a plurality of expansion chambers 4 and a plurality of throttle openings 5. In the discharge duct 3, the discharge port 6 of the expansion chamber 4 on the leeward side and the inflow port 7 of the expansion chamber 4 on the leeward side are connected via the throttle opening 5, and the expansion chamber 4 and the throttle opening 5 are connected in series with each other. Is connected to. The exhaust duct 3 alternately passes the plurality of expansion chambers 4 and the throttle openings 5 to lower the temperature of the high-temperature gas ejected from the exhaust valve 2 to be opened, and safely discharges the gas to the outside.

膨張チャンバ4は閉鎖構造の中空状で、高温ガスの流入口7と排出口6とを設けている。流入口7と排出口6は、互いに対向しない位置、すなわち非対向位置に配置される。流入口7と排出口6を非対向位置に配置するのは、流入口7から膨張チャンバ4に流入する高温ガスがストレートに排出口6から排出されるのを阻止するためである。流入口7から流入される高温ガスがストレートに排出口6から排出されると、温度が低下することなく高温ガスとして勢いよく排出されて安全性は確保できない。 The expansion chamber 4 has a closed structure and is hollow, and is provided with an inlet 7 and an outlet 6 for high-temperature gas. The inflow port 7 and the discharge port 6 are arranged at positions that do not face each other, that is, at positions that do not face each other. The reason why the inflow port 7 and the discharge port 6 are arranged at non-opposing positions is to prevent the high temperature gas flowing from the inflow port 7 into the expansion chamber 4 from being discharged straight from the discharge port 6. If the high-temperature gas flowing in from the inflow port 7 is discharged straight from the discharge port 6, the temperature is not lowered and the high-temperature gas is vigorously discharged as high-temperature gas, and safety cannot be ensured.

図4〜図6の排出ダクトは、細長い膨張チャンバ4である第1の膨張チャンバ4−1と、横幅の広い方形状の第2の膨張チャンバ4−2及び第3の膨張チャンバ4−3を直列に連結している。第1ないし第3の膨張チャンバ4は、第1及び第2の絞り開口5で直列に連結している。第1の膨張チャンバ4−1は、第1の絞り開口5−1を介して第2の膨張チャンバ4−2に連結され、第2の膨張チャンバ4−2は第2の絞り開口5−2を介して第3の膨張チャンバ4−3に連結している。 The discharge ducts of FIGS. 4 to 6 include a first expansion chamber 4-1 which is an elongated expansion chamber 4, a second expansion chamber 4-2 having a wide rectangular shape, and a third expansion chamber 4-3. It is connected in series. The first to third expansion chambers 4 are connected in series by the first and second throttle openings 5. The first expansion chamber 4-1 is connected to the second expansion chamber 4-2 via the first aperture opening 5-1 and the second expansion chamber 4-2 has a second aperture opening 5-2. It is connected to the third expansion chamber 4-3 via.

図の排出ダクト3は、第1の膨張チャンバ4−1と第2の膨張チャンバ4−2とを平行姿勢で隣接して配置して、第2の膨張チャンバ4−2は、高温ガスの流動方向を図において左から右に、第3の膨張チャンバ4−3は高温ガスの流動方向を下から上としている。したがって、第2の膨張チャンバ4−2と第3の膨張チャンバ4−3は、高温ガスの流動方向を水平方向として、互いに直角に交差する方向とている。 In the discharge duct 3 shown in the figure, the first expansion chamber 4-1 and the second expansion chamber 4-2 are arranged adjacent to each other in a parallel posture, and the second expansion chamber 4-2 is a flow of high temperature gas. The direction is from left to right in the figure, and the third expansion chamber 4-3 has the flow direction of the high temperature gas from bottom to top. Therefore, the second expansion chamber 4-2 and the third expansion chamber 4-3 are oriented so as to intersect each other at right angles with the flow direction of the high temperature gas as the horizontal direction.

第1の膨張チャンバ4−1には、多数の二次電池1の排気弁2を連結している。二次電池1は円筒電池で、外装缶の底面に排気弁2を設けているので、外装缶の底面を、第1の膨張チャンバ4−1の両側に設けた連結開口8に連結している。第1の膨張チャンバ4−1は四角筒状で、図において両側面に長手方向に並べて複数の連結開口8を設けている。連結開口8から第1の膨張チャンバ4−1に流入される高温ガスは、膨張チャンバ4内における高温ガスの流動方向、すなわち膨張チャンバ4の長手方向に交差する方向で流入される。第1の膨張チャンバ4−1は、両側に複数の二次電池1の排気弁2を連結しているが、全ての二次電池1から同時に高温ガスが流入されるのではない。排気弁2は、外装缶の内圧が閾値圧力を越えた状態でのみ開弁されるので、全ての二次電池1の内圧が同時に閾値圧力を越えることはなく、何れかの二次電池1の排気弁2は、極めて少ない確率、すなわち、ほとんどの電源装置が全使用期間中において全く開弁しないという極めて低い確率でで開弁するからである。 Exhaust valves 2 of a large number of secondary batteries 1 are connected to the first expansion chamber 4-1. Since the secondary battery 1 is a cylindrical battery and the exhaust valve 2 is provided on the bottom surface of the outer can, the bottom surface of the outer can is connected to the connection openings 8 provided on both sides of the first expansion chamber 4-1. .. The first expansion chamber 4-1 has a square tubular shape, and is provided with a plurality of connecting openings 8 arranged in the longitudinal direction on both side surfaces in the drawing. The high-temperature gas flowing from the connecting opening 8 into the first expansion chamber 4-1 flows in the direction of flow of the high-temperature gas in the expansion chamber 4, that is, in the direction intersecting the longitudinal direction of the expansion chamber 4. The first expansion chamber 4-1 is connected to the exhaust valves 2 of a plurality of secondary batteries 1 on both sides, but the high temperature gas does not flow in from all the secondary batteries 1 at the same time. Since the exhaust valve 2 is opened only when the internal pressure of the outer can exceeds the threshold pressure, the internal pressures of all the secondary batteries 1 do not exceed the threshold pressure at the same time, and the internal pressure of any of the secondary batteries 1 This is because the exhaust valve 2 opens with a very low probability, that is, with a very low probability that most power supply devices do not open at all during the entire period of use.

内圧が閾値圧力を越えた二次電池1の排気弁2が開弁されると、開弁した排気弁2から噴射される高温ガスは連結開口8から第1の膨張チャンバ4−1に流入する。第1の膨張チャンバ4−1は、高温ガスの流入方向(長手方向に交差する方向)と、内部の流動方向(膨張チャンバ4の長手方向)とは方向が異なるので、何れかの連結開口8から流入する高温ガスは、反対側の内側面に衝突して方向転換する。 When the exhaust valve 2 of the secondary battery 1 whose internal pressure exceeds the threshold pressure is opened, the high-temperature gas injected from the opened exhaust valve 2 flows into the first expansion chamber 4-1 through the connecting opening 8. .. Since the direction of the first expansion chamber 4-1 is different between the inflow direction of the high temperature gas (the direction intersecting the longitudinal direction) and the internal flow direction (the longitudinal direction of the expansion chamber 4), any of the connecting openings 8 The hot gas flowing in from the surface collides with the inner surface on the opposite side and changes direction.

第1の膨張チャンバ4−1は、中空室の対向する両端面から内側に離れた中間部に排出口6を設けている。図の第1の膨張チャンバ4−1は、両側に連結開口8を設けて、底面に排出口6を設けているので、連結開口8から流入される高温ガスは、対向面で反射して方向転換して長手方向に流動して拡散した後、底面の排出口6である第1の絞り開口5−1から排出される。高温ガスは、いずれかひとつの連結開口8から第1の膨張チャンバ4−1に流入される。全ての二次電池1の排気弁2が同時に開弁するのではなく、何れかひとつの二次電池1の排気弁2が開弁されるからである。 The first expansion chamber 4-1 is provided with a discharge port 6 at an intermediate portion inwardly separated from both end faces of the hollow chamber facing each other. Since the first expansion chamber 4-1 in the figure is provided with connecting openings 8 on both sides and a discharge port 6 on the bottom surface, the high temperature gas flowing in from the connecting opening 8 is reflected by the facing surface in the direction. After being converted, flowing in the longitudinal direction and diffusing, it is discharged from the first throttle opening 5-1 which is the discharge port 6 on the bottom surface. The hot gas flows into the first expansion chamber 4-1 through any one of the connecting openings 8. This is because the exhaust valves 2 of all the secondary batteries 1 are not opened at the same time, but the exhaust valves 2 of any one of the secondary batteries 1 are opened.

第1の絞り開口5−1は、第1の膨張チャンバ4−1の排出口6と、第2の膨張チャンバ4−2の流入口7となるので、第1の絞り開口5−1は、第1の膨張チャンバ4−1から下向きに高温ガスを排出して、第2の膨張チャンバ4−2に流入させる。 Since the first throttle opening 5-1 serves as the discharge port 6 of the first expansion chamber 4-1 and the inflow port 7 of the second expansion chamber 4-2, the first throttle opening 5-1 is The high temperature gas is discharged downward from the first expansion chamber 4-1 and flows into the second expansion chamber 4-2.

第2の膨張チャンバ4−2は、図において第1の膨張チャンバ4−1の下に隣接して配置され、第1の絞り開口5−1を介して第1の膨張チャンバ4−1に連結される。第1の絞り開口5−1は、第1の膨張チャンバ4−1と第2の膨張チャンバ4−2との間の隔壁を貫通する貫通穴である。図の排出ダクト3は、第1の絞り開口5−1を複数の貫通穴として、複数の貫通穴を互いに離して配置している。複数の貫通穴で第1の膨張チャンバ4−1に連結する構造は、貫通穴のひとつの絞り開口5を小さくして、第1の膨張チャンバ4−1の高温ガスを第2の膨張チャンバ4−2に流入でき、また、第1の膨張チャンバ4−1に連結しているいずれの二次電池1の排気弁2が開弁しても、均等化して高温ガスを第1の膨張チャンバ4−1から第2の膨張チャンバ4−2に流入できる特徴がある。ただし、第1の絞り開口はひとつの貫通穴で実現することもできる。 The second expansion chamber 4-2 is arranged adjacently below the first expansion chamber 4-1 in the figure and is connected to the first expansion chamber 4-1 via the first throttle opening 5-1. Will be done. The first throttle opening 5-1 is a through hole penetrating the partition wall between the first expansion chamber 4-1 and the second expansion chamber 4-2. In the discharge duct 3 in the figure, the first throttle opening 5-1 is used as a plurality of through holes, and the plurality of through holes are arranged apart from each other. The structure in which a plurality of through holes are connected to the first expansion chamber 4-1 reduces the throttle opening 5 of one of the through holes and allows the high temperature gas of the first expansion chamber 4-1 to be transferred to the second expansion chamber 4. Even if the exhaust valve 2 of any of the secondary batteries 1 that can flow into -2 and is connected to the first expansion chamber 4-1 is opened, the high temperature gas is equalized and the high temperature gas is equalized to the first expansion chamber 4 It has the characteristic that it can flow from -1 to the second expansion chamber 4-2. However, the first aperture opening can also be realized with one through hole.

第2の膨張チャンバ4−2は、高温ガスの流動方向に細長い中空状で、両端を閉塞している閉鎖構造の四角筒状である。図に示す第2の膨張チャンバ4−2は、横幅が第1の膨張チャンバ4−1よりも広く、第1の膨張チャンバ4−1よりも内容積が大きい。横幅の広い第2の膨張チャンバ4−2は、第1の膨張チャンバ4−1両側に連結している二次電池1の下方に配置されて、二次電池1から外側には突出しない横幅として、内容積を大きくしている。 The second expansion chamber 4-2 has a hollow shape elongated in the flow direction of the high temperature gas, and has a closed square cylinder shape with both ends closed. The second expansion chamber 4-2 shown in the figure has a wider width than the first expansion chamber 4-1 and a larger internal volume than the first expansion chamber 4-1. The wide second expansion chamber 4-2 is arranged below the secondary battery 1 connected to both sides of the first expansion chamber 4-1 so as to have a width that does not protrude outward from the secondary battery 1. , The internal volume is increased.

内容積の大きい第2の膨張チャンバ4−2は、絞り開口5から流入される高温ガスをより効果的に膨張による温度低下を大きく出来る。とくに、図の排出ダクト3は、第2の膨張チャンバ4−2の流入口7の絞り開口5を複数の小さい貫通穴とするので、第1の膨張チャンバ4−1から第2の膨張チャンバ4−2に流入するときの膨張をより効率よくして、膨張によって高温ガスの温度を低くできる特徴がある。 The second expansion chamber 4-2 having a large internal volume can more effectively increase the temperature drop due to expansion of the high temperature gas flowing in from the throttle opening 5. In particular, in the discharge duct 3 in the figure, since the throttle opening 5 of the inflow port 7 of the second expansion chamber 4-2 is made into a plurality of small through holes, the first expansion chamber 4-1 to the second expansion chamber 4 There is a feature that the expansion when flowing into -2 can be made more efficient, and the temperature of the high temperature gas can be lowered by the expansion.

さらに、第2の膨張チャンバ4−2は、第1の膨張チャンバ4−1の一端(図において右端)から外側に突出する長さで、突出部9の上に第3の膨張チャンバ4−3を配置している。この構造の排出ダクト3は、第3の膨張チャンバ4−3を、第2の膨張チャンバ4−2の突出部9の上に配置して、横幅を第2の膨張チャンバ4−2に等しく、高さを第1の膨張チャンバ4−1に等しくしているので、無駄なスペースを設けることなく、高いスペース効率で大容積の第1〜第3の膨張チャンバ4−3を設けることができる。 Further, the second expansion chamber 4-2 has a length of projecting outward from one end (right end in the drawing) of the first expansion chamber 4-1 and a third expansion chamber 4-3 above the protruding portion 9. Is placed. The discharge duct 3 having this structure has a third expansion chamber 4-3 arranged on the protrusion 9 of the second expansion chamber 4-2, and has a width equal to that of the second expansion chamber 4-2. Since the height is equal to that of the first expansion chamber 4-1 it is possible to provide a large volume of the first to third expansion chambers 4-3 with high space efficiency without providing wasted space.

第2の膨張チャンバ4−2と、第3の膨張チャンバ4−3はとの間の隔壁には、第2の絞り開口5−2を設けて、第2の膨張チャンバ4−2を、第3の膨張チャンバ4−3に連結している。第2の絞り開口5−2は、第2の膨張チャンバ4−2の排出口6と第3の膨張チャンバ4−3の流入口7となる。第2の絞り開口5−2も、小さい複数の貫通穴として、膨張による高温ガスの温度低下を効率よくできる。ただ、第2の絞り開口もひとつの貫通穴とすることもできる。 The partition wall between the second expansion chamber 4-2 and the third expansion chamber 4-3 is provided with a second throttle opening 5-2 to form a second expansion chamber 4-2. It is connected to the expansion chamber 4-3 of 3. The second throttle opening 5-2 serves as an outlet 6 of the second expansion chamber 4-2 and an inflow port 7 of the third expansion chamber 4-3. The second throttle opening 5-2 can also efficiently lower the temperature of the high-temperature gas due to expansion as a plurality of small through holes. However, the second diaphragm opening can also be a single through hole.

第3の膨張チャンバ4−3は、第2の絞り開口5−2を通過して高温ガスを下から上に流入される。垂直方向に流入する高温ガスは、側面に設けた第3の絞り開口5−3から外部に排出される。 The third expansion chamber 4-3 passes through the second throttle opening 5-2 to allow hot gas to flow in from bottom to top. The high temperature gas flowing in the vertical direction is discharged to the outside through the third throttle opening 5-3 provided on the side surface.

以上の排出ダクト3は、第1の膨張チャンバ4−1と第2の膨張チャンバ4−2とを平行姿勢で隣接して配置して、第2の膨張チャンバ4−2と第3の膨張チャンバ4−3とは、高温ガスの流動方向を含む面内を互いに平行とする姿勢で配置して、高温ガスを直角方向に流動させる。 In the above discharge duct 3, the first expansion chamber 4-1 and the second expansion chamber 4-2 are arranged adjacent to each other in a parallel posture, and the second expansion chamber 4-2 and the third expansion chamber 4-2 are arranged adjacent to each other. 4-3 is arranged in a posture in which the planes including the flow direction of the high temperature gas are parallel to each other, and the high temperature gas flows in the direction perpendicular to each other.

図6の排出ダクト3は、第1の絞り開口5−1を、細管10でもって第3の膨張チャンバ4−3に連結している。細管10は、一端を第1の絞り開口5−1に連結して、他端を風下側の膨張チャンバ4である第3の膨張チャンバ4−3に連結している。第1の絞り開口5−1は、中間の流速を速くするために、中間を細くしてなるベンチュリー管で、細管10をベンチュリー管の括れ部に連結している。細管10は、高温ガスがベンチュリー管を高速流動して発生する負圧で、風下側の膨張チャンバ4である第3の膨張チャンバ4−3内の空気やガスを吸引して、第1の絞り開口5−1に循環させる。 In the discharge duct 3 of FIG. 6, the first throttle opening 5-1 is connected to the third expansion chamber 4-3 by a thin tube 10. One end of the thin tube 10 is connected to the first throttle opening 5-1 and the other end is connected to the third expansion chamber 4-3, which is the expansion chamber 4 on the leeward side. The first throttle opening 5-1 is a Venturi tube having a narrowed middle in order to increase the flow velocity in the middle, and the thin tube 10 is connected to the constricted portion of the Venturi tube. The thin tube 10 is a negative pressure generated by high-temperature gas flowing through the Venturi tube at high speed, and sucks air and gas in the third expansion chamber 4-3, which is the expansion chamber 4 on the leeward side, to draw the first throttle. Circulate through opening 5-1.

細管10は、第3の膨張チャンバ4−3内の空気を吸収して第1の絞り開口5−1に循環させるので、第3の膨張チャンバ4−3と第2の膨張チャンバ4−2内の空気とが第1の絞り開口5−1に吸収されて、第1の膨張チャンバ4−1から第2の膨張チャンバ4−2に流入される高温ガスに混合される。したがって、第1の絞り開口5−1を通過する高温ガスは、細管10が吸入する空気を混合して温度低下されて、第2の膨張チャンバ4−2に流入される。細管10は、第3の膨張チャンバ4−3と第2の膨張チャンバ4−2と第1の絞り開口5−1とに空気やガスを循環させるが、この循環ガスは第1の膨張チャンバ4−1から排出される高温ガスよりも温度が低いので、第1の膨張チャンバ4−1から排出される高温ガスは、第1の絞り開口5−1を通過するときに、細管10から供給される空気が混合されて温度低下して第2の膨張チャンバ4−2に流入される。 Since the thin tube 10 absorbs the air in the third expansion chamber 4-3 and circulates it in the first throttle opening 5-1, it is inside the third expansion chamber 4-3 and the second expansion chamber 4-2. Is absorbed by the first throttle opening 5-1 and mixed with the high temperature gas flowing into the first expansion chamber 4-1 to the second expansion chamber 4-2. Therefore, the high temperature gas passing through the first throttle opening 5-1 is mixed with the air sucked by the thin tube 10, the temperature is lowered, and the high temperature gas flows into the second expansion chamber 4-2. The thin tube 10 circulates air and gas through the third expansion chamber 4-3, the second expansion chamber 4-2, and the first throttle opening 5-1. The circulating gas is the first expansion chamber 4 Since the temperature is lower than the high temperature gas discharged from -1, the high temperature gas discharged from the first expansion chamber 4-1 is supplied from the thin tube 10 when passing through the first throttle opening 5-1. The air is mixed, the temperature is lowered, and the air flows into the second expansion chamber 4-2.

図7の排出ダクト3は、第1の絞り開口5−1のベンチュリー管に連結している細管10を、第2の膨張チャンバ4−2に連結している。この細管10は、高温ガスがベンチュリー管を高速流動して発生する負圧で、風下側の膨張チャンバ4である第2の膨張チャンバ4−2内の空気やガスを吸引して、第1の絞り開口5−1に循環させる。したがって、細管10によって、第2の膨張チャンバ4−2内の空気が吸収されて、第1の膨張チャンバ4−1から第2の膨張チャンバ4−2に流入される高温ガスに混合され、第1の絞り開口5−1を通過する高温ガスの温度が低下されて、第2の膨張チャンバ4−2に流入される。この排出ダクト3は、細管10でもって、第2の膨張チャンバ4−2と第1の絞り開口5−1とに空気やガスを循環させるが、この循環ガスは第1の膨張チャンバ4−1から排出される高温ガスよりも温度が低く、第1の絞り開口5−1を通過する高温ガスは、細管10から供給される空気が混合されて温度低下して第2の膨張チャンバ4−2に流入される。 In the discharge duct 3 of FIG. 7, the thin tube 10 connected to the Venturi tube of the first throttle opening 5-1 is connected to the second expansion chamber 4-2. The thin tube 10 sucks air and gas in the second expansion chamber 4-2, which is the expansion chamber 4 on the leeward side, with a negative pressure generated by high-temperature gas flowing through the Venturi tube at high speed, and the first It is circulated in the aperture opening 5-1. Therefore, the thin tube 10 absorbs the air in the second expansion chamber 4-2 and mixes it with the high temperature gas flowing from the first expansion chamber 4-1 into the second expansion chamber 4-2. The temperature of the high temperature gas passing through the throttle opening 5-1 of 1 is lowered and flows into the second expansion chamber 4-2. The discharge duct 3 circulates air and gas through the second expansion chamber 4-2 and the first throttle opening 5-1 by the thin tube 10, and the circulating gas is the first expansion chamber 4-1. The temperature of the high-temperature gas passing through the first throttle opening 5-1 is lower than that of the high-temperature gas discharged from the thin tube 10, and the air supplied from the thin tube 10 is mixed to lower the temperature, and the temperature of the high-temperature gas drops to the second expansion chamber 4-2. Inflow to.

したがって、図6と図7の排出ダクト3は、開弁する排気弁2から排出される高温ガスの温度をより低くして排出できる。それは、細管10が風下側の膨張チャンバ4内の空気を絞り開口5に循環させて、高温ガスを効果的に膨張チャンバ4内の空気に撹拌して排出するからである。とくに、細管10が排出側の膨張チャンバ4内の空気を絞り開口5に流入して高温ガスに混合して膨張チャンバ4に排出するので、温度の低い風下側の膨張チャンバ4内の空気を高温ガスに混合することで、高温ガスをより温度低下して排出できる。また、排出ダクト3は、図6の細管10と図7の細管10の両方を備える構成としてもよい。
Therefore, the exhaust ducts 3 of FIGS. 6 and 7 can discharge the high-temperature gas discharged from the exhaust valve 2 that opens at a lower temperature. This is because the thin tube 10 circulates the air in the expansion chamber 4 on the leeward side to the throttle opening 5 and effectively agitates and discharges the high temperature gas into the air in the expansion chamber 4. In particular, since the thin tube 10 flows the air in the expansion chamber 4 on the discharge side into the throttle opening 5 and mixes it with the high temperature gas and discharges it to the expansion chamber 4, the air in the expansion chamber 4 on the leeward side with a low temperature is heated to a high temperature. By mixing with the gas, the high temperature gas can be discharged at a lower temperature. Further, the discharge duct 3 may be configured to include both the thin tube 10 of FIG. 6 and the thin tube 10 of FIG. 7.

本発明の電源装置は、多数の二次電池1を備える大出力の電源装置として有効に使用できる。とくに、高い安全性を実現しながら、大出力、大容量の電源装置に有効に使用できる。 The power supply device of the present invention can be effectively used as a high-power power supply device including a large number of secondary batteries 1. In particular, it can be effectively used for high-output, large-capacity power supply devices while achieving high safety.

本発明の実施例にかかる電源装置の斜視図である。It is a perspective view of the power-source device which concerns on embodiment of this invention. 膨張チャンバをガスが流動する状態を示す断面図である。It is sectional drawing which shows the state which a gas flows through an expansion chamber. 膨張チャンバをガスが流動する状態を示す断面図である。It is sectional drawing which shows the state which a gas flows through an expansion chamber. 図1に示す電源装置の排出ダクトを示す断面図である。It is sectional drawing which shows the discharge duct of the power-source device shown in FIG. 図1に示す電源装置の平面図である。It is a top view of the power supply device shown in FIG. 排出ダクトの他の実施例を示す断面図である。It is sectional drawing which shows the other embodiment of a discharge duct. 排出ダクトの他の実施例を示す断面図である。It is sectional drawing which shows the other embodiment of a discharge duct. 開弁する電池の排気弁から排出されるガスの時間−温度特性を示すグラフである。It is a graph which shows the time-temperature characteristic of the gas discharged from the exhaust valve of the battery which opens.

1…二次電池
2…排気弁
3…排出ダクト
4…膨張チャンバ 4−1…第1の膨張チャンバ
4−2…第2の膨張チャンバ
4−3…第3の膨張チャンバ
5…絞り開口 5−1…第1の絞り開口
5−2…第2の絞り開口
5−3…第3の絞り開口
6…排出口
7…流入口
8…連結開口
9…突出部
10…細管
1 ... Secondary battery 2 ... Exhaust valve 3 ... Exhaust duct 4 ... Expansion chamber 4-1 ... First expansion chamber
4-2 ... Second expansion chamber
4-3 ... Third expansion chamber 5 ... Aperture opening 5-1 ... First aperture opening
5-2 ... Second aperture opening
5-3 ... Third throttle opening 6 ... Discharge port 7 ... Inflow port 8 ... Connecting opening 9 ... Protruding part 10 ... Thin tube

Claims (5)

閾値圧力より高くなると開弁してガスを排出する排気弁を有する二次電池と、
前記二次電池の排気弁から排出されるガスが流入する排出ダクトとを備える電源装置であって、
前記排出ダクトが、複数の膨張チャンバと複数の絞り開口とを有し、
風上側の膨張チャンバの排出口と風下側の膨張チャンバの流入口とが前記絞り開口を介して連結されて、前記膨張チャンバと前記絞り開口とが互いに直列に連結され、
開弁する前記排気弁から噴出されるガスが、前記膨張チャンバと前記絞り開口とを交互に通過して排出されるようにしてなり、
前記複数の膨張チャンバは、両端を閉塞してなる細長い中空状で、前記膨張チャンバの側面の非対向位置に前記流入口と前記排出口とを設けてなり、
前記複数の膨張チャンバは、
二次電池の排気弁に連結してなる第1の膨張チャンバと、
前記第1の膨張チャンバに前記絞り開口を介して連結してなる第2の膨張チャンバと、
前記第2の膨張チャンバに前記絞り開口を介して連結してなる第3の膨張チャンバと、
を含んでおり、
前記第1の膨張チャンバと前記第2の膨張チャンバとが互いに平行な姿勢で隣接して配置され、前記第2の膨張チャンバは前記第1の膨張チャンバから突出する突出部を有し、
前記第3の膨張チャンバが、前記第2の膨張チャンバの突出部表面と前記第1の膨張チャンバ端部とに隣接して配置されてなることを特徴とする電源装置。
A secondary battery having an exhaust valve that opens when the pressure rises above the threshold pressure and discharges gas.
A power supply device including an exhaust duct into which gas discharged from the exhaust valve of the secondary battery flows in.
The discharge duct has a plurality of expansion chambers and a plurality of throttle openings.
The outlet of the expansion chamber on the windward side and the inflow port of the expansion chamber on the leeward side are connected via the throttle opening, and the expansion chamber and the throttle opening are connected in series with each other.
The gas ejected from the exhaust valve to be opened is discharged by alternately passing through the expansion chamber and the throttle opening.
The plurality of expansion chambers have an elongated hollow shape having both ends closed, and the inflow port and the outlet are provided at non-opposing positions on the side surfaces of the expansion chamber.
The plurality of expansion chambers
A first expansion chamber connected to the exhaust valve of the secondary battery,
A second expansion chamber connected to the first expansion chamber via the aperture opening, and a second expansion chamber.
A third expansion chamber connected to the second expansion chamber via the throttle opening, and a third expansion chamber.
Includes
The first expansion chamber and the second expansion chamber are arranged adjacent to each other in a posture parallel to each other, and the second expansion chamber has a protrusion protruding from the first expansion chamber.
A power supply device characterized in that the third expansion chamber is arranged adjacent to a protruding portion surface of the second expansion chamber and an end portion of the first expansion chamber.
請求項に記載される電源装置であって、
前記第1膨張チャンバの長手方向に並べて、前記二次電池の排気弁を連結する前記流入口を開口してなることを特徴とする電源装置。
The power supply device according to claim 1.
A power supply device characterized in that the inflow port connecting the exhaust valves of the secondary battery is opened so as to be arranged in the longitudinal direction of the first expansion chamber.
請求項1または2に記載される電源装置であって、
一端を前記絞り開口に連結して、他端を風下側の膨張チャンバに連結してなる細管を有し、開弁する排気弁から排出されるガスが、前記絞り開口を高速流動する負圧で、前記細
管が風下側の膨張チャンバのガスを絞り開口に循環させるようにしてなることを特徴とする電源装置。
The power supply device according to claim 1 or 2.
It has a thin tube with one end connected to the throttle opening and the other end connected to the expansion chamber on the leeward side, and the gas discharged from the exhaust valve that opens is a negative pressure that flows through the throttle opening at high speed. A power supply device characterized in that the thin tube circulates gas in an expansion chamber on the leeward side to a throttle opening.
請求項1ないしのいずれかに記載される電源装置であって、
前記二次電池が非水系電解液二次電池としてなることを特徴とする電源装置。
The power supply device according to any one of claims 1 to 3.
A power supply device characterized in that the secondary battery serves as a non-aqueous electrolyte secondary battery.
請求項1ないしのいずれかに記載される電源装置であって、
前記膨張チャンバの内容積が前記二次電池の内容積よりも大きいことを特徴とする電源装置。
The power supply device according to any one of claims 1 to 4.
A power supply device characterized in that the internal volume of the expansion chamber is larger than the internal volume of the secondary battery.
JP2016210087A 2016-10-26 2016-10-26 Power supply Active JP6855211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016210087A JP6855211B2 (en) 2016-10-26 2016-10-26 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016210087A JP6855211B2 (en) 2016-10-26 2016-10-26 Power supply

Publications (2)

Publication Number Publication Date
JP2018073561A JP2018073561A (en) 2018-05-10
JP6855211B2 true JP6855211B2 (en) 2021-04-07

Family

ID=62115558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016210087A Active JP6855211B2 (en) 2016-10-26 2016-10-26 Power supply

Country Status (1)

Country Link
JP (1) JP6855211B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121802A1 (en) * 2018-12-11 2020-06-18 パナソニックIpマネジメント株式会社 Storage battery module
JP7270135B2 (en) * 2018-12-11 2023-05-10 パナソニックIpマネジメント株式会社 storage battery module
EP3916833A4 (en) * 2019-01-25 2022-03-16 SANYO Electric Co., Ltd. Battery pack
CN113632296A (en) * 2019-03-27 2021-11-09 三洋电机株式会社 Power supply device
JP7322719B2 (en) 2020-01-17 2023-08-08 Tdk株式会社 battery pack
KR20220165596A (en) 2021-06-08 2022-12-15 주식회사 엘지에너지솔루션 Battery Module, Battery Pack, And Vehicle Having the Same
KR20220168919A (en) 2021-06-17 2022-12-26 주식회사 엘지에너지솔루션 Battery Module, Battery Pack, And Vehicle having the Same
DE102021005751A1 (en) * 2021-11-19 2023-05-25 Volkswagen Aktiengesellschaft battery system
CN118575339A (en) * 2022-01-27 2024-08-30 松下新能源株式会社 Battery pack
FR3138577B1 (en) * 2022-07-26 2024-08-02 Safran Electrical & Power On-board battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224228A (en) * 2008-03-17 2009-10-01 Toshiba Corp Battery module and battery pack
JP5466906B2 (en) * 2009-09-18 2014-04-09 パナソニック株式会社 Battery module

Also Published As

Publication number Publication date
JP2018073561A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6855211B2 (en) Power supply
JP5030500B2 (en) Power supply
JP5052057B2 (en) Power supply
KR101866345B1 (en) Battery Module
CN104347910B (en) Battery cooling system
JP4646867B2 (en) Battery module
JP4827558B2 (en) Power supply for vehicle
JP4659699B2 (en) Battery module
KR101783360B1 (en) Cooling structure for construction machine
KR101877996B1 (en) Battery system
KR101053267B1 (en) U-type battery pack for electric vehicles
TWI460902B (en) Battery pack having cooling system
KR20170121559A (en) Energy storage apparatus and method for cooling the energy storage apparatus
JP2006278140A (en) Battery pack
JP2006128123A (en) Battery module and cooling device for battery module
JP2007042647A (en) Battery module
JP6330757B2 (en) Battery pack
JP2016091951A (en) Battery pack
KR20120076752A (en) Battery pack that inset and outlet are vertical structure
JP2007073205A (en) Battery pack
JP2014179178A (en) Battery system
KR20200088178A (en) Energy storage system
KR20120122000A (en) Battery pack with optimized inlet and outlet
KR20190119844A (en) Battery cooling device for vehicle
JP2015062163A (en) Battery cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210317

R150 Certificate of patent or registration of utility model

Ref document number: 6855211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150