JP6855035B2 - Qd法電磁ホーン型esr装置及びこの装置を使用したesrスペクトルの取得方法 - Google Patents

Qd法電磁ホーン型esr装置及びこの装置を使用したesrスペクトルの取得方法 Download PDF

Info

Publication number
JP6855035B2
JP6855035B2 JP2016124885A JP2016124885A JP6855035B2 JP 6855035 B2 JP6855035 B2 JP 6855035B2 JP 2016124885 A JP2016124885 A JP 2016124885A JP 2016124885 A JP2016124885 A JP 2016124885A JP 6855035 B2 JP6855035 B2 JP 6855035B2
Authority
JP
Japan
Prior art keywords
esr
spectrum
frequency
frequency sweep
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016124885A
Other languages
English (en)
Other versions
JP2017227570A (ja
Inventor
小林 正
正 小林
晃 小野澤
晃 小野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION OITA UNIVERSITY
Priority to JP2016124885A priority Critical patent/JP6855035B2/ja
Publication of JP2017227570A publication Critical patent/JP2017227570A/ja
Application granted granted Critical
Publication of JP6855035B2 publication Critical patent/JP6855035B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、新規なQD法電磁ホーン型ESR(電子スピン共鳴)装置、及びこの装置を使用した新規なESRスペクトルの取得方法に関する。
発明者等は、ホモダイン方式電磁ホーン型及び共振器型ESR装置を長年にわたって研究してきた(非特許文献1、特許文献1−4参照)。これらの装置では、導波管長可変方式の位相器によって、一回のESR測定で、試料のESR吸収スペクトルまたはESR分散スペクトル、あるいは位相の揃わない中間的なESRスペクトルをただ一つだけ計測することができるが、ESR吸収及び分散スペクトルを同時に得ることはできない。測定対象によっては、ESR測定中にその物性に変化が生じるものもありえるので、経時的な吸収及び分散スペクトルの測定では、正しいESRスペクトルを得ることができない場合がある。従って、一回のESR測定で、測定対象のESR吸収及び分散スペクトルを同時に得ることが可能なESR装置が求められてきた。
非特許文献2に、QIFM(Quadrature Intermediate Frequency Mixer)素子を用いた共振器型のESR装置によって、吸収・分散スペクトルの同時測定が可能であることが示唆されている。QIFM素子を用いたパルスESR装置としては、特許文献5にも開示がある。しかしながら、非特許文献2および特許文献5に記載されたESR装置はいずれも空洞共振器を用いた共振器型ESR装置であり、従って広い範囲の周波数に対して共鳴周波数を求める周波数掃引ESRスペクトル測定が困難であった。
特開2011−99776号公報 特開2011−99814号公報 特開2011−158348号公報 特開2014−228342号公報 特開2013−57527号公報
「電磁ホーン型/共振器型総合ESR装置開発と応用計測」、小林正他、電子スピンサイエンス、通号19、Vol.10(2012年秋)p88−93 「X−band cw ESRシステム:Bruker EMX Plus Premium」古川貢、分子研レターズ54、2006年8月、p18
本発明は、一回のESR測定で、測定対象の周波数掃引ESR吸収スペクトルとESR分散スペクトルとを同時に得ることが可能な新規なESR装置、及びその装置を用いた新規なESRスペクトルの取得方法を提供することを課題とする。
上記課題を解決するために、本発明の第一の態様では、周波数掃引が可能なYIGマイクロ波発生器と、前記YIGマイクロ波発生器から分配されメインアームを通して入力される周波数掃引されたマイクロ波によって駆動され、かつ、試料を設置可能な電磁ホーンと、前記電磁ホーンに磁場を印加する電磁石と、前記マイクロ波と前記磁場の印加によって、前記電磁ホーンにおいて発生した前記試料のESR共鳴による電子スピンの反転によりわずかにエネルギーを失って前記電磁ホーンから出力される第1のマイクロ波信号と、前記マイクロ波発生器からリファレンスアームに分配された第2のマイクロ波信号とを入力し、この2つの入力信号から互いに90°位相がずれたESR実部スペクトル信号及びESR虚部スペクトル信号を生成するQIFM素子と、前記QIFM素子から出力され適宜増幅された前記ESR実部スペクトル信号及びESR虚部スペクトル信号が導入される情報処理部と、を備え、前記情報処理部は、前記ESR実部スペクトル信号及びESR虚部スペクトル信号の前記周波数掃引時の周波数変化に応じた位相のズレを補正するための整合位相角の周波数依存性を記憶しており、前記ESR実部スペクトル信号及びESR虚部スペクトル信号に前記整合位相角の周波数依存性を適用して、位相の揃った周波数掃引ESR吸収スペクトル及びESR分散スペクトルを生成し出力する機能を備える、QD法電磁ホーン型ESR装置を提供する。
上記装置において、前記情報処理部は、さらに、周波数掃引時の前記YIGマイクロ波発生器と単向管を通しそれに接続した増幅のためのマイクロ波アンプ部の出力のズレの周波数依存性を記憶しており、前記ESR実部スペクトル信号及びESR虚部スペクトル信号に前記整合位相角の周波数依存性と前記出力のズレの周波数依存性とを適用して、位相とESR強度の揃った周波数掃引ESR吸収スペクトル及びESR分散スペクトルを生成し出力する機能を備えていても良い。
上記QD法電磁ホーン型ESR装置において、前記情報処理部は、さらに、前記ESR実部スペクトル信号及びESR虚部スペクトル信号、あるいは位相整合後の前記ESR吸収スペクトル及びESR分散スペクトルからの実部成分と虚部成分から得られるベクトルの大きさの周波数掃引により、ESRパワースペクトルを生成する機能を備えていても良い。
上記装置において、前記情報処理部はさらに、前記ESR実部あるいは吸収スペクトルとESR虚部あるいは分散スペクトルにフーリエ変換を行った後Harn窓関数またはサインベル窓関数を適用してノイズ低減を行い、その後逆フーリエ変換して、出力のS/N比を改善する機能を備えていても良い。
本発明の第二の態様では、位相補正された周波数掃引ESRスペクトルを得るために、a)QD法電磁ホーン型ESR装置により、単結晶方解石:Mn2+イオンの周波数掃引によるESR実部スペクトルとESR虚部スペクトルを測定する段階と、b)前記段階a)で得られた周波数掃引ESR実部スペクトルとESR虚部スペクトルの波形を位相回転させて吸収スペクトルと分散スペクトルを得るための整合位相角を得る段階と、c)前記段階b)を、複数の周波数における波形に適用して、整合位相角の周波数依存性を求める段階と、d)前記段階a)の計測時の設定状態及び測定条件を維持して、前記QD法電磁ホーン型ESR装置により他の測定試料のESR測定を行う段階と、e)前記段階d)で得られた周波数掃引ESR実部スペクトルとESR虚部スペクトルに、前記段階c)で得られた整合位相角の周波数依存性を適用して、周波数掃引ESR吸収スペクトルとESR分散スペクトルを得る段階と、を備える、周波数掃引ESRスペクトルを取得する方法を提供する。
本発明の第三の態様では、位相及び強度が補正された周波数掃引ESRを得るために、a)QD法電磁ホーン型ESR装置により、立方晶系で、故に結晶中に添加されたMn2+イオンの6本の許容遷移スペクトルのESR強度が等しいことを利用するために、単結晶MgO:Mn2+イオンの周波数掃引によるESR実部スペクトルとESR虚部スペクトルを測定する段階と、b)前記段階a)で得られた周波数掃引ESR実部スペクトルとESR虚部スペクトルの波形を位相回転させて吸収スペクトルと分散スペクトルを得るための整合位相角を得る段階と、c)前記段階b)を複数の周波数点におけるスペクトル波形に適用して、整合位相角の周波数依存性を求める段階と、d)前記段階b)における複数の周波数点において、ESR実部スペクトルとESR虚部スペクトルから得られるベクトルのノルムに相当する周波数掃引ESRパワースペクトルを得て、ESR強度比の周波数依存性を求める段階と、e)前記段階a)の計測時の設定状態及び測定条件を維持して、前記QD法電磁ホーン型ESR装置により他の測定試料のESR測定を行う段階と、f)前記段階e)で得られた周波数掃引ESR実部スペクトルとESR虚部スペクトルに、前記段階c)及びd)で得られた整合位相角の周波数依存性とESR強度比の周波数依存性を適用して、位相及び強度が補正された周波数掃引ESR吸収スペクトルとESR分散スペクトルを得る段階と、を備える、位相及び強度が補正された周波数掃引ESRスペクトルを取得する方法を提供する。
周波数掃引電磁ホーン型ESR装置では、マイクロ波発生器として使用するYIGマイクロ波発生器の周波数依存性のために、測定されたESR実部スペクトル及びESR虚部スペクトルに位相のズレが生じるが、このズレが情報処理部に予め収納された整合位相角の周波数依存性を示す関係式に基づいて修正され、位相の揃ったESR吸収スペクトルとESR分散スペクトルを同時に出力することができる。また、ESR実部スペクトル信号及びESR虚部スペクトル信号、あるいは位相整合後のESR吸収スペクトル及びESR分散スペクトルからの実部成分と虚部成分から得られるベクトルの大きさ(ノルム)の周波数掃引により、ESRパワースペクトルを生成することができ、その面積強度から、従来の吸収スペクトルのみから得られるESR強度よりも定量性の高い、ESR強度情報を得ることができる。さらに近未来に小型化され、高速周波数掃引が可能で例えば医療現場にて臨床検査機能としても、応用が可能となろう。
本発明に係る周波数掃引ESRスペクトルを取得する方法によれば、単結晶方解石中のMn2+イオンあるいは単結晶MgO粉末中のMn2+イオンを用いて、QD法電磁ホーン型ESR装置の周波数掃引時の位相のズレを補正することにより、ESR吸収スペクトルとESR分散スペクトルを同時に得ることができる。更に、より定量性の高いESR強度情報を得ることができるため、周波数掃引ESRスペクトル取得の確立した手法として利用することができる。
本発明の一実施形態に係るQD法電磁ホーン型ESR装置の概略構成を示す図。 QD法電磁ホーン型ESR装置によって得られた、(a)ESR虚部スペクトルと(b)ESR実部スペクトルの一例を示す図。 周波数/磁場掃引時のESR実部スペクトル及びESR虚部スペクトルと位相との関係を模式的に示す図であり、位相0°と360°の実部スペクトルがESR吸収スペクトルで、虚部スペクトルがESR分散スペクトルである。 QD法電磁ホーン型ESR装置を用いて測定された、単結晶方解石:Mn2+イオンのESR実部スペクトルとESR虚部スペクトルを示す図であり、右図は左図の任意部分の拡大図で、ESRスペクトルの位相回転の作業を行う機能を有する。 整合位相角の周波数依存性を示す図。 位相が補正された周波数掃引ESR吸収スペクトルを示す図。 整合位相角θを求めるための方法の説明に供する図。 本発明の一実施形態に係る、ESRスペクトルの取得方法を示すフローチャート。 本発明の他の実施形態に係る、ESRスペクトルの取得方法を示すフローチャート。 パワースペクトルの一例を示す図。
[新規なQD法電磁ホーン型ESR装置]
図1に、本発明の一実施形態に係るQD法電磁ホーン型ESR装置の回路部の構成を示す。本発明では、従来のホモダイン法電磁ホーン型ESR装置のmagic−T mixer(マジックティーミキサー)に代わって、マイクロ波立体回路部のアンプ部の直前にQIFM(Quadrature Intermediate Frequency Mixer)素子を用いたQD法電磁ホーン型ESR装置を提案している。
図1において、1aはマイクロ波電磁ホーン、1bはマイクロ波反射板、2は試料セル又は試料、3は電磁石及び変調コイルである。4は周波数掃引が可能なYIGマイクロ波発生器、5は位相器、6はサーキュレータを示す。7はQIFM(Quadrature Intermediate Frequency Mixer)素子、8は増幅度、時定数、感度・精度が同じ2個の前置増幅器を並列に有する前置増幅器、9は増幅度、時定数、感度・精度が同じ2個のロックインアンプを並列に有する主増幅器9である。なお、QIFM素子7、前置増幅器8及び主増幅器9をスペクトル検出部Aと呼ぶ。Bは例えばパソコン等の情報処理部であり、同じ性能・仕様のAD変換器10a、10bとスペクトルの位相;強度解析、描画、出力のためのソフトウエア11を備えている。なお、図1の装置において、磁場掃引を行う場合は、マイクロ波発生器4の周波数を固定し、電磁石3により磁場掃引を行う。試料セル又は試料2およびマイクロ波反射板1bはマイクロ波電磁ホーン1aに対して相対的に移動可能である。図において、12は単向管、13はマイクロ波AMPを示す。
図1の装置では、ESRメインアームからの信号RFとリファレンスアームからの信号LOをQIFM素子7につなぎ、QIFMミキサーからの位相がちょうど90度異なる二つのESR信号IF1とIF2を得る。信号IF1は、ESR実部スペクトル信号に対応し、信号IF2はESR虚部スペクトル信号に対応する。次に、これらの信号を、前置増幅器8において、同じ増幅度、同じ時定数、同じ感度・精度を持った2つの前置増幅器(IF AMP)でそれぞれ増幅し、次に主増幅器9において、同じ、時定数、感度・精度を持った2つのロックインアンプを用いて更にそれぞれを増幅する。図1の装置では、3の変調コイルを用いて磁場変調を行うか、YIGマイクロ波発生器4によってFM周波数変調を行う。
このようにして、スペクトル検出部AからESR実部スペクトル信号とESR虚部スペクトル信号が得られると、これらの信号は情報処理部Bに導入され、AD変換器10a、10bでそれぞれAD変換されたのち、グラフ処理も可能なソフトウエア11で処理され、ESRスペクトルとして出力される。ソフトウエア11は、例えば‘LabVIEW’を用いることができる。
磁場掃引の場合は、YIGマイクロ波発生器4の発振周波数が固定されているので、測定スペクトルに位相のズレは生じない。ところが、周波数掃引の場合、YIGマイクロ波発生器4の周波数依存性のために、測定スペクトルに位相のズレが生じる。即ち、周波数掃引ESR実部及び虚部スペクトル信号は、周波数の変化に応じてスペクトルに位相のズレを有するようになる。
図2の(a)にESR虚部スペクトルを、(b)にESR実部スペクトルを例示する。図2(a)、(b)から明らかなように、周波数の変化に応じて、ESR虚部スペクトル、ESR実部スペクトルの位相がそろっていない。なお、図2(a)、(b)の測定は、X−band帯のESR立体回路を使用し、電磁石3の静磁場を335mTに固定し、YIGマイクロ波発生器4の周波数を8.6GHzから10.2GHzの範囲で掃引し、サンプル2として、不純物Mn2+イオンを含む方解石単結晶を用いて行ったものである。その結果として、図2(a)に例示するように、不純物イオンMn2+イオンの6本の許容遷移と、比較的強度の大きな9本の禁制遷移の合計15本のESR虚部スペクトル計測が行われた。図(b)にはESR実部スペクトルを示す。
上述したように、図1の装置では得られたESR実部及び虚部スペクトルに位相のズレがあるので、これらのスペクトルから正しいESR吸収、分散スペクトルを得ることはできない。そこで、本発明の一実施形態に係る装置では、ソフトウエア11が位相補正の関係式を有している。この関係式を、ESR実部スペクトル信号及びESR虚部スペクトル信号に適用することにより、位相補正されたESR吸収(V−mode)スペクトル11a、ESR分散(U−mode)スペクトル11bを同時に得ることができる。位相整合処理とは、例えばグラフ処理用のソフトウエアを起動して、ESR実部スペクトル信号とESR虚部スペクトル信号を、整合位相角θだけ位相回転させて、ESR吸収及び分散スペクトルを得る処理である。
図1の装置において、ソフトウエア11は更に、90度位相が異なる2つのスペクトルの実部(real)成分と虚部(imaginary)成分から得られるベクトルの大きさ(ノルム)の磁場掃引あるいは周波数掃引により、パワースペクトルを計算するための機能を備えていても良い。この二つの成分は、ESR実部スペクトル信号、ESR虚部スペクトル信号から得た成分であっても良く、あるいは、位相整合後のESR吸収スペクトル信号、ESR分散スペクトル信号から得た成分であっても良い。パワースペクトルを得ることによって、その面積強度から、従来の吸収スペクトルのみから得られるESR強度よりも定量性の高い、ESR強度情報を得ることができる。
ソフトウエア11は、さらに、感度(S/N比)向上のための機能を備えていても良い。この機能は、位相回転処理前の実部と虚部スペクトルに対して、あるいは位相回転処理で形成された吸収と分散スペクトルに対してフーリエ変換を行い、その後Harn窓関数等でノイズ低減を行った後、逆フーリエ変換することで、吸収と分散スペクトルにおいて、1桁程度の感度(S/N比)の向上を図ることができる。
図2のスペクトルの測定には、図1の回路において、マイクロ波発生器4としては、アジレント社製YIGマイクロ波発振器を用い、QIFM素子7としてはAnaren社製のQIFM・MIXERを使用し、前置増幅器8として、NF社製の増幅器を4ユニット使用し、ロックインアンプ9としてはJEOL社製のロックインアンプを2ユニット使用した。
[周波数掃引ESR吸収及び分散スペクトルの取得手順]
(1)以下に、測定例をあげて、周波数掃引ESRスペクトル取得の操作手順を説明する。図1の装置によって得られた虚部、実部の2つの周波数掃引ESRスペクトルを図2に示している。この図から明らかなように、周波数の変化に応じて、各共鳴周波数での位相が揃っていない。そこで、測定した丁度位相が90度異なる、実部と虚部の2つの周波数掃引ESRスペクトルを、吸収と分散の2つの周波数掃引ESRスペクトルに変換するため、位相回転を行う。この時の位相回転角度θを整合位相角と呼ぶことにする。
(2)試料(方解石単結晶:Mn2+イオン)をある決まった方位で試料台に設置する。何故なら方解石は菱面体晶系で、静磁場とマイクロ波磁場の関係で、ESRスペクトルの共鳴周波数は静磁場に対する結晶方位依存性を持ち、かつ遷移確率|<i|s|j>|の理論値に対応する実験で得るESR強度は、立方晶系でない結晶の場合には静磁場とマイクロ波磁場に対してその単結晶がどのような方位で配置されるかで、変わってくるためである。
(3)ここでは位相の90度異なる実部と虚部ESRスペクトルの各周波数での、実部と虚部から得られるベクトルの大きさ(ノルム)の周波数依存性をパワースペクトルと呼び、このESRパワースペクトルの面積強度でもって、その共鳴周波数をもつESRスペクトルの新規なESR強度とする。
他方、これまで市販のESR装置を用いてスペクトル測定が行われる場合は、ホモダイン法による測定であるためESR吸収スペクトルしか観測できず、ロックインアンプ使用のため得られた微分型スペクトルの、1)ピーク間の大きさ(peak to peak強度)をもって、ESR強度としていた。2)また線幅に変化のある試料では、近似的に線幅の2乗にピーク間の大きさを乗じて、ESR強度とした。3)パソコンを用い、グラフ的な処理としては、得られた微分型スペクトルを積分して、その面積でもってESR強度にした。4)更にもう一度積分して、そのスペクトル中の段差でもって簡便にESR強度としてきた。ベースラインが水平でないことが多く、精度の良いESR強度を得るのは困難である。3)と4)の手法では、たびたびベースラインの引き方に任意性が生じることがあり、ESR強度に曖昧性が生じる。その意味で、本発明に従って、パワースペクトルの面積強度を持ってESR強度とする新規な方法は合理的な手法といえる。発明者等は、各種濃度のTEMPOL水溶液中のラジカルや、炭素粉末試料等で、パワースペクトルの面積強度を持ってESR強度とすることの合理性を確かめた。
(4)最高測定感度になるようにQD法電磁ホーン型ESR装置のチューニング(同調)操作を行う。後のESR計測する他の単結晶試料、または粉末試料、溶液試料の周波数掃引ESR計測のために、それ以後の試料台位置、マイクロ波反射鏡位置、位相器、スリースタブチューナー(もしくはEHチューナー)等の位相とESR強度に依存するESR装置の操作部分は全て同一にして計測する。すなわち最初の方解石単結晶:Mn2+イオン計測時の設定状態・測定条件を維持して、以後の試料の周波数掃引ESR計測を行う。試料の形状・大きさ、試料容器とその材質等も極力同じ形状・大きさにする。このようにして、ステップ・スキャンで周波数掃引ESR実部スペクトルと虚部スペクトルを得る。
(5)次に各周波数νでの整合位相角θを求める手続きを行う。使用した周波数掃引仕様のマイクロ波発生器の多くはYIGマイクロ波発生器であり、発明者等もYIG仕様のアジレント社製E8257D型PSG analog signal generatorを使用している。当該マイクロ波発生器をQD法電磁ホーン型ESR装置に結合して、周波数掃引ESRスペクトルを求める場合には、周波数掃引ESR実部及び虚部スペクトルは周波数νによりそのスペクトルの位相(後述するようにESR強度も)が徐々に変化する。それは、図2(a)、(b)の周波数掃引虚部及び実部スペクトルの位相(とESR強度)が周波数変化とともに徐々に変化していることからわかる。そこで上記整合位相角θを求める手続きが必要となる。
(6)電磁石の磁場を固定して方解石:Mn2+イオンの周波数掃引で許容及び禁制遷移の15本の共鳴周波数を得ることにより、gβH=hνにより得られる15ヶ所の共鳴周波数ν=gβH/hにおける周波数掃引実部及び虚部ESRスペクトルから、位相回転の手続きで、それぞれの周波数での整合位相角を求めることができる。なお、ここでh:プランク定数、β:ボーア磁子、g:g値、H:印加静磁場、ν:共鳴周波数を示す。図2(a)、(b)に示す、磁場を335mTに固定した場合の(1)から(16)のMn2+イオンの周波数掃引虚部及び実部ESRスペクトルの内、強度の小さな(3)は取りやめ、残り15か所の共鳴周波数スペクトルを用いて、以下で説明する図3に示す模式図になるように、実部及び虚部ESRスペクトルを吸収及び分散スペクトルとするための整合位相角θを、上記15ケ所の周波数点で求めていく。同様に固定磁場を335mTからその前後数か所で変えて同じ操作を行うことで多数の周波数での整合位相角を得ることができ、より精密な整合位相角の周波数依存性が得られる。
こうして、アジレント社製E8257D型PSG analog signal generator(YIGマイクロ波発振器)をESR装置に設置した場合の各周波数での周波数掃引ESRスペクトルの整合位相角θがえられ、これらより整合位相角θの周波数依存性θ(ν)が、例えば図5(a)の表の様に求まり、それらのプロットを1次直線から4次曲線で示したのが図5(b)−(e)の4つのグラフとなる。これらの直線または曲線を情報処理部B内のソフトウエア11内に置いておく。発明者等は、LabVIEWソフト内にこれを設定した。なお、整合位相角を求めるのに、ネットワークアナライザーで求める方法もあるが、高価なマイクロ波ネットワークアナライザーを利用しなくても上記の手法で整合位相角を求め得る。
(7)図3に、ESR実部スペクトルとESR虚部スペクトルの位相依存性を模式的に示す。図1の装置では、周波数掃引時及び磁場掃引時に感度向上のためのロックインアンプ仕様のため、ESRスペクトルは微分型ESRスペクトルとなる。図3において、位相0度(または360度)のスペクトルの実部が吸収スペクトルであり、虚部が分散スペクトルである。測定したESR実部スペクトルとESR虚部のスペクトルが、図3に示す位相0度(または360度)の形状となるように、位相角の回転処理を行い、整合位相角θを求める。図7に、位相角θを60度として、位相回転した場合の吸収と分散のスペクトルを示す。位相の回転式は、図7の(d)に示す位相の回転操作の式を用いる。
図7(a)の左側は、QD法磁場掃引ESR装置で実測したESR実部スペクトル、図7(b)の左側は、位相が90度異なるESR虚部スペクトルを示す。これらの2つのESRスペクトルは、それぞれ矢印で示すように、情報処理部Bでの後処理として、図7(d)に示す式を用いて、整合位相角θ=60°で位相回転させて描くことにより、ESR実部スペクトルは吸収スペクトルに、ESR虚部スペクトルはESR分散スペクトルになる。図7(c)に示すように、これらの実(real)軸と虚(imaginary)軸は、整合位相角θの回転でそれぞれ吸収スペクトルを示す軸と、分散スペクトルを示す軸になる。
(8)整合位相角の求め方を図4の事例で具体的に示す。図4の左図は測定されたESRスペクトルの実部(灰色線)と虚部(黒色線)で、横軸は図2の最小周波数8.6GHzが図4の0に対応し、最大周波数10.2GHzが3200に対応する。図4の右図では左図の1243が開始点で、それから増分163離れた1406までの周波数領域、すなわち図2の(7)の共鳴周波数9.2615GHzの方解石中のMn2+イオンの周波数掃引時での3番目の許容遷移スペクトル部分を切り出し、拡大して任意位相角で回転させたスペクトルを表示するようにしている。左図のスペクトルを図3の模式図を参照しながら位相合わせして左図を得る。図4の右図では、ちょうど整合位相角より90度位相を進めた(すなわち図3で位相270°(90°)に対応する)図中の設定角度−1170度位相回転角度になっている。ゆえにこの場合の整合位相角は、−1170°−90°=−1260°または、−1170°+270°=−900°となる。15ヶ所の周波数点において、上記の手法で共鳴周波数における整合位相角θを求めていくと、図5(a)に示す表となり、それをグラフ化したものを図5(b)−(e)に示す。
(9)図5(a)は、15ヶ所の共鳴周波数点に於ける上記(3)から(6)で設定した状態での、整合位相角θの周波数ν依存性を示す表である。この表をもとに、グラフ上にプロットすると、図5(b)−(e)に示す4つのグラフとなり、それぞれ1次の直線、2次・3次・4次の曲線の式と決定係数R2が示される。4次方程式で近似すると、R2からかなり良くフィットしていることが分かる。
(10)このようにして、方解石中の不純物Mn2+イオンの位相整合させた周波数掃引ESR吸収スペクトルとESR分散スペクトルを得ることができる。また、TEMPOL水溶液試料、または炭素粉末のラジカル試料でも、QD法周波数掃引ESRスペクトルを先の方解石:Mn2+単結晶と位相・強度に関連する状況を、極力同一にして周波数ステップ・スキャンで得ることができる。
(10−1)その場で同時に、ステップ・スキャンでの各周波数での実部と虚部を、図5の近似多項式から得られた周波数での整合位相角で位相回転して、位相の揃った周波数掃引吸収と分散の二つのスペクトルを求めていく。
(10−2)迅速ESR測定が必要の場合は、周波数掃引実部と虚部の2つのスペクトルを測定しておき、コンピュータ後処理で、各周波数での整合位相角処理を行い、位相の揃った周波数掃引吸収と分散の二つのスペクトルを求めてもよい。
(10−3)S/N比をあげて、より高感度でESR測定する場合は、磁場掃引の場合は繰り返し磁場スキャン(accumulation)でS/N比を向上させているが、ステップ・スキャンでの周波数掃引時には各周波数で100回から500回ほど、瞬時に測定し、それを平均して、値を得ている。
図6は、以上の様にして得られた周波数掃引ESR吸収スペクトルを示す。なお、周波数掃引ESR分散スペクトルについては省略している。
(11)このスペクトルに関して未解決でかつ本質的な問題は、方解石中のMn2+イオンのそれ相応のESR強度が、正確に反映されていないことである。各共鳴周波数のESRスペクトル強度は、EHチューナーの自動化等で補正することもできるが、以下に示す手法で、強度補正を行うことが可能である。
[許容遷移周波数掃引ESR実部スペクトルとESR虚部スペクトルの整合位相角とESR強度の補正]
(12)MgO結晶粉末試料中のMn2+イオンの6本の許容遷移は、MgO結晶がNaCl型立方晶系で、等方的で、6本の許容遷移のESR強度は全て等強度であり、また禁制遷移は無視できる程度に小さい。そこで位相整合と同様に、各周波数でのESR強度(ESRパワースペクトルの面積強度)を補正する手法で、位相とESR強度も整合・補正させた本格的な周波数掃引吸収と分散ESRスペクトルを得ることができる。以下に、方解石:Mn2+単結晶を用いずに、MgO:Mn2+イオン粉末結晶を用いた場合での整合位相角とESR強度の周波数依存性、即ち最終目的の周波数掃引ESR吸収スペクトルと分散スペクトルを求める手法を述べる。
(13)MgO:Mn2+イオンの粉末結晶を、石英製矩形容器に封入し、例えば図1に示すQD法周波数掃引電磁ホーン型ESR装置に設置して、最高測定感度になるようにESR装置のチューニング(同調)操作を行う。後の他の試料、すなわち粉末試料、溶液試料の周波数掃引ESR計測のために、同一測定用の石英製容器を使用し、量も同体積になるようにする。同時に試料台位置、マイクロ波反射鏡位置、位相器、3スタブチューナー(もしくはEHチューナー)等の位相と、ESR強度に依存するESR装置の各操作部分(増幅率、変調磁場の大きさ、時定数等)は全て同一にして計測する。
(14)上述したように、MgO:Mn2+イオン粉末結晶の禁制遷移のESRスペクトルは観測できない程小さいので無視し、等しいESR強度を示す6本の許容遷移のみで、磁場を固定して、6周波数点の実部と虚部ESRスペクトルを求め、各周波数点で、図4と同様の手段で、整合位相角θを求める。また各周波数点で実部と虚部ESRスペクトルから得られる、ベクトルのノルムにあたるESRパワースペクトルを得る。この6点のESRパワースペクトルの面積強度は本来同じであるので、その差異はESR強度を出力させるYIGマイクロ波発振器とその信号をさらに数百倍に増幅させるマイクロ波アンプの周波数依存のパワー(出力)差になる。そのため、あるMn2+イオンの遷移状態を基準に、そのパワースペクトル強度比を、その周波数での整合位相角と同時に求めていく。次に磁場を例えば許容遷移6本目の共鳴周波数が、5本目(あるいは4本目、3本目・・・)になるように調整して、許容遷移のこれら1から6番目のESR強度が等しいことを利用して、順次測定周波数点を増やしていき、整合位相角θと、ESR相対強度比の周波数ν依存性を求める。次に、パソコン内にその関係式を収納し、ステップ・スキャン周波数掃引で順次、位相と強度を補正して、本格的な広範囲周波数掃引で、位相の揃った、かつESR強度を考慮したcwESR周波数掃引の吸収と分散ESRスペクトルを得る。
図8は、上述した本発明の一実施形態に係るESRスペクトル取得方法を、フローチャートの形で要約する図である。図8に沿って本方法を説明すると、先ず、ステップAで、図1に示すQD法電磁ホーン型ESR装置により、方解石:Mn2+イオンの周波数掃引によるESR実部スペクトルとESR虚部スペクトルを測定する。なお、この時点では、ソフトウエア11は、整合位相角の周波数依存性を示す関係式を有していない。
次に、ステップBで、位相回転処理によって、ESR実部スペクトルからESR吸収スペクトルを、ESR虚部スペクトルからESR分散スペクトルを得るための、整合位相角θを得る。
次のステップCでは、複数の周波数において、整合位相角θを求め、整合位相角の周波数依存性の関係式を求め、これをソフトウエア11内に収容しておく。
次のステップDでは、ステップAにおける計測時のQD法電磁ホーン型ESR装置の設定状態、測定条件を維持して、他試料のESR測定を行い、ESR実部スペクトル、ESR虚部スペクトルを得る。次のステップEで、これらのスペクトルに、ソフトウエア11内に収容されている、整合位相角の周波数依存性を表す関係式を適用して、位相整合を行い、位相の揃った周波数掃引ESR吸収スペクトル、ESR分散スペクトルを得る。
図9は、本発明の他の実施形態に従って、位相及び強度が補正された周波数掃引ESRスペクトルを得るための方法をフローチャートの形で要約する図である。図9に沿って本方法を説明すると、先ず、ステップAで、図1に示すQD法電磁ホーン型ESR装置により、立方晶系のMgO:Mn2+イオン粉末を用いて、周波数掃引によるESR実部スペクトルとESR虚部スペクトルを測定する。なお、この時点では、ソフトウエア11は、整合位相角の周波数依存性を示す関係式を有していない。
次に、ステップBで、位相回転処理によって、ESR実部スペクトルからESR吸収スペクトルを、ESR虚部スペクトルからESR分散スペクトルを得るための、整合位相角θを得る。
次のステップCでは、複数の周波数において、整合位相角θを求め、整合位相角の周波数依存性の関係式を求め、これをソフトウエア11内に収容しておく。次のステップDで、複数の周波数点において、ESR実部スペクトルとESR虚部スペクトルから得られるベクトルのノルムに相当するESRパワースペクトルを得て、ESR強度比の周波数依存性を求める。
次のステップEでは、ステップAにおける計測時のQD法電磁ホーン型ESR装置の設定状態、測定条件を維持して、他試料のESR測定を行い、ESR実部スペクトル、ESR虚部スペクトルを得る。次のステップFで、これらのスペクトルに、ソフトウエア11内に収容されている、整合位相角及びESRパワースペクトル強度比の周波数依存性を表す関係式を適用して、位相及び強度が補正された周波数掃引ESR吸収スペクトル、ESR分散スペクトルを得る。
なお、図10に、不純物Mn2+イオンを含む方解石単結晶のX−bandQD法電磁ホーンESR装置で得たESR実部スペクトルとESR虚部スペクトルから、ベクトルの大きさ(ノルム)を算出して得た磁場掃引ESRパワースペクトルを示す。周波数掃引ESRパワースペクトルも、同様にして得ることができる。図10の両端の大きな2本のESRスペクトル信号は、結晶中に添加されたMn2+イオンの6本のESRスペクトルのうち3番目と4番目の許容遷移のパワースペクトルである。中程の小さな2つの信号は、禁制遷移のパワースペクトルである。このESR面積強度から新規で厳密なQD法ESR状態分析法でのESR強度が得られる。
1a 電磁ホーン
1b 反射板
2 試料セルまたは試料
3 電磁石及び変調コイル
4 YIGマイクロ波発生器
5 位相器
6 サーキュレータ
7 QIFM素子
8 前置増幅器
9 主増幅器
10a、10b AD変換器
11 ソフトウエア
11a ESR吸収スペクトル
11b ESR分散スペクトル
12 単向管
13 マイクロ波AMP

Claims (7)

  1. 周波数掃引が可能なYIGマイクロ波発生器と、
    前記YIGマイクロ波発生器から分配されメインアームを通して入力される周波数掃引されたマイクロ波によって駆動され、かつ、試料を設置可能な電磁ホーンと、
    記電磁ホーンに磁場を印加する電磁石と、
    前記マイクロ波と前記磁場の印加によって、前記電磁ホーンにおいて発生した前記試料のESR共鳴による電子スピンの反転によりわずかにエネルギーを失って前記電磁ホーンから出力される第1のマイクロ波信号と、前記マイクロ波発生器からリファレンスアームに分配された第2のマイクロ波信号とを入力し、この2つの入力信号から互いに90°位相がずれたESR実部スペクトル信号及びESR虚部スペクトル信号を生成するQIFM素子と、
    前記QIFM素子から出力され適宜増幅された前記ESR実部スペクトル信号及びESR虚部スペクトル信号が導入される情報処理部と、を備え、
    前記情報処理部は、前記ESR実部スペクトル信号及びESR虚部スペクトル信号の前記周波数掃引時の周波数変化に応じた位相のズレを補正するための整合位相角の周波数依存性を記憶しており、前記ESR実部スペクトル信号及びESR虚部スペクトル信号に前記整合位相角の周波数依存性を適用して、位相の揃った周波数掃引ESR吸収スペクトル及びESR分散スペクトルを生成し出力する機能を備える、QD法電磁ホーン型ESR装置。
  2. 請求項1に記載のQD法電磁ホーン型ESR装置において、
    前記情報処理部は、さらに、前記周波数掃引時の前記YIGマイクロ波発生器と単向管を通しそれに接続した増幅のためのマイクロ波アンプ部の出力の位相のズレの周波数依存性を記憶しており、前記ESR実部スペクトル信号及びESR虚部スペクトル信号に前記整合位相角の周波数依存性と前記出力のズレの周波数依存性とを適用して、位相とESR強度の揃った周波数掃引ESR吸収スペクトル及びESR分散スペクトルを生成し出力する機能を備える、QD法電磁ホーン型ESR装置。
  3. 請求項1または2に記載のQD法電磁ホーン型ESR装置において、前記情報処理部は、さらに、前記ESR実部スペクトル信号及びESR虚部スペクトル信号、あるいは位相整合後の前記ESR吸収スペクトル及びESR分散スペクトルからの実部成分と虚部成分から得られるベクトルの大きさ(ノルム)前記周波数掃引スペクトル、即ち周波数掃引ESRパワースペクトルを生成する機能を備える、QD法電磁ホーン型ESR装置。
  4. 請求項1乃至3の何れか1項に記載のQD法電磁ホーン型ESR装置において、前記情報処理部はさらに、前記ESR実部あるいは吸収スペクトルとESR虚部あるいは分散スペクトルにフーリエ変換を行った後Harn窓関数またはサインベル窓関数を適用してノイズ低減を行い、その後逆フーリエ変換して、出力のS/N比を改善する機能を備える、QD法電磁ホーン型ESR装置。
  5. 請求項1乃至4の何れか1項に記載のQD法電磁ホーン型ESR装置において、
    前記YIGマイクロ波発生器は、前記マイクロ波を少なくとも8.6GHzから10.2GHzの範囲で前記周波数掃引する、QD法電磁ホーン型ESR装置。
  6. 周波数掃引時の周波数変化に応じた位相のズレが補正された周波数掃引ESRスペクトルを得るために、
    a)周波数掃引されたマイクロ波によって駆動されたQD法電磁ホーン型ESR装置により、単結晶方解石:Mn2+イオンの前記周波数掃引によるESR実部スペクトルとESR虚部スペクトルを測定する段階と、
    b)前記段階a)で得られた周波数掃引ESR実部スペクトルとESR虚部スペクトルの波形を位相回転させて吸収スペクトルと分散スペクトルを得るための整合位相角を得る段階と、
    c)前記段階b)を、複数の周波数における波形に適用して、整合位相角の周波数依存性を求める段階と、
    d)前記段階a)の計測時の設定状態及び測定条件を維持して、前記QD法電磁ホーン型ESR装置により他の測定試料のESR測定を行う段階と、
    e)前記段階d)で得られた周波数掃引ESR実部スペクトルとESR虚部スペクトルに、前記段階c)で得られた整合位相角の周波数依存性を適用して、周波数掃引ESR吸収スペクトルとESR分散スペクトルを得る段階と、を備える、周波数掃引ESRスペクトルを取得する方法。
  7. 周波数掃引時の周波数変化に応じた位相のズレ及び強度が補正された周波数掃引ESRスペクトルを得るために、
    a)周波数掃引されたマイクロ波によって駆動されたQD法電磁ホーン型ESR装置によ結晶MgO:Mn2+イオンの前記周波数掃引によるESR実部スペクトルとESR虚部スペクトルを測定する段階と、
    b)前記段階a)で得られた周波数掃引ESR実部スペクトルとESR虚部スペクトルの波形を位相回転させて吸収スペクトルと分散スペクトルを得るための整合位相角を得る段階と、
    c)前記段階b)を複数の周波数点におけるスペクトル波形に適用して、整合位相角の周波数依存性を求める段階と、
    d)前記段階b)における複数の周波数点において、ESR実部スペクトルとESR虚部スペクトルから得られるベクトルのノルムに相当する周波数掃引ESRパワースペクトルを得て、ESR強度比の周波数依存性を求める段階と、
    e)前記段階a)の計測時の設定状態及び測定条件を維持して、前記QD法電磁ホーン型ESR装置により他の測定試料のESR測定を行う段階と、
    f)前記段階e)で得られた周波数掃引ESR実部スペクトルとESR虚部スペクトルに、前記段階c)及びd)で得られた整合位相角の周波数依存性とESR強度比の周波数依存性を適用して、位相及び強度が補正された周波数掃引ESR吸収スペクトルとESR分散スペクトルを得る段階と、を備える、位相及び強度が補正された周波数掃引ESRスペクトルを取得する方法。
JP2016124885A 2016-06-23 2016-06-23 Qd法電磁ホーン型esr装置及びこの装置を使用したesrスペクトルの取得方法 Active JP6855035B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016124885A JP6855035B2 (ja) 2016-06-23 2016-06-23 Qd法電磁ホーン型esr装置及びこの装置を使用したesrスペクトルの取得方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016124885A JP6855035B2 (ja) 2016-06-23 2016-06-23 Qd法電磁ホーン型esr装置及びこの装置を使用したesrスペクトルの取得方法

Publications (2)

Publication Number Publication Date
JP2017227570A JP2017227570A (ja) 2017-12-28
JP6855035B2 true JP6855035B2 (ja) 2021-04-07

Family

ID=60891382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016124885A Active JP6855035B2 (ja) 2016-06-23 2016-06-23 Qd法電磁ホーン型esr装置及びこの装置を使用したesrスペクトルの取得方法

Country Status (1)

Country Link
JP (1) JP6855035B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382647A (ja) * 1986-09-27 1988-04-13 株式会社東芝 磁気共鳴イメ−ジング装置
NL8702700A (nl) * 1987-11-12 1989-06-01 Philips Nv Werkwijze en inrichting voor automatische fasecorrectie van complexe nmr spectra.
GB0618631D0 (en) * 2006-09-21 2006-11-01 Univ Bath Electron spin resonance apparatus and method
JP5434492B2 (ja) * 2009-11-09 2014-03-05 国立大学法人 大分大学 電磁ホーン型電子スピン共鳴装置
JP5890129B2 (ja) * 2011-09-07 2016-03-22 株式会社 Jeol Resonance パルスesr装置
JP6260964B2 (ja) * 2013-05-21 2018-01-17 国立大学法人 大分大学 マイクロ波反射方式電磁ホーン型esr装置
JP6379423B2 (ja) * 2014-07-23 2018-08-29 日本電子株式会社 磁気共鳴測定装置

Also Published As

Publication number Publication date
JP2017227570A (ja) 2017-12-28

Similar Documents

Publication Publication Date Title
Kaufmann et al. DAC-board based X-band EPR spectrometer with arbitrary waveform control
Tseitlin et al. Rapid frequency scan EPR
EP2583069A1 (en) Chirped pulse frequency-domain comb for spectroscopy
US10509091B2 (en) EPR methods and systems
Mo et al. Receiver gain function: the actual NMR receiver gain
Rossini et al. The application of frequency swept pulses for the acquisition of nuclear quadrupole resonance spectra
Quine et al. Quantitative rapid scan EPR spectroscopy at 258 MHz
Herb et al. Double resonance calibration of g factor standards: Carbon fibers as a high precision standard
Kawahata et al. Broadband electron cyclotron emission radiometry for the large helical device
Peng et al. Investigation of near-surface defects of nanodiamonds by high-frequency EPR and DFT calculation
Tkach et al. High-frequency 263 GHz PELDOR
Weiss et al. Large-signal network analysis for over-the-air test of up-converting and down-converting phased arrays
Wittmann et al. Quantification and compensation of the influence of pulse transients on symmetry-based recoupling sequences
JP6855035B2 (ja) Qd法電磁ホーン型esr装置及びこの装置を使用したesrスペクトルの取得方法
US8405393B2 (en) EPR using Frank sequence
Redrouthu et al. Dynamic nuclear polarization by two-pulse phase modulation
Yu et al. Multiharmonic electron paramagnetic resonance for extended samples with both narrow and broad lines
Isaev et al. A broadband pulse EPR spectrometer for high-throughput measurements in the X-band
Endeward et al. Implementation and applications of shaped pulses in EPR
Tseitlin et al. Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals
Edwards et al. Phase cycling with a 240 GHz, free electron laser-powered electron paramagnetic resonance spectrometer
Gregorovič et al. WURST–QCPMG sequence and “spin-lock” in 14N nuclear quadrupole resonance
EP2378281A1 (en) A method to measure electron relaxation times T1 in EPR tomography and a system for applying the method
Krymov et al. Analysis of the tuning and operation of reflection resonator EPR spectrometers
Tseytlin Continuous-wave rapid scan EPR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210310

R150 Certificate of patent or registration of utility model

Ref document number: 6855035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250