JP6854700B2 - Rotor of rotary electric machine, rotary electric machine and compressor - Google Patents

Rotor of rotary electric machine, rotary electric machine and compressor Download PDF

Info

Publication number
JP6854700B2
JP6854700B2 JP2017100616A JP2017100616A JP6854700B2 JP 6854700 B2 JP6854700 B2 JP 6854700B2 JP 2017100616 A JP2017100616 A JP 2017100616A JP 2017100616 A JP2017100616 A JP 2017100616A JP 6854700 B2 JP6854700 B2 JP 6854700B2
Authority
JP
Japan
Prior art keywords
iron core
flow path
laminated
rotor
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100616A
Other languages
Japanese (ja)
Other versions
JP2018196302A (en
Inventor
伊藤 慎一
慎一 伊藤
一弘 庄野
一弘 庄野
裕貴 田村
裕貴 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017100616A priority Critical patent/JP6854700B2/en
Publication of JP2018196302A publication Critical patent/JP2018196302A/en
Application granted granted Critical
Publication of JP6854700B2 publication Critical patent/JP6854700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Compressor (AREA)

Description

この発明は、回転電機の回転子、回転電機および圧縮機に関し、特に、永久磁石を効率的に冷却できる回転電機の回転子、回転電機および圧縮機に関するものである。 The present invention relates to a rotor, a rotary electric machine and a compressor of a rotary electric machine, and more particularly to a rotor, a rotary electric machine and a compressor of a rotary electric machine capable of efficiently cooling a permanent magnet.

永久磁石を埋込んだ回転子を用いる回転電機では、稼働時に生じる発熱の影響により、回転子の永久磁石の温度が上昇し、磁束の低下によりトルクが減少したり、材料の熱劣化による故障等の不具合を起こしたりする。そこで、従来から、回転子を冷却する技術が提案されている。 In a rotating electric machine that uses a rotor with embedded permanent magnets, the temperature of the permanent magnets of the rotor rises due to the effect of heat generated during operation, torque decreases due to a decrease in magnetic flux, and failures due to thermal deterioration of materials, etc. Causes problems. Therefore, conventionally, a technique for cooling the rotor has been proposed.

特許文献1の回転電機の回転子は、ロータコアと、ロータコアに埋め込まれた永久磁石とを備え、回転軸により支持される回転電機のロータであって、ロータコアには回転軸内に形成された軸内冷媒路から供給された冷媒を当該ロータコアの外周端まで導いて、ステータとの間のギャップに放出する1以上のコア内冷媒路が形成されており、コア内冷媒路は、永久磁石より内周側位置において、軸方向に延びる中央冷媒路と、前記ロータコアの軸方向両端近傍に設けられ、前記軸内冷媒路と前記中央冷媒路とを連通する一対の内周側冷媒路と、前記中央冷媒路の軸方向略中央から径方向外側に延びて前記ギャップに連通する外周側冷媒路と、を備え、前記中央冷媒路の径方向外側端部は、前記軸方向略中央に近づくにつれて径方向外側に進むような勾配を有している。 The rotor of the rotary electric machine of Patent Document 1 is a rotor of a rotary electric machine having a rotor core and a permanent magnet embedded in the rotor core and supported by a rotary shaft, and the rotor core has a shaft formed in the rotary shaft. One or more in-core refrigerant passages are formed in which the refrigerant supplied from the inner refrigerant passage is guided to the outer peripheral end of the rotor core and discharged into the gap between the rotor core and the rotor core, and the in-core refrigerant passage is inside the permanent magnet. At the circumferential position, a central refrigerant passage extending in the axial direction, a pair of inner peripheral refrigerant passages provided near both ends in the axial direction of the rotor core and communicating the in-shaft refrigerant passage and the central refrigerant passage, and the center. The outer peripheral side refrigerant passage extending radially outward from the axially substantially center of the refrigerant passage and communicating with the gap is provided, and the radially outer end of the central refrigerant passage is radially outward as it approaches the axially substantially center. It has a slope that goes outward.

特開2017−005961号公報(3〜4頁、段落0010、図2、3)JP-A-2017-005961 (pages 3-4, paragraph 0010, FIGS. 2, 3)

特許文献1のようなIPM型(永久磁石埋め込み型)回転電機の回転子の構成によれば、中央冷媒路から外周側冷媒路への曲げ角度が緩くなり、当該部分においては圧力損失を低減できる。ただし、回転軸内部に冷媒流路を形成する必要があるため、回転軸の外径が太くなり、回転電機が大型化するという課題があった。また、冷媒の流路方向が、径方向(シャフト→コア)、軸方向(コア内部)、径方向(コア内部)と変化するため、全体としては圧力損失が大きくなるという課題があった。 According to the configuration of the rotor of the IPM type (permanent magnet embedded type) rotary electric machine as in Patent Document 1, the bending angle from the central refrigerant path to the outer peripheral side refrigerant path becomes loose, and the pressure loss can be reduced in the portion. .. However, since it is necessary to form a refrigerant flow path inside the rotating shaft, there is a problem that the outer diameter of the rotating shaft becomes large and the rotating electric machine becomes large. Further, since the flow path direction of the refrigerant changes in the radial direction (shaft → core), the axial direction (inside the core), and the radial direction (inside the core), there is a problem that the pressure loss becomes large as a whole.

この発明は、上記のような課題を解決するためになされたものであり、永久磁石を効率よく冷却し、小型、高効率、高出力、かつ、組立性に優れる回転電機の回転子、回転電機および圧縮機を得ることを目的としている。 The present invention has been made to solve the above-mentioned problems, and is a rotor and a rotating electric machine of a rotating electric machine which efficiently cools a permanent magnet, has a small size, high efficiency, high output, and is excellent in assembling property. And aims to get a compressor.

この発明に係る回転電機の回転子は、
複数の第一鉄心片を積層して形成する積層鉄心と、前記積層鉄心に軸方向に挿入した複数の永久磁石と、前記積層鉄心に挿入したシャフトとを有する回転電機の回転子であって、
前記積層鉄心は、
中央に設けた前記シャフトを挿入するシャフト挿入孔と、
周方向に間隔を空けて、軸方向に貫通するように形成された磁石保持孔と、
隣り合う2つの前記磁石保持孔の間の径方向内側にそれぞれ設けられ、軸方向に貫通し、外部からの冷媒が前記積層鉄心の内部を流れ、外部に排出される流路の一部となる第三流路と、
前記流路の一部であり、前記第三流路から径方向に連通する第二流路と、
前記流路の一部であり、前記磁石保持孔と径方向に連通し、前記積層鉄心の径方向外側に開口する第一流路とを備え、
前記磁石保持孔は、
前記永久磁石を挿入する磁石挿入部と、
前記永久磁石の周方向側面に沿って形成され、前記第二流路から径方向に連通する、前記流路の一部である空隙部とからなり、
前記第一鉄心片は、
前記第一鉄心片が複数枚積層されて前記第三流路となる流路孔と、
前記第一鉄心片が複数枚積層されて前記第二流路となる第二溝と、
前記第一鉄心片が複数枚積層されて前記磁石保持孔となる長孔と、
前記第一鉄心片が複数枚積層されて前記第一流路となる第一溝とを備え、
少なくとも、前記第二溝の内側の端部の軸方向の一面に、面取りされた第二勾配部を備え
軸方向中央部から軸方向の一方に積層された複数の前記第一鉄心片と、
軸方向の他方に積層された複数の前記第一鉄心片とは、前記第二勾配部が形成された前記第二溝の軸方向の一面が軸方向中央に向いて積層されているものである。
また、この発明に係る回転電機の回転子は、
複数の第一鉄心片を積層して形成する積層鉄心と、前記積層鉄心に軸方向に挿入した複数の永久磁石と、前記積層鉄心に挿入したシャフトとを有する回転電機の回転子であって、
前記積層鉄心は、
中央に設けた前記シャフトを挿入するシャフト挿入孔と、
周方向に間隔を空けて、軸方向に貫通するように形成された磁石保持孔と、
隣り合う2つの前記磁石保持孔の間の径方向内側にそれぞれ設けられ、軸方向に貫通し、外部からの冷媒が前記積層鉄心の内部を流れ、外部に排出される流路の一部となる第三流路と、
前記流路の一部であり、前記第三流路から径方向に連通する第二流路と、
前記流路の一部であり、前記磁石保持孔と径方向に連通し、前記積層鉄心の径方向外側に開口する第一流路とを備え、
前記磁石保持孔は、
前記永久磁石を挿入する磁石挿入部と、
前記永久磁石の周方向側面に沿って形成され、前記第二流路から径方向に連通する、前記流路の一部である空隙部とからなり、
前記第一鉄心片は、
前記第一鉄心片が複数枚積層されて前記第三流路となる流路孔と、
前記第一鉄心片が複数枚積層されて前記第二流路となる第二溝と、
前記第一鉄心片が複数枚積層されて前記磁石保持孔となる長孔と、
前記第一鉄心片が複数枚積層されて前記第一流路となる第一溝とを備え、
少なくとも、前記第二溝の内側の端部の軸方向の一面に、面取りされた第二勾配部を備え、
2つの前記第一流路を合わせた周方向の幅と、前記第二流路の周方向の幅と、前記第三流路の周方向の幅とは同じである。
また、この発明に係る回転電機の回転子は、
複数の第一鉄心片を積層して形成する積層鉄心と、前記積層鉄心に軸方向に挿入した複数の永久磁石と、前記積層鉄心に挿入したシャフトとを有する回転電機の回転子であって、
前記積層鉄心は、
中央に設けた前記シャフトを挿入するシャフト挿入孔と、
周方向に間隔を空けて、軸方向に貫通するように形成された磁石保持孔と、
隣り合う2つの前記磁石保持孔の間の径方向内側にそれぞれ設けられ、軸方向に貫通し、外部からの冷媒が前記積層鉄心の内部を流れ、外部に排出される流路の一部となる第三流路と、
前記流路の一部であり、前記第三流路から径方向に連通する第二流路と、
前記流路の一部であり、前記磁石保持孔と径方向に連通し、前記積層鉄心の径方向外側に開口する第一流路とを備え、
前記磁石保持孔は、
前記永久磁石を挿入する磁石挿入部と、
前記永久磁石の周方向側面に沿って形成され、前記第二流路から径方向に連通する、前記流路の一部である空隙部とからなり、
前記第一鉄心片は、
前記第一鉄心片が複数枚積層されて前記第三流路となる流路孔と、
前記第一鉄心片が複数枚積層されて前記第二流路となる第二溝と、
前記第一鉄心片が複数枚積層されて前記磁石保持孔となる長孔と、
前記第一鉄心片が複数枚積層されて前記第一流路となる第一溝とを備え、
少なくとも、前記第二溝の内側の端部の軸方向の一面に、面取りされた第二勾配部を備え、
前記第三流路の径方向の幅は、周方向の幅よりも大きい。
また、この発明に係る回転電機の回転子は、
複数の第一鉄心片を積層して形成する積層鉄心と、前記積層鉄心に軸方向に挿入した複数の永久磁石と、前記積層鉄心に挿入したシャフトとを有する回転電機の回転子であって、
前記積層鉄心は、
中央に設けた前記シャフトを挿入するシャフト挿入孔と、
周方向に間隔を空けて、軸方向に貫通するように形成された磁石保持孔と、
隣り合う2つの前記磁石保持孔の間の径方向内側にそれぞれ設けられ、軸方向に貫通し、外部からの冷媒が前記積層鉄心の内部を流れ、外部に排出される流路の一部となる第三流路と、
前記流路の一部であり、前記第三流路から径方向に連通する第二流路と、
前記流路の一部であり、前記磁石保持孔と径方向に連通し、前記積層鉄心の径方向外側に開口する第一流路とを備え、
前記磁石保持孔は、
前記永久磁石を挿入する磁石挿入部と、
前記永久磁石の周方向側面に沿って形成され、前記第二流路から径方向に連通する、前記流路の一部である空隙部とからなり、
前記第一鉄心片は、
前記第一鉄心片が複数枚積層されて前記第三流路となる流路孔と、
前記第一鉄心片が複数枚積層されて前記第二流路となる第二溝と、
前記第一鉄心片が複数枚積層されて前記磁石保持孔となる長孔と、
前記第一鉄心片が複数枚積層されて前記第一流路となる第一溝とを備え、
少なくとも、前記第二溝の内側の端部の軸方向の一面に、面取りされた第二勾配部を備え、
軸方向中央部から軸方向の一方に積層された複数の前記第一鉄心片と、
軸方向の他方に積層された複数の前記第一鉄心片とは、表裏が逆に積層されているものである。
The rotor of the rotary electric machine according to the present invention is
A rotor of a rotary electric machine having a laminated iron core formed by laminating a plurality of first core pieces, a plurality of permanent magnets inserted into the laminated iron core in the axial direction, and a shaft inserted into the laminated iron core.
The laminated iron core
A shaft insertion hole provided in the center for inserting the shaft,
Magnet holding holes formed so as to penetrate in the axial direction at intervals in the circumferential direction,
It is provided on the inside in the radial direction between the two adjacent magnet holding holes, penetrates in the axial direction, and the refrigerant from the outside flows inside the laminated iron core and becomes a part of the flow path discharged to the outside. The third flow path and
A second flow path that is a part of the flow path and communicates radially from the third flow path,
It is provided with a first flow path that is a part of the flow path, communicates with the magnet holding hole in the radial direction, and opens radially outward of the laminated iron core.
The magnet holding hole is
A magnet insertion part for inserting the permanent magnet and
It is composed of a gap portion that is a part of the flow path, which is formed along the circumferential side surface of the permanent magnet and communicates radially from the second flow path.
The first iron core piece is
A flow path hole in which a plurality of the first iron core pieces are laminated to form the third flow path,
A second groove in which a plurality of the first iron core pieces are laminated to form the second flow path,
A long hole in which a plurality of the first iron core pieces are laminated to serve as the magnet holding hole, and
A first groove in which a plurality of the first iron core pieces are laminated to form the first flow path is provided.
At least one surface in the axial direction of the inner end of the second groove is provided with a chamfered second gradient portion.
A plurality of the first iron core pieces laminated from the central portion in the axial direction to one in the axial direction,
The plurality of the first core pieces stacked in the axial direction of the other, one side of the axial direction of the said second slope portion is formed a second groove is in shall be stacked facing axial center ..
Further, the rotor of the rotary electric machine according to the present invention is
A rotor of a rotary electric machine having a laminated iron core formed by laminating a plurality of first core pieces, a plurality of permanent magnets inserted into the laminated iron core in the axial direction, and a shaft inserted into the laminated iron core.
The laminated iron core
A shaft insertion hole provided in the center for inserting the shaft,
Magnet holding holes formed so as to penetrate in the axial direction at intervals in the circumferential direction,
It is provided on the inside in the radial direction between the two adjacent magnet holding holes, penetrates in the axial direction, and the refrigerant from the outside flows inside the laminated iron core and becomes a part of the flow path discharged to the outside. The third flow path and
A second flow path that is a part of the flow path and communicates radially from the third flow path,
It is provided with a first flow path that is a part of the flow path, communicates with the magnet holding hole in the radial direction, and opens radially outward of the laminated iron core.
The magnet holding hole is
A magnet insertion part for inserting the permanent magnet and
It is composed of a gap portion that is a part of the flow path, which is formed along the circumferential side surface of the permanent magnet and communicates radially from the second flow path.
The first iron core piece is
A flow path hole in which a plurality of the first iron core pieces are laminated to form the third flow path,
A second groove in which a plurality of the first iron core pieces are laminated to form the second flow path,
An elongated hole in which a plurality of the first iron core pieces are laminated to serve as the magnet holding hole,
A first groove in which a plurality of the first iron core pieces are laminated to form the first flow path is provided.
At least one surface in the axial direction of the inner end of the second groove is provided with a chamfered second gradient portion.
The width of the two first flow paths in the circumferential direction, the width of the second flow path in the circumferential direction, and the width of the third flow path in the circumferential direction are the same.
Further, the rotor of the rotary electric machine according to the present invention is
A rotor of a rotary electric machine having a laminated iron core formed by laminating a plurality of first core pieces, a plurality of permanent magnets inserted into the laminated iron core in the axial direction, and a shaft inserted into the laminated iron core.
The laminated iron core
A shaft insertion hole provided in the center for inserting the shaft,
Magnet holding holes formed so as to penetrate in the axial direction at intervals in the circumferential direction,
It is provided on the inside in the radial direction between the two adjacent magnet holding holes, penetrates in the axial direction, and the refrigerant from the outside flows inside the laminated iron core and becomes a part of the flow path discharged to the outside. The third flow path and
A second flow path that is a part of the flow path and communicates radially from the third flow path,
It is provided with a first flow path that is a part of the flow path, communicates with the magnet holding hole in the radial direction, and opens radially outward of the laminated iron core.
The magnet holding hole is
A magnet insertion part for inserting the permanent magnet and
It is composed of a gap portion that is a part of the flow path, which is formed along the circumferential side surface of the permanent magnet and communicates radially from the second flow path.
The first iron core piece is
A flow path hole in which a plurality of the first iron core pieces are laminated to form the third flow path,
A second groove in which a plurality of the first iron core pieces are laminated to form the second flow path,
A long hole in which a plurality of the first iron core pieces are laminated to serve as the magnet holding hole, and
A first groove in which a plurality of the first iron core pieces are laminated to form the first flow path is provided.
At least one surface in the axial direction of the inner end of the second groove is provided with a chamfered second gradient portion.
The radial width of the third flow path is larger than the circumferential width.
Further, the rotor of the rotary electric machine according to the present invention is
A rotor of a rotary electric machine having a laminated iron core formed by laminating a plurality of first core pieces, a plurality of permanent magnets inserted into the laminated iron core in the axial direction, and a shaft inserted into the laminated iron core.
The laminated iron core
A shaft insertion hole provided in the center for inserting the shaft,
Magnet holding holes formed so as to penetrate in the axial direction at intervals in the circumferential direction,
It is provided on the inside in the radial direction between the two adjacent magnet holding holes, penetrates in the axial direction, and the refrigerant from the outside flows inside the laminated iron core and becomes a part of the flow path discharged to the outside. The third flow path and
A second flow path that is a part of the flow path and communicates radially from the third flow path,
It is provided with a first flow path that is a part of the flow path, communicates with the magnet holding hole in the radial direction, and opens radially outward of the laminated iron core.
The magnet holding hole is
A magnet insertion part for inserting the permanent magnet and
It is composed of a gap portion that is a part of the flow path, which is formed along the circumferential side surface of the permanent magnet and communicates radially from the second flow path.
The first iron core piece is
A flow path hole in which a plurality of the first iron core pieces are laminated to form the third flow path,
A second groove in which a plurality of the first iron core pieces are laminated to form the second flow path,
A long hole in which a plurality of the first iron core pieces are laminated to serve as the magnet holding hole, and
A first groove in which a plurality of the first iron core pieces are laminated to form the first flow path is provided.
At least one surface in the axial direction of the inner end of the second groove is provided with a chamfered second gradient portion.
A plurality of the first iron core pieces laminated from the central portion in the axial direction to one in the axial direction,
The plurality of first iron core pieces laminated on the other side in the axial direction are those in which the front and back surfaces are laminated in reverse.

この発明に係る回転電機は、
固定子と、前記固定子の内周面に、所定の間隔を設けて外周面を対向させるように配設された前記回転子とを備えるものである。
The rotary electric machine according to the present invention
It is provided with a stator and the rotor arranged on the inner peripheral surface of the stator so as to face the outer peripheral surfaces at a predetermined interval.

この発明に係る圧縮機は、
前記回転電機と、前記回転電機のシャフトに接続された圧縮機構とを備えるものである。
The compressor according to the present invention
It includes the rotary electric machine and a compression mechanism connected to the shaft of the rotary electric machine.

本発明に係る回転電機の回転子、回転電機および圧縮機によれば、外部から積層鉄心内に流入した冷媒が、軸方向に流れる第三流路から径方向に分岐する第二流路の入り口に第二勾配部を設けることにより、冷媒の流れをスムーズに方向転換できるので、冷媒の圧力損失を抑制し、永久磁石の冷却効果に優れた回転電機の回転子、回転電機、圧縮機を提供できる。 According to the rotor, the rotary electric machine, and the compressor of the rotary electric machine according to the present invention, the inlet of the second flow path in which the refrigerant flowing into the laminated iron core from the outside branches in the radial direction from the third flow path flowing in the axial direction. By providing a second gradient portion in the refrigerant, the flow of the refrigerant can be smoothly changed, so that the pressure loss of the refrigerant is suppressed, and the rotor, rotary electric machine, and compressor of the rotary electric machine having an excellent cooling effect of the permanent magnet are provided. it can.

本発明の実施の形態1に係る回転電機の構成を示す断面図である。It is sectional drawing which shows the structure of the rotary electric machine which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転子の積層鉄心の斜視図である。It is a perspective view of the laminated iron core of the rotor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る回転子の断面模式図である。It is sectional drawing of the rotor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る積層鉄心を構成する鉄心片の正面図である。It is a front view of the iron core piece constituting the laminated iron core which concerns on Embodiment 1 of this invention. 図4、A部の要部斜視図である。FIG. 4 is a perspective view of a main part of part A. 図4を裏側から見た図である。FIG. 4 is a view from the back side. 図6、C部の要部斜視図である。FIG. 6 is a perspective view of a main part of part C. 図4のB−B線における断面図である。It is sectional drawing in BB line of FIG. 本発明の実施の形態1に係る磁石孔に、永久磁石を挿入した際の永久磁石の占有範囲を示す要部断面図である。It is a cross-sectional view of a main part which shows the occupied range of a permanent magnet when a permanent magnet is inserted into the magnet hole which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る積層鉄心を構成する他の鉄心片の正面図である。It is a front view of another iron core piece constituting the laminated iron core which concerns on Embodiment 1 of this invention. 図10、D部の要部斜視図である。10 is a perspective view of a main part of part D in FIG. 本発明の実施の形態1に係る他の回転子の断面模式図である。It is sectional drawing of another rotor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る他の回転子の断面模式図である。It is sectional drawing of another rotor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る鉄心片の製造工程を示す図である。It is a figure which shows the manufacturing process of the iron core piece which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る積層間を溶接した積層鉄心の斜視図である。FIG. 5 is a perspective view of a laminated iron core welded between layers according to the first embodiment of the present invention. 本発明の実施の形態1に係る他の積層鉄心の斜視図である。It is a perspective view of another laminated iron core which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る回転子の断面模式図である。It is sectional drawing of the rotor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る積層鉄心を構成する鉄心片の正面図である。It is a front view of the iron core piece constituting the laminated iron core which concerns on Embodiment 2 of this invention. 図18、E部の要部斜視図である。FIG. 18 is a perspective view of a main part of part E. 図18を裏側から見た図である。FIG. 18 is a view of FIG. 18 seen from the back side. 図18のF−F線における断面図である。FIG. 5 is a cross-sectional view taken along the line FF of FIG. 本発明の実施の形態2に係る他の回転子の断面模式図である。It is sectional drawing of another rotor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る回転子の断面模式図である。It is sectional drawing of the rotor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る回転子の断面模式図である。It is sectional drawing of the rotor which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る端板の正面図である。It is a front view of the end plate which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る回転子の要部上面図である。It is a top view of the main part of the rotor which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る圧縮機の断面図である。It is sectional drawing of the compressor which concerns on Embodiment 4 of this invention.

実施の形態1.
以下、本発明の実施の形態1に係る回転電機の回転子および回転電機を図を用いて説明する。
本明細書で、特に断り無く「軸方向」、「周方向」、「径方向」、「内周側」、「外周側」、「内周面」、「外周面」、「内側」、「外側」というときは、それぞれ、回転子の「軸方向」、「周方向」、「径方向」、「内周側」、「外周側」、「内周面」、「外周面」、「内側」、「外側」をいうものとする。また、特に断り無く「上」、「下」と言うときは、基準となる場所において、軸方向に垂直な面を想定し、その面を境界として回転子の中心点が含まれる側を「下」、その反対を「上」とする。また、高さの高低を比較する場合は、回転子の中心からの距離が長い方を「高い」とする。
Embodiment 1.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the first embodiment of the present invention will be described with reference to the drawings.
In the present specification, "axial direction", "circumferential direction", "diameter direction", "inner peripheral side", "outer peripheral side", "inner peripheral surface", "outer peripheral surface", "inside", "inside", without particular notice. When we say "outside", we mean "axial", "circumferential", "diameter", "inner circumference", "outer circumference", "inner circumference", "outer circumference", and "inside" of the rotor, respectively. , "Outside". In addition, when we say "upper" or "lower" without particular notice, we assume a plane perpendicular to the axial direction at the reference location, and the side containing the center point of the rotor is "lower" with that plane as the boundary. , And the opposite is "above". When comparing the heights, the one with the longer distance from the center of the rotor is regarded as "higher".

図1は、本発明の実施の形態1に係る回転電機100の構成を示す断面図である。
回転電機100は、固定子1と、この固定子1の内周面に、所定の間隔を設けて外周面を対向させるように配設された回転子2とからなる。固定子1は、ヨーク部と、ヨーク部の内周面から径方向内側に突出する複数のティース部とからなる固定子鉄心11および、ティース部に巻回された固定子コイル12とを備える。
FIG. 1 is a cross-sectional view showing the configuration of the rotary electric machine 100 according to the first embodiment of the present invention.
The rotary electric machine 100 includes a stator 1 and a rotor 2 arranged on the inner peripheral surface of the stator 1 so as to face the outer peripheral surfaces at a predetermined interval. The stator 1 includes a stator portion 11, a stator core 11 including a plurality of teeth portions protruding inward in the radial direction from the inner peripheral surface of the yoke portion, and a stator coil 12 wound around the teeth portion.

図2は、回転子2の積層鉄心50の斜視図である。
図3は、回転子2を、その中心軸を通る2つの平面で切断した断面模式図である。
図4は、積層鉄心50を構成する鉄心片20a(第一鉄心片)の正面図である。
図5は、図4、A部の要部斜視図である。
図6は、図4を裏側から見た図である。
図7は、図6、C部の要部斜視図である。
図8は、図4のB−B線における断面図である。
FIG. 2 is a perspective view of the laminated iron core 50 of the rotor 2.
FIG. 3 is a schematic cross-sectional view of the rotor 2 cut by two planes passing through its central axis.
FIG. 4 is a front view of the iron core piece 20a (first iron core piece) constituting the laminated iron core 50.
FIG. 5 is a perspective view of a main part of FIG. 4 and A.
FIG. 6 is a view of FIG. 4 as viewed from the back side.
FIG. 7 is a perspective view of a main part of FIG. 6 and C.
FIG. 8 is a cross-sectional view taken along the line BB of FIG.

図1〜8に示すように、積層鉄心50の鉄心片20aには、積層されることにより永久磁石4が軸方向に挿入される、後述する磁石保持孔51となる部分である6つの長孔21と、冷媒が軸方向に流れる第三流路52となる部分である6つの流路孔22と、シャフト3が挿入されるシャフト挿入孔53となる部分であるシャフト孔23と、径方向かつ外側に開口し、長孔21に連通する12個の第一溝24と、長孔21及び流路孔22に対して共に径方向に連通する6つの第二溝25とを有する。第一溝24及び第二溝25とは、鉄心片20aの同じ面に形成されている。 As shown in FIGS. 1 to 8, the iron core piece 20a of the laminated iron core 50 has six elongated holes which are portions serving as magnet holding holes 51, which will be described later, in which the permanent magnet 4 is inserted in the axial direction by being laminated. 21, six flow path holes 22 which are portions of the third flow path 52 through which the refrigerant flows in the axial direction, and shaft holes 23 which are portions of the shaft insertion holes 53 into which the shaft 3 is inserted, in the radial direction and It has 12 first grooves 24 that are open to the outside and communicate with the elongated holes 21, and six second grooves 25 that communicate with the elongated holes 21 and the flow path holes 22 in the radial direction. The first groove 24 and the second groove 25 are formed on the same surface of the iron core piece 20a.

また、第一溝24の内側端部の軸方向の一面には、面取りされた第一勾配部24Mが設けられ、第二溝25の内側端部にも面取りされた第二勾配部25Mが設けられている。長孔21は、鉄心片20aの外周面に近い位置に、周方向に均等に設けられている。隣り合う長孔21間を周方向に仕切る部分を境界部26とする。 Further, a chamfered first gradient portion 24M is provided on one surface of the inner end portion of the first groove 24 in the axial direction, and a chamfered second gradient portion 25M is also provided on the inner end portion of the second groove 25. Has been done. The elongated holes 21 are evenly provided in the circumferential direction at positions close to the outer peripheral surface of the iron core piece 20a. The portion that partitions the adjacent elongated holes 21 in the circumferential direction is defined as the boundary portion 26.

図9は、長孔21に、永久磁石4を挿入した際の永久磁石4の占有範囲を示す要部断面図である。
図9に示すように、長孔21に挿入された永久磁石4が占有する範囲が、鉄心片磁石挿入部21gである。鉄心片磁石挿入部21gの両端部と境界部26との間には隙間が残り、この部分を鉄心片空隙部21Sとする。鉄心片空隙部21Sは、境界部26に沿って、第一溝24の縁まで続いている。鉄心片空隙部21Sに繋がって、周方向に延びる隙間は、磁気遮断部27である。磁気遮断部27は、この部分を磁束が通らないようにするために設けている。
FIG. 9 is a cross-sectional view of a main part showing the occupied range of the permanent magnet 4 when the permanent magnet 4 is inserted into the elongated hole 21.
As shown in FIG. 9, the range occupied by the permanent magnet 4 inserted in the elongated hole 21 is the iron core single magnet insertion portion 21g. A gap remains between both ends of the iron core piece magnet insertion portion 21g and the boundary portion 26, and this portion is referred to as an iron core piece gap portion 21S. The iron core piece gap 21S continues along the boundary 26 to the edge of the first groove 24. The gap extending in the circumferential direction connected to the iron core piece gap 21S is the magnetic blocking portion 27. The magnetic blocking portion 27 is provided to prevent magnetic flux from passing through this portion.

図5に示すように、2つの第一溝24が、1つの境界部26を周方向に挟んでおり、流路孔22は、境界部26の径方向内側に1つずつ設けられている。すなわち、周方向に並んだ2つの第一流路54が、それぞれ異なる空隙部51Sを介して、1つの第二流路55に連通する。また、この流路孔22の周方向の幅と第二溝25の周方向の幅と、境界部26及びこれを挟む2つの第一溝24との周方向の幅は、等しい。よって、2つの第一溝24、2つの鉄心片空隙部21S、1つの第二溝25、流路孔22は、径方向に真っ直ぐに繋がる。 As shown in FIG. 5, two first grooves 24 sandwich one boundary portion 26 in the circumferential direction, and one flow path hole 22 is provided inside the boundary portion 26 in the radial direction. That is, the two first flow paths 54 arranged in the circumferential direction communicate with one second flow path 55 via different gaps 51S. Further, the circumferential width of the flow path hole 22 and the circumferential width of the second groove 25 are equal to the circumferential width of the boundary portion 26 and the two first grooves 24 sandwiching the boundary portion 26. Therefore, the two first grooves 24, the two iron core piece gaps 21S, the one second groove 25, and the flow path hole 22 are connected straight in the radial direction.

第二溝25の第二勾配部25Mは、流路孔22と第二溝25との境界に形成されている。なお、同様の勾配部を第二溝25と鉄心片空隙部21S(長孔21)との境界にも形成してもよい。また、第一溝24の第一勾配部24Mは、鉄心片空隙部21Sと第一溝24との境界に形成されている。なお、同様の勾配部を第一溝24の外周の縁部に形成してもよい。 The second gradient portion 25M of the second groove 25 is formed at the boundary between the flow path hole 22 and the second groove 25. A similar gradient portion may be formed at the boundary between the second groove 25 and the iron core piece gap portion 21S (long hole 21). Further, the first gradient portion 24M of the first groove 24 is formed at the boundary between the iron core piece gap portion 21S and the first groove 24. A similar gradient portion may be formed on the outer peripheral edge portion of the first groove 24.

なお、図4〜9に示した鉄心片20aでは、第二勾配部25M及び第一勾配部24Mを、第二溝25と第一溝24とを形成した面と同一面(図5で示した軸方向の一面)に形成しているが、反対面(図7で示した他面)に形成してもよい。これについては、後述する積層鉄心50の構成と併せて説明する。 In the iron core pieces 20a shown in FIGS. 4 to 9, the second gradient portion 25M and the first gradient portion 24M are flush with the surface on which the second groove 25 and the first groove 24 are formed (shown in FIG. 5). Although it is formed on one surface in the axial direction, it may be formed on the opposite surface (the other surface shown in FIG. 7). This will be described together with the configuration of the laminated iron core 50 described later.

長孔21は、より外周側に設置することが好ましいが、極端に外周側に設けると、第一溝24の径方向の幅が小さくなり、第一溝24の強度が低下する。そこで、長孔21は、回転子2を回転電機100に用いた場合に加わる最大負荷に耐えられる範囲で、極力外周側に設置する。 The elongated hole 21 is preferably installed on the outer peripheral side, but if it is provided on the outer peripheral side extremely, the width of the first groove 24 in the radial direction becomes smaller, and the strength of the first groove 24 decreases. Therefore, the elongated hole 21 is installed on the outer peripheral side as much as possible within a range that can withstand the maximum load applied when the rotor 2 is used in the rotary electric machine 100.

流路孔22は、鉄心片空隙部21Sに近いほど好ましいが、鉄心片空隙部21Sに近づけすぎると、第二溝25の強度が低下する。そこで、流路孔22は、回転子2を回転電機100に用いた場合に加わる最大負荷に耐えられる範囲で、鉄心片空隙部21Sに近づけて設置する。 The flow path hole 22 is preferably closer to the iron core piece gap 21S, but if it is too close to the iron core piece gap 21S, the strength of the second groove 25 decreases. Therefore, the flow path hole 22 is installed close to the iron core piece gap 21S within a range that can withstand the maximum load applied when the rotor 2 is used in the rotary electric machine 100.

図10は、積層鉄心50を構成する鉄心片20b(第二鉄心片)の正面図である。
図11は、図10、D部の要部斜視図である。
鉄心片20aと鉄心片20bとの違いは、鉄心片20bには、第一溝24と第二溝25の双方が形成されていない点である。その他の構成は、鉄心片20aと同じである。
FIG. 10 is a front view of the iron core piece 20b (second iron core piece) constituting the laminated iron core 50.
FIG. 11 is a perspective view of a main part of FIG. 10 and D.
The difference between the iron core piece 20a and the iron core piece 20b is that neither the first groove 24 nor the second groove 25 is formed in the iron core piece 20b. Other configurations are the same as those of the iron core piece 20a.

次に、積層鉄心50と回転子2の構成について図2、3を用いて説明する。
図3に示す回転子2は、積層鉄心50と、鉄心片20aの長孔21が積層させて形成された、軸方向に貫通する磁石保持孔51の磁石挿入部51gに挿入される永久磁石4と、積層鉄心50の軸方向両端面と接して設けられた端板29と、積層鉄心50の中央に設けられたシャフト挿入孔53および端板29の中央に設けられたシャフト挿入孔29sに挿入して、積層鉄心50および端板29を固定しているシャフト3とを備えている。長孔21の鉄心片磁石挿入部21gが積層された部分が、磁石保持孔51の磁石挿入部51gであり、各磁石挿入部51gに挿入されている永久磁石4は、1つの極を形成している。
Next, the configurations of the laminated iron core 50 and the rotor 2 will be described with reference to FIGS. 2 and 3.
The rotor 2 shown in FIG. 3 is a permanent magnet 4 inserted into a magnet insertion portion 51g of a magnet holding hole 51 penetrating in the axial direction, which is formed by laminating a laminated iron core 50 and an elongated hole 21 of an iron core piece 20a. And, it is inserted into the end plate 29 provided in contact with both end faces in the axial direction of the laminated iron core 50, the shaft insertion hole 53 provided in the center of the laminated iron core 50, and the shaft insertion hole 29s provided in the center of the end plate 29. The laminated iron core 50 and the shaft 3 fixing the end plate 29 are provided. The portion where the iron core single magnet insertion portion 21g of the elongated hole 21 is laminated is the magnet insertion portion 51g of the magnet holding hole 51, and the permanent magnet 4 inserted in each magnet insertion portion 51g forms one pole. ing.

図2、3に示すように、積層鉄心50は、軸方向の両端側に鉄心片20bを4枚ずつ積層しており、軸方向中央部には、鉄心片20aを12枚積層している。また、12枚の鉄心片20aの内、紙面上側の6枚と紙面下側の6枚とは、表裏を反転させている。鉄心片20aを積層した部分では、鉄心片20aの第一溝24と第二溝25とを形成した面(図4、5で示した面)と、第一溝24と第二溝25とを形成していない面(図6、7で示した面)とが重なることにより、鉄心片20aの積層間に2つの第一流路54と、1つの第二流路55とが形成される。 As shown in FIGS. 2 and 3, the laminated iron core 50 has four iron core pieces 20b laminated on both ends in the axial direction, and twelve iron core pieces 20a laminated on the central portion in the axial direction. Further, of the 12 iron core pieces 20a, 6 pieces on the upper side of the paper surface and 6 pieces on the lower side of the paper surface are reversed on the front and back sides. In the portion where the iron core pieces 20a are laminated, the surface (the surface shown in FIGS. 4 and 5) forming the first groove 24 and the second groove 25 of the iron core piece 20a and the first groove 24 and the second groove 25 are formed. By overlapping the non-formed surfaces (surfaces shown in FIGS. 6 and 7), two first flow paths 54 and one second flow path 55 are formed between the layers of the iron core pieces 20a.

また、鉄心片20aと20bとを積層することにより、長孔21が軸方向に重なった磁石保持孔51と、流路孔22が軸方向に重なった第三流路52とが形成されている。磁石保持孔51と第三流路52とは、回転子の積層鉄心50を軸方向に貫通している。鉄心片空隙部21Sが軸方向に積層された部分が、空隙部51Sである。同様に、磁気遮断部27も軸方向に連なって軸方向に延びる磁気遮断路57を形成している。そして端板29には、第三流路52に対応する位置に、冷媒を吸入する第一冷媒流入口29inを設けている。 Further, by laminating the iron core pieces 20a and 20b, a magnet holding hole 51 in which the elongated holes 21 overlap in the axial direction and a third flow path 52 in which the flow path holes 22 overlap in the axial direction are formed. .. The magnet holding hole 51 and the third flow path 52 penetrate the laminated iron core 50 of the rotor in the axial direction. The portion in which the iron core piece gap portion 21S is laminated in the axial direction is the gap portion 51S. Similarly, the magnetic blocking section 27 also forms a magnetic blocking path 57 that is connected in the axial direction and extends in the axial direction. The end plate 29 is provided with a first refrigerant inflow port 29in for sucking the refrigerant at a position corresponding to the third flow path 52.

次に、図3を用いて、本実施の形態1の回転子2における永久磁石4を冷却する機構について説明する。
第三流路52と第二流路55とは径方向に連通し、第二流路55と空隙部51Sとも径方向に連通する。空隙部51Sは、第一流路54とも径方向に連通するので、積層鉄心50の鉄心片20aが積層された部分では、これら全ての流路及び空隙部51Sは、第三流路から積層鉄心50の外部まで、径方向に繋がっている。
Next, the mechanism for cooling the permanent magnet 4 in the rotor 2 of the first embodiment will be described with reference to FIG.
The third flow path 52 and the second flow path 55 communicate with each other in the radial direction, and the second flow path 55 and the gap 51S also communicate with each other in the radial direction. Since the gap portion 51S also communicates with the first flow path 54 in the radial direction, in the portion where the iron core pieces 20a of the laminated iron core 50 are laminated, all these flow paths and the gap portion 51S are connected to the laminated iron core 50 from the third flow path. It is connected in the radial direction to the outside of.

回転子2が回転すると、遠心力により、空隙部51S内の冷媒が、第一流路54を通って回転子2の外部に放出される。すると、空隙部51Sの圧力が低下するので、第二流路55を通って、第三流路52から空隙部51Sへ冷媒が流入する。すると同様に、第三流路52の圧力が低下するので、端板29の第一冷媒流入口29inから、第三流路52内へ、外部から冷媒が取り入れられる。 When the rotor 2 rotates, the refrigerant in the gap 51S is discharged to the outside of the rotor 2 through the first flow path 54 due to centrifugal force. Then, since the pressure in the gap 51S decreases, the refrigerant flows from the third flow path 52 into the gap 51S through the second flow path 55. Then, similarly, since the pressure of the third flow path 52 decreases, the refrigerant is taken in from the outside into the third flow path 52 from the first refrigerant inflow port 29in of the end plate 29.

すなわち、図3の破線矢印で示すように、外部の冷媒は、まず、第一冷媒流入口29inを通過して積層鉄心50の第三流路52へ流れ込む。次に、第三流路52から、第二流路55、空隙部51S、第一流路54と順に通過して、回転子2の外部に放出される。そして、積層鉄心50の外周側に対向して配置された固定子鉄心11も冷却される。 That is, as shown by the broken line arrow in FIG. 3, the external refrigerant first passes through the first refrigerant inflow port 29in and flows into the third flow path 52 of the laminated iron core 50. Next, the third flow path 52 passes through the second flow path 55, the gap 51S, and the first flow path 54 in this order, and is discharged to the outside of the rotor 2. Then, the stator core 11 arranged to face the outer peripheral side of the laminated iron core 50 is also cooled.

さらに、冷媒が固定子鉄心11と積層鉄心50の隙間を通って、固定子コイル12に到達しこれを冷却するため、固定子1の冷却効果も優れている。 Further, since the refrigerant reaches the stator coil 12 through the gap between the stator core 11 and the laminated iron core 50 and cools the stator coil 12, the cooling effect of the stator 1 is also excellent.

冷媒は、空隙部51Sを通過する際に、永久磁石4の周方向側面と接触しながら流れるので、永久磁石4を直接冷却する。さらに、第二溝25に第二勾配部25Mを設けることで、冷媒が、第三流路52から第二流路55に流入する際に、冷媒を軸方向から径方向に緩やかに曲げることができるため、流路の圧力損失を低減させることができる。 When the refrigerant passes through the gap 51S, it flows while contacting the circumferential side surface of the permanent magnet 4, so that the permanent magnet 4 is directly cooled. Further, by providing the second gradient portion 25M in the second groove 25, when the refrigerant flows from the third flow path 52 into the second flow path 55, the refrigerant can be gently bent in the radial direction from the axial direction. Therefore, the pressure loss in the flow path can be reduced.

また、同様に第一溝24に第一勾配部24Mを設けることで、冷媒が第一流路54を通って外部に排出される際に、急激に圧縮されることを抑制できるため、流路の圧力損失を低減させることができる。以上により、冷媒により、効率的に永久磁石4を冷却することが可能となる。 Similarly, by providing the first gradient portion 24M in the first groove 24, it is possible to prevent the refrigerant from being rapidly compressed when it is discharged to the outside through the first flow path 54. The pressure loss can be reduced. As described above, the permanent magnet 4 can be efficiently cooled by the refrigerant.

なお、図4に示す通り、鉄心片20a、20bに設けた、第三流路52を構成する流路孔22の径方向の寸法aと周方向の寸法bとは、以下の関係を満たすものとする。
a>b
As shown in FIG. 4, the radial dimension a and the circumferential dimension b of the flow path hole 22 constituting the third flow path 52 provided in the iron core pieces 20a and 20b satisfy the following relationship. And.
a> b

積層鉄心50の中を流れる冷媒は、回転子2の回転による遠心力により積層鉄心50内を流れる。遠心力は、径方向に生じる。よって第三流路52から径方向にスムーズに冷媒を流すには、2つの第一流路54の周方向の幅と、第二流路55の周方向の幅と、第三流路の周方向の幅が同じであることが好ましい。よって、第三流路の断面積を増やすには、径方向の寸法を大きくする方がより効率的に永久磁石4を冷却することが可能となる。各流路の周方向の幅を揃えることにより、流路中の障害物を減らし、より効率的に永久磁石4を冷却することが可能となる。 The refrigerant flowing in the laminated iron core 50 flows in the laminated iron core 50 due to the centrifugal force generated by the rotation of the rotor 2. Centrifugal force is generated in the radial direction. Therefore, in order for the refrigerant to flow smoothly in the radial direction from the third flow path 52, the width of the two first flow paths 54 in the circumferential direction, the width of the second flow path 55 in the circumferential direction, and the circumferential direction of the third flow path It is preferable that the widths of are the same. Therefore, in order to increase the cross-sectional area of the third flow path, it is possible to cool the permanent magnet 4 more efficiently by increasing the radial dimension. By aligning the widths in the circumferential direction of each flow path, obstacles in the flow path can be reduced and the permanent magnet 4 can be cooled more efficiently.

図3に示すように、回転子2は、冷媒を吸入する第一冷媒流入口29inを積層鉄心50の軸方向両端面に設けている。これにより冷媒の流れる方向は軸方向の2方向となるため、冷媒の流れる方向と第二勾配部25Mの向きを合わせる必要がある。よって、上述のように、各鉄心片20aは、積層鉄心50の軸方向中央を境に、鉄心片20aの表裏を反転させて積層している。すなわち図3では、全ての鉄心片20aを、第一溝24と第二溝25とが形成された面を積層鉄心50の軸方向中央に向けた状態で積層している。 As shown in FIG. 3, the rotor 2 is provided with first refrigerant inflow ports 29 inches for sucking the refrigerant on both end faces in the axial direction of the laminated iron core 50. As a result, the flow directions of the refrigerant are two directions in the axial direction, so it is necessary to match the flow direction of the refrigerant with the direction of the second gradient portion 25M. Therefore, as described above, the iron core pieces 20a are laminated by inverting the front and back sides of the iron core pieces 20a with the axial center of the laminated iron core 50 as a boundary. That is, in FIG. 3, all the iron core pieces 20a are laminated in a state where the surfaces on which the first groove 24 and the second groove 25 are formed are directed toward the center in the axial direction of the laminated iron core 50.

図12、13は、本実施の形態1に係る他の回転子の断面模式図であり、積層鉄心50の他のバリエーションを示す断面模式図である。
図12に示す積層鉄心50Bは、鉄心片20aに替えて鉄心片20Baを積層している。
鉄心片20aと鉄心片20Baとの違いは、第一勾配部24BM、第二勾配部25BMの形成面が、各溝部を設けた面と反対面となっている点である。すなわち、鉄心片20Baでは、図7に示す面側に第一勾配部24BMと第二勾配部25BMとを有する。各鉄心片20Baは、第一溝24と第二溝25とが形成された面を積層鉄心50の端板29側に向けた状態で積層されている。
12 and 13 are schematic cross-sectional views of another rotor according to the first embodiment, and are schematic cross-sectional views showing other variations of the laminated iron core 50.
In the laminated iron core 50B shown in FIG. 12, the iron core piece 20Ba is laminated instead of the iron core piece 20a.
The difference between the iron core piece 20a and the iron core piece 20Ba is that the forming surface of the first gradient portion 24BM and the second gradient portion 25BM is opposite to the surface on which each groove portion is provided. That is, the iron core piece 20Ba has a first gradient portion 24BM and a second gradient portion 25BM on the surface side shown in FIG. 7. Each iron core piece 20Ba is laminated in a state where the surface on which the first groove 24 and the second groove 25 are formed faces the end plate 29 side of the laminated iron core 50.

図13に示す積層鉄心50Cは、鉄心片20aに替えて鉄心片20Caを積層している。鉄心片20aと鉄心片20Caとの違いは、第一勾配部24CM、第二勾配部25CMの形成面が、各溝部を設けた部分の両面となっている点である。この場合、各鉄心片20Caを、全て同一向きに積層しても低損失の流路を形成することができる。 In the laminated iron core 50C shown in FIG. 13, the iron core piece 20Ca is laminated instead of the iron core piece 20a. The difference between the iron core piece 20a and the iron core piece 20Ca is that the forming surfaces of the first gradient portion 24CM and the second gradient portion 25CM are both sides of the portion provided with each groove portion. In this case, even if all the iron core pieces 20Ca are laminated in the same direction, a low-loss flow path can be formed.

また、以上の説明では、第二溝25と鉄心片空隙部21Sとの境界部と、第一溝24と積層鉄心50の外周との境界部には勾配部を形成していないが、これらの場所に勾配部を形成してもよい。 Further, in the above description, a gradient portion is not formed at the boundary portion between the second groove 25 and the iron core piece gap 21S and the boundary portion between the first groove 24 and the outer periphery of the laminated iron core 50. A slope may be formed in place.

次に、回転子2の製造方法について説明する。
図14(a)は、鉄心片20bの製造工程を示す図である。
図14(b)は、鉄心片20bを鉄心片20aに加工する製造工程を示す図である。
図14(a)に示すように、鉄心片20bは、電磁鋼板Kをパンチで打ち抜いて製造する。まず、鉄心片20bを先に製造する。所定の数の鉄心片20bから、更にプレス加工して鉄心片20aを得る。
Next, a method of manufacturing the rotor 2 will be described.
FIG. 14A is a diagram showing a manufacturing process of the iron core piece 20b.
FIG. 14B is a diagram showing a manufacturing process for processing the iron core piece 20b into the iron core piece 20a.
As shown in FIG. 14A, the iron core piece 20b is manufactured by punching an electromagnetic steel plate K with a punch. First, the iron core piece 20b is manufactured first. From a predetermined number of iron core pieces 20b, further press working is performed to obtain iron core pieces 20a.

まず、図14(a)に示すように、電磁鋼板Kから鉄心片20bの外周部と、シャフト孔23と、長孔21と、流路孔22とを同時に打ち抜いて、鉄心片20bを製造する。鉄心片20bを打ち抜くには、打ち抜く各部分を凹形状に成形した下型D20bと、打ち抜く各部分を凸形状に成形した上型U20bとの間に電磁鋼板Kを挟んでプレス加工する。このようにして、まず、積層鉄心50の製造に必要な鉄心片20a及び鉄心片20bの総数である20枚分の鉄心片20bを製造する。 First, as shown in FIG. 14A, the outer peripheral portion of the iron core piece 20b, the shaft hole 23, the elongated hole 21, and the flow path hole 22 are simultaneously punched from the electromagnetic steel plate K to manufacture the iron core piece 20b. .. To punch out the iron core piece 20b, an electromagnetic steel plate K is sandwiched between a lower die D20b in which each part to be punched is formed into a concave shape and an upper die U20b in which each part to be punched is formed into a convex shape, and press working is performed. In this way, first, 20 iron core pieces 20b, which is the total number of the iron core pieces 20a and the iron core pieces 20b required for manufacturing the laminated iron core 50, are manufactured.

次に、図14(b)に示すように、製造した鉄心片20bの内の12枚を更にプレス加工して鉄心片20aを製造する。
平板上の下型D20aの上に鉄心片20bを載置し、第一溝24、第二溝25、第一勾配部24M、第二勾配部25Mに対応する部分を凸形状に成形した上型U20aを用いて鉄心片20bの一方の面に、プレス加工により第一溝24、第二溝25、第一勾配部24Mと第二勾配部25Mを形成して鉄心片20aを得る。なお、第一勾配部24M、第二勾配部25Mは、必ずしも両方備える必要はなく、少なくとも第二勾配部25Mを設ければよい。
Next, as shown in FIG. 14B, 12 of the manufactured iron core pieces 20b are further pressed to manufacture the iron core piece 20a.
An iron core piece 20b is placed on the lower mold D20a on a flat plate, and the portions corresponding to the first groove 24, the second groove 25, the first slope portion 24M, and the second slope portion 25M are formed into a convex shape. The iron core piece 20a is obtained by forming a first groove 24, a second groove 25, a first gradient portion 24M and a second gradient portion 25M on one surface of the iron core piece 20b using U20a. The first gradient portion 24M and the second gradient portion 25M do not necessarily have to be both provided, and at least the second gradient portion 25M may be provided.

次に、鉄心片20aにおける第一溝24の厚さについて説明する。図8に示すように、鉄心片20aの溝無し部の板厚をT、第一溝24、第二溝25部分の板厚をTcとする。Tcを薄くすると、各溝の断面積が増え、より多くの冷媒を流すことが可能になるが、反対に当該部分の強度が落ち、また加工が困難になる。したがって、Tcの範囲を0.5T≦Tc≦0.7Tとする。 Next, the thickness of the first groove 24 in the iron core piece 20a will be described. As shown in FIG. 8, the plate thickness of the grooveless portion of the iron core piece 20a is T, and the plate thickness of the first groove 24 and the second groove 25 portion is Tc. When the Tc is made thin, the cross-sectional area of each groove is increased and more refrigerant can flow, but on the contrary, the strength of the portion is lowered and the processing becomes difficult. Therefore, the range of Tc is set to 0.5T ≦ Tc ≦ 0.7T.

鉄心片20aの変形例である上述の鉄心片20Ba、鉄心片20Caについても同様に鉄心片20bから製造するが、第一溝、第二溝、及び各勾配部を形成する工程が異なる。 The above-mentioned iron core piece 20Ba and iron core piece 20Ca, which are modified examples of the iron core piece 20a, are also manufactured from the iron core piece 20b, but the steps of forming the first groove, the second groove, and each slope portion are different.

鉄心片20aに第一勾配部24M、第二勾配部25Mを設けることで、金型によりで電磁鋼板Kを打ち抜く際に、せん断面の切り口に生じる「ばり」を除去することができる。これにより、鉄心片20a、20bの積層時に、積層間への「ばり」の混入を抑制でき、回転子2およびこれを用いる回転電機100の組立性、信頼性を向上できる。 By providing the iron core piece 20a with the first gradient portion 24M and the second gradient portion 25M, it is possible to remove "burrs" generated at the cut end of the sheared surface when the electromagnetic steel sheet K is punched out by a die. As a result, when the iron core pieces 20a and 20b are laminated, it is possible to suppress the mixing of "burrs" between the laminates, and it is possible to improve the assemblability and reliability of the rotor 2 and the rotary electric machine 100 using the rotor 2.

以上のようにして12枚の鉄心片20aと、8枚の鉄心片20bを製造後、まず、6枚の鉄心片20aを、同じ面が上になるように積層したものを2セット製造し、各セットの第一溝24および第二溝25が形成された面を合わせるように積層する。このような向きに12枚の鉄心片20aを積層した後、その軸方向の両側に、それぞれ4枚の鉄心片20bを積層する。 After manufacturing the 12 iron core pieces 20a and the 8 iron core pieces 20b as described above, first, two sets of 6 iron core pieces 20a laminated so that the same side faces up are manufactured. The surfaces on which the first groove 24 and the second groove 25 of each set are formed are laminated so as to be aligned with each other. After laminating 12 iron core pieces 20a in such a direction, four iron core pieces 20b are laminated on both sides in the axial direction thereof.

図15は、積層間を溶接した積層鉄心50の斜視図である。
図15の溶接ビードYに示すように、全ての鉄心片20a、20bを、溶接により軸方向に接合し、積層鉄心50を得る。なお、溶接により鉄心片20a、20bを接合する際は、図に示す通り、周方向に2つ並んだ第一流路54を挟んで、軸方向にその近傍部を二列に接合すると溝形成部(薄肉部)の剛性を増し、積層鉄心50の強度を上げることができる。なお、積層間の結合は、溶接に替えてカシメ等で行ってもよい。
FIG. 15 is a perspective view of the laminated iron core 50 welded between the laminated layers.
As shown in the weld bead Y of FIG. 15, all the iron core pieces 20a and 20b are joined in the axial direction by welding to obtain a laminated iron core 50. When joining the iron core pieces 20a and 20b by welding, as shown in the figure, the groove forming portion is formed by sandwiching the first flow path 54 arranged in the circumferential direction and joining the neighboring portions in two rows in the axial direction. The rigidity of the (thin-walled portion) can be increased, and the strength of the laminated iron core 50 can be increased. The bonding between the laminates may be performed by caulking or the like instead of welding.

次に、磁石挿入部51gに永久磁石4を挿入した後、積層鉄心50の両端部に端板29を取り付け、端板29の中央部に形成されたシャフト挿入孔29sと積層鉄心50の中央部に形成されたシャフト挿入孔53にシャフト3を挿入し、焼きばめ、圧入等でシャフト3に積層鉄心50と端板29とを固定し、図3に示す回転子2を得る。
本実施の形態1では、鉄心片20a、20bに電磁鋼板を用いているが、SPCC等の磁気特性を有する板状の材料であり、溝加工が可能なものであれば他の板材を用いてもよい。
Next, after inserting the permanent magnet 4 into the magnet insertion portion 51g, end plates 29 are attached to both ends of the laminated iron core 50, and the shaft insertion hole 29s formed in the central portion of the end plate 29 and the central portion of the laminated iron core 50. The shaft 3 is inserted into the shaft insertion hole 53 formed in the above, and the laminated iron core 50 and the end plate 29 are fixed to the shaft 3 by shrink fitting, press fitting, or the like to obtain the rotor 2 shown in FIG.
In the first embodiment, electromagnetic steel sheets are used for the iron core pieces 20a and 20b, but if it is a plate-like material having magnetic characteristics such as SPCC and grooving is possible, another plate material is used. May be good.

図16は、積層鉄心50Dの斜視図である。
これまでの説明では、二種類の鉄心片20aと鉄心片20bとを使用する積層鉄心について説明したが、鉄心片20aだけを用いて積層鉄心50Dを構成してもよい。この場合、積層鉄心50Dの内部を通って径方向に抜ける流路を増やすことができ、永久磁石4の冷却効果を向上できる。
FIG. 16 is a perspective view of the laminated iron core 50D.
In the above description, the laminated iron core using two types of iron core pieces 20a and the iron core piece 20b has been described, but the laminated iron core 50D may be formed by using only the iron core piece 20a. In this case, the number of flow paths passing through the inside of the laminated iron core 50D in the radial direction can be increased, and the cooling effect of the permanent magnet 4 can be improved.

本発明の実施の形態1に係る回転電機100の回転子2および回転電機100によれば、外部から積層鉄心50内に流入した冷媒が、軸方向に流れる第三流路から径方向に分岐する第二流路の入り口に第二勾配部を設けることにより、冷媒の流れをスムーズに方向転換できるので、冷媒の圧力損失を抑制し、永久磁石4の冷却効果に優れた回転電機100の回転子2および、これを用いる回転電機100を提供できる。 According to the rotor 2 of the rotary electric machine 100 and the rotary electric machine 100 according to the first embodiment of the present invention, the refrigerant flowing into the laminated iron core 50 from the outside branches in the radial direction from the third flow path flowing in the axial direction. By providing the second gradient portion at the entrance of the second flow path, the flow of the refrigerant can be smoothly changed, so that the pressure loss of the refrigerant is suppressed and the rotor of the rotary electric machine 100 having an excellent cooling effect of the permanent magnet 4 is provided. 2 and the rotary electric machine 100 using the same can be provided.

また、積層鉄心50の第三流路52は、空隙部51Sの近くに設けられており、空隙部51Sは、第三流路52から流れてくる冷媒を積層鉄心50の外部に排出する径方向の流路の一部を形成し、この流路を短くできる。これにより、流路損失を減らして冷媒流量を増やすことができる。また、空隙部51Sは、軸方向にも繋がり、永久磁石4の周方向側面に沿って形成されているので、永久磁石4の冷却効果に優れた回転子2および、これを用いる回転電機100を得ることができる。 Further, the third flow path 52 of the laminated iron core 50 is provided near the gap portion 51S, and the gap portion 51S is in the radial direction in which the refrigerant flowing from the third flow path 52 is discharged to the outside of the laminated iron core 50. A part of the flow path of the above can be formed, and this flow path can be shortened. As a result, the flow path loss can be reduced and the refrigerant flow rate can be increased. Further, since the gap portion 51S is also connected in the axial direction and is formed along the circumferential side surface of the permanent magnet 4, the rotor 2 having an excellent cooling effect of the permanent magnet 4 and the rotary electric machine 100 using the rotor 2 are used. Obtainable.

また、第三流路52を、空隙部51Sより径方向内側に配置しているので、第一冷媒流入口29inから吸入した冷媒を、全て永久磁石4の周方向側面に流してこれを冷却することができる。これにより、永久磁石4の冷却効果に優れる回転子2および、これを用いる回転電機100を得ることができる。
また、第三流路52は、磁極間に配置しているので、永久磁石4が減磁しやすい極間部の冷却能力を高めることができる。これにより、性能が安定した回転子2および、これを用いる回転電機100を得ることができる。
Further, since the third flow path 52 is arranged radially inside the gap 51S, all the refrigerant sucked from the first refrigerant inflow port 29in is flowed to the circumferential side surface of the permanent magnet 4 to cool it. be able to. As a result, it is possible to obtain a rotor 2 having an excellent cooling effect on the permanent magnet 4 and a rotary electric machine 100 using the rotor 2.
Further, since the third flow path 52 is arranged between the magnetic poles, it is possible to increase the cooling capacity of the interpole portion where the permanent magnet 4 is easily demagnetized. As a result, it is possible to obtain a rotor 2 having stable performance and a rotary electric machine 100 using the rotor 2.

また、第一溝24は、周方向に隣接する永久磁石4の間に設けているので、回転子2から固定子1に向かう磁路抵抗を増やすことなく、第一流路54を形成することができる。これにより、永久磁石4の磁束を効率的に利用し、かつ、冷却効果に優れ、磁気特性と冷却特性を両立できる回転子2および、これを用いる回転電機100を得ることができる。 Further, since the first groove 24 is provided between the permanent magnets 4 adjacent in the circumferential direction, the first flow path 54 can be formed without increasing the magnetic path resistance from the rotor 2 to the stator 1. it can. As a result, it is possible to obtain a rotor 2 that efficiently utilizes the magnetic flux of the permanent magnet 4, has an excellent cooling effect, and can achieve both magnetic characteristics and cooling characteristics, and a rotary electric machine 100 that uses the rotor 2.

また、流路孔22の径方向の寸法は、周方向の寸法よりも大きくしている。これにより、積層鉄心50の外部から第三流路52に流入した冷媒を、スムーズに径方向に流すことができるため、流路損失が低減し、永久磁石4の冷却効果に優れた回転子2および、これを用いる回転電機100を得ることができる。 Further, the radial dimension of the flow path hole 22 is larger than the circumferential dimension. As a result, the refrigerant that has flowed into the third flow path 52 from the outside of the laminated iron core 50 can be smoothly flowed in the radial direction, so that the flow path loss is reduced and the rotor 2 has an excellent cooling effect on the permanent magnet 4. And, a rotary electric machine 100 using this can be obtained.

また、第一冷媒流入口29inは、軸方向両端面に設けられているので、冷媒吸入量が増え、かつ、第一冷媒流入口29inの1つ当たりの第三流路の長さを短くできる。これにより、流路の圧力損失を低減させ、積層鉄心50に吸入できる冷媒流量を増やすことができるので、永久磁石4の冷却効果に優れる回転子2および、これを用いる回転電機100を得ることができる。 Further, since the first refrigerant inlets 29in are provided on both end surfaces in the axial direction, the amount of refrigerant intake can be increased and the length of the third flow path per one of the first refrigerant inlets 29in can be shortened. .. As a result, the pressure loss in the flow path can be reduced and the flow rate of the refrigerant that can be sucked into the laminated iron core 50 can be increased, so that the rotor 2 having an excellent cooling effect of the permanent magnet 4 and the rotary electric machine 100 using the rotor 2 can be obtained. it can.

また、長孔21と流路孔22を形成後、第一溝24と第二溝25と第二勾配部25Mと第一勾配部24Mとを設けるため、鉄心片20aの切り口に生じる「ばり」を除去することができる。これにより、鉄心片20a、20bを積層する際に、「ばり」の混入を抑制し、組立性、信頼性に優れる回転子2および、これを用いる回転電機100を得ることができる。 Further, after the elongated hole 21 and the flow path hole 22 are formed, the first groove 24, the second groove 25, the second gradient portion 25M, and the first gradient portion 24M are provided, so that a “burr” generated at the cut end of the iron core piece 20a is provided. Can be removed. As a result, when laminating the iron core pieces 20a and 20b, it is possible to obtain a rotor 2 that suppresses the mixing of "burrs" and is excellent in assemblability and reliability, and a rotary electric machine 100 that uses the rotor 2.

回転電機100は、積層鉄心50の軸方向中央部に各径方向の流路が設けられた回転子2を用いているので、一般的に、最も温度が上がりやすい固定子コイル12の軸方向中央部を、気体冷媒で直接に冷却することが可能であるため、固定子1の冷却効果に優れた回転電機100を提供できる。 Since the rotary electric machine 100 uses a rotor 2 in which flow paths in each radial direction are provided in the axial center portion of the laminated iron core 50, in general, the axial center of the stator coil 12 where the temperature is most likely to rise is used. Since the portion can be directly cooled by the gaseous refrigerant, it is possible to provide the rotary electric machine 100 having an excellent cooling effect on the stator 1.

さらに、回転子2を構成する、鉄心片20a、20Ba、20Caは、鉄心片20bを更にプレス加工して形成されるので、冷媒流路の配置を容易に変更できる。これにより、永久磁石4の発熱量に応じて第一流路54、第二流路55を設ける積層数を変更し、永久磁石4の温度が高くなる軸方向中央部を集中的に冷却する等、回転電機100の設計仕様に合わせた積層鉄心50を製造することができる。また、多品種に対応しつつ、組立設備を小規模化し、回転子2および、これを用いる回転電機100の製造コストを下げることができる。 Further, since the iron core pieces 20a, 20Ba, and 20Ca constituting the rotor 2 are formed by further pressing the iron core pieces 20b, the arrangement of the refrigerant flow path can be easily changed. As a result, the number of layers in which the first flow path 54 and the second flow path 55 are provided is changed according to the amount of heat generated by the permanent magnet 4, and the central portion in the axial direction where the temperature of the permanent magnet 4 becomes high is intensively cooled. The laminated iron core 50 can be manufactured according to the design specifications of the rotary electric machine 100. In addition, it is possible to reduce the size of the assembly equipment and reduce the manufacturing cost of the rotor 2 and the rotary electric machine 100 using the rotor 2 while supporting a wide variety of products.

実施の形態2.
以下、本発明の実施の形態2に係る回転電機の回転子および回転電機を図を用いて実施の形態1と異なる部分を中心に説明する。
各図において、実施の形態1と実質的に同じ構成部分に対しては同じ符号を付す。
Embodiment 2.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the second embodiment of the present invention will be described with reference to the parts different from the first embodiment.
In each figure, substantially the same components as those in the first embodiment are designated by the same reference numerals.

図17は、本発明の実施の形態2に係る回転子202を、その中心軸を通る2つの平面で切断した断面模式図である。
図18は、本発明の実施の形態2に係る積層鉄心250を構成する鉄心片220aの正面図である。
図19は、図18、E部の要部斜視図である。
図20は、図18を裏側から見た図である。
図21は、図18のF−F線における断面図である。
実施の形態1で説明した回転子2と本実施の形態2に係る回転子202との違いは、第三流路252のうち、鉄心片220aを積層した部分の径方向の幅を、積層鉄心250の軸方向中央に近づくにつれて径方向外側に広がるように拡大している点である。従って、図17では、鉄心片220aに全て同じ符号を付しているが、図18〜21に示す鉄心片220aの流路孔222の径方向の幅は、各鉄心片220aにより異なり、積層鉄心250の中心側の鉄心片220aほど大きくなる。反対に、図17、19に示す第二溝225の径方向の幅は、積層鉄心250の軸方向の中心側ほど小さくなっている。なお、各鉄心片220aの第二溝225の径方向外側の位置は軸方向に揃っている。
FIG. 17 is a schematic cross-sectional view of the rotor 202 according to the second embodiment of the present invention, which is cut by two planes passing through the central axis thereof.
FIG. 18 is a front view of the iron core piece 220a constituting the laminated iron core 250 according to the second embodiment of the present invention.
FIG. 19 is a perspective view of a main part of FIG. 18 and E.
FIG. 20 is a view of FIG. 18 as viewed from the back side.
FIG. 21 is a cross-sectional view taken along the line FF of FIG.
The difference between the rotor 2 described in the first embodiment and the rotor 202 according to the second embodiment is that the radial width of the portion of the third flow path 252 in which the iron core pieces 220a are laminated is set to the laminated iron core. It is a point that expands so as to expand radially outward as it approaches the axial center of 250. Therefore, in FIG. 17, all the iron core pieces 220a are designated by the same reference numerals, but the radial width of the flow path hole 222 of the iron core pieces 220a shown in FIGS. 18 to 21 differs depending on each iron core piece 220a, and the laminated iron core. The iron core piece 220a on the center side of 250 becomes larger. On the contrary, the radial width of the second groove 225 shown in FIGS. 17 and 19 is smaller toward the center side in the axial direction of the laminated iron core 250. The positions of the second groove 225 of each iron core piece 220a on the outer side in the radial direction are aligned in the axial direction.

なお、図19では、実施の形態1と同様に第二溝225と鉄心片空隙部21Sとの境界、第一溝24と積層鉄心50の外周との境界には勾配部を設けていないが、これを設けてもよい。また、勾配部の形成面も、第二溝225、第一溝24の形成面と同一面のみでなく、反対面(図20で示した面)に形成してもよい。 In FIG. 19, a gradient portion is not provided at the boundary between the second groove 225 and the iron core piece gap 21S and the boundary between the first groove 24 and the outer periphery of the laminated iron core 50 as in the first embodiment. This may be provided. Further, the forming surface of the gradient portion may be formed not only on the same surface as the forming surface of the second groove 225 and the first groove 24 but also on the opposite surface (the surface shown in FIG. 20).

次に、図17を用いて、本実施の形態2に係る回転子202における永久磁石4を冷却する機構について説明する。
冷媒を流す各流路の構造、遠心力を利用して冷媒を流す基本的な構成は、実施の形態1と同様である。ただし、遠心力は、同じ角速度で回転する回転体では、中心からの距離に比例するため、第三流路252の径方向の幅を拡大すると、積層鉄心250の軸方向中央部において第三流路内252内の冷媒に生じる遠心力を大きくすることができる。これにより、冷媒の積層鉄心250内部への吸引力が増し、積層鉄心250内に流入する冷媒量を増やすことができる。さらに、第三流路252の外周側の側面のうち、鉄心片220aを積層した部分では、軸方向中心側が、径方向外側に位置する第二勾配部225Mを有するため、第三流路252から第二流路255へと曲がる部分で冷媒に生じる曲がり損失を低減させ、永久磁石4の冷却性能を向上することができる。
Next, with reference to FIG. 17, a mechanism for cooling the permanent magnet 4 in the rotor 202 according to the second embodiment will be described.
The structure of each flow path through which the refrigerant flows and the basic configuration in which the refrigerant flows by utilizing centrifugal force are the same as those in the first embodiment. However, since the centrifugal force is proportional to the distance from the center of a rotating body rotating at the same angular velocity, when the radial width of the third flow path 252 is expanded, the third flow occurs at the axial center of the laminated iron core 250. The centrifugal force generated in the refrigerant in the path 252 can be increased. As a result, the suction force of the refrigerant into the laminated iron core 250 is increased, and the amount of the refrigerant flowing into the laminated iron core 250 can be increased. Further, among the outer peripheral side surfaces of the third flow path 252, in the portion where the iron core pieces 220a are laminated, the axial center side has the second gradient portion 225M located on the outer side in the radial direction, so that the third flow path 252 It is possible to reduce the bending loss that occurs in the refrigerant at the portion that bends to the second flow path 255, and improve the cooling performance of the permanent magnet 4.

図22は、本実施の形態2に係る他の回転子202Bの断面模式図であり、積層鉄心250の他のバリエーションを示す断面模式図である。図22は、実施の形態1の図12に対応する。
図22に示す積層鉄心250Bは、鉄心片220aに替えて鉄心片220Baを積層している。鉄心片220aと鉄心片220Baとの違いは、第一勾配部24BM、第二勾配部225BMの形成面が、各溝部を設けた面と反対面となっている点である。その他、実施の形態1で説明したように、各勾配部は、鉄心片の両面に設けてもよい。また、本実施の形態では、各図において、流路孔222を楕円形状としたが、実施の形態1と同じ形状でもよい。
FIG. 22 is a schematic cross-sectional view of another rotor 202B according to the second embodiment, and is a schematic cross-sectional view showing another variation of the laminated iron core 250. FIG. 22 corresponds to FIG. 12 of the first embodiment.
In the laminated iron core 250B shown in FIG. 22, the iron core piece 220Ba is laminated instead of the iron core piece 220a. The difference between the iron core piece 220a and the iron core piece 220Ba is that the forming surface of the first gradient portion 24BM and the second gradient portion 225BM is opposite to the surface on which each groove portion is provided. In addition, as described in the first embodiment, each slope portion may be provided on both sides of the iron core piece. Further, in the present embodiment, the flow path hole 222 has an elliptical shape in each figure, but it may have the same shape as that of the first embodiment.

なお、鉄心片220aの製造方法は基本的に実施の形態1と同じであるが、各積層を構成する鉄心片220aごとの金型もしくは、パンチを径方向にずらして打ち抜く機構が必要となる。 The method of manufacturing the iron core piece 220a is basically the same as that of the first embodiment, but a die for each iron core piece 220a constituting each laminate or a mechanism for punching by shifting the punch in the radial direction is required.

本発明の実施の形態2に係る回転電機の回転子202および回転電機によれば、実施の形態1で説明した効果に加えて、以下の効果を奏する。
まず、第三流路252のうち、鉄心片220aを積層した部分の径方向の幅を、積層鉄心250の軸方向中央に近づくにつれて径方向外側に広がるように拡大しているので、流路の曲がり損失を低減させ、冷媒流量を増やすことができる。これにより永久磁石4の冷却効果に優れる回転子202および、これを用いる回転電機を得ることができる。
According to the rotor 202 of the rotary electric machine and the rotary electric machine according to the second embodiment of the present invention, the following effects are exhibited in addition to the effects described in the first embodiment.
First, in the third flow path 252, the radial width of the portion where the iron core pieces 220a are laminated is expanded so as to expand radially outward as it approaches the axial center of the laminated iron core 250. Bending loss can be reduced and the refrigerant flow rate can be increased. As a result, a rotor 202 having an excellent cooling effect on the permanent magnet 4 and a rotating electric machine using the rotor 202 can be obtained.

また、積層鉄心250の軸方向中央部において第三流路内の冷媒に生じる遠心力を大きくすることができるので、冷媒の積層鉄心250内部への吸引力を増し、流入する冷媒量を増加させることができる。これにより永久磁石4の冷却効果に優れる回転子202および、これを用いる回転電機を得ることができる。 Further, since the centrifugal force generated in the refrigerant in the third flow path at the central portion in the axial direction of the laminated iron core 250 can be increased, the suction force of the refrigerant into the laminated iron core 250 is increased, and the amount of the inflowing refrigerant is increased. be able to. As a result, a rotor 202 having an excellent cooling effect on the permanent magnet 4 and a rotating electric machine using the rotor 202 can be obtained.

さらに、第三流路252の径方向の幅を、大きな冷却効果が必要な軸方向中央部ほど径方向外側に拡大しているので、第三流路252全体としては、第三流路252が、積層鉄心250内で占有する径方向の幅を抑制できる。これにより、小型で冷却性能に優れる回転子202および、これを用いる回転電機を得ることができる。 Further, since the radial width of the third flow path 252 is expanded radially outward toward the central portion in the axial direction where a large cooling effect is required, the third flow path 252 as a whole has the third flow path 252. , The radial width occupied in the laminated iron core 250 can be suppressed. As a result, it is possible to obtain a rotor 202 that is compact and has excellent cooling performance, and a rotary electric machine that uses the rotor 202.

実施の形態3.
以下、本発明の実施の形態3に係る回転電機の回転子および回転電機を図を用いて実施の形態1と異なる部分を中心に説明する。
各図において、実施の形態1と実質的に同じ構成部分に対しては同じ符号を付す。
図23は、本発明の実施の形態3に係る回転子302を、その中心軸を通る2つの平面で切断した断面模式図である。実施の形態1で説明した回転子2と本実施の形態に係る回転子302との違いは、回転子302では、磁石挿入部51gの外周側壁面と永久磁石4の外周側側面との間および、磁石保持孔51の内周側壁面と永久磁石4の内周側側面との間の各隙間に、グリス7又は接着剤を塗布して永久磁石4を固着している点である。
Embodiment 3.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the third embodiment of the present invention will be described with reference to the parts different from the first embodiment.
In each figure, substantially the same components as those in the first embodiment are designated by the same reference numerals.
FIG. 23 is a schematic cross-sectional view of the rotor 302 according to the third embodiment of the present invention, which is cut by two planes passing through the central axis thereof. The difference between the rotor 2 described in the first embodiment and the rotor 302 according to the present embodiment is that in the rotor 302, between the outer peripheral side wall surface of the magnet insertion portion 51 g and the outer peripheral side surface of the permanent magnet 4. A point is that the permanent magnet 4 is fixed by applying grease 7 or an adhesive to each gap between the inner peripheral side wall surface of the magnet holding hole 51 and the inner peripheral side surface of the permanent magnet 4.

これまで説明したように、冷媒は、第一冷媒流入口29inから流入し、積層鉄心350の内部に形成する第三流路52、第二流路55、空隙部51S、第一流路54の各流路を通り、積層鉄心350の外部へ流出する。冷媒は、永久磁石4が発生する熱の他に、積層鉄心350自身が発生する熱、もしくは他から受ける熱を外部に放熱する役目を担う。そこで、永久磁石4と磁石挿入部51gの径方向間の隙間に、冷媒よりも熱伝導率の高いグリス7又は接着剤を塗布し、永久磁石4から発生する熱を積層鉄心350に効率よく伝熱させるために、積層鉄心350にヒートシンクの役割を果たさせる。これにより、永久磁石4の冷却性能を更に向上させることができる。 As described above, the refrigerant flows in from the first refrigerant inlet 29in and is formed inside the laminated iron core 350. Each of the third flow path 52, the second flow path 55, the gap 51S, and the first flow path 54. It flows out of the laminated iron core 350 through the flow path. In addition to the heat generated by the permanent magnet 4, the refrigerant has a role of dissipating heat generated by the laminated iron core 350 itself or heat received from others to the outside. Therefore, a grease 7 or an adhesive having a higher thermal conductivity than the refrigerant is applied to the gap between the permanent magnet 4 and the magnet insertion portion 51 g in the radial direction, and the heat generated from the permanent magnet 4 is efficiently transferred to the laminated iron core 350. The laminated iron core 350 acts as a heat sink for heating. Thereby, the cooling performance of the permanent magnet 4 can be further improved.

実施の形態4.
以下、本発明の実施の形態4に係る回転電機の回転子および回転電機を図を用いて実施の形態1と異なる部分を中心に説明する。
各図において、実施の形態1と実質的に同じ構成部分に対しては同じ符号を付す。
図24は、本発明の実施の形態4に係る回転子402を、その中心軸を通る2つの平面で切断した断面模式図である。
図25は、端板429の正面図である。
図26は、回転子402の要部上面図である。
実施の形態1で説明した回転子2と本実施の形態に係る回転子402との違いは、積層鉄心50の軸方向両端面に取り付けた、端板429の構成にある。
Embodiment 4.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the fourth embodiment of the present invention will be described with reference to the parts different from the first embodiment.
In each figure, the same reference numerals are given to the components substantially the same as those in the first embodiment.
FIG. 24 is a schematic cross-sectional view of the rotor 402 according to the fourth embodiment of the present invention, which is cut by two planes passing through the central axis thereof.
FIG. 25 is a front view of the end plate 429.
FIG. 26 is a top view of a main part of the rotor 402.
The difference between the rotor 2 described in the first embodiment and the rotor 402 according to the present embodiment is the configuration of the end plates 429 attached to both end faces in the axial direction of the laminated iron core 50.

端板429には、永久磁石4の軸方向端面の一部を外部に露出させる永久磁石露出孔429gおよび、空隙部51Sを軸方向に外部に開口させる第二冷媒流入口429inを設けている。 The end plate 429 is provided with a permanent magnet exposed hole 429 g that exposes a part of the axial end surface of the permanent magnet 4 to the outside, and a second refrigerant inflow port 429in that opens the gap 51S to the outside in the axial direction.

端板429に、空隙部51Sと軸方向に連通する第二冷媒流入口429inを設けることにより、第二冷媒流入口429inからも積層鉄心50内に冷媒を流入させることができる。これにより、積層鉄心50内を通る冷媒の流量を増加させ、永久磁石4の冷却性能を向上することができる。 By providing the end plate 429 with a second refrigerant inflow port 429in that communicates with the gap 51S in the axial direction, the refrigerant can flow into the laminated iron core 50 from the second refrigerant inflow port 429in as well. As a result, the flow rate of the refrigerant passing through the laminated iron core 50 can be increased, and the cooling performance of the permanent magnet 4 can be improved.

図26に符号4で示す部分が、端板429の下の永久磁石4が存在する範囲である。端板429は、永久磁石4の軸方向への抜けを防止する機能を有するが、永久磁石4の軸方向の端面の全域を押さえる必要はなく、一部でよい。回転子402は、所定の速度で回転しているため、冷媒と回転子402との接触面は、回転速度と同等速度で冷媒を吹き付けるのと同様の冷却効果を得る。そこで、端板429に永久磁石4の軸方向端面を一部露出する永久磁石露出孔429gを形成することで、外部に露出する永久磁石4の軸方向の端面を直接冷却することが可能となり、永久磁石4の冷却性能を更に向上することができる。 The portion indicated by reference numeral 4 in FIG. 26 is the range in which the permanent magnet 4 under the end plate 429 exists. The end plate 429 has a function of preventing the permanent magnet 4 from coming off in the axial direction, but it is not necessary to press the entire area of the end face of the permanent magnet 4 in the axial direction, and a part of the end plate 429 may be used. Since the rotor 402 is rotating at a predetermined speed, the contact surface between the refrigerant and the rotor 402 obtains a cooling effect similar to that of spraying the refrigerant at a speed equivalent to the rotation speed. Therefore, by forming a permanent magnet exposed hole 429 g in the end plate 429 that partially exposes the axial end face of the permanent magnet 4, it becomes possible to directly cool the axial end face of the permanent magnet 4 exposed to the outside. The cooling performance of the permanent magnet 4 can be further improved.

なお、実施の形態1〜4で説明した各回転子2〜402において、鉄心片20a〜220Ba、鉄心片20bの枚数、および組み合わせは、各図に限定されるものではない。また、鉄心片20a〜220Ba、20bに形成する各孔、溝、勾配部の形状、位置、個数も各図に限定されるものではない。また、永久磁石4の個数、位置、形状もこれに限定されるものではない。また、一つの磁石保持孔51に複数個の永久磁石を挿入しても問題はない。 In each of the rotors 2 to 402 described in the first to fourth embodiments, the number and combination of the iron core pieces 20a to 220Ba and the iron core pieces 20b are not limited to the respective figures. Further, the shapes, positions, and numbers of the holes, grooves, and slopes formed in the iron core pieces 20a to 220Ba and 20b are not limited to each figure. Further, the number, position, and shape of the permanent magnets 4 are not limited to this. Further, there is no problem even if a plurality of permanent magnets are inserted into one magnet holding hole 51.

また、各実施の形態で示した回転電機において、極数、固定子の仕様(分布巻き、集中巻き、スロット数など)も特に制約はない。 Further, in the rotary electric machine shown in each embodiment, the number of poles and the specifications of the stator (distributed winding, centralized winding, number of slots, etc.) are not particularly limited.

実施の形態5.
以下、本発明の実施の形態5に係る圧縮機を図を用いて説明する。
各図において、実施の形態1と実質的に同じ構成部分に対しては同じ符号を付す。
図27は、圧縮機110の断面図である。
圧縮機110は、フレーム110Fと、実施の形態1に係る回転電機100と、圧縮機構70とからなる。
Embodiment 5.
Hereinafter, the compressor according to the fifth embodiment of the present invention will be described with reference to the drawings.
In each figure, substantially the same components as those in the first embodiment are designated by the same reference numerals.
FIG. 27 is a cross-sectional view of the compressor 110.
The compressor 110 includes a frame 110F, a rotary electric machine 100 according to the first embodiment, and a compression mechanism 70.

回転電機100の回転子のシャフト3は、圧縮機構70に接続されている。そして、回転電機100が回転すると、圧縮機構70が駆動する。このように、回転電機100を備える圧縮機110によれば、高効率で安定性の高い圧縮機を提供できる。本実施の形態では、回転電機100をエアコン用の圧縮機110を駆動するモータに使用する例を示したが回転電機100の用途はこれに限定するものではない。また、回転子2に替えて、各実施の形態で説明した回転子202〜402を使用してもよい。 The shaft 3 of the rotor of the rotary electric machine 100 is connected to the compression mechanism 70. Then, when the rotary electric machine 100 rotates, the compression mechanism 70 is driven. As described above, according to the compressor 110 provided with the rotary electric machine 100, it is possible to provide a compressor with high efficiency and high stability. In the present embodiment, an example in which the rotary electric machine 100 is used as a motor for driving a compressor 110 for an air conditioner is shown, but the application of the rotary electric machine 100 is not limited to this. Further, instead of the rotor 2, the rotors 202 to 402 described in each embodiment may be used.

本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 In the present invention, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.

100 回転電機、110 圧縮機、110F フレーム、1 固定子、
2,202,202B,302,402 回転子、3 シャフト、4 永久磁石、
11 固定子鉄心、12 固定子コイル、
20a,20b,20Ba,20Ca,220a,220Ba 鉄心片、21 長孔、
21S 鉄心片空隙部、21g 鉄心片磁石挿入部、22,222 流路孔、
23 シャフト孔、24 第一溝、24M,24BM、24CM 第一勾配部、
25,225 第二溝、
25M,25BM,25CM,225M,225BM 第二勾配部、26 境界部、
27 磁気遮断部、29,429 端板、429g 永久磁石露出孔、
29in 第一冷媒流入口、429in 第二冷媒流入口、29s シャフト挿入孔、
50,50B,50C,50D,250,250B,350 積層鉄心、
51 磁石保持孔、51g 磁石挿入部、51S 空隙部、52,252 第三流路、
53 シャフト挿入孔、54 第一流路、55,255 第二流路、57 磁気遮断路、70 圧縮機構、D20a,D20b 下型、U20a,U20b 上型、
7 グリス、K 電磁鋼板、Y 溶接ビード。
100 rotary electric machine, 110 compressor, 110F frame, 1 stator,
2,202,202B, 302,402 Rotor, 3 shaft, 4 permanent magnet,
11 stator core, 12 stator coil,
20a, 20b, 20Ba, 20Ca, 220a, 220Ba Iron core piece, 21 long holes,
21S iron core piece gap, 21g iron core piece magnet insertion part, 22,222 flow path hole,
23 shaft hole, 24 first groove, 24M, 24BM, 24CM first gradient part,
25,225 Second groove,
25M, 25BM, 25CM, 225M, 225BM Second gradient part, 26 boundary part,
27 Magnetic block, 29,429 End plate, 429g Permanent magnet exposed hole,
29in 1st refrigerant inlet, 429in 2nd refrigerant inlet, 29s shaft insertion hole,
50, 50B, 50C, 50D, 250, 250B, 350 laminated iron core,
51 magnet holding hole, 51g magnet insertion part, 51S gap part, 52,252 third flow path,
53 Shaft insertion hole, 54 1st flow path, 55, 255 2nd flow path, 57 Magnetic cutoff path, 70 compression mechanism, D20a, D20b lower die, U20a, U20b upper die,
7 Grease, K electromagnetic steel plate, Y weld bead.

Claims (17)

複数の第一鉄心片を積層して形成する積層鉄心と、前記積層鉄心に軸方向に挿入した複数の永久磁石と、前記積層鉄心に挿入したシャフトとを有する回転電機の回転子であって、
前記積層鉄心は、
中央に設けた前記シャフトを挿入するシャフト挿入孔と、
周方向に間隔を空けて、軸方向に貫通するように形成された磁石保持孔と、
隣り合う2つの前記磁石保持孔の間の径方向内側にそれぞれ設けられ、軸方向に貫通し、外部からの冷媒が前記積層鉄心の内部を流れ、外部に排出される流路の一部となる第三流路と、
前記流路の一部であり、前記第三流路から径方向に連通する第二流路と、
前記流路の一部であり、前記磁石保持孔と径方向に連通し、前記積層鉄心の径方向外側に開口する第一流路とを備え、
前記磁石保持孔は、
前記永久磁石を挿入する磁石挿入部と、
前記永久磁石の周方向側面に沿って形成され、前記第二流路から径方向に連通する、前記流路の一部である空隙部とからなり、
前記第一鉄心片は、
前記第一鉄心片が複数枚積層されて前記第三流路となる流路孔と、
前記第一鉄心片が複数枚積層されて前記第二流路となる第二溝と、
前記第一鉄心片が複数枚積層されて前記磁石保持孔となる長孔と、
前記第一鉄心片が複数枚積層されて前記第一流路となる第一溝とを備え、
少なくとも、前記第二溝の内側の端部の軸方向の一面に、面取りされた第二勾配部を備え
軸方向中央部から軸方向の一方に積層された複数の前記第一鉄心片と、
軸方向の他方に積層された複数の前記第一鉄心片とは、前記第二勾配部が形成された前記第二溝の軸方向の一面が軸方向中央に向いて積層されている回転電機の回転子。
A rotor of a rotary electric machine having a laminated iron core formed by laminating a plurality of first core pieces, a plurality of permanent magnets inserted into the laminated iron core in the axial direction, and a shaft inserted into the laminated iron core.
The laminated iron core
A shaft insertion hole provided in the center for inserting the shaft,
Magnet holding holes formed so as to penetrate in the axial direction at intervals in the circumferential direction,
It is provided on the inside in the radial direction between the two adjacent magnet holding holes, penetrates in the axial direction, and the refrigerant from the outside flows inside the laminated iron core and becomes a part of the flow path discharged to the outside. The third flow path and
A second flow path that is a part of the flow path and communicates radially from the third flow path,
It is provided with a first flow path that is a part of the flow path, communicates with the magnet holding hole in the radial direction, and opens radially outward of the laminated iron core.
The magnet holding hole is
A magnet insertion part for inserting the permanent magnet and
It is composed of a gap portion that is a part of the flow path, which is formed along the circumferential side surface of the permanent magnet and communicates radially from the second flow path.
The first iron core piece is
A flow path hole in which a plurality of the first iron core pieces are laminated to form the third flow path,
A second groove in which a plurality of the first iron core pieces are laminated to form the second flow path,
A long hole in which a plurality of the first iron core pieces are laminated to serve as the magnet holding hole, and
A first groove in which a plurality of the first iron core pieces are laminated to form the first flow path is provided.
At least one surface in the axial direction of the inner end of the second groove is provided with a chamfered second gradient portion.
A plurality of the first iron core pieces laminated from the central portion in the axial direction to one in the axial direction,
The plurality of the first core pieces stacked in the axial direction of the other, the rotating electrical machine one side of the axial direction of the said second slope portion is formed a second groove that are stacked axially oriented center Rotor.
前記第二溝の内側の端部の軸方向の他面に、面取りされた第二勾配部を備える請求項1に記載の回転電機の回転子。 The rotor of a rotary electric machine according to claim 1, further comprising a chamfered second gradient portion on the other surface in the axial direction of the inner end portion of the second groove. 少なくとも、前記第一溝の内側の端部の軸方向の一面に、面取りされた第一勾配部を備える請求項1又は請求項2に記載の回転電機の回転子。 The rotor of the rotary electric machine according to claim 1 or 2, wherein at least one surface of the inner end of the first groove in the axial direction is provided with a chamfered first gradient portion. 少なくとも、前記第二溝と前記長孔の境界の軸方向の一面に、面取りされた勾配部を備える請求項1から請求項3のいずれか1項に記載の回転電機の回転子。 The rotor of a rotary electric machine according to any one of claims 1 to 3, wherein a chamfered slope portion is provided on at least one surface of the boundary between the second groove and the elongated hole in the axial direction. 少なくとも、前記第一溝の外周の縁部の一面に、面取りされた勾配部を備える請求項1から請求項4のいずれか1項に記載の回転電機の回転子。 The rotor of a rotary electric machine according to any one of claims 1 to 4, wherein at least one surface of the outer peripheral edge of the first groove is provided with a chamfered gradient portion. 周方向に並んだ2つの前記第一流路が、それぞれ異なる前記空隙部を介して、1つの前記第二流路に連通する請求項1から請求項5のいずれか1項に記載の回転電機の回転子。 The rotary electric machine according to any one of claims 1 to 5, wherein the two first flow paths arranged in the circumferential direction communicate with one second flow path through different gaps. Rotor. 複数の第一鉄心片を積層して形成する積層鉄心と、前記積層鉄心に軸方向に挿入した複数の永久磁石と、前記積層鉄心に挿入したシャフトとを有する回転電機の回転子であって、
前記積層鉄心は、
中央に設けた前記シャフトを挿入するシャフト挿入孔と、
周方向に間隔を空けて、軸方向に貫通するように形成された磁石保持孔と、
隣り合う2つの前記磁石保持孔の間の径方向内側にそれぞれ設けられ、軸方向に貫通し、外部からの冷媒が前記積層鉄心の内部を流れ、外部に排出される流路の一部となる第三流路と、
前記流路の一部であり、前記第三流路から径方向に連通する第二流路と、
前記流路の一部であり、前記磁石保持孔と径方向に連通し、前記積層鉄心の径方向外側に開口する第一流路とを備え、
前記磁石保持孔は、
前記永久磁石を挿入する磁石挿入部と、
前記永久磁石の周方向側面に沿って形成され、前記第二流路から径方向に連通する、前記流路の一部である空隙部とからなり、
前記第一鉄心片は、
前記第一鉄心片が複数枚積層されて前記第三流路となる流路孔と、
前記第一鉄心片が複数枚積層されて前記第二流路となる第二溝と、
前記第一鉄心片が複数枚積層されて前記磁石保持孔となる長孔と、
前記第一鉄心片が複数枚積層されて前記第一流路となる第一溝とを備え、
少なくとも、前記第二溝の内側の端部の軸方向の一面に、面取りされた第二勾配部を備え、
2つの前記第一流路を合わせた周方向の幅と、前記第二流路の周方向の幅と、前記第三流路の周方向の幅とは同じである回転電機の回転子。
A rotor of a rotary electric machine having a laminated iron core formed by laminating a plurality of first core pieces, a plurality of permanent magnets inserted into the laminated iron core in the axial direction, and a shaft inserted into the laminated iron core.
The laminated iron core
A shaft insertion hole provided in the center for inserting the shaft,
Magnet holding holes formed so as to penetrate in the axial direction at intervals in the circumferential direction,
It is provided on the inside in the radial direction between the two adjacent magnet holding holes, penetrates in the axial direction, and the refrigerant from the outside flows inside the laminated iron core and becomes a part of the flow path discharged to the outside. The third flow path and
A second flow path that is a part of the flow path and communicates radially from the third flow path,
It is provided with a first flow path that is a part of the flow path, communicates with the magnet holding hole in the radial direction, and opens radially outward of the laminated iron core.
The magnet holding hole is
A magnet insertion part for inserting the permanent magnet and
It is composed of a gap portion that is a part of the flow path, which is formed along the circumferential side surface of the permanent magnet and communicates radially from the second flow path.
The first iron core piece is
A flow path hole in which a plurality of the first iron core pieces are laminated to form the third flow path,
A second groove in which a plurality of the first iron core pieces are laminated to form the second flow path,
A long hole in which a plurality of the first iron core pieces are laminated to serve as the magnet holding hole, and
A first groove in which a plurality of the first iron core pieces are laminated to form the first flow path is provided.
At least one surface in the axial direction of the inner end of the second groove is provided with a chamfered second gradient portion.
Two said width of the first channel and the combined circumferential direction, wherein a circumferential width of the second channel, the third flow passage in the circumferential direction of the rotor of the same der Ru rotary electric machine width.
複数の第一鉄心片を積層して形成する積層鉄心と、前記積層鉄心に軸方向に挿入した複数の永久磁石と、前記積層鉄心に挿入したシャフトとを有する回転電機の回転子であって、
前記積層鉄心は、
中央に設けた前記シャフトを挿入するシャフト挿入孔と、
周方向に間隔を空けて、軸方向に貫通するように形成された磁石保持孔と、
隣り合う2つの前記磁石保持孔の間の径方向内側にそれぞれ設けられ、軸方向に貫通し、外部からの冷媒が前記積層鉄心の内部を流れ、外部に排出される流路の一部となる第三流路と、
前記流路の一部であり、前記第三流路から径方向に連通する第二流路と、
前記流路の一部であり、前記磁石保持孔と径方向に連通し、前記積層鉄心の径方向外側に開口する第一流路とを備え、
前記磁石保持孔は、
前記永久磁石を挿入する磁石挿入部と、
前記永久磁石の周方向側面に沿って形成され、前記第二流路から径方向に連通する、前記流路の一部である空隙部とからなり、
前記第一鉄心片は、
前記第一鉄心片が複数枚積層されて前記第三流路となる流路孔と、
前記第一鉄心片が複数枚積層されて前記第二流路となる第二溝と、
前記第一鉄心片が複数枚積層されて前記磁石保持孔となる長孔と、
前記第一鉄心片が複数枚積層されて前記第一流路となる第一溝とを備え、
少なくとも、前記第二溝の内側の端部の軸方向の一面に、面取りされた第二勾配部を備え、
前記第三流路の径方向の幅は、周方向の幅よりも大きい回転電機の回転子。
A rotor of a rotary electric machine having a laminated iron core formed by laminating a plurality of first core pieces, a plurality of permanent magnets inserted into the laminated iron core in the axial direction, and a shaft inserted into the laminated iron core.
The laminated iron core
A shaft insertion hole provided in the center for inserting the shaft,
Magnet holding holes formed so as to penetrate in the axial direction at intervals in the circumferential direction,
It is provided on the inside in the radial direction between the two adjacent magnet holding holes, penetrates in the axial direction, and the refrigerant from the outside flows inside the laminated iron core and becomes a part of the flow path discharged to the outside. The third flow path and
A second flow path that is a part of the flow path and communicates radially from the third flow path,
It is provided with a first flow path that is a part of the flow path, communicates with the magnet holding hole in the radial direction, and opens radially outward of the laminated iron core.
The magnet holding hole is
A magnet insertion part for inserting the permanent magnet and
It is composed of a gap portion that is a part of the flow path, which is formed along the circumferential side surface of the permanent magnet and communicates radially from the second flow path.
The first iron core piece is
A flow path hole in which a plurality of the first iron core pieces are laminated to form the third flow path,
A second groove in which a plurality of the first iron core pieces are laminated to form the second flow path,
A long hole in which a plurality of the first iron core pieces are laminated to serve as the magnet holding hole, and
A first groove in which a plurality of the first iron core pieces are laminated to form the first flow path is provided.
At least one surface in the axial direction of the inner end of the second groove is provided with a chamfered second gradient portion.
The width of the third flow path diameter direction of the circumferential direction of not size rotating electrical machine of the rotor than the width.
複数の第一鉄心片を積層して形成する積層鉄心と、前記積層鉄心に軸方向に挿入した複数の永久磁石と、前記積層鉄心に挿入したシャフトとを有する回転電機の回転子であって、
前記積層鉄心は、
中央に設けた前記シャフトを挿入するシャフト挿入孔と、
周方向に間隔を空けて、軸方向に貫通するように形成された磁石保持孔と、
隣り合う2つの前記磁石保持孔の間の径方向内側にそれぞれ設けられ、軸方向に貫通し、外部からの冷媒が前記積層鉄心の内部を流れ、外部に排出される流路の一部となる第三流路と、
前記流路の一部であり、前記第三流路から径方向に連通する第二流路と、
前記流路の一部であり、前記磁石保持孔と径方向に連通し、前記積層鉄心の径方向外側に開口する第一流路とを備え、
前記磁石保持孔は、
前記永久磁石を挿入する磁石挿入部と、
前記永久磁石の周方向側面に沿って形成され、前記第二流路から径方向に連通する、前記流路の一部である空隙部とからなり、
前記第一鉄心片は、
前記第一鉄心片が複数枚積層されて前記第三流路となる流路孔と、
前記第一鉄心片が複数枚積層されて前記第二流路となる第二溝と、
前記第一鉄心片が複数枚積層されて前記磁石保持孔となる長孔と、
前記第一鉄心片が複数枚積層されて前記第一流路となる第一溝とを備え、
少なくとも、前記第二溝の内側の端部の軸方向の一面に、面取りされた第二勾配部を備え、
軸方向中央部から軸方向の一方に積層された複数の前記第一鉄心片と、
軸方向の他方に積層された複数の前記第一鉄心片とは、表裏が逆に積層されている回転電機の回転子。
A rotor of a rotary electric machine having a laminated iron core formed by laminating a plurality of first core pieces, a plurality of permanent magnets inserted into the laminated iron core in the axial direction, and a shaft inserted into the laminated iron core.
The laminated iron core
A shaft insertion hole provided in the center for inserting the shaft,
Magnet holding holes formed so as to penetrate in the axial direction at intervals in the circumferential direction,
It is provided on the inside in the radial direction between the two adjacent magnet holding holes, penetrates in the axial direction, and the refrigerant from the outside flows inside the laminated iron core and becomes a part of the flow path discharged to the outside. The third flow path and
A second flow path that is a part of the flow path and communicates radially from the third flow path,
It is provided with a first flow path that is a part of the flow path, communicates with the magnet holding hole in the radial direction, and opens radially outward of the laminated iron core.
The magnet holding hole is
A magnet insertion part for inserting the permanent magnet and
It is composed of a gap portion that is a part of the flow path, which is formed along the circumferential side surface of the permanent magnet and communicates radially from the second flow path.
The first iron core piece is
A flow path hole in which a plurality of the first iron core pieces are laminated to form the third flow path,
A second groove in which a plurality of the first iron core pieces are laminated to form the second flow path,
A long hole in which a plurality of the first iron core pieces are laminated to serve as the magnet holding hole, and
A first groove in which a plurality of the first iron core pieces are laminated to form the first flow path is provided.
At least one surface in the axial direction of the inner end of the second groove is provided with a chamfered second gradient portion.
A plurality of the first iron core pieces laminated from the central portion in the axial direction to one in the axial direction,
A plurality of said stacked in the axial direction of the other and the first core piece, front and back that are stacked in the reverse rotation electrical machine rotor.
前記積層鉄心は、軸方向の中央部に複数の前記第一鉄心片が積層され、
積層された前記第一鉄心片の軸方向の両側に、それぞれ複数の第二鉄心片が積層され、
前記第二鉄心片は、
前記第二鉄心片が複数枚積層されて前記第三流路となる流路孔と、
前記第二鉄心片が複数枚積層されて前記磁石保持孔となる長孔とを有する請求項1から請求項9のいずれか1項に記載の回転電機の回転子。
In the laminated iron core, a plurality of the first iron core pieces are laminated in the central portion in the axial direction.
A plurality of second iron core pieces are laminated on both sides of the laminated first iron core piece in the axial direction.
The second iron core piece is
A flow path hole in which a plurality of the second iron core pieces are laminated to form the third flow path,
The rotor of a rotary electric machine according to any one of claims 1 to 9, wherein a plurality of the second iron core pieces are laminated to form an elongated hole serving as the magnet holding hole.
前記第三流路の径方向の幅は、前記積層鉄心の軸方向中央に近づくにつれて径方向外側に広がるように拡大している請求項1から請求項10のいずれか1項に記載の回転電機の回転子。 The rotary electric machine according to any one of claims 1 to 10, wherein the radial width of the third flow path expands so as to expand radially outward as it approaches the axial center of the laminated iron core. Rotor. 前記永久磁石は、前記磁石保持孔の径方向の両壁面に、グリスまたは接着剤で固着されている請求項1から請求項11のいずれか1項に記載される回転電機の回転子。 The rotor of a rotating electric machine according to any one of claims 1 to 11, wherein the permanent magnet is fixed to both wall surfaces in the radial direction of the magnet holding hole with grease or an adhesive. 前記積層鉄心の軸方向の両端面に、前記第三流路と連通する第一冷媒流入口を有する端板を備える請求項1から請求項12のいずれか1項に記載の回転電機の回転子。 The rotor of the rotary electric machine according to any one of claims 1 to 12, further comprising end plates having a first refrigerant inlet communicating with the third flow path on both end faces in the axial direction of the laminated iron core. .. 前記端板は、前記空隙部に連通する、第二冷媒流入口を備える請求項13に記載の回転電機の回転子。 The rotor of a rotary electric machine according to claim 13, wherein the end plate includes a second refrigerant inlet that communicates with the gap. 前記端板は、前記永久磁石の軸方向端面の一部を外部に露出させる永久磁石露出孔を有する請求項13又は請求項14に記載の回転電機の回転子。 The rotor of a rotary electric machine according to claim 13 or 14, wherein the end plate has a permanent magnet exposed hole that exposes a part of the axial end surface of the permanent magnet to the outside. 固定子と、前記固定子の内周面に、所定の間隔を設けて外周面を対向させるように配設された請求項1から請求項15のいずれか1項に記載の回転子とを備える回転電機。 The rotor according to any one of claims 1 to 15, which is disposed on the inner peripheral surface of the stator so as to face the outer peripheral surfaces at a predetermined interval. Rotating electric machine. 請求項16に記載の回転電機と、前記回転電機のシャフトに接続された圧縮機構とを備える圧縮機。 A compressor including the rotary electric machine according to claim 16 and a compression mechanism connected to the shaft of the rotary electric machine.
JP2017100616A 2017-05-22 2017-05-22 Rotor of rotary electric machine, rotary electric machine and compressor Active JP6854700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100616A JP6854700B2 (en) 2017-05-22 2017-05-22 Rotor of rotary electric machine, rotary electric machine and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100616A JP6854700B2 (en) 2017-05-22 2017-05-22 Rotor of rotary electric machine, rotary electric machine and compressor

Publications (2)

Publication Number Publication Date
JP2018196302A JP2018196302A (en) 2018-12-06
JP6854700B2 true JP6854700B2 (en) 2021-04-07

Family

ID=64570710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100616A Active JP6854700B2 (en) 2017-05-22 2017-05-22 Rotor of rotary electric machine, rotary electric machine and compressor

Country Status (1)

Country Link
JP (1) JP6854700B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061768A1 (en) * 2016-09-29 2018-04-05 三菱電機株式会社 Rotor, rotary motor, and compressor
JP7302418B2 (en) * 2019-10-02 2023-07-04 トヨタ紡織株式会社 Rotating electric machine rotor manufacturing method and rotating electric machine rotor manufacturing apparatus
US20230366593A1 (en) * 2020-11-30 2023-11-16 Mitsubishi Electric Corporation Compressor, refrigeration cycle device, and air conditioner
WO2022137492A1 (en) * 2020-12-25 2022-06-30 三菱電機株式会社 Rotor, electric motor, compressor, refrigeration cycle device, and air conditioning device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133952A (en) * 1980-03-24 1981-10-20 Hitachi Ltd Salient pole type electric rotary machine
JP6230478B2 (en) * 2014-04-28 2017-11-15 三菱電機株式会社 Rotor, rotating electrical machine, and compressor
JP6194926B2 (en) * 2015-06-16 2017-09-13 トヨタ自動車株式会社 Rotating electrical machine rotor

Also Published As

Publication number Publication date
JP2018196302A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6854700B2 (en) Rotor of rotary electric machine, rotary electric machine and compressor
JP2748694B2 (en) Permanent magnet rotor of brushless motor and method of manufacturing the same
JP6688327B2 (en) Rotating electric machine rotor
EP3528367B1 (en) Rotor structure, motor and compressor
JP6017067B2 (en) Permanent magnet embedded rotary electric machine
JP4660406B2 (en) Rotating electric machine
EP1953896B1 (en) Rotor for electric rotating machine and electric rotating machine
JP2010063253A (en) Rotor
US10291092B2 (en) Rotor and motor including the same
EP1763121A2 (en) Rotating electrical machine
JP6079733B2 (en) Rotating electrical machine rotor
JP6230478B2 (en) Rotor, rotating electrical machine, and compressor
JP2017017956A (en) Rotor of rotary electric machine
JP2006033916A (en) Cooler of motor
CN111418131B (en) Stator core
US20130106234A1 (en) Rotor for permanent magnet type rotating electrical machine, permanent magnet type rotating electrical machine, and method for manufacturing rotor
WO2011037087A1 (en) Magnetic core for use in an armature, and method for manufacturing a magnetic core
JP2013099222A (en) Rotor and rotary electric machine
JP2015053831A (en) Rotor of rotating electrical machine
JP2012235546A (en) Rotor and rotating electric machine
JP6025998B2 (en) Magnetic inductor type electric motor
JP2010268659A (en) Structure for cooling rotor of permanent-magnet motor
JP5392012B2 (en) Electric motor
CN108141078B (en) Rotor of rotating electric machine, rotating electric machine provided with rotor, and method for manufacturing rotor
JP3740556B2 (en) Claw pole generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210316

R151 Written notification of patent or utility model registration

Ref document number: 6854700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151