WO2011037087A1 - Magnetic core for use in an armature, and method for manufacturing a magnetic core - Google Patents
Magnetic core for use in an armature, and method for manufacturing a magnetic core Download PDFInfo
- Publication number
- WO2011037087A1 WO2011037087A1 PCT/JP2010/066207 JP2010066207W WO2011037087A1 WO 2011037087 A1 WO2011037087 A1 WO 2011037087A1 JP 2010066207 W JP2010066207 W JP 2010066207W WO 2011037087 A1 WO2011037087 A1 WO 2011037087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic core
- punched
- boundary surface
- laminated
- punch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/146—Stator cores with salient poles consisting of a generally annular yoke with salient poles
- H02K1/148—Sectional cores
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
- H02K3/52—Fastening salient pole windings or connections thereto
- H02K3/521—Fastening salient pole windings or connections thereto applicable to stators only
- H02K3/522—Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
Definitions
- the present invention relates to an armature magnetic core and a method for manufacturing the magnetic core.
- the armature magnetic core is used particularly in an armature used in an axial gap type rotating electric machine.
- An axial gap type rotating electrical machine includes a rotor provided to be rotatable about a rotation axis, and a stator that faces the rotor in a direction parallel to the rotation axis (hereinafter referred to as “axial direction”). .
- the rotor and stator function as field elements and armatures, respectively.
- an armature magnetic core (hereinafter, also simply referred to as “magnetic core”) is annularly arranged in a circumferential direction perpendicular to the axial direction.
- the magnetic flux flowing through the magnetic core has a circumferential component because it flows in and out between a plurality of magnetic cores arranged annularly in the circumferential direction.
- the circumferential component of the magnetic flux causes the generation of eddy currents in the plane perpendicular to the circumferential direction, and consequently increases the iron loss.
- the magnetic core is formed of electrical steel sheets laminated in a radial direction with respect to the rotation axis (which is perpendicular to the axial direction and the circumferential direction of the magnetic core). Has been.
- the shape of the magnetic core as viewed from the opposing direction of the field element and the armature increases as the position in the radial direction increases (that is, It is desirable that the width be increased in the circumferential direction.
- Such a shape brings about the advantage that it is easy to increase the space factor of the armature winding while increasing the area of the magnetic core in the plan view in the opposite direction.
- the technique disclosed in Patent Document 1 can be used to manufacture such a magnetic core.
- Patent Document 2 exemplifies a technique in which two laminated structures of electromagnetic steel sheets are provided in one magnetic core that is wider in the circumferential direction toward the outer periphery.
- the magnetic flux flowing through the magnetic core tends to have a radial component. This is because the magnitude of the magnetic flux tends to be non-uniform in the radial direction. In particular, as described above, this tendency becomes prominent when the circumferential dimension of the magnetic core depends on the radial position.
- the magnetic core can flow more magnetic flux in the axial direction as its circumferential dimension is larger.
- the distribution in the radial direction of the magnetic flux amount of the field magnetic flux flowing between the field element and the magnetic core and the distribution in the radial direction of the circumferential dimension of the magnetic core are not necessarily proportional to each other. . Therefore, the radial distribution of the magnetic flux in the magnetic core becomes non-uniform as it gets closer to the field element, and becomes uniform as it gets away from the field element. Such a variation in the radial distribution of the magnetic flux in the axial direction indicates that the magnetic flux flowing through the magnetic core has a radial component.
- the magnetic flux flowing in the axial direction has a distribution in the radial direction, and the larger the circumferential dimension of the magnetic core, the more the magnetic flux flows.
- inflow and outflow of magnetic flux between the plurality of magnetic cores is guided by the yoke, but the magnetic flux distribution in the yoke is uniform. Therefore, the magnetic flux flowing in the magnetic core in the vicinity of the yoke tends to have a radial component.
- the radial component of the magnetic flux causes the generation of eddy currents in a plane perpendicular to the radial direction.
- each of the electrical steel sheets laminated in the radial direction extends in parallel to the plane perpendicular to the radial direction, and thus it is difficult to suppress the generation of eddy currents caused by the radial component of the magnetic flux.
- an object of the present invention is to provide a magnetic core that suppresses not only the generation of eddy current due to the circumferential component of magnetic flux but also the generation of eddy current due to the radial component. Another object is to improve the yield in manufacturing the magnetic core.
- the armature magnetic core according to the present invention includes a magnetic core (1) arranged in an annular shape in a circumferential direction ( ⁇ ) perpendicular to the axial direction in an armature facing the field element (4) in the axial direction (Z). ).
- each of the magnetic cores includes a first portion (1a) on one side in the circumferential direction and a second portion (1b) on the other side in the circumferential direction.
- Each of the first part and the second part includes a plurality of electromagnetic steel sheets (100) stacked in a radial direction (R) perpendicular to both the axial direction and the circumferential direction.
- the first portion has a first winding portion (11a) and a first boundary surface (110a)
- the second portion has a second winding portion (11b) and a second boundary surface (110b).
- the first boundary surface and the second boundary surface are parallel to the axial direction and the radial direction, and the first boundary surface and the second boundary surface are disposed adjacent to each other, and the first winding surface
- the part and the second winding part form a winding part (11) around which the armature winding (15) around the axial direction is wound.
- a second aspect of the armature core according to the present invention is the first aspect, wherein the field element rotates from the other side in the circumferential direction to the one side in the circumferential direction, Regarding the cross section at an arbitrary position in the radial direction (R) perpendicular to both the axial direction (Z) and the circumferential direction ( ⁇ ), the second portion (1b) is more than the first portion (1a). Is too narrow.
- the raw material (8) which is an electromagnetic steel sheet
- the raw material (8) is conveyed every predetermined length (P) in the conveying direction (K).
- the first punch reciprocates between the first position (92a, 92f; 90g, 90l) and the second position (92c, 92d; 90i, 90j).
- the position of the first punch is updated and repeated, and in the step (c), the laminated steel plates (101, 106) punched at the first position and the second position
- the laminated steel plates are laminated with the punched laminated steel plates (103, 104) as a boundary to obtain a plurality of laminated bodies (10a, 10b).
- (d) It further has the process of forming the magnetic core (1) by making the laminated bodies in the said process (c) adjoin, making the position punched out by the said 1st punch into the other side.
- the 2nd aspect of the manufacturing method of the magnetic core concerning this invention is the 1st aspect, Comprising: Among the said steel plates for lamination obtained by the said process (b), it is perpendicular
- a third aspect of the method for manufacturing a magnetic core according to the present invention is the second aspect or the third aspect, wherein (g) the step (a) is performed before the step (c) is performed.
- the raw material is moved using the second punch (91) that maintains the position (91a to 91f) in the width direction.
- a punching process is further provided.
- any cross section perpendicular to the radial direction is divided by the first boundary surface and the second boundary surface, so that the area where the eddy current can be generated is reduced.
- generation of eddy current is reduced.
- the surface perpendicular to the circumferential direction is divided by the boundaries between the plurality of electromagnetic steel plates laminated in the radial direction, the area where the eddy current can be generated is reduced, and the generation of eddy current is reduced.
- the magnetic resistance in the radial direction of the winding part is increased, which contributes to the reduction of the radial component itself of the magnetic flux flowing through the winding part.
- the cross-sectional area of the second portion located on the other side in the circumferential direction is smaller than the cross-sectional area of the first portion, and the reduction of eddy current becomes more remarkable.
- the first aspect of the magnetic core manufacturing method according to the present invention can manufacture the magnetic core according to the present invention.
- the steel sheet for lamination used in the magnetic core is obtained from the raw material with less waste, and the use efficiency of the raw material is increased, and as a result, the magnetic core is manufactured. Improve the yield in
- the third aspect of the method for manufacturing a magnetic core according to the present invention can form a magnetic flux guide portion and a buried portion of the magnetic core having dimensions in the width direction independent of the radial position.
- the core of the armature is roughly composed of a magnetic core 1, a back yoke 2, and a support member 3.
- the core 1 is shown separately from the back yoke 2 and the fixed plate 3.
- the separation is not performed.
- FIG. 24 shows a cross section of the rotating electrical machine at position XX in FIG. 1 and 24, the armature is employed in an axial gap type rotating electrical machine together with a field element 4 that rotates about an axis J as a rotational axis.
- the axial direction Z is adopted parallel to the axis J.
- the armature faces the field element 4 in the axial direction Z.
- the field element 4 includes a base body 41 and a field generator 42.
- the base body 41 is fixed to the rotatable shaft 40, and the field generating section 42 is fixed to the base body 41 and generates a field magnetic flux.
- the base body 41 employs a magnetic material so as to function as a so-called back yoke.
- the armature core is employed in the armature together with the armature winding 15 (not shown in FIG. 1) wound around the magnetic core 1 around the axial direction Z.
- winding includes not only an aspect involving an operation of winding a conducting wire around the magnetic core 1 but also an aspect in which an armature winding having a shape formed in advance as a coil is fitted to the magnetic core 1. .
- the coil is a so-called concentrated winding method in which the coil is wound around each of the magnetic cores 1.
- the magnetic core 1 is annularly arranged in the circumferential direction ⁇ with the axis J as the central axis.
- electromagnetic steel plates (not shown: described in detail later) are laminated in the radial direction R. That is, when the magnetic core 1 is employed as the core of the armature, the radial direction R for any of the magnetic cores 1 is annularly arranged so as to be perpendicular to the axial direction Z. Accordingly, as shown in FIG. 1, the radial directions R1 and R2 of different magnetic cores 1 are different from each other when viewed as a whole core.
- circumferential directions ⁇ 1 and ⁇ 2 for different magnetic cores 1 are different from each other when viewed as a whole core.
- the circumferential directions ⁇ 1 and ⁇ 2 can be regarded as common directions when viewed as the annular direction ⁇ (FIG. 24).
- the back yoke 2 is provided with an opening 21 that opens in the axial direction Z according to the magnetic core 1, and each opening 21 also opens radially inward.
- the magnetic core 1 has a winding part 11 around which the armature winding 15 is wound, and a magnetic flux guide part 12 positioned on the back yoke 2 side with respect to the winding part 11.
- the magnetic flux guide 12 is magnetically coupled to the magnetic core 1 and the back yoke 2 by fitting with the opening 21. Specifically, the magnetic flux guide 12 guides the magnetic flux flowing through the magnetic core 1 to the back yoke 2 or guides the magnetic flux flowing through the back yoke 2 to the magnetic core 1.
- an eddy current due to the axial component of the magnetic flux flowing in the magnetic core 1 having the magnetic flux guide 12 fitted to the opening 21 is generated in the back yoke 2.
- a plurality of openings 21 are combined to form an opening 20.
- the magnetic core 1 also has an embedded portion 13 located on the opposite side of the winding portion 11 with respect to the magnetic flux guide portion 12.
- the fixing plate 3 is provided with a groove 31.
- the groove 31 may penetrate in the axial direction Z.
- FIG. 24 an example in which an odd number (9) of magnetic cores 1 are provided is illustrated.
- the winding portion 11, the magnetic flux guide portion 12, the embedded portion 13, and the flange portion 14 of the magnetic core 1 appear on the left side in the drawing.
- the armature winding 15 appears instead on the right side in the figure.
- the embedded portion 13 is fitted with the groove 31, and the fixing plate 3 mechanically holds the magnetic core 1.
- the back yoke 2 and the magnetic core 1 are magnetically coupled, and the back yoke 2 does not necessarily need to mechanically hold the magnetic core 1. Therefore, if both the back yoke 2 and the fixed plate 3 are fixed to each other, the back yoke 2 and the fixed plate 3 can be formed with materials in view of the functions to be secured by the magnetic coupling and the mechanical coupling.
- the back yoke 2 is mainly formed of electromagnetic steel plates laminated along the axial direction Z, or is formed of a dust core.
- An example of the material of the fixing plate 3 is a metal lump.
- Securing of the fixing plate 3 and the magnetic core 1 does not require the fitting between the groove 31 and the embedded portion 13.
- both can be fixed by adhesion or welding.
- a flange portion 14 is provided at a position closest to the field element 4 in the magnetic core 1.
- the flange portion 14 is set wider than the winding portion 11.
- the flange portion 14 does not expand from the winding portion 11 in the radial direction R, and expands only along the circumferential direction ⁇ .
- the structure is illustrated. Of course, you may employ
- the magnetic core 1 includes a first portion 1a on one side in the circumferential direction ⁇ (arrowhead side in the drawing) and a second portion 1b on the other side in the circumferential direction ⁇ (arrowhead side in the drawing).
- the electromagnetic steel sheets 100 laminated in the radial direction are partially drawn while exaggerating their thickness.
- the shapes of the magnetic flux guide portion 12 and the embedded portion 13 do not depend on the radial direction R, and thus exhibit a rectangular parallelepiped.
- the circumferential dimensions W2 and W3 of the magnetic flux guide portion 12 and the embedded portion 13 do not depend on the position in the radial direction R.
- the winding part 11 becomes wide on the outer peripheral side (radial direction R side) for reasons such as increasing the space factor of the armature winding 15.
- the electromagnetic steel sheet 100 is locally deformed in the thickness direction to form a coupling portion, and the coupling portions are fitted to each other between the adjacent electromagnetic steel plates 100.
- the coupling portion may be simple irregularities, or the electromagnetic steel sheet 100 may be partially broken and deformed in the thickness direction.
- a technique for obtaining a bond between laminated electromagnetic steel sheets 100 using the latter modification is a well-known technique commonly referred to as “Karamase”.
- the coupling between the laminated electrical steel sheets 100 is applied individually to the first part 1a and the second part 1b.
- the magnetic core 1 is elongated in the axial direction Z, a plurality of coupling portions are provided along the axial direction Z for each electromagnetic steel sheet 100.
- the coupling portion deteriorates the magnetic properties of the electrical steel sheet, it is also desirable to provide the coupling portion in a place where the magnetic properties are less likely to be a problem, for example, the flange portion 14.
- the first portion 1a and the second portion 1b are adjacent to each other through the boundary surface 110.
- the first portion 1a includes a first winding portion 11a, a first magnetic flux guide portion 12a, a first embedded portion 13a, and a first flange portion 14a.
- the second portion 1b includes a second winding portion 11b, a second magnetic flux guide portion 12b, a second embedded portion 13b, and a second flange portion 14b.
- the first winding part 11a and the second winding part 11b together with the winding part 11, the first magnetic flux guiding part 12a together with the second magnetic flux guiding part 12b, and the first embedded part 13a as the second embedded part.
- the embedded portion 13 is formed together with 13b, and the first flange portion 14a and the second flange portion 14b constitute the flange portion 14 (see also FIG. 1).
- the first portion 1a has a first boundary surface 110a on the other side in the circumferential direction ⁇
- the second portion 1b has a second boundary surface 110b on one side in the circumferential direction ⁇ .
- the first boundary surface 110a and the second boundary surface 110b are adjacent to each other.
- the boundary surface 110 can be grasped as an adjacent position between the first boundary surface 110a and the second boundary surface 110b.
- the first boundary surface 110a and the second boundary surface 110b are not necessarily in direct contact with each other, and an insulating material having a sufficiently small thickness in the circumferential direction may be interposed therebetween. .
- the magnetic core 1 is formed by connecting the first portion 1a and the second portion 1b adjacent to each other via the boundary surface 110 (or the first boundary surface 110a and the second boundary surface 110b).
- Such coupling can be realized by employing, for example, a resin mold.
- any cross section perpendicular to the radial direction R is divided by the first boundary surface 110 a and the second boundary surface 110 b, so that an area in which the eddy current can be generated in the cross section. And the generation of eddy currents is reduced. That is, the generation of eddy current due to the radial component of the magnetic flux flowing through the magnetic core 1 can be suppressed.
- the plane perpendicular to the circumferential direction ⁇ is divided by the boundaries between the plurality of electromagnetic steel plates 100 stacked in the radial direction R. Therefore, the area where eddy currents can be generated due to the circumferential component of the magnetic flux flowing in the magnetic core 1 is reduced, thereby reducing the generation of eddy currents. Moreover, since the boundary of the electromagnetic steel sheet 100 has a magnetic resistance and becomes a barrier, the magnetic flux flowing through the magnetic core is less likely to flow in the radial direction R, thereby contributing to the reduction of the radial component itself of the magnetic flux flowing through the magnetic core.
- first boundary surface 110a and the second boundary surface 110b It is also desirable to sandwich an insulating material between the first boundary surface 110a and the second boundary surface 110b. This is because the insulating material improves the insulation between the first portion 1a and the second portion 1b, thereby ensuring the division in the plane perpendicular to the circumferential direction ⁇ of the magnetic core 1.
- an insulating sheet is sandwiched between the first portion 1a and the second portion 1b.
- the first boundary surface 110a and the second boundary surface 110b are adjacent to each other, and both are coupled. Forming the core 1. This cuts off the current between the first part 1a and the second part 1b, and it is desirable to pass the magnetic flux. Therefore, it is sufficient if the thickness is enough to cut off the eddy current.
- the welds do not contact each other. This is because, when the welded portions are in contact with each other, the possibility that the extending directions of the electromagnetic steel sheets 100 of the first portion 1a and the second portion 1b are not perpendicular to the radial direction R increases. Specifically, it is desirable that the welded portion is within the thickness range of the electromagnetic steel sheet 100 and is provided for each electromagnetic steel sheet 100.
- the periphery of the magnetic core 1 with the axial direction Z as an axis may be surrounded by a cylindrical insulator.
- the insulator 6 includes, for example, a pair of components 6 a and 6 b. The parts 6a and 6b are combined with each other along the circumferential direction ⁇ to couple the first part 1a and the second part 1b.
- the insulator 6 includes, for example, a pair of components 6c and 6d. Then, the parts 6c and 6d are combined with each other along the radial direction R to couple the first part 1a and the second part 1b.
- the armature winding 15 (see FIG. 24) is wound around the magnetic core 1 via the insulator 6.
- the magnetic core 1 may not be symmetric with respect to the boundary surface 110.
- FIG. 5 shows a case where the boundary surface 110 is shifted from the center of the magnetic core 1 in the circumferential direction ⁇ to the other side in the circumferential direction ⁇ .
- the cross section in the arbitrary positions of radial direction R can make the 2nd part 1b narrower than the 1st part 1a.
- the magnetic core 1 having such a configuration brings about a unique effect particularly in the following situation.
- the field element 4 When the field element 4 rotates from the other side in the circumferential direction ⁇ to one side, that is, when the field element 4 rotates in accordance with the direction of the arrow in the circumferential direction ⁇ , the field element 4 is interposed between the field element 4 and the magnetic core 1.
- the amount of magnetic flux that flows is greater on the other side than on one side. This is because, in the field element, when the field generating portion 42 approaches the magnetic core 1, a magnetic attractive force acts between them, and when it moves away, a magnetic repulsive force acts. Therefore, the amount of magnetic flux contributing to eddy current is greater on the other side in the circumferential direction than on one side in the circumferential direction of the magnetic core 1. Therefore, the eddy current is more effectively reduced by making the cross-sectional area of the cross section perpendicular to the radial direction R of the second portion 1b smaller than that of the first portion 1a.
- first boundary surface 110a and the second boundary surface 110b extend parallel to the radial direction R and the axial direction Z (that is, perpendicular to the circumferential direction ⁇ ) is illustrated.
- the laminated steel sheets extend perpendicular to the radial direction R when the first boundary surface 110a and the second boundary surface 110b are adjacent to form the magnetic core 1, the first boundary surface 110a.
- the second boundary surface 110b may be inclined with respect to the axial direction Z or the radial direction R.
- the angle formed by the first boundary surface 110a with the radial direction R at the outer peripheral end of the first portion 1a is different from the angle formed by the second boundary surface 110b with the radial direction R at the outer peripheral end within the second portion 1b.
- a complementary angle relationship (the sum of the two is a flat angle) may be used.
- the angle formed with the radial direction R may be a complementary angle.
- first boundary surface 110a and the second boundary surface 110b may be curved surfaces, and in this case, they are fitted together to form the boundary surface 110.
- the opening part 21 penetrates in the axial direction Z.
- the fixing plate 3 is not provided.
- the opening portion 21 does not need to penetrate in the axial direction Z, and in the axial direction Z, an opening for simply fitting with the magnetic flux guide portion 12 is provided. It's enough.
- the groove 31 is naturally not provided, and therefore, it is not necessary to provide the embedded portion 13 in the magnetic core 1.
- the opening 21 and the groove 31 may have the same shape as viewed from the axial direction Z.
- the magnetic flux guide portion 12 and the embedded portion 13 have the same shape as viewed from the axial direction Z.
- the magnetic flux guide portion 12, the embedded portion 13, and the winding portion 11 may have the same shape as viewed from the axial direction Z.
- the magnetic core 1 in such a case is shown in FIG.
- the magnetic core 1 may be employed in an armature that is sandwiched between a pair of rotors in the axial direction Z.
- a pair of winding portions 11 are provided and have a configuration in which the magnetic flux guide portion 12 is sandwiched in the axial direction Z.
- the collar part 14 can be provided in any winding part 11.
- FIG. 19 shows the magnetic core 1 in such a case.
- a mode in which the back yoke 2 and the fixed plate 3 are not provided may be employed.
- the magnetic core 1 does not require not only the embedded portion 13 but also the magnetic flux guide portion 12, for example, only the winding portion 11 extends between the pair of flange portions 14.
- the armature faces the field element only on one side in the axial direction Z
- the collar portion 14 located on the other side in the axial direction Z may be provided with a function of locking the groove 31 in the axial direction Z.
- the groove 31 also opens in the radial direction R in the same manner as the opening 21, and the magnetic core 1 is arranged from the inner peripheral side of the groove 31 and the opening 21.
- the structure of the magnetic core 1 can be variously modified as described above, the first boundary surface 110a and the second boundary surface 110b are parallel to the axial direction Z and the radial direction R from the viewpoint of easy manufacture. Is desirable. This is because the electromagnetic steel sheets forming the first portion 1a and the second portion 1b can be stacked with the first boundary surface 110a and the second boundary surface 110b parallel to the stacking direction aligned. In this respect, the structure is more advantageous than the structure of Patent Document 2 in which the electromagnetic steel sheets are stacked while being shifted with respect to the stacking direction.
- the magnetic core 1 has two advantages in the process of punching out the electromagnetic steel sheet constituting the magnetic core 1 from the raw material. One is reduction of waste materials, and one is reduction of the number of movable punches. Hereinafter, it will be described that these advantages can be obtained by explaining a specific punching process.
- FIG. 6 is a plan view showing the appearance of the magnetic core 1 in plan view in the opposite direction.
- a part on the radial direction R side of the first magnetic flux guiding portion 12a, the first embedded portion 13a, and the first winding portion 11a are all hidden behind the first flange portion 14a
- the diameter of the first magnetic flux guiding portion 12a Part of the direction R side, the second embedded portion 13b, and the second winding portion 11b are all hidden behind the second flange portion 14b.
- the raw material 8 that is an electromagnetic steel plate is transported in the transport direction K.
- the raw material 8 is long, and the longitudinal direction thereof is selected as the transport direction K.
- the raw material 8 is conveyed every predetermined length P, and when the conveyance of the raw material 8 is stopped, punching by a fixed punch or a movable punch, which will be described later, is executed.
- FIGS. 7 and 8 are drawn from the viewpoint of moving in accordance with the conveyance direction K of the raw material 8 for the sake of simplicity of explanation. Therefore, although the punching does not actually move in the transport direction K, the punching is illustrated as being performed at a plurality of positions.
- positions 91a to 91f indicate the positions of the fixed punches.
- the positions 91a to 91f may be collectively referred to as the position 91, or the fixed punch itself may be described as the position 91.
- the position of the fixed punch (and its position) 91 in the width direction perpendicular to the conveying direction K of the raw material 8 is maintained. In the sense that the position 91 in the width direction is fixed, it is “fixed”. Of course, from the necessity of punching the raw material 8, in the punching direction (in the direction perpendicular to the paper surface in accordance with FIGS. 7 to 9) It becomes movable. Therefore, the positions in the width direction of the positions 91a to 91f are equal.
- positions 92a to 92f indicate the positions of the movable punches.
- the positions 92a to 92f may be collectively referred to as the position 92, or the movable punch itself may be described as the position 92.
- the movable punch (and its position) 92 is movable in the width direction. Of course, it is also movable in the punching direction.
- the movable punch (and its position) 92 includes positions 92a and 92f (hereinafter also referred to as “first positions 92a and 92f”) existing at the leftmost position in the drawing, and positions 92c and 92d (hereinafter referred to as “second position” positioned at the rightmost position). 92c, 92d ”) in the width direction.
- the positions 91a to 91f and the positions 92a to 92f are illustrated in the order opposite to the transport direction K in this order. Since the raw material 8 is conveyed every predetermined length P and punching is performed when the conveyance of the raw material 8 is stopped, the positions 91a to 91f and the positions 92a to 92f are respectively predetermined along the conveying direction K. It will be illustrated at intervals of length P.
- the punching with the fixed punch and the punching with the movable punch are executed as a pair (however, the prior relationship between the two is not important), and the punching holes 90a to 90f shown in FIG. 9 are formed.
- the rectangular area Q is a position where the raw material 8 is further punched after the punching holes 90a to 90f are formed.
- the dimension in the transport direction K is equal to or less than the predetermined length P, and is set at an interval of the predetermined length P. The It is desirable that the punching holes 90a to 90f protrude from the rectangular region Q in the direction along the transport direction K.
- the punching hole 90a is obtained as a result of punching at the fixed punch position 91a and punching at the movable punch position 92a. The same applies to the other punched holes 90b to 90f. Positioning in the conveying direction K between the punching with the fixed punch and the punching with the movable punch is a well-known technique, and therefore details are not described here.
- the punched portion at the fixed punch position 91a and the punched portion at the movable punch position 92a slightly overlap.
- the positions 91b to 91f of the other fixed punches and the positions 92b to 92f of the movable punches protrude from the rectangular region Q in the direction along the conveying direction K, so that the punching holes 90a to 90f allow the raw material 8 to be moved to the left and right sides in the rectangular region Q to which the punching holes 90a to 90f belong. And to separate.
- the steel plates 101 to 106 and the lamination steel plates 101 to 106 and the lamination are respectively formed from the raw material 8 on one side (here, the left side in the drawing) and the other side (here, the right side in the drawing) of the punching holes 90a to 90f.
- Steel plates 201 to 206 are obtained. Since the positioning in the transport direction K between the punching of the rectangular area Q and the punching by the fixed punch or the movable punch is also a well-known technique, the details thereof are omitted. If the width dimension of the raw material 8 is exactly constant, the punching in the rectangular region Q may be replaced by a process of simply cutting the raw material 8 in the transport direction K.
- the narrow portion of the fixed punch (and its position) 91 is the magnetic flux guide portion 12, and the wide portion is the buried portion 13. Are complementary to each other. Further, the narrow portion of the movable punch (and its position) 92 has a complementary relationship with the flange portion 14 and the wide portion with the winding portion 11. In the pair of laminated steel plates that are simultaneously punched, if the total width dimension of the flange portion 14 and the total width dimension of the magnetic flux guide portion 12 are substantially the same, the use efficiency of the electromagnetic steel sheet is further increased.
- FIG. 10 shows the laminated steel plates 101 to 106 arranged in the order of punching.
- the arrowhead side of the white arrow is ahead in time, and the arrowhead side of the arrow is behind in time (the same applies to FIGS. 11, 13, and 14 described later).
- these are shown in an oblique arrangement in the punching order, but in practice it is not necessary to arrange them obliquely. Since the raw material 8 does not move in the direction (width direction) perpendicular to the conveyance direction K, the opposite side of the punched holes 90b to 90f (the width direction end side of the raw material 8) is aligned by punching out the rectangular region Q. In practice, it is desirable to be laminated in that way.
- the laminated steel plates 101 to 106 are obtained on the left side of the punched holes 90b to 90f.
- the first positions 92a and 92f are located on the leftmost side in the drawing. Therefore, the laminating steel plates 101 and 106 obtained from the left side of the punched holes 90a and 90f corresponding to the first positions 92a and 92f have a width dimension at a position corresponding to the winding portion 11 and the flange portion 14 so that the laminating steel plates.
- the smallest of 101-106 is the laminating steel plates 101 and 106 obtained from the left side of the punched holes 90a and 90f corresponding to the first positions 92a and 92f have a width dimension at a position corresponding to the winding portion 11 and the flange portion 14 so that the laminating steel plates. The smallest of 101-106.
- the steel plates 103 and 104 for lamination obtained from the left side of the punching holes 90c and 90d correspond to the winding part 11 and the flange part 14, respectively.
- the width dimension at the position is the largest among the steel plates 101 to 106 for lamination.
- the width dimension of the steel plates 102 and 105 for lamination is smaller than that of the steel plates 103 and 104 for lamination and larger than that of the steel plates 101 and 106 for lamination.
- the steel plates for laminating 101 to 106 are stacked in the order of punching, specifically, the one punched first is stacked below. At this time, as described above, the opposite side of the punched holes 90b to 90f is aligned and the steel plates 101 to 106 for lamination are laminated.
- stacking are shown laminated
- the method for determining the unit of lamination can be realized by a known method.
- Laminating steel plates 101 to 106 are laminated with the laminating steel plates 101 and 106 punched at the first positions 92a and 92f and the laminating steel plates 103 and 104 punched at the second positions 92c and 92d as a boundary.
- Laminates 10a and 10b are obtained.
- the laminated body 10a is composed of laminating steel plates 101 to 103
- the laminated body 10b is composed of laminating steel plates 104 to 106.
- FIG. 10 for the sake of easy explanation, the laminated steel plates 101 to 106 constituting the laminated bodies 10a and 10b are shown separately.
- the stacked bodies 10a and 10b are adjacent to each other with the positions punched by the movable punch 92 opposite to the punched holes 90b to 90f, that is, the stacked bodies 10a and 10b are adjacent to each other. It will function as the second portion 1b.
- the laminated steel plates 201 to 206 are laminated downward as they are punched out in the same manner as the laminated steel plates 101 to 106.
- a plurality of lamination steel plates 201 to 206 are laminated on the boundary between the lamination steel plates 201 and 206 punched at the first positions 92a and 92f and the lamination steel plates 203 and 204 punched at the second positions 92c and 92d.
- the laminates 20a and 20b are obtained.
- the laminate 20a is composed of lamination steel plates 204 to 206
- the laminate 20b is composed of lamination steel plates 201 to 203.
- the laminated steel plates 201 to 206 constituting the laminated bodies 20a and 20b are shown separately.
- the laminated bodies 20a and 20b function as the first part 1a and the second part 1b, respectively, by making the positions punched by the movable punch 92 opposite to each other and adjoining each other. .
- the portions not corresponding to the laminated steel plates 101 to 106 and 201 to 206 are the outside of the rectangular region Q and the portions corresponding to the punched holes 90 a to 90 f.
- the area of the punched holes 90a to 90f can be reduced by reducing the number of movable punches and that the outside of the rectangular region Q has been waste material in the past, In the embodiment, waste materials are reduced as compared with the conventional technique.
- punched holes 90g to 90l shown in FIG. are obtained only by a movable punch.
- the punching holes 90g to 90l are all the same shape, and only the positions in the width direction in the rectangular region Q are different.
- a punching hole is formed at a position in the width direction of the movable punch that is updated by reciprocating the movable punch in the width direction each time the raw material 8 is conveyed in the conveyance direction K by a predetermined length P and the conveyance is stopped.
- 90g-90l is punched out.
- the laminated steel plates obtained from both sides of the punched holes 90g to 90l in this way are the same as the laminated steel plates 101 to 106 and 201 to 206, and the laminated steel plates and punched holes punched by the punched holes 90g and 90l.
- a plurality of laminates can be obtained by laminating the laminate steel plates punched at 90i and 90j as boundaries.
- the magnetic core 1 can be formed by adjoining these laminated bodies with the positions punched by the movable punches opposite to each other.
- the shape of the punched holes 90g to 90l is constant in width except for the positions corresponding to the first flange portion 14a and the second flange portion 14b, the magnetic core shown in FIG. 17 can be formed. it can.
- the punching holes 90g to 90l shown in FIG. 18 can be employed for the magnetic core 1 in which the pair of flange portions 14 are provided without providing the embedded portion 13 as shown in FIG. These holes are also obtained only by a movable punch.
- the punched holes 90g to 90l are all the same shape, differ only in the position in the width direction in the rectangular region Q, and the width dimension is constant except for the positions corresponding to the pair of flange portions 14. Therefore, the magnetic core shown in FIG. 19 can be formed by laminating in the same manner as the laminating steel plates 101 to 106 and 201 to 206 to obtain a laminated body and adjoining them.
- the magnetic core 1 can be configured by using it.
- the magnetic core 1 obtained by implementing only the second embodiment has a trapezoidal shape in the plan view in the opposite direction.
- the corners of the trapezoid be chamfered or rounded so that the armature winding 15 can be in close contact with the winding part 11. Therefore, the difference in the width dimension in the circumferential direction ⁇ between the electromagnetic steel sheet disposed at the outer end in the radial direction R or the inner end and the electromagnetic steel sheet adjacent thereto is adjacent to the central portion in the radial direction R. It is desirable that it is larger than the difference in the width dimension between the pair of electrical steel sheets.
- the laminated bodies 10a and 10b or the laminated bodies 20a and 20b obtained by the second embodiment are additionally laminated with electromagnetic steel plates from the inside and outside in the radial direction R, respectively.
- the angle formed by the two hypotenuses of the trapezoid can be set to a value obtained by dividing the peripheral angle (360 degrees) by the number of magnetic cores arranged in an annular shape in the armature.
- a magnetic core that is divided in the circumferential direction ⁇ and a magnetic core that is not divided as in the conventional case may be mixed.
- the magnetic cores that are not divided have a rectangular shape in plan view in the facing direction, and are alternately arranged in the annular direction with the magnetic core into which the magnetic cores are divided.
- the angle formed by the two hypotenuses of the trapezoid in the plan view in the opposite direction of the divided magnetic core is a value obtained by dividing the peripheral angle (360 degrees) by the number of the divided magnetic cores arranged in the armature.
- the angle between the two hypotenuses of the trapezoid and the base must be the same isosceles trapezoid.
- the area of the magnetic core in the opposing direction plan view is the same for all the magnetic cores. This is because the number of turns of the armature winding is usually selected equally for all the magnetic cores, so that the symmetry of the magnetic field generated by the armature is improved.
- the two portions are a pair of electrical steel sheets, but a plurality of units may be simultaneously punched in the width direction of the electrical steel sheet with this as one unit.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacture Of Motors, Generators (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Disclosed is a magnetic core that minimizes not only eddy currents due to circumferential components of magnetic flux, but also those due to radial components. Each magnetic core (1) is provided with a first section (1a) on one side in a circumferential direction (θ) and a second section (1b) on the other side. The first section (1a) and second section (1b) each contain a plurality of magnetic steel sheets (100) layered in a radial direction (R) that is perpendicular to both the circumferential direction (θ) and an axial direction (Z). The first section (1a) has a first winding section (11a) and a first boundary surface (110a), and the second section (1b) has a second winding section (11b) and a second boundary surface (110b). The first boundary surface (110a) and the second boundary surface (110b) are parallel to the axis direction (Z) and the radial direction (R) and are placed up against each other. An armature winding wire is wound around the first winding section (1a) and the second winding section (1b), centered on the axis direction (Z).
Description
この発明は電機子用磁芯及び磁芯の製造方法に関する。当該電機子用磁芯は、特にアキシャルギャップ型の回転電機に採用される電機子において採用される。
The present invention relates to an armature magnetic core and a method for manufacturing the magnetic core. The armature magnetic core is used particularly in an armature used in an axial gap type rotating electric machine.
アキシャルギャップ型の回転電機は、回転軸を中心として回転可能に設けられた回転子と、回転軸に平行な方向(以下「軸方向」と称す)において当該回転子と対向する固定子とを備える。殆どの場合、回転子及び固定子はそれぞれ界磁子及び電機子として機能する。
An axial gap type rotating electrical machine includes a rotor provided to be rotatable about a rotation axis, and a stator that faces the rotor in a direction parallel to the rotation axis (hereinafter referred to as “axial direction”). . In most cases, the rotor and stator function as field elements and armatures, respectively.
電機子では電機子用磁芯(以下、単に「磁芯」とも称す)が、軸方向に垂直な周方向において環状に配置される。
In the armature, an armature magnetic core (hereinafter, also simply referred to as “magnetic core”) is annularly arranged in a circumferential direction perpendicular to the axial direction.
アキシャルギャップ型の回転電機において磁芯を流れる磁束は、周方向に環状に配置された複数の磁芯同士の間を流入出するため、周方向成分を有する。そして磁束の周方向成分は周方向に垂直な面における渦電流の発生、ひいては鉄損の増大を招来する。当該渦電流の発生を抑制するべく、磁芯をその回転軸に対する径方向(これは当該磁芯において軸方向にも周方向にも垂直である)に積層された電磁鋼板で形成することが提案されている。
In the axial gap type rotating electrical machine, the magnetic flux flowing through the magnetic core has a circumferential component because it flows in and out between a plurality of magnetic cores arranged annularly in the circumferential direction. The circumferential component of the magnetic flux causes the generation of eddy currents in the plane perpendicular to the circumferential direction, and consequently increases the iron loss. In order to suppress the generation of the eddy current, it is proposed that the magnetic core is formed of electrical steel sheets laminated in a radial direction with respect to the rotation axis (which is perpendicular to the axial direction and the circumferential direction of the magnetic core). Has been.
そして界磁子と電機子との対向方向から見た磁芯の形状(以下、「対向方向平面視における磁芯の形状」等と表現する)は、径方向についての位置が大きくなるほど(つまり外周ほど)周方向に幅広とすることが望まれる。かかる形状は対向方向平面視における磁芯の面積を大きくしつつ、電機子巻線の占積率を大きくし易いという利点を招来する。このような形状の磁芯の製造には、例えば特許文献1に開示された技術が採用できる。
The shape of the magnetic core as viewed from the opposing direction of the field element and the armature (hereinafter referred to as “the shape of the magnetic core in a plan view of the opposing direction” etc.) increases as the position in the radial direction increases (that is, It is desirable that the width be increased in the circumferential direction. Such a shape brings about the advantage that it is easy to increase the space factor of the armature winding while increasing the area of the magnetic core in the plan view in the opposite direction. For example, the technique disclosed in Patent Document 1 can be used to manufacture such a magnetic core.
なお、電磁鋼板の積層構造の二つが、外周ほど周方向に幅広な一つの磁芯に備えられる技術が特許文献2に例示されている。
Note that Patent Document 2 exemplifies a technique in which two laminated structures of electromagnetic steel sheets are provided in one magnetic core that is wider in the circumferential direction toward the outer periphery.
しかしながら、磁芯を流れる磁束は径方向成分を有する傾向にある。これは当該磁束の大きさが径方向に不均一となる傾向にあるからである。特に上述のように、磁芯の周方向の寸法が径方向の位置に依存する場合、この傾向は顕著となる。
However, the magnetic flux flowing through the magnetic core tends to have a radial component. This is because the magnitude of the magnetic flux tends to be non-uniform in the radial direction. In particular, as described above, this tendency becomes prominent when the circumferential dimension of the magnetic core depends on the radial position.
磁芯はその周方向の寸法が大きい位置ほど、より多くの磁束を軸方向に流しうる。他方、界磁子と磁芯の間に流れる界磁磁束の磁束量の径方向における分布と、磁芯の周方向の寸法の径方向における分布とは、相互に比例関係にあるとは限らない。よって磁芯内における磁束の径方向分布は、界磁子に近いほど不均一となり、界磁子から離れるほど均一となる。このような軸方向における磁束の径方向分布の変動は、磁芯を流れる磁束が径方向成分を有することを示している。
The magnetic core can flow more magnetic flux in the axial direction as its circumferential dimension is larger. On the other hand, the distribution in the radial direction of the magnetic flux amount of the field magnetic flux flowing between the field element and the magnetic core and the distribution in the radial direction of the circumferential dimension of the magnetic core are not necessarily proportional to each other. . Therefore, the radial distribution of the magnetic flux in the magnetic core becomes non-uniform as it gets closer to the field element, and becomes uniform as it gets away from the field element. Such a variation in the radial distribution of the magnetic flux in the axial direction indicates that the magnetic flux flowing through the magnetic core has a radial component.
また上述の二つの分布が比例した場合、軸方向に流れる磁束は径方向に分布を有し、磁芯の周方向の寸法が大きい位置ほど、当該磁束は多く流れる。他方、複数の磁芯同士の間の磁束の流入出はヨークによって案内されるが、ヨークにおける磁束分布は一様である。よってヨーク近傍において磁芯において流れる磁束は、径方向成分を有する傾向にある。そして磁束の径方向成分は径方向に垂直な面における渦電流の発生を招来する。
Also, when the above two distributions are proportional, the magnetic flux flowing in the axial direction has a distribution in the radial direction, and the larger the circumferential dimension of the magnetic core, the more the magnetic flux flows. On the other hand, inflow and outflow of magnetic flux between the plurality of magnetic cores is guided by the yoke, but the magnetic flux distribution in the yoke is uniform. Therefore, the magnetic flux flowing in the magnetic core in the vicinity of the yoke tends to have a radial component. The radial component of the magnetic flux causes the generation of eddy currents in a plane perpendicular to the radial direction.
しかるに、径方向に積層された電磁鋼板の各々は、径方向に垂直な面に平行に延在するので、磁束の径方向成分に起因する渦電流の発生を抑制しにくい。
However, each of the electrical steel sheets laminated in the radial direction extends in parallel to the plane perpendicular to the radial direction, and thus it is difficult to suppress the generation of eddy currents caused by the radial component of the magnetic flux.
そこで本願発明は、磁束の周方向成分に起因する渦電流の発生のみならず、径方向成分に起因する渦電流の発生をも抑制する磁芯を提供することを目的とする。また、当該磁芯の製造における歩留まりを向上することも他の目的とする。
Therefore, an object of the present invention is to provide a magnetic core that suppresses not only the generation of eddy current due to the circumferential component of magnetic flux but also the generation of eddy current due to the radial component. Another object is to improve the yield in manufacturing the magnetic core.
この発明にかかる電機子用磁芯は、軸方向(Z)において界磁子(4)と対向する電機子において前記軸方向と垂直な周方向(θ)に環状に配置される磁芯(1)である。
The armature magnetic core according to the present invention includes a magnetic core (1) arranged in an annular shape in a circumferential direction (θ) perpendicular to the axial direction in an armature facing the field element (4) in the axial direction (Z). ).
そしてその第1の態様では当該磁芯の各々が、前記周方向の一方側の第1部分(1a)及び前記周方向の他方側の第2部分(1b)を備える。前記第1部分及び前記第2部分の各々は、前記軸方向及び前記周方向のいずれにも垂直な径方向(R)に積層される複数の電磁鋼板(100)を含む。前記第1部分は第1巻回部分(11a)及び第1境界面(110a)を有し、前記第2部分は第2巻回部分(11b)及び第2境界面(110b)を有する。前記第1境界面及び前記第2境界面は前記軸方向及び前記径方向に平行であり、前記第1境界面と前記第2境界面とは相互に隣接して配置され、前記第1巻回部分及び前記第2巻回部分は、前記軸方向を中心とする電機子巻線(15)が巻回される巻回部(11)を形成する。
In the first aspect, each of the magnetic cores includes a first portion (1a) on one side in the circumferential direction and a second portion (1b) on the other side in the circumferential direction. Each of the first part and the second part includes a plurality of electromagnetic steel sheets (100) stacked in a radial direction (R) perpendicular to both the axial direction and the circumferential direction. The first portion has a first winding portion (11a) and a first boundary surface (110a), and the second portion has a second winding portion (11b) and a second boundary surface (110b). The first boundary surface and the second boundary surface are parallel to the axial direction and the radial direction, and the first boundary surface and the second boundary surface are disposed adjacent to each other, and the first winding surface The part and the second winding part form a winding part (11) around which the armature winding (15) around the axial direction is wound.
この発明にかかる電機子用磁芯の第2の態様は、その第1の態様であって、前記界磁子は前記周方向の前記他方側から前記周方向の前記一方側へと回転し、前記軸方向(Z)及び前記周方向(θ)のいずれにも垂直な径方向(R)の任意の位置における断面は、前記第2部分(1b)の方が前記第1部分(1a)よりも狭い。
A second aspect of the armature core according to the present invention is the first aspect, wherein the field element rotates from the other side in the circumferential direction to the one side in the circumferential direction, Regarding the cross section at an arbitrary position in the radial direction (R) perpendicular to both the axial direction (Z) and the circumferential direction (θ), the second portion (1b) is more than the first portion (1a). Is too narrow.
この発明にかかる磁芯の製造方法の第1の態様では、電磁鋼板である原材(8)が搬送方向(K)へ所定長さ(P)毎に搬送される。そして、(a)前記原材の搬送が停止されるときに、第1パンチ(92)を用いて前記原材を打ち抜く工程と、(b)前記工程(a)で前記原材に残された電磁鋼板を、その前記搬送方向における寸法が前記所定長さ以下である矩形(Q)に打ち抜いて積層用鋼板(101~106,201~206)を得る工程と、(c)前記工程(b)で得られた前記積層用鋼板のうち、前記搬送方向に垂直な方向たる幅方向における前記第1パンチに対する一方側で得られたもの(101~106)を、その打ち抜かれた順序で積層する工程とを備える。但し、前記工程(a)は前記幅方向において、前記第1パンチを第1の位置(92a,92f;90g,90l)と第2の位置(92c、92d;90i,90j)との間で往復させることによって前記第1パンチの位置を更新して繰り返し行われ、前記工程(c)では、前記第1の位置で打ち抜かれた前記積層用鋼板(101,106)と、前記第2の位置で打ち抜かれた前記積層用鋼板(103,104)とを境界として前記積層用鋼板が積層されて複数の積層体(10a,10b)が得られる。そして(d)前記工程(c)での積層体同士を、前記第1パンチで打ち抜かれた位置同士を反対側にして隣接させて磁芯(1)を形成する工程を更に備える。
In the first aspect of the method for manufacturing a magnetic core according to the present invention, the raw material (8), which is an electromagnetic steel sheet, is conveyed every predetermined length (P) in the conveying direction (K). And (a) when the conveyance of the raw material is stopped, the step of punching out the raw material using the first punch (92), (b) left on the raw material in the step (a) Punching the electromagnetic steel sheet into a rectangle (Q) whose dimension in the transport direction is equal to or less than the predetermined length to obtain steel sheets for lamination (101 to 106, 201 to 206); (c) the step (b) Step of laminating the steel sheets for laminating obtained in step (101 to 106) obtained on one side with respect to the first punch in the width direction perpendicular to the conveying direction in the punched order. With. However, in the step (a), in the width direction, the first punch reciprocates between the first position (92a, 92f; 90g, 90l) and the second position (92c, 92d; 90i, 90j). The position of the first punch is updated and repeated, and in the step (c), the laminated steel plates (101, 106) punched at the first position and the second position The laminated steel plates are laminated with the punched laminated steel plates (103, 104) as a boundary to obtain a plurality of laminated bodies (10a, 10b). And (d) It further has the process of forming the magnetic core (1) by making the laminated bodies in the said process (c) adjoin, making the position punched out by the said 1st punch into the other side.
この発明にかかる磁芯の製造方法の第2の態様は、その第1の態様であって、(e)前記工程(b)で得られた前記積層用鋼板のうち、前記搬送方向に垂直な方向たる幅方向における前記第1パンチに対する他方側で得られたもの(201~206)を、その打ち抜かれた順序で、前記第1の位置で打ち抜かれた前記積層用鋼板(201,206)と、前記第2の位置で打ち抜かれた前記積層用鋼板(203,204)とを境界として前記積層用鋼板が積層されて複数の積層体(20a,20b)を得る工程と、(f)前記工程(e)での積層体同士を、前記第1パンチで打ち抜かれた位置同士を反対側にして隣接させて磁芯(1)を形成する工程とを更に備える。
The 2nd aspect of the manufacturing method of the magnetic core concerning this invention is the 1st aspect, Comprising: Among the said steel plates for lamination obtained by the said process (b), it is perpendicular | vertical to the said conveyance direction. The laminated steel plates (201, 206) punched at the first position in the punched order (201-206) obtained on the other side with respect to the first punch in the width direction as a direction; A step of laminating the laminating steel plates with the laminating steel plates (203, 204) punched out at the second position as a boundary to obtain a plurality of laminates (20a, 20b), and (f) the step A step of forming the magnetic core (1) by adjoining the stacked bodies in (e) with the positions punched by the first punches opposite to each other.
この発明にかかる磁芯の製造方法の第3の態様は、その第2の態様又は第3の態様であって、(g)前記工程(c)の実行よりも前に、前記工程(a)と対となって実行され、前記原材(8)の搬送が停止されるときに、前記幅方向の位置(91a~91f)が維持される第2パンチ(91)を用いて前記原材を打ち抜く工程を更に備える。
A third aspect of the method for manufacturing a magnetic core according to the present invention is the second aspect or the third aspect, wherein (g) the step (a) is performed before the step (c) is performed. When the conveyance of the raw material (8) is stopped, the raw material is moved using the second punch (91) that maintains the position (91a to 91f) in the width direction. A punching process is further provided.
この発明にかかる磁芯の第1の態様では、径方向に垂直ないずれの断面においても、第1境界面及び第2境界面によって分断されるので、当該渦電流の発生可能な面積が低減され、以て渦電流の発生が低減される。また径方向に積層される複数の電磁鋼板の境界によって、周方向に垂直な面が分断されるので、当該渦電流の発生可能な面積が低減され、以て渦電流の発生が低減される。更に、巻回部の径方向における磁気抵抗を高め、巻回部を流れる磁束の径方向成分自体の低減に資する。また、第1境界面及び第2境界面において電磁鋼板を揃えて積層することで製造が容易となる。
In the first aspect of the magnetic core according to the present invention, any cross section perpendicular to the radial direction is divided by the first boundary surface and the second boundary surface, so that the area where the eddy current can be generated is reduced. Thus, generation of eddy current is reduced. Further, since the surface perpendicular to the circumferential direction is divided by the boundaries between the plurality of electromagnetic steel plates laminated in the radial direction, the area where the eddy current can be generated is reduced, and the generation of eddy current is reduced. Furthermore, the magnetic resistance in the radial direction of the winding part is increased, which contributes to the reduction of the radial component itself of the magnetic flux flowing through the winding part. Moreover, manufacture becomes easy by aligning and laminating | stacking an electromagnetic steel plate in a 1st interface and a 2nd interface.
界磁子が周方向の他方側から一方側へと回転する場合、界磁子と磁芯との間に流れる磁束量は、他方側の方が一方側よりも多い。この発明にかかる磁芯の第2の態様では、周方向の他方側に位置する第2部分の断面積が、第1部分の断面積よりも小さく、渦電流の低減がより顕著となる。
When the field element rotates from the other side in the circumferential direction to one side, the amount of magnetic flux flowing between the field element and the magnetic core is greater on the other side than on the one side. In the second aspect of the magnetic core according to the present invention, the cross-sectional area of the second portion located on the other side in the circumferential direction is smaller than the cross-sectional area of the first portion, and the reduction of eddy current becomes more remarkable.
この発明にかかる磁芯の製造方法の第1の態様は、この発明にかかる磁芯を製造することができる。
The first aspect of the magnetic core manufacturing method according to the present invention can manufacture the magnetic core according to the present invention.
この発明にかかる磁芯の製造方法の第2の態様は、磁芯に採用される積層用鋼板を原材から無駄を少なくして取得し、原材の使用効率を高め、ひいては磁芯の製造における歩留まりを向上させる。
According to a second aspect of the method for manufacturing a magnetic core according to the present invention, the steel sheet for lamination used in the magnetic core is obtained from the raw material with less waste, and the use efficiency of the raw material is increased, and as a result, the magnetic core is manufactured. Improve the yield in
この発明にかかる磁芯の製造方法の第3の態様は、径方向の位置に依存しない幅方向の寸法を有する、磁芯の磁束案内部や埋設部を形成することができる。
The third aspect of the method for manufacturing a magnetic core according to the present invention can form a magnetic flux guide portion and a buried portion of the magnetic core having dimensions in the width direction independent of the radial position.
この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
第1の実施の形態.
図1を参照して、電機子のコアは、大別して磁芯1、バックヨーク2、支持部材3で構成される。但し磁芯1とバックヨーク2と固定板3との嵌合関係を示すべく、一つの磁芯1についてバックヨーク2と固定板3とから分離して示す。当然、電機子を構成する場合には、当該分離は為されない。 First embodiment.
Referring to FIG. 1, the core of the armature is roughly composed of amagnetic core 1, a back yoke 2, and a support member 3. However, in order to show the fitting relationship between the magnetic core 1, the back yoke 2, and the fixed plate 3, one magnetic core 1 is shown separately from the back yoke 2 and the fixed plate 3. Of course, when the armature is configured, the separation is not performed.
図1を参照して、電機子のコアは、大別して磁芯1、バックヨーク2、支持部材3で構成される。但し磁芯1とバックヨーク2と固定板3との嵌合関係を示すべく、一つの磁芯1についてバックヨーク2と固定板3とから分離して示す。当然、電機子を構成する場合には、当該分離は為されない。 First embodiment.
Referring to FIG. 1, the core of the armature is roughly composed of a
図24は図1の位置XXにおける回転電機の断面を示す。図1及び図24を参照して、当該電機子は、軸Jを回転軸として回転する界磁子4と共に、アキシャルギャップ型の回転電機に採用される。軸方向Zは軸Jに平行に採用される。電機子は界磁子4と軸方向Zにおいて対向する。
FIG. 24 shows a cross section of the rotating electrical machine at position XX in FIG. 1 and 24, the armature is employed in an axial gap type rotating electrical machine together with a field element 4 that rotates about an axis J as a rotational axis. The axial direction Z is adopted parallel to the axis J. The armature faces the field element 4 in the axial direction Z.
界磁子4は基体41と界磁発生部42とを備える。基体41は、回転自在なシャフト40に固定され、界磁発生部42は基体41に固定され、かつ界磁磁束を発生させる。界磁磁束を効率よく電機子に流すため、基体41はいわゆるバックヨークとして機能すべく、磁性体を採用することが望ましい。
The field element 4 includes a base body 41 and a field generator 42. The base body 41 is fixed to the rotatable shaft 40, and the field generating section 42 is fixed to the base body 41 and generates a field magnetic flux. In order to cause the field magnetic flux to efficiently flow through the armature, it is desirable that the base body 41 employs a magnetic material so as to function as a so-called back yoke.
当該電機子コアは、磁芯1の周囲に軸方向Zを中心として巻回される電機子巻線15(図1では図示省略)と共に、電機子に採用される。なお「巻回」とは、磁芯1に対して導線を巻き付けて行く作業を伴う態様のみならず、予めコイルとして形成された形状の電機子巻線が磁芯1に嵌められる態様をも含む。コイルは、磁芯1のそれぞれに巻回される、いわゆる集中巻方式である。
The armature core is employed in the armature together with the armature winding 15 (not shown in FIG. 1) wound around the magnetic core 1 around the axial direction Z. Note that “winding” includes not only an aspect involving an operation of winding a conducting wire around the magnetic core 1 but also an aspect in which an armature winding having a shape formed in advance as a coil is fitted to the magnetic core 1. . The coil is a so-called concentrated winding method in which the coil is wound around each of the magnetic cores 1.
磁芯1は軸Jを中心軸とする周方向θにおいて環状に配置される。そして磁芯1の各々では、電磁鋼板(不図示:後に詳述する)が径方向Rに積層されている。つまり磁芯1が電機子のコアとして採用されるとき、いずれの磁芯1についての径方向Rも、軸方向Zに対して垂直となるように環状に配置される。よって図1に示されるように、異なる磁芯1についての径方向R1,R2はコア全体として見れば互いに異なる。
The magnetic core 1 is annularly arranged in the circumferential direction θ with the axis J as the central axis. In each of the magnetic cores 1, electromagnetic steel plates (not shown: described in detail later) are laminated in the radial direction R. That is, when the magnetic core 1 is employed as the core of the armature, the radial direction R for any of the magnetic cores 1 is annularly arranged so as to be perpendicular to the axial direction Z. Accordingly, as shown in FIG. 1, the radial directions R1 and R2 of different magnetic cores 1 are different from each other when viewed as a whole core.
同様に、異なる磁芯1についての周方向θ1,θ2はコア全体として見れば互いに異なる。但し、周方向θ1,θ2は環状方向θ(図24)としてみれば共通した方向として捉えることができる。
Similarly, the circumferential directions θ1 and θ2 for different magnetic cores 1 are different from each other when viewed as a whole core. However, the circumferential directions θ1 and θ2 can be regarded as common directions when viewed as the annular direction θ (FIG. 24).
バックヨーク2には軸方向Z側に開口する開口部21が磁芯1に応じて設けられており、各々の開口部21はその径方向内側にも開口している。磁芯1は電機子巻線15が巻回される巻回部11と、巻回部11よりもバックヨーク2側に位置する磁束案内部12とを有している。磁束案内部12は開口部21と嵌合することによって磁芯1とバックヨーク2とを磁気的に結合する。具体的には、磁束案内部12は、磁芯1に流れる磁束をバックヨーク2へと案内し、あるいはバックヨーク2に流れる磁束を磁芯1へと案内する。
The back yoke 2 is provided with an opening 21 that opens in the axial direction Z according to the magnetic core 1, and each opening 21 also opens radially inward. The magnetic core 1 has a winding part 11 around which the armature winding 15 is wound, and a magnetic flux guide part 12 positioned on the back yoke 2 side with respect to the winding part 11. The magnetic flux guide 12 is magnetically coupled to the magnetic core 1 and the back yoke 2 by fitting with the opening 21. Specifically, the magnetic flux guide 12 guides the magnetic flux flowing through the magnetic core 1 to the back yoke 2 or guides the magnetic flux flowing through the back yoke 2 to the magnetic core 1.
開口部21が径方向内側にも開口することにより、当該開口部21に嵌合する磁束案内部12を有する磁芯1に流れる磁束の軸方向成分に起因する渦電流が、バックヨーク2に発生することを抑制する。複数の開口部21が相まって開口20を構成している。
When the opening 21 is also opened radially inward, an eddy current due to the axial component of the magnetic flux flowing in the magnetic core 1 having the magnetic flux guide 12 fitted to the opening 21 is generated in the back yoke 2. To suppress. A plurality of openings 21 are combined to form an opening 20.
磁芯1は磁束案内部12に対して巻回部11と反対側に位置する埋設部13をも有している。これに対応して固定板3には溝31が設けられている。溝31は軸方向Zにおいて貫通していてもよい。
The magnetic core 1 also has an embedded portion 13 located on the opposite side of the winding portion 11 with respect to the magnetic flux guide portion 12. Correspondingly, the fixing plate 3 is provided with a groove 31. The groove 31 may penetrate in the axial direction Z.
ここでは磁芯1は奇数個(9個)設けられる場合を例示するので、図24では図中左側で磁芯1の巻回部11、磁束案内部12、埋設部13、鍔部14が現れるが、図中右側ではこれらの代わりに電機子巻線15が現れている。
Here, an example in which an odd number (9) of magnetic cores 1 are provided is illustrated. In FIG. 24, the winding portion 11, the magnetic flux guide portion 12, the embedded portion 13, and the flange portion 14 of the magnetic core 1 appear on the left side in the drawing. However, the armature winding 15 appears instead on the right side in the figure.
埋設部13は溝31と嵌合し、固定板3は磁芯1を機械的に保持している。これに対してバックヨーク2と磁芯1とは磁気的に結合しており、必ずしもバックヨーク2が磁芯1を機械的に保持する必要はない。よってバックヨーク2と固定板3は、両者が相互に固定されていれば、磁気的結合と機械的結合というそれぞれが担保すべき機能に鑑みた材料を以て形成することができる。例えばバックヨーク2は軸方向Zに沿って積層された電磁鋼板で主として形成され、あるいは圧粉磁芯で形成される。固定板3の材料としては金属塊を挙げることができる。
The embedded portion 13 is fitted with the groove 31, and the fixing plate 3 mechanically holds the magnetic core 1. On the other hand, the back yoke 2 and the magnetic core 1 are magnetically coupled, and the back yoke 2 does not necessarily need to mechanically hold the magnetic core 1. Therefore, if both the back yoke 2 and the fixed plate 3 are fixed to each other, the back yoke 2 and the fixed plate 3 can be formed with materials in view of the functions to be secured by the magnetic coupling and the mechanical coupling. For example, the back yoke 2 is mainly formed of electromagnetic steel plates laminated along the axial direction Z, or is formed of a dust core. An example of the material of the fixing plate 3 is a metal lump.
固定板3と磁芯1との固定は溝31と埋設部13との嵌合を必須とするものではない。例えば両者を接着や溶接にて固定することができる。
Securing of the fixing plate 3 and the magnetic core 1 does not require the fitting between the groove 31 and the embedded portion 13. For example, both can be fixed by adhesion or welding.
磁芯1において界磁子4と最も近接する部位には鍔部14が設けられることが望ましい。電機子と界磁子の磁気的相互作用の効率を高めるべく、鍔部14は巻回部11よりも広く設定される。ここでは径方向Rに沿って電磁鋼板が積層されるので、積層を簡単にするため、鍔部14は径方向Rにおいては巻回部11よりも拡がらず、周方向θに沿ってのみ拡がる構造が例示されている。勿論、鍔部14を設けない構造の磁芯1を採用してもよい。
It is desirable that a flange portion 14 is provided at a position closest to the field element 4 in the magnetic core 1. In order to increase the efficiency of the magnetic interaction between the armature and the field element, the flange portion 14 is set wider than the winding portion 11. Here, since the electromagnetic steel sheets are laminated along the radial direction R, in order to simplify the lamination, the flange portion 14 does not expand from the winding portion 11 in the radial direction R, and expands only along the circumferential direction θ. The structure is illustrated. Of course, you may employ | adopt the magnetic core 1 of the structure which does not provide the collar part 14. FIG.
図2乃至図4を参照して、磁芯1は周方向θの一方側(図では矢先側)の第1部分1a及び周方向θの他方側(図では矢尻側)の第2部分1bを備える。図3及び図4では径方向に積層された電磁鋼板100が、その厚みが誇張されつつ、部分的に描かれている。
2 to 4, the magnetic core 1 includes a first portion 1a on one side in the circumferential direction θ (arrowhead side in the drawing) and a second portion 1b on the other side in the circumferential direction θ (arrowhead side in the drawing). Prepare. 3 and 4, the electromagnetic steel sheets 100 laminated in the radial direction are partially drawn while exaggerating their thickness.
ここで例示される磁芯1では、磁束案内部12や埋設部13の形状は径方向Rに依存せず、よって直方体を呈する。磁束案内部12、埋設部13のそれぞれの周方向の寸法W2,W3は径方向Rの位置に依存しない。他方、電機子巻線15の占積率を高める等の理由で巻回部11は外周側(径方向R側)で幅広となる。
In the magnetic core 1 exemplified here, the shapes of the magnetic flux guide portion 12 and the embedded portion 13 do not depend on the radial direction R, and thus exhibit a rectangular parallelepiped. The circumferential dimensions W2 and W3 of the magnetic flux guide portion 12 and the embedded portion 13 do not depend on the position in the radial direction R. On the other hand, the winding part 11 becomes wide on the outer peripheral side (radial direction R side) for reasons such as increasing the space factor of the armature winding 15.
積層される電磁鋼板100同士の結合を担保する技術の一例を挙げる。電磁鋼板100をその厚み方向において局所的に変形させて結合部とし、隣接する電磁鋼板100同士で当該結合部を相互に嵌合させる。当該結合部は単なる凹凸であってもよいし、電磁鋼板100を部分的に破断させて厚み方向に変形させてもよい。後者の変形を用いて、積層された電磁鋼板100同士の結合を得る技術は、「カラマセ」と通称される周知技術である。
An example of a technique for ensuring the bonding between laminated electromagnetic steel sheets 100 will be given. The electromagnetic steel sheet 100 is locally deformed in the thickness direction to form a coupling portion, and the coupling portions are fitted to each other between the adjacent electromagnetic steel plates 100. The coupling portion may be simple irregularities, or the electromagnetic steel sheet 100 may be partially broken and deformed in the thickness direction. A technique for obtaining a bond between laminated electromagnetic steel sheets 100 using the latter modification is a well-known technique commonly referred to as “Karamase”.
このような積層される電磁鋼板100同士の結合は、第1部分1aと第2部分1bとで個別に適用されることが望ましい。通常、磁芯1は軸方向Zに長くなるので、電磁鋼板100毎に結合部が軸方向Zに沿って複数設けられる。しかし結合部は電磁鋼板の磁気特性を劣化させるため、磁気特性が問題となりにくい所、例えば鍔部14において設けることも望ましい。
It is desirable that the coupling between the laminated electrical steel sheets 100 is applied individually to the first part 1a and the second part 1b. Usually, since the magnetic core 1 is elongated in the axial direction Z, a plurality of coupling portions are provided along the axial direction Z for each electromagnetic steel sheet 100. However, since the coupling portion deteriorates the magnetic properties of the electrical steel sheet, it is also desirable to provide the coupling portion in a place where the magnetic properties are less likely to be a problem, for example, the flange portion 14.
第1部分1aと第2部分1bとは境界面110を介して隣接する。第1部分1aは第1巻回部分11a、第1磁束案内部分12a、第1埋設部分13a、第1鍔部分14aを有する。第2部分1bは第2巻回部分11b、第2磁束案内部分12b、第2埋設部分13b、第2鍔部分14bを有する。第1巻回部分11aは第2巻回部分11bと共に巻回部11を、第1磁束案内部分12aは第2磁束案内部分12bと共に磁束案内部12を、第1埋設部分13aは第2埋設部分13bと共に埋設部13を、第1鍔部分14aは第2鍔部分14bと共に鍔部14を、それぞれ構成する(図1も参照)。
The first portion 1a and the second portion 1b are adjacent to each other through the boundary surface 110. The first portion 1a includes a first winding portion 11a, a first magnetic flux guide portion 12a, a first embedded portion 13a, and a first flange portion 14a. The second portion 1b includes a second winding portion 11b, a second magnetic flux guide portion 12b, a second embedded portion 13b, and a second flange portion 14b. The first winding part 11a and the second winding part 11b together with the winding part 11, the first magnetic flux guiding part 12a together with the second magnetic flux guiding part 12b, and the first embedded part 13a as the second embedded part. The embedded portion 13 is formed together with 13b, and the first flange portion 14a and the second flange portion 14b constitute the flange portion 14 (see also FIG. 1).
第1部分1aは第1境界面110aを周方向θの他方側に、第2部分1bは第2境界面110bを周方向θの一方側に、それぞれ有している。そして第1境界面110aと第2境界面110bとが相互に隣接する。境界面110は第1境界面110aと第2境界面110bとの隣接位置と把握できる。但し後述するように、第1境界面110aと第2境界面110bとは必ずしも直接に接触する場合に限らず、両者の間に望ましくは周方向の厚みが十分小さい絶縁材料が介在してもよい。
The first portion 1a has a first boundary surface 110a on the other side in the circumferential direction θ, and the second portion 1b has a second boundary surface 110b on one side in the circumferential direction θ. The first boundary surface 110a and the second boundary surface 110b are adjacent to each other. The boundary surface 110 can be grasped as an adjacent position between the first boundary surface 110a and the second boundary surface 110b. However, as will be described later, the first boundary surface 110a and the second boundary surface 110b are not necessarily in direct contact with each other, and an insulating material having a sufficiently small thickness in the circumferential direction may be interposed therebetween. .
磁芯1はこのように境界面110(あるいは第1境界面110aと第2境界面110b)を介して隣接する第1部分1aと第2部分1bとが結合して形成される。かかる結合は例えば樹脂モールドを採用することで実現できる。
Thus, the magnetic core 1 is formed by connecting the first portion 1a and the second portion 1b adjacent to each other via the boundary surface 110 (or the first boundary surface 110a and the second boundary surface 110b). Such coupling can be realized by employing, for example, a resin mold.
以上のように磁芯1では、その径方向Rに垂直ないずれの断面においても、第1境界面110a及び第2境界面110bによって分断されるので、当該断面において渦電流が発生可能な面積が低減され、渦電流の発生が低減される。つまり、磁芯1に流れる磁束の径方向成分に起因する渦電流の発生を抑制することができる。
As described above, in the magnetic core 1, any cross section perpendicular to the radial direction R is divided by the first boundary surface 110 a and the second boundary surface 110 b, so that an area in which the eddy current can be generated in the cross section. And the generation of eddy currents is reduced. That is, the generation of eddy current due to the radial component of the magnetic flux flowing through the magnetic core 1 can be suppressed.
そして径方向Rに積層される複数の電磁鋼板100の境界によって、周方向θに垂直な面が分断される。よって磁芯1に流れる磁束の周方向成分に起因する渦電流の発生可能な面積が低減され、以て渦電流の発生が低減される。しかも電磁鋼板100の境界は磁気抵抗を有して障壁となるので、磁芯に流れる磁束を径方向Rに流れにくくし、以て磁芯に流れる磁束の径方向成分自体の低減にも資する。
The plane perpendicular to the circumferential direction θ is divided by the boundaries between the plurality of electromagnetic steel plates 100 stacked in the radial direction R. Therefore, the area where eddy currents can be generated due to the circumferential component of the magnetic flux flowing in the magnetic core 1 is reduced, thereby reducing the generation of eddy currents. Moreover, since the boundary of the electromagnetic steel sheet 100 has a magnetic resistance and becomes a barrier, the magnetic flux flowing through the magnetic core is less likely to flow in the radial direction R, thereby contributing to the reduction of the radial component itself of the magnetic flux flowing through the magnetic core.
第1境界面110aと第2境界面110bとの間に絶縁材料を挟むことも望ましい。当該絶縁材料は第1部分1aと第2部分1bとの間の絶縁性を向上させ、以て磁芯1の周方向θに垂直な面における分断を確実にするからである。一例として第1部分1aと第2部分1bとの間に絶縁シートを挟むことが挙げられる。また他の例としては、第1部分1aと第2部分1bとを個別に絶縁性材料でコーティングした後、第1境界面110aと第2境界面110bとを隣接させて両者を結合し、磁芯1を形成することが挙げられる。これは、第一の部分1aと第2部分1bの間の電流を遮断するものであり、磁束は通す方が望ましいため、渦電流を遮断する程度の厚みがあれば十分である。
It is also desirable to sandwich an insulating material between the first boundary surface 110a and the second boundary surface 110b. This is because the insulating material improves the insulation between the first portion 1a and the second portion 1b, thereby ensuring the division in the plane perpendicular to the circumferential direction θ of the magnetic core 1. As an example, an insulating sheet is sandwiched between the first portion 1a and the second portion 1b. As another example, after the first portion 1a and the second portion 1b are individually coated with an insulating material, the first boundary surface 110a and the second boundary surface 110b are adjacent to each other, and both are coupled. Forming the core 1. This cuts off the current between the first part 1a and the second part 1b, and it is desirable to pass the magnetic flux. Therefore, it is sufficient if the thickness is enough to cut off the eddy current.
第1部分1aと第2部分1bとを結合する手法として、モールドのほか、レーザー溶接を挙げることができる。但し溶接箇所同士は接触しないことが望ましい。溶接箇所同士が接触すると、第1部分1aと第2部分1bのそれぞれの電磁鋼板100の延在方向が、径方向Rに対して垂直でなくなる可能性が高まるからである。具体的には、溶接部が電磁鋼板100の厚みの範囲内に入り、電磁鋼板100ごとに設けられることが望ましい。
As a method of joining the first part 1a and the second part 1b, laser welding can be used in addition to the mold. However, it is desirable that the welds do not contact each other. This is because, when the welded portions are in contact with each other, the possibility that the extending directions of the electromagnetic steel sheets 100 of the first portion 1a and the second portion 1b are not perpendicular to the radial direction R increases. Specifically, it is desirable that the welded portion is within the thickness range of the electromagnetic steel sheet 100 and is provided for each electromagnetic steel sheet 100.
またモールドに代替して、磁芯1の軸方向Zを軸とする周囲を筒状のインシュレータで囲んでもよい。図20及び図21に例示されるように、インシュレータ6は例えば一対の部品6a,6bからなる。そして部品6a,6bが周方向θに沿って、相互に組み合わされることによって第1部分1aと第2部分1bとを結合する。あるいは図22及び図23に例示されるように、インシュレータ6は例えば一対の部品6c,6dからなる。そして部品6c,6dが径方向Rに沿って、相互に組み合わされることによって第1部分1aと第2部分1bとを結合する。いずれの場合も電機子巻線15(図24参照)はインシュレータ6を介して磁芯1に巻回されることになる。
Also, instead of a mold, the periphery of the magnetic core 1 with the axial direction Z as an axis may be surrounded by a cylindrical insulator. As illustrated in FIGS. 20 and 21, the insulator 6 includes, for example, a pair of components 6 a and 6 b. The parts 6a and 6b are combined with each other along the circumferential direction θ to couple the first part 1a and the second part 1b. Alternatively, as illustrated in FIGS. 22 and 23, the insulator 6 includes, for example, a pair of components 6c and 6d. Then, the parts 6c and 6d are combined with each other along the radial direction R to couple the first part 1a and the second part 1b. In either case, the armature winding 15 (see FIG. 24) is wound around the magnetic core 1 via the insulator 6.
磁芯1は、境界面110に関して対称でなくてもよい。図5は境界面110が磁芯1の周方向θに関する中心よりも周方向θの他方側にずれている場合を示す。これにより、径方向Rの任意の位置における断面は、第2部分1bの方が第1部分1aよりも狭くできる。かかる形態の磁芯1は特に下記の状況において特有の効果を招来する。
The magnetic core 1 may not be symmetric with respect to the boundary surface 110. FIG. 5 shows a case where the boundary surface 110 is shifted from the center of the magnetic core 1 in the circumferential direction θ to the other side in the circumferential direction θ. Thereby, the cross section in the arbitrary positions of radial direction R can make the 2nd part 1b narrower than the 1st part 1a. The magnetic core 1 having such a configuration brings about a unique effect particularly in the following situation.
界磁子4が周方向θの他方側から一方側へと回転する場合、つまり周方向θの矢印の向きに従って界磁子4が回転する場合、界磁子4と磁芯1との間に流れる磁束量は、他方側の方が一方側よりも多い。これは界磁子において界磁発生部42が磁芯1に近づく場合には磁気吸引力が両者の間に働き、遠ざかる場合には磁気斥力が働くことに起因する。よって渦電流に資する磁束量は磁芯1の周方向一方側よりも周方向他方側の方が多い。よって第2部分1bの径方向Rに垂直な断面の断面積を、第1部分1aのそれよりも小さくすることで、渦電流がより効果的に低減される。
When the field element 4 rotates from the other side in the circumferential direction θ to one side, that is, when the field element 4 rotates in accordance with the direction of the arrow in the circumferential direction θ, the field element 4 is interposed between the field element 4 and the magnetic core 1. The amount of magnetic flux that flows is greater on the other side than on one side. This is because, in the field element, when the field generating portion 42 approaches the magnetic core 1, a magnetic attractive force acts between them, and when it moves away, a magnetic repulsive force acts. Therefore, the amount of magnetic flux contributing to eddy current is greater on the other side in the circumferential direction than on one side in the circumferential direction of the magnetic core 1. Therefore, the eddy current is more effectively reduced by making the cross-sectional area of the cross section perpendicular to the radial direction R of the second portion 1b smaller than that of the first portion 1a.
ここでは第1境界面110aと第2境界面110bとはいずれも径方向R及び軸方向Zに平行に延在する(即ち周方向θに垂直となる)場合が例示されている。しかし第1境界面110aと第2境界面110bとが隣接して磁芯1を形成するときに、積層される電磁鋼板が径方向Rに垂直に延在するのであれば、第1境界面110aと第2境界面110bは軸方向Zや径方向Rに対して傾斜してもよい。
Here, the case where both the first boundary surface 110a and the second boundary surface 110b extend parallel to the radial direction R and the axial direction Z (that is, perpendicular to the circumferential direction θ) is illustrated. However, if the laminated steel sheets extend perpendicular to the radial direction R when the first boundary surface 110a and the second boundary surface 110b are adjacent to form the magnetic core 1, the first boundary surface 110a. The second boundary surface 110b may be inclined with respect to the axial direction Z or the radial direction R.
例えば第1部分1aの外周端で第1境界面110aが径方向Rと為す角度と、第2部分1b内での外周端で第2境界面110bが径方向Rと為す角度とが、相互に補角の関係(両者の和が平角)であってもよい。あるいは第1部分1aの軸方向Z側(界磁子4に近い側)で第1境界面110aが軸方向Zと為す角度と、第2部分1bの軸方向Z側で第2境界面110bが径方向Rと為す角度とが、相互に補角の関係であってもよい。
For example, the angle formed by the first boundary surface 110a with the radial direction R at the outer peripheral end of the first portion 1a is different from the angle formed by the second boundary surface 110b with the radial direction R at the outer peripheral end within the second portion 1b. A complementary angle relationship (the sum of the two is a flat angle) may be used. Or the angle which the 1st boundary surface 110a makes with the axial direction Z in the axial direction Z side (side near the field element 4) of the 1st part 1a, and the 2nd boundary surface 110b in the axial direction Z side of the 2nd part 1b. The angle formed with the radial direction R may be a complementary angle.
更には、第1境界面110aと第2境界面110bとは曲面であってもよく、この場合、両者は相互に嵌合して境界面110を構成する。
Furthermore, the first boundary surface 110a and the second boundary surface 110b may be curved surfaces, and in this case, they are fitted together to form the boundary surface 110.
なお、上述のように溝31を設ける場合には、開口部21は軸方向Zにおいて貫通する。しかし固定板3を設けない場合も考えられ、この場合には開口部21は軸方向Zにおいて貫通する必要はなく、軸方向Zにおいては、単に磁束案内部12と嵌合するための開口があれば足りる。また固定板3を設けない場合には、当然に溝31はなく、よって磁芯1において埋設部13を設ける必要もない。
In addition, when providing the groove | channel 31 as mentioned above, the opening part 21 penetrates in the axial direction Z. However, there may be a case where the fixing plate 3 is not provided. In this case, the opening portion 21 does not need to penetrate in the axial direction Z, and in the axial direction Z, an opening for simply fitting with the magnetic flux guide portion 12 is provided. It's enough. In the case where the fixing plate 3 is not provided, the groove 31 is naturally not provided, and therefore, it is not necessary to provide the embedded portion 13 in the magnetic core 1.
あるいは開口部21と溝31とは、軸方向Zから見て同形にしてもよい。この場合、磁束案内部12と埋設部13についても、軸方向Zから見て同形となる。更に磁束案内部12と埋設部13と巻回部11とを、軸方向Zから見て同形としてもよい。このような場合の磁芯1を図17に示す。
Alternatively, the opening 21 and the groove 31 may have the same shape as viewed from the axial direction Z. In this case, the magnetic flux guide portion 12 and the embedded portion 13 have the same shape as viewed from the axial direction Z. Further, the magnetic flux guide portion 12, the embedded portion 13, and the winding portion 11 may have the same shape as viewed from the axial direction Z. The magnetic core 1 in such a case is shown in FIG.
あるいは磁芯1は、軸方向Zにおいて一対の回転子に挟まれる電機子に採用されてもよい。この場合に採用される磁芯1では、巻回部11が一対設けられ、それらが軸方向Zにおいて磁束案内部12を挟む構成を有する。勿論、いずれの巻回部11に対しても鍔部14を設けることができる。このような場合の磁芯1を図19に示す。但し、バックヨーク2や固定板3を設けない態様を採用することもできる。この場合、磁芯1は埋設部13のみならず磁束案内部12をも必要とせず、例えば一対の鍔部14の間に巻回部11のみが延在する。
Alternatively, the magnetic core 1 may be employed in an armature that is sandwiched between a pair of rotors in the axial direction Z. In the magnetic core 1 employed in this case, a pair of winding portions 11 are provided and have a configuration in which the magnetic flux guide portion 12 is sandwiched in the axial direction Z. Of course, the collar part 14 can be provided in any winding part 11. FIG. 19 shows the magnetic core 1 in such a case. However, a mode in which the back yoke 2 and the fixed plate 3 are not provided may be employed. In this case, the magnetic core 1 does not require not only the embedded portion 13 but also the magnetic flux guide portion 12, for example, only the winding portion 11 extends between the pair of flange portions 14.
あるいは電機子が軸方向Zにおいて一方側でのみ界磁子と対向する場合でも、図19に示される磁芯1を採用することで利点が得られる場合がある。例えば固定板3で溝31が軸方向Zに貫通する場合、軸方向Zの他方側に位置する鍔部14に、溝31に対して軸方向Zにおいて係止する機能を担わせてもよい。かかる場合、溝31は開口部21と同様に径方向Rの内側にも開口し、磁芯1を溝31や開口部21の内周側から配置することになる。
Alternatively, even when the armature faces the field element only on one side in the axial direction Z, there are cases where advantages can be obtained by adopting the magnetic core 1 shown in FIG. For example, when the groove 31 penetrates in the axial direction Z in the fixing plate 3, the collar portion 14 located on the other side in the axial direction Z may be provided with a function of locking the groove 31 in the axial direction Z. In such a case, the groove 31 also opens in the radial direction R in the same manner as the opening 21, and the magnetic core 1 is arranged from the inner peripheral side of the groove 31 and the opening 21.
第2の実施の形態.
磁芯1の構造は上述のように種々変形できるものの、その製造が容易となる観点では、第1境界面110aと第2境界面110bは軸方向Z及び径方向Rに対して平行となることが望ましい。第1部分1a及び第2部分1bを形成する電磁鋼板が、その積層方向に平行な第1境界面110aと第2境界面110bで位置を揃えて積層できるからである。この点で、電磁鋼板を積層方向に対してずらせて積層することになる特許文献2の構造よりも有利である。 Second embodiment.
Although the structure of themagnetic core 1 can be variously modified as described above, the first boundary surface 110a and the second boundary surface 110b are parallel to the axial direction Z and the radial direction R from the viewpoint of easy manufacture. Is desirable. This is because the electromagnetic steel sheets forming the first portion 1a and the second portion 1b can be stacked with the first boundary surface 110a and the second boundary surface 110b parallel to the stacking direction aligned. In this respect, the structure is more advantageous than the structure of Patent Document 2 in which the electromagnetic steel sheets are stacked while being shifted with respect to the stacking direction.
磁芯1の構造は上述のように種々変形できるものの、その製造が容易となる観点では、第1境界面110aと第2境界面110bは軸方向Z及び径方向Rに対して平行となることが望ましい。第1部分1a及び第2部分1bを形成する電磁鋼板が、その積層方向に平行な第1境界面110aと第2境界面110bで位置を揃えて積層できるからである。この点で、電磁鋼板を積層方向に対してずらせて積層することになる特許文献2の構造よりも有利である。 Second embodiment.
Although the structure of the
更に、磁芯1は境界面110に関して対称であれば、これを構成する電磁鋼板を原材から打ち抜く工程において二つの利点を有する。一つは廃材の低減であり、一つは可動パンチ数の削減である。以下、具体的な打ち抜き工程を説明することにより、これらの利点が得られることを説明する。
Furthermore, if the magnetic core 1 is symmetrical with respect to the boundary surface 110, the magnetic core 1 has two advantages in the process of punching out the electromagnetic steel sheet constituting the magnetic core 1 from the raw material. One is reduction of waste materials, and one is reduction of the number of movable punches. Hereinafter, it will be described that these advantages can be obtained by explaining a specific punching process.
このような磁芯1を図6に示す。図6は対向方向平面視における磁芯1の外観を示す平面図である。但し、第1磁束案内部分12aの径方向R側の一部、第1埋設部分13a、第1巻回部分11aはいずれも第1鍔部分14aに隠れており、第1磁束案内部分12aの径方向R側の一部、第2埋設部分13b、第2巻回部分11bはいずれも第2鍔部14bに隠れている。
Such a magnetic core 1 is shown in FIG. FIG. 6 is a plan view showing the appearance of the magnetic core 1 in plan view in the opposite direction. However, a part on the radial direction R side of the first magnetic flux guiding portion 12a, the first embedded portion 13a, and the first winding portion 11a are all hidden behind the first flange portion 14a, and the diameter of the first magnetic flux guiding portion 12a Part of the direction R side, the second embedded portion 13b, and the second winding portion 11b are all hidden behind the second flange portion 14b.
図7乃至図9を参照して、電磁鋼板である原材8が搬送方向Kに搬送される。一般に原材8は長尺であり、その長手方向が搬送方向Kに選定される。原材8は所定長さP毎に搬送され、原材8の搬送が停止されるときに、後述する固定パンチや可動パンチによる打ち抜きが実行される。
7 to 9, the raw material 8 that is an electromagnetic steel plate is transported in the transport direction K. In general, the raw material 8 is long, and the longitudinal direction thereof is selected as the transport direction K. The raw material 8 is conveyed every predetermined length P, and when the conveyance of the raw material 8 is stopped, punching by a fixed punch or a movable punch, which will be described later, is executed.
但し、図7及び図8は説明の簡単のため、原材8の搬送方向Kに従って移動する視点で描画されている。そのため、実際には打ち抜きは搬送方向Kに対して移動しないが、複数の位置で打ち抜きが行われるように図示されている。
However, FIGS. 7 and 8 are drawn from the viewpoint of moving in accordance with the conveyance direction K of the raw material 8 for the sake of simplicity of explanation. Therefore, although the punching does not actually move in the transport direction K, the punching is illustrated as being performed at a plurality of positions.
また、ここでは説明の簡単のため、積層枚数を3枚として説明するが、実際の積層枚数はもっと多い。
In addition, here, for simplicity of explanation, the number of stacked sheets is described as three, but the actual number of stacked sheets is much larger.
図7の位置91a~91fは固定パンチの位置を示す。以下、これらの位置91a~91fを位置91と総称したり、当該固定パンチ自体を位置91として説明したりすることがある。
7 positions 91a to 91f indicate the positions of the fixed punches. Hereinafter, the positions 91a to 91f may be collectively referred to as the position 91, or the fixed punch itself may be described as the position 91.
固定パンチ(及びその位置)91は、原材8の搬送方向Kに垂直な幅方向の位置が維持される。この幅方向の位置91が固定される意味で「固定」であり、当然ながら、原材8を打ち抜く必要性から、打ち抜き方向(図7乃至図9に即して言えば紙面垂直方向)には可動となる。そのため、位置91a~91fの幅方向の位置は等しい。
The position of the fixed punch (and its position) 91 in the width direction perpendicular to the conveying direction K of the raw material 8 is maintained. In the sense that the position 91 in the width direction is fixed, it is “fixed”. Of course, from the necessity of punching the raw material 8, in the punching direction (in the direction perpendicular to the paper surface in accordance with FIGS. 7 to 9) It becomes movable. Therefore, the positions in the width direction of the positions 91a to 91f are equal.
図8の位置92a~92fは可動パンチの位置を示す。以下、これらの位置92a~92fを位置92と総称したり、当該可動パンチ自体を位置92として説明したりすることがある。
8 positions 92a to 92f indicate the positions of the movable punches. Hereinafter, the positions 92a to 92f may be collectively referred to as the position 92, or the movable punch itself may be described as the position 92.
可動パンチ(及びその位置)92は幅方向に可動である。また当然ながら打ち抜き方向にも可動である。可動パンチ(及びその位置)92は図中最も左端に存在する位置92a,92f(以下「第1位置92a,92f」とも称す)と、最も右端に存在する位置92c、92d(以下「第2位置92c,92d」とも称す)との間を、幅方向に移動する。
The movable punch (and its position) 92 is movable in the width direction. Of course, it is also movable in the punching direction. The movable punch (and its position) 92 includes positions 92a and 92f (hereinafter also referred to as “ first positions 92a and 92f”) existing at the leftmost position in the drawing, and positions 92c and 92d (hereinafter referred to as “second position” positioned at the rightmost position). 92c, 92d ") in the width direction.
上述のように実際には打ち抜きは搬送方向Kに対して移動しないので、位置91a~91f、位置92a~92fは、それぞれこの順に搬送方向Kとは反対に進んで図示される。原材8は所定長さP毎に搬送され、原材8の搬送が停止されるときに、打ち抜きが行われるので、位置91a~91f、位置92a~92fは、それぞれ搬送方向Kに沿って所定長さPの間隔で図示されることになる。
As described above, since the punching does not actually move with respect to the transport direction K, the positions 91a to 91f and the positions 92a to 92f are illustrated in the order opposite to the transport direction K in this order. Since the raw material 8 is conveyed every predetermined length P and punching is performed when the conveyance of the raw material 8 is stopped, the positions 91a to 91f and the positions 92a to 92f are respectively predetermined along the conveying direction K. It will be illustrated at intervals of length P.
固定パンチによる打ち抜きと可動パンチによる打ち抜きは対となって実行され(但し両者の先後関係は不問)、図9に示された打ち抜き孔90a~90fが形成される。
The punching with the fixed punch and the punching with the movable punch are executed as a pair (however, the prior relationship between the two is not important), and the punching holes 90a to 90f shown in FIG. 9 are formed.
矩形領域Qは打ち抜き孔90a~90fが形成された後で更に原材8を打ち抜く位置であり、その搬送方向Kにおける寸法が所定長さP以下であって、所定長さPの間隔で設定される。打ち抜き孔90a~90fは搬送方向Kに沿った方向において矩形領域Qからはみ出ることが望ましい。
The rectangular area Q is a position where the raw material 8 is further punched after the punching holes 90a to 90f are formed. The dimension in the transport direction K is equal to or less than the predetermined length P, and is set at an interval of the predetermined length P. The It is desirable that the punching holes 90a to 90f protrude from the rectangular region Q in the direction along the transport direction K.
打ち抜き孔90aは固定パンチの位置91aにおける打ち抜き及び可動パンチの位置92aにおける打ち抜きの結果として得られる。他の打ち抜き孔90b~90fについても同様である。このような固定パンチによる打ち抜きと可動パンチによる打ち抜きにおける両者間の搬送方向Kにおける位置合わせは周知の技術であるので、ここでは詳細を述べない。
The punching hole 90a is obtained as a result of punching at the fixed punch position 91a and punching at the movable punch position 92a. The same applies to the other punched holes 90b to 90f. Positioning in the conveying direction K between the punching with the fixed punch and the punching with the movable punch is a well-known technique, and therefore details are not described here.
但し、本実施の形態では、固定パンチの位置91aにおける打ち抜き部分と可動パンチの位置92aにおける打ち抜き部分とが若干重なることが望ましい。他の固定パンチの位置91b~91fと可動パンチの位置92b~92fに関しても同様である。このことと、打ち抜き孔90a~90fが搬送方向Kに沿った方向において矩形領域Qからはみ出ることとにより、打ち抜き孔90a~90fはそれぞれが属する矩形領域Q内で原材8を図中左側と右側とに分離する。
However, in the present embodiment, it is desirable that the punched portion at the fixed punch position 91a and the punched portion at the movable punch position 92a slightly overlap. The same applies to the positions 91b to 91f of the other fixed punches and the positions 92b to 92f of the movable punches. As a result, the punching holes 90a to 90f protrude from the rectangular region Q in the direction along the conveying direction K, so that the punching holes 90a to 90f allow the raw material 8 to be moved to the left and right sides in the rectangular region Q to which the punching holes 90a to 90f belong. And to separate.
そして矩形領域Qが打ち抜かれることにより、打ち抜き孔90a~90fに対する一方側(ここでは図中左側)及び他方側(ここでは図中右側)で、原材8からそれぞれ積層用鋼板101~106及び積層用鋼板201~206が得られる。矩形領域Qの打ち抜きと、固定パンチや可動パンチによる打ち抜きとの間の、搬送方向Kにおける位置合わせも周知の技術であるので、その詳細は割愛する。なお、原材8の幅寸法が正確に一定で有れば、矩形領域Qにおける打ち抜きは、単に原材8を搬送方向Kにおいて切断する工程で代替してもよい。
Then, by punching the rectangular region Q, the steel plates 101 to 106 and the lamination steel plates 101 to 106 and the lamination are respectively formed from the raw material 8 on one side (here, the left side in the drawing) and the other side (here, the right side in the drawing) of the punching holes 90a to 90f. Steel plates 201 to 206 are obtained. Since the positioning in the transport direction K between the punching of the rectangular area Q and the punching by the fixed punch or the movable punch is also a well-known technique, the details thereof are omitted. If the width dimension of the raw material 8 is exactly constant, the punching in the rectangular region Q may be replaced by a process of simply cutting the raw material 8 in the transport direction K.
積層用鋼板101,201を例に採って矩形領域Q内の位置関係をおおまかに説明すれば、固定パンチ(及びその位置)91における幅狭部は磁束案内部12と、幅広部は埋設部13と、それぞれ相補的な関係にある。また可動パンチ(及びその位置)92における幅狭部は鍔部14と、幅広部は巻回部11と、それぞれ相補的な関係にある。同時に打ち抜かれる1対の積層用鋼板において、鍔部14の幅寸法の合計と、磁束案内部12の幅寸法の合計を略同一とすると、電磁鋼板の使用効率が更に高まる。
Taking the laminated steel plates 101 and 201 as an example, the positional relationship in the rectangular region Q will be roughly described. The narrow portion of the fixed punch (and its position) 91 is the magnetic flux guide portion 12, and the wide portion is the buried portion 13. Are complementary to each other. Further, the narrow portion of the movable punch (and its position) 92 has a complementary relationship with the flange portion 14 and the wide portion with the winding portion 11. In the pair of laminated steel plates that are simultaneously punched, if the total width dimension of the flange portion 14 and the total width dimension of the magnetic flux guide portion 12 are substantially the same, the use efficiency of the electromagnetic steel sheet is further increased.
図10は積層用鋼板101~106を打ち抜かれた順に並べて示している。白抜き矢印の矢尻側が時間的に先であり、矢印の矢先側が時間的に後である(後述する図11、図13、図14においても同様)。形状を見やすくするためにこれらを打ち抜き順に斜めに配置して図示しているが、実際には斜めに配置される必要はない。原材8は搬送方向Kと直交する方向(幅方向)には移動しないため、矩形領域Qを打ち抜くことにより、打ち抜き孔90b~90fと反対側(原材8の幅方向端部側)を揃えることが容易であり、実際はそのように積層されることが望ましい。
FIG. 10 shows the laminated steel plates 101 to 106 arranged in the order of punching. The arrowhead side of the white arrow is ahead in time, and the arrowhead side of the arrow is behind in time (the same applies to FIGS. 11, 13, and 14 described later). In order to make the shape easy to see, these are shown in an oblique arrangement in the punching order, but in practice it is not necessary to arrange them obliquely. Since the raw material 8 does not move in the direction (width direction) perpendicular to the conveyance direction K, the opposite side of the punched holes 90b to 90f (the width direction end side of the raw material 8) is aligned by punching out the rectangular region Q. In practice, it is desirable to be laminated in that way.
積層用鋼板101~106は、打ち抜き孔90b~90fの左側で得られる。また第1位置92a,92fは図中で最も左側に位置する。よって第1位置92a,92fに対応する打ち抜き孔90a,90fの左側から得られる積層用鋼板101,106は、その巻回部11や鍔部14に相当する位置での幅寸法が、積層用鋼板101~106の中で最も小さい。逆に、第2位置92c,92dは図中で最も右側に位置するので、打ち抜き孔90c,90dの左側から得られる積層用鋼板103,104は、その巻回部11や鍔部14に相当する位置での幅寸法が、積層用鋼板101~106の中で最も大きい。そして積層用鋼板102,105の当該幅寸法は、積層用鋼板103,104のそれよりも小さく、積層用鋼板101,106のそれよりも大きい。
The laminated steel plates 101 to 106 are obtained on the left side of the punched holes 90b to 90f. The first positions 92a and 92f are located on the leftmost side in the drawing. Therefore, the laminating steel plates 101 and 106 obtained from the left side of the punched holes 90a and 90f corresponding to the first positions 92a and 92f have a width dimension at a position corresponding to the winding portion 11 and the flange portion 14 so that the laminating steel plates. The smallest of 101-106. On the contrary, since the second positions 92c and 92d are located on the rightmost side in the drawing, the steel plates 103 and 104 for lamination obtained from the left side of the punching holes 90c and 90d correspond to the winding part 11 and the flange part 14, respectively. The width dimension at the position is the largest among the steel plates 101 to 106 for lamination. The width dimension of the steel plates 102 and 105 for lamination is smaller than that of the steel plates 103 and 104 for lamination and larger than that of the steel plates 101 and 106 for lamination.
図11に示されるように、積層用鋼板101~106は打ち抜かれた順で、具体的には先に打ち抜かれたものほど下方に積層される。このとき、上述のように打ち抜き孔90b~90fと反対側が揃って積層用鋼板101~106が積層される。なお、積層用鋼板103と104は図では積層されて示されているが、実際には積層されていなくてもよい。積層の単位を決める方法は、公知の方法にて実現できる。
As shown in FIG. 11, the steel plates for laminating 101 to 106 are stacked in the order of punching, specifically, the one punched first is stacked below. At this time, as described above, the opposite side of the punched holes 90b to 90f is aligned and the steel plates 101 to 106 for lamination are laminated. In addition, although the steel plates 103 and 104 for lamination | stacking are shown laminated | stacked in the figure, they may not actually be laminated | stacked. The method for determining the unit of lamination can be realized by a known method.
第1位置92a,92fで打ち抜かれた積層用鋼板101,106と、第2位置92c,92dで打ち抜かれた積層用鋼板103,104とを境界として積層用鋼板101~106が積層されて複数の積層体10a,10bが得られる。具体的には積層体10aは積層用鋼板101~103で構成され、積層体10bは積層用鋼板104~106で構成される。図10では説明の容易のため、積層体10a,10bを構成する積層用鋼板101~106が離隔して示されている。
Laminating steel plates 101 to 106 are laminated with the laminating steel plates 101 and 106 punched at the first positions 92a and 92f and the laminating steel plates 103 and 104 punched at the second positions 92c and 92d as a boundary. Laminates 10a and 10b are obtained. Specifically, the laminated body 10a is composed of laminating steel plates 101 to 103, and the laminated body 10b is composed of laminating steel plates 104 to 106. In FIG. 10, for the sake of easy explanation, the laminated steel plates 101 to 106 constituting the laminated bodies 10a and 10b are shown separately.
そして積層体10a,10b同士を、打ち抜き孔90b~90fと反対側、つまり可動パンチ92で打ち抜かれた位置同士を反対側にして隣接させることにより、積層体10a,10bはそれぞれ第1部分1a及び第2部分1bとして機能することになる。
Then, the stacked bodies 10a and 10b are adjacent to each other with the positions punched by the movable punch 92 opposite to the punched holes 90b to 90f, that is, the stacked bodies 10a and 10b are adjacent to each other. It will function as the second portion 1b.
図13乃至図15を参照して、積層用鋼板201~206についても積層用鋼板101~106と同様に、先に打ち抜かれたものほど下方に積層される。そして第1位置92a,92fで打ち抜かれた積層用鋼板201,206と、第2位置92c,92dで打ち抜かれた積層用鋼板203,204とを境界として積層用鋼板201~206が積層されて複数の積層体20a,20bが得られる。具体的には積層体20aは積層用鋼板204~206で構成され、積層体20bは積層用鋼板201~203で構成される。図13では積層体20a,20bを構成する積層用鋼板201~206が離隔して示されている。
Referring to FIG. 13 to FIG. 15, the laminated steel plates 201 to 206 are laminated downward as they are punched out in the same manner as the laminated steel plates 101 to 106. A plurality of lamination steel plates 201 to 206 are laminated on the boundary between the lamination steel plates 201 and 206 punched at the first positions 92a and 92f and the lamination steel plates 203 and 204 punched at the second positions 92c and 92d. The laminates 20a and 20b are obtained. Specifically, the laminate 20a is composed of lamination steel plates 204 to 206, and the laminate 20b is composed of lamination steel plates 201 to 203. In FIG. 13, the laminated steel plates 201 to 206 constituting the laminated bodies 20a and 20b are shown separately.
そして積層体20a,20b同士を、可動パンチ92で打ち抜かれた位置同士を反対側にして隣接させることにより、積層体20a,20bはそれぞれ第1部分1a及び第2部分1bとして機能することになる。
And the laminated bodies 20a and 20b function as the first part 1a and the second part 1b, respectively, by making the positions punched by the movable punch 92 opposite to each other and adjoining each other. .
このように可動パンチの位置92a~92fが幅方向に往復することによって、その幅方向の両側において、原材8から積層用鋼板101~106,201~206が得られる。よって可動パンチ数は一つで足りる。従来の技術では、打ち抜かれる積層用鋼板の幅に合わせて左右対称に移動する可動パンチの一対が必要であったので、本実施の形態は従来の技術と比較して可動パンチ数を低減したことになる。
As described above, when the movable punch positions 92a to 92f reciprocate in the width direction, the laminated steel plates 101 to 106 and 201 to 206 are obtained from the raw material 8 on both sides in the width direction. Therefore, one movable punch is enough. Since the conventional technique required a pair of movable punches that move symmetrically according to the width of the laminated steel sheet to be punched, this embodiment reduced the number of movable punches compared to the conventional technique. become.
また、原材8のうち、積層用鋼板101~106,201~206に採用されないのは、矩形領域Qの外側と、打ち抜き孔90a~90fに対応する部分となる。上述のように本実施の形態では可動パンチ数を減らしたことにより、打ち抜き孔90a~90fの面積を小さくできることと、従来においても矩形領域Qの外側は廃材となっていたことに鑑みれば、本実施の形態では従来の技術と比較して廃材を低減したことになる。
Further, in the raw material 8, the portions not corresponding to the laminated steel plates 101 to 106 and 201 to 206 are the outside of the rectangular region Q and the portions corresponding to the punched holes 90 a to 90 f. As described above, in the present embodiment, considering the fact that the area of the punched holes 90a to 90f can be reduced by reducing the number of movable punches and that the outside of the rectangular region Q has been waste material in the past, In the embodiment, waste materials are reduced as compared with the conventional technique.
勿論、積層用鋼板101~106と積層用鋼板201~206の片方のみを磁芯1の作成に用いることができる。廃材低減という観点を除いて考えれば、このような製造工程であっても、第1の実施の形態で説明された磁芯を得ることができるという効果はある。
Of course, only one of the laminated steel plates 101 to 106 and the laminated steel plates 201 to 206 can be used for forming the magnetic core 1. If it considers except a viewpoint of waste material reduction, even if it is such a manufacturing process, there exists an effect that the magnetic core demonstrated in 1st Embodiment can be obtained.
なお、本実施の形態では磁芯1の磁束案内部12及び埋設部13の幅寸法は径方向の位置によらず一定であるので、固定パンチ91による打ち抜きが必要であった。しかしながら本実施の形態は可動パンチのみによる打ち抜きにも適用できる。
In the present embodiment, since the width dimension of the magnetic flux guide portion 12 and the embedded portion 13 of the magnetic core 1 is constant regardless of the radial position, punching with the fixed punch 91 is necessary. However, this embodiment can also be applied to punching using only a movable punch.
上述の図17のように巻回部11と磁束案内部12と埋設部13についても、軸方向Zから見て同形とする場合、図16に示す打ち抜き孔90g~90lを採用することができる。これらの孔は可動パンチのみによって得られる。打ち抜き孔90g~90lは全て同形であり、矩形領域Q内における幅方向の位置のみが異なっている。
When the winding part 11, the magnetic flux guide part 12, and the embedded part 13 are also formed in the same shape as seen from the axial direction Z as shown in FIG. 17, punched holes 90g to 90l shown in FIG. These holes are obtained only by a movable punch. The punching holes 90g to 90l are all the same shape, and only the positions in the width direction in the rectangular region Q are different.
原材8を搬送方向Kに所定長さPで搬送し、搬送が停止される毎に、可動パンチが幅方向に往復運動をすることによって更新される可動パンチの幅方向の位置で、打ち抜き孔90g~90lが打ち抜かれる。このようにして打ち抜き孔90g~90lの両側から得られる積層用鋼板についても、積層用鋼板101~106,201~206と同様にして、打ち抜き孔90g,90lで打ち抜かれた積層用鋼板及び打ち抜き孔90i,90jで打ち抜かれた積層用鋼板を境界として積層することによって積層体を複数個得ることができる。そしてこれらの積層体を、可動パンチで打ち抜かれた位置同士を反対側にして隣接させて磁芯1を形成することができる。ここで打ち抜き孔90g~90lの形状は第1鍔部分14aや第2鍔部分14bに相当する位置を除いて幅寸法が一定となっているので、図17に示される磁芯を形成することができる。
A punching hole is formed at a position in the width direction of the movable punch that is updated by reciprocating the movable punch in the width direction each time the raw material 8 is conveyed in the conveyance direction K by a predetermined length P and the conveyance is stopped. 90g-90l is punched out. The laminated steel plates obtained from both sides of the punched holes 90g to 90l in this way are the same as the laminated steel plates 101 to 106 and 201 to 206, and the laminated steel plates and punched holes punched by the punched holes 90g and 90l. A plurality of laminates can be obtained by laminating the laminate steel plates punched at 90i and 90j as boundaries. Then, the magnetic core 1 can be formed by adjoining these laminated bodies with the positions punched by the movable punches opposite to each other. Here, since the shape of the punched holes 90g to 90l is constant in width except for the positions corresponding to the first flange portion 14a and the second flange portion 14b, the magnetic core shown in FIG. 17 can be formed. it can.
また 上述の図19のように埋設部13を設けることなく、鍔部14を一対設ける磁芯1については、図18に示す打ち抜き孔90g~90lを採用することができる。これらの孔も可動パンチのみによって得られる。打ち抜き孔90g~90lは全て同形であり、矩形領域Q内における幅方向の位置のみが異なっており、一対の鍔部14に相当する位置を除いて幅寸法が一定となっている。よって積層用鋼板101~106,201~206と同様にして積層して積層体を得て、これらを隣接させることにより、図19に示される磁芯を形成することができる。なお、積層用鋼板101~106,201~206の形状は、軸方向Zに直交する平面に対して面対称の形状であるため、いずれの積層体も同一形状となり、任意の2つの積層体を用いて磁芯1を構成できる。
Further, the punching holes 90g to 90l shown in FIG. 18 can be employed for the magnetic core 1 in which the pair of flange portions 14 are provided without providing the embedded portion 13 as shown in FIG. These holes are also obtained only by a movable punch. The punched holes 90g to 90l are all the same shape, differ only in the position in the width direction in the rectangular region Q, and the width dimension is constant except for the positions corresponding to the pair of flange portions 14. Therefore, the magnetic core shown in FIG. 19 can be formed by laminating in the same manner as the laminating steel plates 101 to 106 and 201 to 206 to obtain a laminated body and adjoining them. Note that the shape of the steel plates 101 to 106 and 201 to 206 for lamination is plane symmetric with respect to a plane orthogonal to the axial direction Z. Therefore, all the laminates have the same shape, and any two laminates are formed. The magnetic core 1 can be configured by using it.
鍔部14を設けない磁芯1を得る場合には、打ち抜き孔90g~90lの形状としては矩形を採用できる。
When obtaining the magnetic core 1 without the collar 14, a rectangular shape can be adopted as the shape of the punched holes 90 g to 90 l.
第3の実施の形態.
第2の実施の形態のみを実施して得られる磁芯1は、正確にはその対向方向平面視における形状が台形となる。但し、巻回部11は、これに電機子巻線15が密着し易いように、当該台形の角部が面取り、あるいは丸められることが望ましい。そこで径方向Rの外側の端や、内側の端に配置される電磁鋼板と、これに隣接する電磁鋼板との間での周方向θにおける幅寸法の差分は、径方向Rの中央部分で隣接する一対の電磁鋼板同士の幅寸法の差分よりも大きいことが望ましい。 Third embodiment.
Themagnetic core 1 obtained by implementing only the second embodiment has a trapezoidal shape in the plan view in the opposite direction. However, it is preferable that the corners of the trapezoid be chamfered or rounded so that the armature winding 15 can be in close contact with the winding part 11. Therefore, the difference in the width dimension in the circumferential direction θ between the electromagnetic steel sheet disposed at the outer end in the radial direction R or the inner end and the electromagnetic steel sheet adjacent thereto is adjacent to the central portion in the radial direction R. It is desirable that it is larger than the difference in the width dimension between the pair of electrical steel sheets.
第2の実施の形態のみを実施して得られる磁芯1は、正確にはその対向方向平面視における形状が台形となる。但し、巻回部11は、これに電機子巻線15が密着し易いように、当該台形の角部が面取り、あるいは丸められることが望ましい。そこで径方向Rの外側の端や、内側の端に配置される電磁鋼板と、これに隣接する電磁鋼板との間での周方向θにおける幅寸法の差分は、径方向Rの中央部分で隣接する一対の電磁鋼板同士の幅寸法の差分よりも大きいことが望ましい。 Third embodiment.
The
よって、一旦、第2の実施の形態によって得られた積層体10a,10b、あるいは積層体20a,20bに対して、その径方向Rの内外から電磁鋼板を新たに追加して積層し、それぞれ第1部分1a及び第2部分1bを得てもよい。または、同一の順送金型内で、別の打抜金型(パンチ)を用意して、面取りあるいは丸められた部分を更に打ち抜くことも可能である。
Therefore, once the laminated bodies 10a and 10b or the laminated bodies 20a and 20b obtained by the second embodiment are additionally laminated with electromagnetic steel plates from the inside and outside in the radial direction R, respectively, You may obtain 1 part 1a and 2nd part 1b. Alternatively, it is possible to prepare another punching die (punch) in the same progressive die and further punch out the chamfered or rounded portion.
形状のバリエーション.
上述の台形の二つの斜辺が為す角度は、周角(360度)を、電機子において環状に配列される磁芯の個数で除した値に設定することができる。 Variation of shape.
The angle formed by the two hypotenuses of the trapezoid can be set to a value obtained by dividing the peripheral angle (360 degrees) by the number of magnetic cores arranged in an annular shape in the armature.
上述の台形の二つの斜辺が為す角度は、周角(360度)を、電機子において環状に配列される磁芯の個数で除した値に設定することができる。 Variation of shape.
The angle formed by the two hypotenuses of the trapezoid can be set to a value obtained by dividing the peripheral angle (360 degrees) by the number of magnetic cores arranged in an annular shape in the armature.
また上記の実施の形態で示されるように周方向θにおいて分割される磁芯と、従来のように分割されない磁芯とを混在させてもよい。例えば分割されない磁芯は、その対向方向平面視における形状が矩形であって、これが分割される磁芯と環状方向において交互に配置される。この場合、分割された磁芯の対向方向平面視における台形の二つの斜辺が成す角度は、周角(360度)を、当該分割された磁芯が電機子において配列される個数で除した値に設定することができる。なお、台形の2つの斜辺が底辺と為す角は同一の等脚台形であることが必要である。
Also, as shown in the above embodiment, a magnetic core that is divided in the circumferential direction θ and a magnetic core that is not divided as in the conventional case may be mixed. For example, the magnetic cores that are not divided have a rectangular shape in plan view in the facing direction, and are alternately arranged in the annular direction with the magnetic core into which the magnetic cores are divided. In this case, the angle formed by the two hypotenuses of the trapezoid in the plan view in the opposite direction of the divided magnetic core is a value obtained by dividing the peripheral angle (360 degrees) by the number of the divided magnetic cores arranged in the armature. Can be set to Note that the angle between the two hypotenuses of the trapezoid and the base must be the same isosceles trapezoid.
磁芯の対向方向平面視における面積は、全ての磁芯において等しいことが望ましい。電機子巻線の巻回数は通常は全ての磁芯において等しく選定されるので、電機子が発生する磁界の対称性をよくするためである。
It is desirable that the area of the magnetic core in the opposing direction plan view is the same for all the magnetic cores. This is because the number of turns of the armature winding is usually selected equally for all the magnetic cores, so that the symmetry of the magnetic field generated by the armature is improved.
もちろん、電機子巻線の巻回数を磁芯毎に異ならせることは、上記実施の形態の奏功を損なわせるものではなく、他の要求に応じて適宜設計、選定できる事項である。打抜きパターンについても、2つの部分を1対の電磁鋼板としたが、これを1単位として、複数単位を電磁鋼板の幅方向に同時に打ち抜いても良い。
Of course, varying the number of turns of the armature winding for each magnetic core does not impair the success of the above-described embodiment, and can be appropriately designed and selected according to other requirements. Regarding the punching pattern, the two portions are a pair of electrical steel sheets, but a plurality of units may be simultaneously punched in the width direction of the electrical steel sheet with this as one unit.
この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
1 磁芯
1a 第1部分
1b 第2部分
100 電磁鋼板
101~106,201~206 積層用鋼板
11 巻回部
11a 第1巻回部分
11b 第2巻回部分
110a 第1境界面
110b 第2境界面
15 電機子巻線
4 界磁子
8 原材
90a~90l 打ち抜き孔
91,91a~91f 固定パンチの位置
92,92a~92f 可動パンチの位置
K 搬送方向
P 所定長さ
R 径方向
Z 軸方向
θ 周方向 DESCRIPTION OFSYMBOLS 1 Magnetic core 1a 1st part 1b 2nd part 100 Magnetic steel plate 101-106, 201-206 Steel plate for lamination | stacking 11 Winding part 11a 1st winding part 11b 2nd winding part 110a 1st interface 110b 2nd interface 15 Armature winding 4 Field element 8 Raw material 90a to 90l Punching hole 91, 91a to 91f Position of fixed punch 92, 92a to 92f Position of movable punch K Transport direction P Predetermined length R Radial direction Z Axis direction θ Circumference direction
1a 第1部分
1b 第2部分
100 電磁鋼板
101~106,201~206 積層用鋼板
11 巻回部
11a 第1巻回部分
11b 第2巻回部分
110a 第1境界面
110b 第2境界面
15 電機子巻線
4 界磁子
8 原材
90a~90l 打ち抜き孔
91,91a~91f 固定パンチの位置
92,92a~92f 可動パンチの位置
K 搬送方向
P 所定長さ
R 径方向
Z 軸方向
θ 周方向 DESCRIPTION OF
Claims (5)
- 軸方向(Z)において界磁子(4)と対向する電機子において前記軸方向と垂直な周方向(θ)に環状に配置される磁芯(1)であって、
その各々が、前記周方向の一方側の第1部分(1a)及び前記周方向の他方側の第2部分(1b)を備え、
前記第1部分及び前記第2部分の各々は、前記軸方向及び前記周方向のいずれにも垂直な径方向(R)に積層される複数の電磁鋼板(100)を含み、
前記第1部分は第1巻回部分(11a)及び第1境界面(110a)を有し、
前記第2部分は第2巻回部分(11b)及び第2境界面(110b)を有し、
前記第1境界面及び前記第2境界面は前記軸方向及び前記径方向に平行であり、
前記第1境界面と前記第2境界面とは相互に隣接して配置され、
前記第1巻回部分及び前記第2巻回部分は、前記軸方向を中心とする電機子巻線(15)が巻回される巻回部(11)を形成する、電機子用磁芯。 A magnetic core (1) arranged annularly in a circumferential direction (θ) perpendicular to the axial direction in an armature facing the field element (4) in the axial direction (Z),
Each includes a first portion (1a) on one side in the circumferential direction and a second portion (1b) on the other side in the circumferential direction,
Each of the first part and the second part includes a plurality of electrical steel sheets (100) stacked in a radial direction (R) perpendicular to both the axial direction and the circumferential direction,
The first portion has a first winding portion (11a) and a first boundary surface (110a),
The second part has a second winding part (11b) and a second boundary surface (110b),
The first boundary surface and the second boundary surface are parallel to the axial direction and the radial direction,
The first boundary surface and the second boundary surface are disposed adjacent to each other;
The first winding portion and the second winding portion are armature cores that form a winding portion (11) around which the armature winding (15) around the axial direction is wound. - 前記界磁子は前記周方向の前記他方側から前記周方向の前記一方側へと回転し、
前記軸方向(Z)及び前記周方向(θ)のいずれにも垂直な径方向(R)の任意の位置における断面は、前記第2部分(1b)の方が前記第1部分(1a)よりも狭い、請求項1記載の電機子用磁芯(1)。 The field element rotates from the other side in the circumferential direction to the one side in the circumferential direction,
Regarding the cross section at an arbitrary position in the radial direction (R) perpendicular to both the axial direction (Z) and the circumferential direction (θ), the second portion (1b) is more than the first portion (1a). The armature core (1) according to claim 1, which is also narrow. - 電磁鋼板である原材(8)を搬送方向(K)へ所定長さ(P)毎に搬送し、
(a)前記原材の搬送が停止されるときに、第1パンチ(92)を用いて前記原材を打ち抜く工程と、
(b)前記工程(a)で前記原材に残された電磁鋼板を、その前記搬送方向における寸法が前記所定長さ以下である矩形(Q)に打ち抜いて積層用鋼板(101~106,201~206)を得る工程と、
(c)前記工程(b)で得られた前記積層用鋼板のうち、前記搬送方向に垂直な方向たる幅方向における前記第1パンチに対する一方側で得られたもの(101~106)を、その打ち抜かれた順序で積層する工程と
を備え、
前記工程(a)は前記幅方向において、前記第1パンチを第1の位置(92a,92f;90g,90l)と第2の位置(92c、92d;90i,90j)との間で往復させることによって前記第1パンチの位置を更新して繰り返し行われ、
前記工程(c)では、前記第1の位置で打ち抜かれた前記積層用鋼板(101,106)と、前記第2の位置で打ち抜かれた前記積層用鋼板(103,104)とを境界として前記積層用鋼板が積層されて複数の積層体(10a,10b)が得られ、
(d)前記工程(c)での積層体同士を、前記第1パンチで打ち抜かれた位置同士を反対側にして隣接させて磁芯(1)を形成する工程と、
を更に備える、磁芯の製造方法。 The raw material (8), which is an electromagnetic steel plate, is conveyed every predetermined length (P) in the conveying direction (K),
(A) when the conveyance of the raw material is stopped, the step of punching the raw material using the first punch (92);
(B) The electromagnetic steel sheet left on the raw material in the step (a) is punched into a rectangular shape (Q) whose dimension in the transport direction is equal to or less than the predetermined length, and the laminated steel sheets (101 to 106, 201) To 206), and
(C) Of the steel sheets for lamination obtained in the step (b), those obtained on one side with respect to the first punch in the width direction perpendicular to the conveying direction (101 to 106), And laminating in the punched order,
The step (a) reciprocates the first punch between the first position (92a, 92f; 90g, 90l) and the second position (92c, 92d; 90i, 90j) in the width direction. By repeatedly updating the position of the first punch,
In the step (c), the laminate steel plates (101, 106) punched at the first position and the laminate steel plates (103, 104) punched at the second position are used as boundaries. A plurality of laminated bodies (10a, 10b) are obtained by laminating laminated steel sheets,
(D) forming the magnetic core (1) by adjoining the stacked bodies in the step (c) with the positions punched by the first punches opposite to each other;
A method for manufacturing a magnetic core, further comprising: - (e)前記工程(b)で得られた前記積層用鋼板のうち、前記搬送方向に垂直な方向たる幅方向における前記第1パンチに対する他方側で得られたもの(201~206)を、その打ち抜かれた順序で、前記第1の位置で打ち抜かれた前記積層用鋼板(201,206)と、前記第2の位置で打ち抜かれた前記積層用鋼板(203,204)とを境界として前記積層用鋼板が積層されて複数の積層体(20a,20b)を得る工程と、
(f)前記工程(e)での積層体同士を、前記第1パンチで打ち抜かれた位置同士を反対側にして隣接させて磁芯(1)を形成する工程と、
を更に備える、請求項3記載の磁芯の製造方法。 (E) Of the steel sheets for lamination obtained in the step (b), those obtained on the other side with respect to the first punch in the width direction perpendicular to the transport direction (201 to 206), In the punched order, the laminated steel plates (201, 206) punched at the first position and the laminated steel plates (203, 204) punched at the second position as a boundary. A steel plate is laminated to obtain a plurality of laminates (20a, 20b);
(F) forming the magnetic core (1) by adjoining the stacked bodies in the step (e) with the positions punched by the first punches opposite to each other;
The method of manufacturing a magnetic core according to claim 3, further comprising: - (g)前記工程(c)の実行よりも前に、前記工程(a)と対となって実行され、前記原材(8)の搬送が停止されるときに、前記幅方向の位置(91a~91f)が維持される第2パンチ(91)を用いて前記原材を打ち抜く工程
を更に備える、請求項3又は請求項4に記載の磁芯の製造方法。 (G) Prior to the execution of the step (c), when the conveyance of the raw material (8) is stopped in a pair with the step (a), the position in the width direction (91a The method of manufacturing a magnetic core according to claim 3 or 4, further comprising a step of punching out the raw material using a second punch (91) in which ... 91f) is maintained.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-221307 | 2009-09-25 | ||
JP2009221307A JP4730461B2 (en) | 2009-09-25 | 2009-09-25 | Magnetic core manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011037087A1 true WO2011037087A1 (en) | 2011-03-31 |
Family
ID=43795835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066207 WO2011037087A1 (en) | 2009-09-25 | 2010-09-17 | Magnetic core for use in an armature, and method for manufacturing a magnetic core |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4730461B2 (en) |
WO (1) | WO2011037087A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2995471A1 (en) * | 2012-09-12 | 2014-03-14 | Valeo Equip Electr Moteur | MIXED SPOOL INSULATION MADE IN TWO PARTS AND CORRESPONDING ELECTRIC MACHINE ELEMENT |
FR2995470A1 (en) * | 2012-09-12 | 2014-03-14 | Valeo Equip Electr Moteur | Coil insulator for positioning around tooth of stator or rotor of e.g. alterno-starter of electric car, has body formed from two parts that are separated along plane, which is parallel to lateral walls and passes through end walls of frame |
GB2511421A (en) * | 2013-01-24 | 2014-09-03 | Gkn Evo Edrive Systems Ltd | Electrical machines |
WO2020233936A1 (en) * | 2019-05-21 | 2020-11-26 | Renault S.A.S | Stator for an axial flux electric machine and method for assembling such a stator |
DE102022004802A1 (en) | 2022-12-19 | 2024-06-20 | Mercedes-Benz Group AG | Method for producing a stator of an axial flow machine and stator |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104782032A (en) * | 2012-12-27 | 2015-07-15 | 株式会社日立制作所 | Rotating electrical machine |
WO2015114794A1 (en) * | 2014-01-31 | 2015-08-06 | 株式会社日立製作所 | Axial gap type rotating electric machine |
CN107516949A (en) * | 2016-06-16 | 2017-12-26 | 上海鸣志电器股份有限公司 | A kind of two-phase dish-style stepper motor |
JPWO2022181035A1 (en) * | 2021-02-24 | 2022-09-01 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007082300A (en) * | 2005-09-13 | 2007-03-29 | Toyota Central Res & Dev Lab Inc | Core and motor equipped with it |
JP2007252064A (en) * | 2006-03-15 | 2007-09-27 | Fujitsu General Ltd | Process for manufacturing stator core for axial air gap type motor |
JP2009011086A (en) * | 2007-06-28 | 2009-01-15 | Daikin Ind Ltd | Armature of axial gap type rotating electric machine |
-
2009
- 2009-09-25 JP JP2009221307A patent/JP4730461B2/en not_active Expired - Fee Related
-
2010
- 2010-09-17 WO PCT/JP2010/066207 patent/WO2011037087A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007082300A (en) * | 2005-09-13 | 2007-03-29 | Toyota Central Res & Dev Lab Inc | Core and motor equipped with it |
JP2007252064A (en) * | 2006-03-15 | 2007-09-27 | Fujitsu General Ltd | Process for manufacturing stator core for axial air gap type motor |
JP2009011086A (en) * | 2007-06-28 | 2009-01-15 | Daikin Ind Ltd | Armature of axial gap type rotating electric machine |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2995471A1 (en) * | 2012-09-12 | 2014-03-14 | Valeo Equip Electr Moteur | MIXED SPOOL INSULATION MADE IN TWO PARTS AND CORRESPONDING ELECTRIC MACHINE ELEMENT |
FR2995470A1 (en) * | 2012-09-12 | 2014-03-14 | Valeo Equip Electr Moteur | Coil insulator for positioning around tooth of stator or rotor of e.g. alterno-starter of electric car, has body formed from two parts that are separated along plane, which is parallel to lateral walls and passes through end walls of frame |
WO2014041277A1 (en) * | 2012-09-12 | 2014-03-20 | Valeo Equipements Electriques Moteur | Mixed coil insulator made from two parts and corresponding element of an electrical machine |
CN104604106A (en) * | 2012-09-12 | 2015-05-06 | 法雷奥电机设备公司 | Mixed coil insulator made from two parts and corresponding element of an electrical machine |
CN104604106B (en) * | 2012-09-12 | 2017-03-15 | 法雷奥电机设备公司 | The hybrid coil insulating part being made up of two parts, and corresponding electrical machine element |
GB2511421A (en) * | 2013-01-24 | 2014-09-03 | Gkn Evo Edrive Systems Ltd | Electrical machines |
GB2511421B (en) * | 2013-01-24 | 2015-08-12 | Gkn Evo Edrive Systems Ltd | Stators for electrical machines |
WO2020233936A1 (en) * | 2019-05-21 | 2020-11-26 | Renault S.A.S | Stator for an axial flux electric machine and method for assembling such a stator |
FR3096522A1 (en) * | 2019-05-21 | 2020-11-27 | Renault S.A.S | Stator of an axial flow electric machine and method of assembling such a stator |
DE102022004802A1 (en) | 2022-12-19 | 2024-06-20 | Mercedes-Benz Group AG | Method for producing a stator of an axial flow machine and stator |
WO2024132451A1 (en) | 2022-12-19 | 2024-06-27 | Mercedes-Benz Group AG | Method for producing a stator of an axial flow machine, and stator produced according to said method |
Also Published As
Publication number | Publication date |
---|---|
JP4730461B2 (en) | 2011-07-20 |
JP2011072127A (en) | 2011-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4730461B2 (en) | Magnetic core manufacturing method | |
JP6479392B2 (en) | Laminated iron core and method for manufacturing the same | |
WO2012004858A1 (en) | Linear motor armature and linear motor | |
JP4365271B2 (en) | Manufacturing method of laminated iron core | |
CN111418131B (en) | Stator core | |
JP6649676B2 (en) | Manufacturing method of laminated core | |
JP6659161B2 (en) | Split core of rotary electric machine, method of manufacturing the split core, and rotary electric machine | |
JP2011078294A (en) | Armature core | |
JPWO2014208582A1 (en) | Synchronous rotor for rotating electrical machine and method for manufacturing synchronized rotor for rotating electrical machine | |
JP5790426B2 (en) | Rotor | |
JPWO2017154576A1 (en) | Rotating electric machine stator and rotating electric machine | |
JP2005020972A (en) | Manufacturing method and manufacturing device of laminated core | |
JP3439658B2 (en) | Iron core | |
JP2010004635A (en) | Field magneton, manufacturing method therefor, and rotating electrical machine | |
JP5154398B2 (en) | Manufacturing method of laminated iron core and manufacturing method of laminated stator | |
CN111146882A (en) | Armature of rotating electric machine | |
JP5515689B2 (en) | Armature core | |
JPWO2019123513A1 (en) | Stator core and electric motor having the stator core | |
JP2009095189A (en) | Split stator and motor | |
JP2009065833A (en) | Laminated core and manufacturing method thereof | |
JP5720891B2 (en) | Stator and manufacturing method thereof | |
JP2011087366A (en) | Linear motor and manufacturing method of the same | |
KR20190020017A (en) | Manufacturing method of electric motor and motor | |
JP5387225B2 (en) | Armature yoke and armature | |
JP5726118B2 (en) | Laminated stator core, method for producing laminated stator core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10818760 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10818760 Country of ref document: EP Kind code of ref document: A1 |