JP6850983B2 - How to reduce the amount of unburned carbon in coal ash - Google Patents

How to reduce the amount of unburned carbon in coal ash Download PDF

Info

Publication number
JP6850983B2
JP6850983B2 JP2017014258A JP2017014258A JP6850983B2 JP 6850983 B2 JP6850983 B2 JP 6850983B2 JP 2017014258 A JP2017014258 A JP 2017014258A JP 2017014258 A JP2017014258 A JP 2017014258A JP 6850983 B2 JP6850983 B2 JP 6850983B2
Authority
JP
Japan
Prior art keywords
coal ash
unburned carbon
organic particles
amount
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017014258A
Other languages
Japanese (ja)
Other versions
JP2018122208A (en
Inventor
川端 秀和
秀和 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017014258A priority Critical patent/JP6850983B2/en
Publication of JP2018122208A publication Critical patent/JP2018122208A/en
Application granted granted Critical
Publication of JP6850983B2 publication Critical patent/JP6850983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、石炭灰中の未燃カーボン量を低減させる方法に関する。さらに詳しくは、石炭焚き火力発電所や流動床燃焼炉などで発生する石炭灰中の未燃カーボン量を低減させる方法に関する。 The present invention relates to a method for reducing the amount of unburned carbon in coal ash. More specifically, the present invention relates to a method for reducing the amount of unburned carbon in coal ash generated in a coal-fired power plant, a fluidized bed combustion furnace, or the like.

石炭焚き火力発電所や流動床燃焼炉などで発生する石炭灰を、コンクリート用混和材として利用することが検討されている。しかしながら、石炭灰は一般に未燃カーボンを含んでおり、この未燃カーボンが、他の混和材を吸着することがある。このため、石炭灰の未燃カーボン量が多いと、他の混和材の添加量を多くする必要が生じたり、コンクリートの流動性が変動することがある。また、未燃カーボン量が多い石炭灰を混和材として用いると、コンクリートの表面に未燃カーボンによる黒い斑点が生じ、硬化したコンクリートの見かけが悪くなる。このため、石炭灰中の未燃カーボン量を低減させる方法が開発されている。
なお、JIS A 6201(コンクリート用フライアッシュ)では、未燃カーボン量を含む強熱減量(ig.loss)が制限されている。
It is being considered to use coal ash generated in coal-fired thermal power plants and fluidized bed combustion furnaces as an admixture for concrete. However, coal ash generally contains unburned carbon, which may adsorb other admixtures. Therefore, if the amount of unburned carbon in the coal ash is large, it may be necessary to increase the amount of other admixtures added, or the fluidity of the concrete may fluctuate. Further, when coal ash having a large amount of unburned carbon is used as an admixture, black spots due to unburned carbon are generated on the surface of the concrete, and the appearance of the hardened concrete is deteriorated. Therefore, a method for reducing the amount of unburned carbon in coal ash has been developed.
In JIS A 6201 (fly ash for concrete), ignition loss (ig. Loss) including the amount of unburned carbon is restricted.

石炭灰中の未燃カーボン量を低減させる方法として、石炭灰と水を含むスラリーを調製し、未燃カーボンをスラリー中で浮遊させることによって回収する方法が知られている(特許文献1〜5)。また、石炭灰を加熱して、未燃カーボンを燃焼させる方法が知られている(特許文献6〜7)。さらに、未燃カーボン粒子と灰粒子とを互いに逆の電荷に摩擦帯電させ、電荷の極性を利用して未燃カーボンを灰粒子から分離する方法が知られている(特許文献8)。 As a method for reducing the amount of unburned carbon in coal ash, a method of preparing a slurry containing coal ash and water and recovering the unburned carbon by suspending it in the slurry is known (Patent Documents 1 to 5). ). Further, a method of heating coal ash to burn unburned carbon is known (Patent Documents 6 to 7). Further, there is known a method in which the unburned carbon particles and the ash particles are triboelectrically charged with opposite charges, and the unburned carbon is separated from the ash particles by utilizing the polarity of the charges (Patent Document 8).

特開2016−49475号公報Japanese Unexamined Patent Publication No. 2016-49475 特開2010−23018号公報Japanese Unexamined Patent Publication No. 2010-23018 特開2007−54773号公報JP-A-2007-54773 特開2006−306679号公報Japanese Unexamined Patent Publication No. 2006-306679 特開平8−252563号公報Japanese Unexamined Patent Publication No. 8-252563 特開2007−780号公報JP-A-2007-780 特開平8−243526号公報Japanese Unexamined Patent Publication No. 8-243526 特開2004−243154号公報Japanese Unexamined Patent Publication No. 2004-243154

しかしながら、石炭灰と水を含むスラリーを調製する方法は、石炭灰を粉体として再利用する際に乾燥する必要があるため、時間がかかる。また未燃カーボンを燃焼させる方法は、石炭灰を加熱するための熱源(燃料)が必要となるため、処理費用が高価となる。さらに、未燃カーボン粒子と灰粒子とを互いに逆の電荷に摩擦帯電させる方法は、高圧の電気を使用するため、特別な処理装置が必要となり、また処理費用が高価となる。 However, the method of preparing a slurry containing coal ash and water is time-consuming because it needs to be dried when the coal ash is reused as a powder. Further, the method of burning unburned carbon requires a heat source (fuel) for heating coal ash, so that the processing cost is high. Further, the method of triboelectricly charging the unburned carbon particles and the ash particles to opposite charges requires a special processing device because high voltage electricity is used, and the processing cost is high.

本発明は、前述した事情に鑑みてなされたものであって、比較的簡単な装置を用いて、短時間で石炭灰中の未燃カーボン量を低減させることができる方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of reducing the amount of unburned carbon in coal ash in a short time by using a relatively simple device. And.

上記の課題を解決するために、本発明の石炭灰中の未燃カーボン量を低減させる方法は、未燃カーボンを含有する石炭灰と、含水率が5質量%以下であって、平均粒子径が5mm以上である有機物粒子とを乾式混合して、前記未燃カーボンを有機物粒子に付着させる混合工程と、前記石炭灰と、前記未燃カーボンを付着した前記有機物粒子とを、篩または強制渦式分級機を使用して分離する分離工程と、を備えることを特徴としている。 In order to solve the above problems, the method of reducing the amount of unburned carbon in the coal ash of the present invention is a method of reducing the amount of unburned carbon in the coal ash of the present invention with the coal ash containing unburned carbon, having a water content of 5% by mass or less and an average particle size. A mixing step of dry-mixing organic particles having a size of 5 mm or more to attach the unburned carbon to the organic particles, and sieving or forcibly vortexing the coal ash and the organic particles to which the unburned carbon is attached. It is characterized by including a separation step of separating using a formula classifier.

このような構成とされた本発明の石炭灰中の未燃カーボン量を低減させる方法によれば、石炭灰と有機物粒子とを乾式混合するので、後工程において乾燥を行う必要がない。また、混合工程にて、未燃カーボンを有機物粒子に付着させ、次の分離工程にて、石炭灰と、未燃カーボンを付着した有機物粒子とを分離するので、熱源を特には必要とせず、また高圧の電気を使用する特別な処理装置を使用する必要はない。また、前記有機物粒子は、平均粒子径が5mm以上で、有機物粒子の粒子径が大きいので、分離工程において、石炭灰と有機物粒子とを分離しやすくなる。 According to the method of reducing the amount of unburned carbon in the coal ash of the present invention having such a structure, the coal ash and the organic particles are dry-mixed, so that it is not necessary to perform drying in the subsequent step. Further, in the mixing step, unburned carbon is attached to the organic particles, and in the next separation step, the coal ash and the organic particles to which the unburned carbon is attached are separated, so that no special heat source is required. Moreover, it is not necessary to use a special processing device that uses high-pressure electricity. Further, since the organic particles have an average particle diameter of 5 mm or more and the particle diameter of the organic particles is large, it becomes easy to separate the coal ash and the organic particles in the separation step.

ここで、本発明の石炭灰中の未燃カーボン量を低減させる方法において、前記有機物粒子は、樹脂粒子またはゴム粒子であることが好ましい。
この場合、混合工程において、有機物粒子に未燃カーボンを効率よく付着させることができるので、石炭灰中の未燃カーボン量を確実に低減させることができる。
Here, in the method of reducing the amount of unburned carbon in coal ash of the present invention, the organic particles are preferably resin particles or rubber particles.
In this case, since the unburned carbon can be efficiently adhered to the organic particles in the mixing step, the amount of unburned carbon in the coal ash can be surely reduced.

さらに、本発明の石炭灰中の未燃カーボン量を低減させる方法において、前記有機物粒子は、産業廃棄物の粉砕物であってもよい。
この場合、有機物粒子の材料コストを低く抑えることができる。
Furthermore, in the method of reducing the amount of unburned carbon in coal ash of the present invention, the organic particles may be pulverized industrial waste.
In this case, the material cost of the organic particles can be kept low.

本発明によれば、比較的簡単な装置を用いて、短時間で石炭灰中の未燃カーボン量を低減させることができる方法を提供することが可能となる。 According to the present invention, it is possible to provide a method capable of reducing the amount of unburned carbon in coal ash in a short time by using a relatively simple device.

本発明の一実施形態に係る石炭灰中の未燃カーボン量を低減させる方法を示すフロー図である。It is a flow chart which shows the method of reducing the amount of unburned carbon in the coal ash which concerns on one Embodiment of this invention.

以下に、本発明の実施形態である石炭灰中の未燃カーボン量を低減させる方法について添付した図1を参照して説明する。
本実施形態で用いる石炭灰は、火力発電や流動床燃焼炉の燃料として使用された石炭が燃焼して生成した灰である。本実施形態で用いる石炭灰は、通常は未燃カーボンが2質量%以上10質量%の範囲で含まれている。石炭灰は、粒子径が一般に0.1mm以下である。
Hereinafter, a method for reducing the amount of unburned carbon in coal ash, which is an embodiment of the present invention, will be described with reference to FIG. 1 attached.
The coal ash used in this embodiment is ash produced by burning coal used as fuel for thermal power generation or a fluidized bed combustion furnace. The coal ash used in this embodiment usually contains unburned carbon in the range of 2% by mass or more and 10% by mass. Coal ash generally has a particle size of 0.1 mm or less.

本実施形態である石炭灰中の未燃カーボン量を低減させる方法は、図1に示すように、石炭灰と有機物粒子とを乾式混合する混合工程S01と、石炭灰と有機物粒子とを分離する分離工程S02とを備えている。 In the method of reducing the amount of unburned carbon in the coal ash according to the present embodiment, as shown in FIG. 1, the mixing step S01 in which the coal ash and the organic matter particles are dry-mixed and the coal ash and the organic matter particles are separated. It includes a separation step S02.

(混合工程S01)
混合工程S01において用いる有機物粒子は、含水率が5質量%以下とされており、石炭灰とを混合することによって、粒子間の摩擦や粒子と容器壁面との摩擦により粒子表面が帯電するものである。有機物粒子の表面が帯電することによって、有機物粒子の表面に石炭灰に含まれている未燃カーボンが付着し易くなる。有機物粒子の含水率が5質量%を超えると、水分を介して石炭灰が有機物粒子に付着し易くなるおそれがある。石炭灰が有機物粒子に付着していると、後述の分離工程S02において、石炭灰と有機物粒子とを分離しにくくなるおそれがある。また、有機物粒子の表面が帯電しにくくなり、有機物粒子に未燃カーボンが付着しにくくなるおそれがある。
(Mixing step S01)
The organic particles used in the mixing step S01 have a water content of 5% by mass or less, and when coal ash is mixed, the particle surface is charged by friction between the particles and friction between the particles and the wall surface of the container. is there. By charging the surface of the organic particles, the unburned carbon contained in the coal ash easily adheres to the surface of the organic particles. If the water content of the organic particles exceeds 5% by mass, coal ash may easily adhere to the organic particles via water. If the coal ash adheres to the organic particles, it may be difficult to separate the coal ash and the organic particles in the separation step S02 described later. In addition, the surface of the organic particles is less likely to be charged, and unburned carbon may be less likely to adhere to the organic particles.

有機物粒子の含水率は、例えば、次のようにして測定できる。
まず、試料の有機物粒子の質量を測定する。次いで、有機物粒子を、乾燥器を用いて恒量になるまで乾燥する。そして、乾燥後の有機物粒子の質量を測定し、下記の式より含水率を算出する。
含水率(質量%)=(M−W)/M×100
ここで、Mは、試料の有機物粒子(乾燥前)の質量であり、Wは、乾燥後の有機物粒子の質量である。
The water content of the organic particles can be measured, for example, as follows.
First, the mass of the organic particles of the sample is measured. The organic particles are then dried using a dryer to a constant weight. Then, the mass of the organic particles after drying is measured, and the water content is calculated from the following formula.
Moisture content (mass%) = (MW) / M × 100
Here, M is the mass of the organic particles (before drying) of the sample, and W is the mass of the organic particles after drying.

有機物粒子の形状に特に制限はない。有機物粒子は、例えば、球状、楕円体状、多角面体状、丸棒状、角棒状、円錐状、平板状、フレーク状、不定型状などの形状とすることができる。 The shape of the organic particles is not particularly limited. The organic particles can have, for example, a spherical shape, an ellipsoidal shape, a polygonal surface shape, a round bar shape, a square bar shape, a conical shape, a flat plate shape, a flake shape, an irregular shape, or the like.

有機物粒子としては、樹脂粒子およびゴム粒子を用いることができる。樹脂粒子の材料の例としては、フッ素樹脂、塩化ビニル樹脂、プロピレン樹脂、エチレン樹脂、ウレタン樹脂、アクリル樹脂、スチレン樹脂、エステル樹脂が挙げられる。ゴム粒子の材料の例としては、エボナイト、シリコーンゴム、天然ゴム、クロロプレンゴムが挙げられる。 As the organic particles, resin particles and rubber particles can be used. Examples of the material of the resin particles include fluororesin, vinyl chloride resin, propylene resin, ethylene resin, urethane resin, acrylic resin, styrene resin, and ester resin. Examples of rubber particle materials include ebonite, silicone rubber, natural rubber, and chloroprene rubber.

有機物粒子として、廃棄処分されたプラスチック製品やゴム製品の粉砕物などの産業廃棄物を用いることができる。プラスチック製品の例としては、ビニール、包装用ラップ、軟・硬質プラスチック容器、クリアファイル、CD、DVD、梱包材などが挙げられる。ゴム製品の例としてはタイヤ、ベルトなどが挙げられる。廃棄処分されたプラスチック製品やゴム製品には、水分が多量に付着しているものがあるため、これらの粉砕物を有機物粒子として利用する場合には、乾燥して含水率を5質量%以下に低減させることが必要である。 As the organic particles, industrial waste such as crushed plastic products and rubber products that have been disposed of can be used. Examples of plastic products include vinyl, packaging wraps, soft and hard plastic containers, clear files, CDs, DVDs, packaging materials and the like. Examples of rubber products include tires and belts. Since some plastic products and rubber products that have been disposed of have a large amount of water attached to them, when these crushed products are used as organic particles, they are dried to a moisture content of 5% by mass or less. It is necessary to reduce it.

有機物粒子は、平均粒子径が5mm以上であることが好ましく、20mm以上50mm以下の範囲にあることがより好ましい。有機物粒子の平均粒子径が小さくなりすぎると、後述の分離工程S02において、石炭灰と有機物粒子とを分離しにくくなるおそれがある。一方、有機物粒子の平均粒子径が大きくなりすぎると、比表面積が低減して未燃カーボンの付着量が低減するおそれがある。 The average particle size of the organic particles is preferably 5 mm or more, and more preferably 20 mm or more and 50 mm or less. If the average particle size of the organic particles becomes too small, it may be difficult to separate the coal ash and the organic particles in the separation step S02 described later. On the other hand, if the average particle size of the organic particles becomes too large, the specific surface area may decrease and the amount of unburned carbon adhered may decrease.

有機物粒子は、粒子径が3mm以下の微細粒子の含有量が1質量%以下であることが好ましい。微細粒子の含有量が多くなりすぎると、後述の分離工程S02において、石炭灰と有機物粒子とを分離しにくくなるおそれがある。有機物粒子は、石炭灰と混合する前に予め篩を用いて、微細粒子を除去しておくことが好ましい。 The organic particles preferably have a particle size of 3 mm or less and a fine particle content of 1% by mass or less. If the content of the fine particles is too large, it may be difficult to separate the coal ash and the organic particles in the separation step S02 described later. It is preferable that the organic particles have fine particles removed by using a sieve in advance before mixing with coal ash.

混合工程S01において、石炭灰と有機物粒子との混合は、乾式混合により行う。乾式混合することによって、有機物粒子の表面が帯電しやすくなり、有機物粒子の表面に付着する未燃カーボン量が増加する。石炭灰と有機物粒子との混合は、V型混合機、プロ−シェアミキサー、リボン式混合機、オムニミキサーなどの混合装置を用いることができる。発塵防止のため、乾式混合は密閉した容器内で行うことが好ましい。 In the mixing step S01, the coal ash and the organic particles are mixed by dry mixing. By dry mixing, the surface of the organic particles is easily charged, and the amount of unburned carbon adhering to the surface of the organic particles is increased. For mixing the coal ash and the organic particles, a mixing device such as a V-type mixer, a pro-share mixer, a ribbon type mixer, or an omni mixer can be used. To prevent dust generation, dry mixing is preferably performed in a closed container.

石炭灰と有機物粒子の混合割合は、石炭灰100質量部に対して、有機物粒子が10質量部以上90質量部以下の範囲となる割合であることが好ましく、20質量部以上80質量部の範囲となる割合であることがより好ましい。
石炭灰と有機物粒子の混合時間は、混合装置の容量や石炭灰と有機物粒子の混合割合などの要因によって変動するが、例えば、5分から1時間の範囲である。
The mixing ratio of the coal ash and the organic particles is preferably in the range of 10 parts by mass or more and 90 parts by mass or less, and in the range of 20 parts by mass or more and 80 parts by mass with respect to 100 parts by mass of the coal ash. It is more preferable that the ratio is as follows.
The mixing time of coal ash and organic particles varies depending on factors such as the capacity of the mixing device and the mixing ratio of coal ash and organic particles, but is in the range of, for example, 5 minutes to 1 hour.

以上の混合工程S01によって、石炭灰に含まれている未燃カーボンは、有機物粒子に付着する。こうして、未燃カーボン量が低減した石炭灰と、未燃カーボンが付着した有機物粒子とを含む混合物が得られる。 By the above mixing step S01, the unburned carbon contained in the coal ash adheres to the organic particles. In this way, a mixture containing coal ash with a reduced amount of unburned carbon and organic particles to which unburned carbon is attached can be obtained.

(分離工程S02)
分離工程S02では、上記混合工程S01で得られた混合物から、石炭灰と、未燃カーボンを付着した有機物粒子とを分離する。石炭灰と有機物粒子との分離は、篩および強制渦式分級機などの分離装置を用いることができる。
(Separation step S02)
In the separation step S02, coal ash and organic particles to which unburned carbon is attached are separated from the mixture obtained in the mixing step S01. For the separation of coal ash and organic particles, a separation device such as a sieve and a forced vortex classifier can be used.

以上の分離工程S02によって、未燃カーボン量が低減した石炭灰と、未燃カーボンが付着した有機物粒子とをそれぞれ得ることができる。未燃カーボン量が低減した石炭灰は、例えば、コンクリート用混和材、セメント用混和材として用いることができる。また、未燃カーボンが吸着した有機物粒子は、例えば、セメント焼成用燃料、発電用燃料などの燃料として使用することができる。 By the above separation step S02, coal ash with a reduced amount of unburned carbon and organic particles to which unburned carbon is attached can be obtained. Coal ash with a reduced amount of unburned carbon can be used, for example, as an admixture for concrete and an admixture for cement. In addition, the organic particles adsorbed by unburned carbon can be used as fuel for, for example, cement firing fuel, power generation fuel, and the like.

以上のような構成とされた本実施形態である石炭灰中の未燃カーボン量を低減させる方法によれば、混合工程S01において、石炭灰と有機物粒子とを乾式混合するので、後工程において乾燥を行う必要がない。また、混合工程S01にて、未燃カーボンを有機物粒子に付着させ、次の分離工程S02にて、石炭灰と、未燃カーボンを付着した有機物粒子とを分離するので、熱源を特には必要とせず、また高圧の電気を使用する特別な処理装置を使用する必要はない。 According to the method for reducing the amount of unburned carbon in the coal ash according to the present embodiment having the above configuration, the coal ash and the organic particles are dry-mixed in the mixing step S01, so that the coal ash is dried in the subsequent step. There is no need to do. Further, in the mixing step S01, the unburned carbon is attached to the organic particles, and in the next separation step S02, the coal ash and the organic particles to which the unburned carbon is attached are separated, so that a heat source is particularly required. And there is no need to use special processing equipment that uses high pressure electricity.

また、有機物粒子として、樹脂粒子またはゴム粒子を用いることによって、混合工程S01において、有機物粒子に未燃カーボンを効率よく付着させることができるので、石炭灰中の未燃カーボン量を確実に低減させることができる。 Further, by using resin particles or rubber particles as the organic particles, unburned carbon can be efficiently adhered to the organic particles in the mixing step S01, so that the amount of unburned carbon in the coal ash is surely reduced. be able to.

さらに、有機物粒子として、平均粒子径が5mm以上のものを用いることによって、分離工程S02において、石炭灰と有機物粒子とを分離しやすくなる。
またさらに、有機物粒子として、産業廃棄物の粉砕物を用いることによって、有機物粒子の材料コストを低く抑えることができる。
Further, by using the organic particles having an average particle diameter of 5 mm or more, it becomes easy to separate the coal ash and the organic particles in the separation step S02.
Furthermore, by using crushed industrial waste as the organic particles, the material cost of the organic particles can be kept low.

以下に、本発明に係る石炭灰中の未燃カーボン量を低減させる方法について評価した評価試験の結果について説明する。 The results of the evaluation test evaluating the method for reducing the amount of unburned carbon in the coal ash according to the present invention will be described below.

[本発明例1]
火力発電所にて生成した、含水率が1質量%、未燃カーボン量が5.3質量%(強熱減量:5.5質量%)、粒径が0.1mm以下の石炭灰を用意した。なお、石炭灰の未燃カーボン量と強熱減量は下記の方法により測定した。
[Example 1 of the present invention]
Coal ash produced at a thermal power plant with a moisture content of 1% by mass, an unburned carbon content of 5.3% by mass (ignition loss: 5.5% by mass), and a particle size of 0.1 mm or less was prepared. .. The amount of unburned carbon and ignition loss of coal ash were measured by the following methods.

(未燃カーボン量)
HORIBA社製炭素分析装置(型式:EMIA−110)を用いて測定する。
(Amount of unburned carbon)
Measurement is performed using a carbon analyzer (model: EMIA-110) manufactured by HORIBA.

(強熱減量)
JIS A 6201「コンクリート用フライアッシュ」に記載されている方法に従って測定する。試料(石炭灰)1gを磁器ルツボに0.1mgまで正しく量り採り(m)、975℃±25℃に調整した電気炉で15分間強熱し、放冷後、質量を測定する。更に、15分ずつ強熱を繰返し、恒量になったときの減量を求める(m)。強熱減量は、下記の式(1)により算出する。
(Ignition loss)
Measure according to the method described in JIS A 6201 "Fly ash for concrete". 1 g of a sample (coal ash) is correctly weighed to 0.1 mg in a porcelain crucible (m 1 ), heated strongly in an electric furnace adjusted to 975 ° C. ± 25 ° C. for 15 minutes, allowed to cool, and then the mass is measured. Further, the ignition is repeated for 15 minutes each, and the weight loss when the weight becomes constant is obtained (m 2 ). The ignition loss is calculated by the following formula (1).

C=[(m/m)×100]−B・・・(1)
ここで、C:強熱減量(質量%)、m:試料の質量(g)、m:恒量になったときの減量(g)、B:湿分(%)
C = [(m 2 / m 1 ) x 100] -B ... (1)
Here, C: ignition loss (mass%), m 1 : sample mass (g), m 2 : weight loss when constant weight (g), B: moisture content (%)

なお、湿分は、下記の方法により測定した値である。
試料(石炭灰)2gを平形はかり瓶に0.1mgまで正しく量り採り(m)、105〜110℃で2時間乾燥し、放冷後、質量を測定する。更に、1時間ずつ乾燥を繰返し、恒量になったときの減量を求める(m)。湿分は次式により算出する。
湿分(質量%)=m/m×100
ここで、m:試料の質量(g)、m:恒量になったときの減量(g)
The moisture content is a value measured by the following method.
2 g of the sample (coal ash) is correctly weighed to 0.1 mg in a flat scale bottle (m 3 ), dried at 105-110 ° C. for 2 hours, allowed to cool, and then weighed. Further, drying is repeated for 1 hour each, and the weight loss when the weight becomes constant is obtained (m 4 ). Moisture content is calculated by the following formula.
Moisture content (mass%) = m 4 / m 3 x 100
Here, m 3 : mass of the sample (g), m 4 : weight loss when the weight becomes constant (g).

エチレン樹脂製の廃プラスチック製品を用意した。用意した廃プラスチック製品を、60℃の温度で恒量となるまで乾燥した。次いで、乾燥した廃プラスチック製品を粉砕し、目開き3mmの網篩で分級した。得られた粉砕物(エチレン樹脂粒子)は、平均粒子径が30mmであった。また、含水率は定量下限以下(0.01質量%以下)であった。 Waste plastic products made of ethylene resin were prepared. The prepared waste plastic product was dried at a temperature of 60 ° C. until it became constant. Next, the dried waste plastic product was crushed and classified with a mesh sieve having a mesh size of 3 mm. The obtained pulverized product (ethylene resin particles) had an average particle diameter of 30 mm. The water content was below the lower limit of quantification (0.01% by mass or less).

容量200LのV型混合機に、石炭灰25kgと、上記のエチレン樹脂粒子10kgとを投入し、回転速度60rpmで、10分間混合した。得られた混合物を、目開き10mmの網篩により篩分けを行って、篩上として粗大樹脂粒子を分離除去した。その後、篩下の混合物を、さらに目開き1mmの網篩により篩分けを行った。 25 kg of coal ash and 10 kg of the above ethylene resin particles were put into a V-type mixer having a capacity of 200 L, and mixed at a rotation speed of 60 rpm for 10 minutes. The obtained mixture was sieved by a mesh sieve having a mesh size of 10 mm, and coarse resin particles were separated and removed on the sieve. Then, the mixture under the sieve was further sieved by a mesh sieve having an opening of 1 mm.

篩下として回収された回収物(石炭灰)の重量を測定し、石炭灰回収率(質量%)を下記の式より算出した。その結果を、表1に示す。
石炭灰回収率=回収物(石炭灰)の重量(kg)/25kg×100
The weight of the recovered product (coal ash) recovered under the sieve was measured, and the coal ash recovery rate (mass%) was calculated from the following formula. The results are shown in Table 1.
Coal ash recovery rate = weight of recovered material (coal ash) (kg) / 25 kg x 100

篩下として回収された回収物(石炭灰)の未燃カーボン量と強熱減量とを上記の方法により測定した。その結果を表1に示す。 The amount of unburned carbon and the loss on ignition of the recovered product (coal ash) recovered under the sieve were measured by the above method. The results are shown in Table 1.

[本発明例2〜5および比較例1〜3]
エチレン樹脂粒子の含水率を表1に記載の値となるように調整したこと以外は、本発明例1と同様にして、石炭灰とエチレン樹脂粒子とを混合し、得られた混合物を篩分けした。エチレン樹脂粒子の含水率は、エチレン樹脂粒子をステンレス製バット内に均一に広げ、エチレン樹脂粒子に所定量の水を噴霧することによって調整した。
目開き1mmの網篩の篩下として回収された回収物(石炭灰)の石炭灰回収率、未燃カーボン量および強熱減量を、表1に示す。
[Examples 2 to 5 of the present invention and Comparative Examples 1 to 3]
Coal ash and ethylene resin particles were mixed in the same manner as in Example 1 of the present invention except that the water content of the ethylene resin particles was adjusted to the values shown in Table 1, and the obtained mixture was sieved. did. The water content of the ethylene resin particles was adjusted by spreading the ethylene resin particles uniformly in a stainless steel bat and spraying a predetermined amount of water on the ethylene resin particles.
Table 1 shows the coal ash recovery rate, the amount of unburned carbon, and the loss on ignition of the recovered product (coal ash) recovered under a mesh sieve having a mesh size of 1 mm.

Figure 0006850983
Figure 0006850983

表1の結果から、含水率が本発明の範囲内にあるエチレン樹脂粒子を用いた本発明例1〜5においては、石炭灰の回収率が高く、また回収された石炭灰は未燃カーボン量と強熱減量が顕著に低減することがわかる。これは、石炭灰とエチレン樹脂粒子の混合時に、エチレン樹脂粒子に多量の未燃カーボンが付着したためであると考えられる。 From the results in Table 1, in Examples 1 to 5 of the present invention using ethylene resin particles whose water content is within the range of the present invention, the recovery rate of coal ash is high, and the recovered coal ash has the amount of unburned carbon. It can be seen that the loss on ignition is significantly reduced. It is considered that this is because a large amount of unburned carbon adhered to the ethylene resin particles when the coal ash and the ethylene resin particles were mixed.

これに対して、有機物粒子の含水率が本発明の範囲を超える比較例1〜3では、石炭灰の回収率が低く、未燃カーボン量と強熱減量が低減少しなかった。石炭灰の回収率が低下したのは、エチレン樹脂粒子の含水率が多く、石炭灰とエチレン樹脂粒子の混合時に、水分を介して石炭灰がエチレン樹脂粒子に付着したためであると考えられる。未燃カーボン量と強熱減量が低減しなかったのは、石炭灰が有機物粒子に付着して、有機物粒子の表面が帯電しにくくなり、有機物粒子に未燃カーボンが付着しなかったためであると考えられる。なお、石炭灰は可燃性でないため、石炭灰が付着した有機物粒子は燃料として使用するには不適切となる。 On the other hand, in Comparative Examples 1 to 3 in which the water content of the organic particles exceeds the range of the present invention, the recovery rate of coal ash was low, and the amount of unburned carbon and the loss on ignition were slightly reduced. It is considered that the recovery rate of coal ash decreased because the water content of the ethylene resin particles was high and the coal ash adhered to the ethylene resin particles via water when the coal ash and the ethylene resin particles were mixed. The reason why the amount of unburned carbon and the loss on ignition did not decrease is that coal ash adhered to the organic particles, making it difficult for the surface of the organic particles to become charged, and the unburned carbon did not adhere to the organic particles. Conceivable. Since coal ash is not flammable, organic particles to which coal ash is attached are unsuitable for use as fuel.

以上の評価結果から、本発明によれば、比較的簡単な装置を用いて、短時間で石炭灰中の未燃カーボン量を低減させることができることが確認された。 From the above evaluation results, it was confirmed that according to the present invention, the amount of unburned carbon in coal ash can be reduced in a short time by using a relatively simple device.

Claims (3)

未燃カーボンを含有する石炭灰と、含水率が5質量%以下であって、平均粒子径が5mm以上である有機物粒子とを乾式混合して、前記未燃カーボンを有機物粒子に付着させる混合工程と、
前記石炭灰と、前記未燃カーボンを付着した前記有機物粒子とを、篩または強制渦式分級機を使用して分離する分離工程と、を備えることを特徴とする石炭灰中の未燃カーボン量を低減させる方法。
A mixing step in which coal ash containing unburned carbon and organic particles having a water content of 5% by mass or less and an average particle size of 5 mm or more are dry-mixed to attach the unburned carbon to the organic particles. When,
The amount of unburned carbon in the coal ash, which comprises a separation step of separating the coal ash and the organic particles to which the unburned carbon is attached by using a sieve or a forced vortex classifier. How to reduce.
前記有機物粒子は、樹脂粒子またはゴム粒子であることを特徴とする請求項1に記載の石炭灰中の未燃カーボン量を低減させる方法。 The method for reducing the amount of unburned carbon in coal ash according to claim 1, wherein the organic particles are resin particles or rubber particles. 前記有機物粒子は、産業廃棄物の粉砕物であることを特徴とする請求項1または請求項2に記載の石炭灰中の未燃カーボン量を低減させる方法。 The method for reducing the amount of unburned carbon in coal ash according to claim 1 or 2 , wherein the organic particles are pulverized industrial waste.
JP2017014258A 2017-01-30 2017-01-30 How to reduce the amount of unburned carbon in coal ash Active JP6850983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017014258A JP6850983B2 (en) 2017-01-30 2017-01-30 How to reduce the amount of unburned carbon in coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014258A JP6850983B2 (en) 2017-01-30 2017-01-30 How to reduce the amount of unburned carbon in coal ash

Publications (2)

Publication Number Publication Date
JP2018122208A JP2018122208A (en) 2018-08-09
JP6850983B2 true JP6850983B2 (en) 2021-03-31

Family

ID=63109200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014258A Active JP6850983B2 (en) 2017-01-30 2017-01-30 How to reduce the amount of unburned carbon in coal ash

Country Status (1)

Country Link
JP (1) JP6850983B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004188292A (en) * 2002-12-10 2004-07-08 Central Res Inst Of Electric Power Ind Apparatus and method for treating fly ash
JP2006255530A (en) * 2005-03-15 2006-09-28 Taiheiyo Cement Corp Separation method for foreign matter particle
JP4749118B2 (en) * 2005-10-27 2011-08-17 新日本製鐵株式会社 Electrostatic separation method and electrostatic separation device
JP2008149234A (en) * 2006-12-15 2008-07-03 Sumitomo Osaka Cement Co Ltd Method for reforming coal ash

Also Published As

Publication number Publication date
JP2018122208A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
CN101294765B (en) Low rank coal high temperature flue gas drying method and device
US20100024693A1 (en) Fossil-fuel-fired system having reduced emissions and method of operating the same
MX2012004690A (en) An apparatus and method for size reduction.
US20160047598A1 (en) Coal and mineral slurry drying method and system
KR102574057B1 (en) Method and apparatus for reforming fly ash
EP2689854B1 (en) Method of obtaining protected against caking ultrafine fractions of rain raw materials such as chalk, gypsum, limestone, and system for this method execution
CA1332515C (en) Process for agglomerating mineral ore concentrate utilizing emulsions of polymer binders or dry polymer binder
JP6850983B2 (en) How to reduce the amount of unburned carbon in coal ash
JP6880944B2 (en) Method of reforming unburned carbon-containing coal ash, reforming system of unburned carbon-containing coal ash, and method of producing fly ash for concrete admixture
JP2007284557A (en) Method for pretreatment of coal for coke
AU2003217549B2 (en) Dry dust control materials
JP2012093024A (en) Biomass pellet crusher, and biomass-coal mixed-combustion system
US7537622B2 (en) Process for drying coal
JPS63500237A (en) Method for converting organic and inorganic wastes into solid inert water-insoluble substances
CA2872454C (en) Process for the beneficiation of pit-moist raw brown coal
WO2004113577A1 (en) Method for producing mineral ore agglomerates using a hemicellulose binder and associated products
JP2006273970A (en) Method for producing biomass-containing coal powder fuel, use thereof and system of producing biomass-containing coal powder fuel
JP4142839B2 (en) Agglomerated product of fine powder waste, method for producing the same, and method for using the same
KR100528573B1 (en) Concrete admixture composition manufacturing device mainly containing coal ash
JP6692877B2 (en) Molded fuel, manufacturing method thereof, and calcination method of limestone
CN114682209A (en) Method for preparing adsorbing material by using coal dust-containing casting dust and adsorbing material
JP6863717B2 (en) Bricket test method, briquette test equipment, briquette manufacturing method
JP2004091283A (en) Method and apparatus for manufacturing fired cellular pumice
JP5191749B2 (en) How to use solid fuel
JP2020015655A (en) Manufacturing method of modified fly ash

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6850983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250