JP2007284557A - Method for pretreatment of coal for coke - Google Patents

Method for pretreatment of coal for coke Download PDF

Info

Publication number
JP2007284557A
JP2007284557A JP2006113296A JP2006113296A JP2007284557A JP 2007284557 A JP2007284557 A JP 2007284557A JP 2006113296 A JP2006113296 A JP 2006113296A JP 2006113296 A JP2006113296 A JP 2006113296A JP 2007284557 A JP2007284557 A JP 2007284557A
Authority
JP
Japan
Prior art keywords
coal
coke
binder
coke oven
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006113296A
Other languages
Japanese (ja)
Other versions
JP4896571B2 (en
Inventor
Ichiro Eto
一郎 江藤
Asayuki Nakagawa
朝之 中川
Kazuhide Doi
一秀 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006113296A priority Critical patent/JP4896571B2/en
Publication of JP2007284557A publication Critical patent/JP2007284557A/en
Application granted granted Critical
Publication of JP4896571B2 publication Critical patent/JP4896571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for the pretreatment of coal for coke, enabling loaded coal density in a coke oven to be controlled within a proper range while preventing dust generation and carryover and suppressing segregation when the coal is dried beforehand and to be loaded into the chamber-type coke oven. <P>SOLUTION: The method for the pretreatment of coal for coke comprises the following procedure: Stock coal is dried and classified into powdered coal containing 40-95 mass% of coal particles 0.3 mm or smaller in size and the other coarse granular coal. Thereafter, a binder is added to the pulverized coal to form it into transversely grooved or corrugated board or the like. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はコークス用石炭の事前処理方法に関するものである。より詳しく説明すると、石炭を事前に乾燥して室炉式コークス炉に装入する場合において、発塵やキャリーオーバー防止を図り、偏析を抑制しつつ、コークス炉内での装入密度を適正な範囲に制御することを可能とするコークス用石炭の事前処理方法に関するものである。   The present invention relates to a pretreatment method for coking coal. More specifically, when coal is dried in advance and charged into a chamber-type coke oven, dust generation and carryover are prevented, segregation is suppressed, and the charging density in the coke oven is set appropriately. The present invention relates to a pretreatment method for coking coal that can be controlled within a range.

室炉式コークス炉に装入する石炭原料は、通常、9質量%前後の水分を有している。この石炭原料を乾燥すると、コークス化する際の乾留熱量を低下できるだけでなく、石炭の装入密度が増加して、コークス品質や生産量を増加させることができる。コークス品質は、高炉操業に必要なレベルを維持すればよいので、コークス品質を向上させれば、安価な粘結性の低い非微粘結炭の配合割合を増加することが可能となる。   The coal raw material charged into the chamber-type coke oven usually has a moisture of about 9% by mass. When this coal raw material is dried, not only can the heat of carbonization during coking be reduced, but also the coal charging density can be increased to increase coke quality and production. Since coke quality should just maintain a level required for blast furnace operation, if coke quality is improved, it will become possible to increase the mixture ratio of cheap non-caking coal with low caking property.

世界的に良質な粘結炭は不足傾向にあるため、非微粘結炭の配合割合を高めることは、非常に重要である。これらの効果を狙って、石炭原料を乾燥する調湿炭装入法が多くのコークス炉で実施されている。   Since high-quality caking coal tends to be insufficient worldwide, it is very important to increase the blending ratio of non-minor caking coal. With the aim of these effects, humidity-controlled coal charging methods for drying coal raw materials have been implemented in many coke ovens.

しかし、石炭の乾燥度を高めていくと、石炭をコークス炉に搬送する際や装入する際に、発塵やキャリーオーバーが激しくなるという問題が発生する。これは、乾燥により擬似粒子が崩壊し、微粉が増加するためである。このため、調湿炭装入法では、石炭水分を5質量%程度までしか乾燥できない。   However, when the dryness of coal is increased, there arises a problem that dust generation and carryover become severe when coal is transported to a coke oven or charged. This is because the pseudo particles disintegrate due to drying and the fine powder increases. For this reason, the moisture conditioning coal charging method can only dry coal moisture to about 5% by mass.

そこで、石炭乾燥時に問題となる発塵性微粉を分離して、バインダーで混練したり、成型したりして、擬似粒子化し、残りの粗粒石炭と混合してコークス炉に装入する等の手法が提案されている。   Therefore, the dusting fine powder that becomes a problem during coal drying is separated, kneaded with a binder, molded, pseudo-particles, mixed with the remaining coarse coal and charged into a coke oven, etc. A method has been proposed.

特許文献1に開示されている手法は、成型原料炭にバインダーを添加して混練し加圧成型して、強度の異なる複数種類の成型炭を調製し、調湿した石炭と置換してコークス炉へ搬送する方法であるが、複数種類の成型機が必要なため設備費が高くなるとともに、成型炭が偏析してコークス炉への装入量やコークス品質がばらつくという問題を有している。   The technique disclosed in Patent Document 1 is a coke oven in which a binder is added to molding raw coal, kneaded and pressure-molded to prepare a plurality of types of molded coal having different strengths and replaced with conditioned coal. However, since a plurality of types of molding machines are required, the equipment cost becomes high, and the coal coal is segregated, resulting in variations in the amount of coke oven charged and the coke quality.

特許文献2に開示されている手法は、石炭水分を3質量%未満に調整し、撹拌及び/又は振動を与えて微粒子を分離し、微粒子に結合剤を加えて塊成化し、粗粒炭と混合する方法であるが、設備が複雑で設備費が高くなるとともに、撹拌や振動では、大きな動力を消費する割には、発塵性微粉を充分に分離できないという問題を有している。   The technique disclosed in Patent Document 2 adjusts the coal moisture to less than 3% by mass, separates fine particles by applying agitation and / or vibration, agglomerates by adding a binder to the fine particles, Although it is a method of mixing, the equipment is complicated and the equipment costs are high, and there are problems that the dusting fine powder cannot be sufficiently separated by the agitation and vibration while consuming a large amount of power.

特許文献3に開示されている手法は、原料石炭を微粉炭と粗粒炭に分級し、微粉炭を圧縮成型して粗粒炭と混合するに際し、粗粒炭の水分や粒度を調整するとともに、バインダーを添加する方法であるが、石炭水分を2%以下に乾燥できないという問題や、分級制御が難しいという問題、及び、多量に存在する粗粒炭にバインダーを均一に混ぜることは難しいという問題を有している。   The technique disclosed in Patent Document 3 classifies raw coal into pulverized coal and coarse coal, and adjusts the moisture and particle size of coarse coal when compressing and molding pulverized coal and mixing it with coarse coal. This is a method of adding a binder, but the problem that the moisture of the coal cannot be dried to 2% or less, the problem that classification control is difficult, and the problem that it is difficult to uniformly mix the binder with a large amount of coarse coal have.

特許文献4に開示されている手法は、原料石炭を乾燥し、微粉炭と粗粒炭に分級し、微粉炭にバインダーを混練して粗粒炭と混合する方法であるが、混練した微粉炭を粗粒炭と混合してコークス炉まで搬送する際に、擬似粒子が崩壊して粉化するため、発塵やキャリーオーバーを防止できないという問題を有している。   The method disclosed in Patent Document 4 is a method in which raw coal is dried, classified into pulverized coal and coarse coal, a binder is kneaded with pulverized coal, and mixed with coarse coal. When mixed with coarse coal and conveyed to a coke oven, the pseudo-particles collapse and pulverize, so there is a problem that dust generation and carry-over cannot be prevented.

特許文献5に開示されている手法は、原料石炭を乾燥し、微粉炭と粗粒炭に分級し、微粉炭にバインダーを混練しブリケット化して粗粒炭と混合する方法であるが、該ブリケットが偏析して、コークス炉への装入量やコークス品質がばらつくという問題を有している。また、この方法においては、コークス炉に装入する際の装入密度が大きくなり過ぎて、コークス炉の炉壁に損傷を与えることが懸念される。   The method disclosed in Patent Document 5 is a method in which raw coal is dried, classified into pulverized coal and coarse coal, a binder is kneaded into pulverized coal, briquetted, and mixed with coarse coal. Segregates and the coke oven charge and coke quality vary. Further, in this method, there is a concern that the charging density at the time of charging into the coke oven becomes too large and damages the furnace wall of the coke oven.

特許文献6に開示されている手法は、石炭を乾燥して水分を2〜5%に低減し、微粉炭と粗粒炭に分級し、微粉炭のみを更に乾燥して、水分2%以下に低減して成型し、粗粒炭と混合する方法であるが、設備が複雑で設備費が高くなるという問題や、石炭水分を実際に2%以下にできないという問題を有している。   The technique disclosed in Patent Document 6 is to dry coal to reduce moisture to 2 to 5%, classify it into pulverized coal and coarse coal, further dry only pulverized coal, and reduce moisture to 2% or less. Although it is a method of reducing and molding and mixing with coarse coal, there are problems that the equipment is complicated and equipment costs are high, and that the moisture of the coal cannot actually be reduced to 2% or less.

特開昭57−80480号公報JP-A-57-80480 特開昭58−80387号公報Japanese Patent Laid-Open No. 58-80387 特開平5−65487号公報JP-A-5-65487 特開平10−183136号公報JP-A-10-183136 特開平10−130653号公報JP-A-10-130653 特開平1−252694号公報JP-A-1-252694

本発明は、上述の従来技術の問題点を解決できるコークス用石炭の事前処理方法を提供することを目的とする。すなわち、本発明は、石炭を事前に乾燥して室炉式コークス炉に装入する場合において、発塵やキャリーオーバー防止を図り、偏析を抑制しつつ、コークス炉内での装入密度を適正な範囲に制御することを可能とするコークス用石炭の事前処理方法を提供することを目的とする。   It is an object of the present invention to provide a coking coal pretreatment method that can solve the above-described problems of the prior art. That is, in the present invention, when coal is dried in advance and charged into a chamber-type coke oven, dust generation and carry-over prevention are prevented, segregation is suppressed, and an appropriate charging density in the coke oven is achieved. An object of the present invention is to provide a pretreatment method for coking coal that can be controlled within a wide range.

石炭の乾燥度を高めていくと、擬似粒子が崩壊し、石炭をコークス炉に搬送する際や、装入する際に、発塵やキャリーオーバーが激しくなるという問題が発生する。このため、調湿炭装入法では、石炭水分を5質量%程度までしか低減できない。   When the dryness of the coal is increased, the pseudo particles collapse, and there arises a problem that dust generation and carryover become intense when the coal is transported to the coke oven or charged. For this reason, the moisture conditioning coal charging method can reduce coal moisture only to about 5% by mass.

一方、石炭乾燥時に問題となる発塵やキャリーオーバーの原因となる微粉の粒径に関しては、特許文献5で明らかになっており、発塵に関しては、0.1mm以下、キャリーオーバーに関しては、0.3mm以下である。   On the other hand, the particle size of fine powder that causes dust generation and carry-over, which is a problem when drying coal, is clarified in Patent Document 5, and is about 0.1 mm or less for dust generation and 0 for carry-over. .3 mm or less.

そこで、本発明者等は、石炭水分を5%以下に低減しつつ、発塵とキャリーオーバーの両方の問題を解決するために、0.3mm以下の粒子を擬似粒子化して低減する手法を鋭意検討し、本発明をなすに至った。   Therefore, the present inventors diligently devised a method for reducing particles of 0.3 mm or less by quasi-particles in order to solve both problems of dust generation and carryover while reducing coal moisture to 5% or less. The present invention has been studied and made the present invention.

以下に、その手段を示す。
(1)原料石炭を乾燥して、0.3mm以下の粒子を40〜95質量%含有する微粉炭と、それ以外の粗粒炭とに分級し、その後、当該微粉炭にバインダーを添加して、横溝状や波板状等の板状に成型することを特徴とするコークス用石炭の事前処理方法。
The means will be described below.
(1) Drying the raw coal, classifying it into pulverized coal containing 40 to 95% by mass of particles of 0.3 mm or less and other coarse coal, and then adding a binder to the pulverized coal A pretreatment method for coke coal, which is molded into a plate shape such as a lateral groove shape or a corrugated plate shape.

(2)前記成型後の微粉炭を、前記粗粒炭と混合してコークス炉に装入することを特徴とする前記(1)記載のコークス用石炭の事前処理方法。   (2) The pretreatment method for coke coal according to (1), wherein the pulverized coal after molding is mixed with the coarse coal and charged into a coke oven.

(3)前記乾燥及び分級を、流動床にて行うことを特徴とする前記(1)又は(2)記載のコークス用石炭の事前処理方法。   (3) The pretreatment method for coke coal according to (1) or (2), wherein the drying and classification are performed in a fluidized bed.

(4)前記微粉炭に添加するバインダーの量が、バインダー添加前の微粉炭量に対して5〜15質量%であることを特徴とする前記(1)〜(3)のいずれかに記載のコークス用石炭の事前処理方法。   (4) The amount of the binder added to the pulverized coal is 5 to 15% by mass with respect to the amount of pulverized coal before the addition of the binder, according to any one of (1) to (3), Pre-treatment method for coking coal.

(5)前記原料石炭の乾燥の際、水分率([原料石炭中の水分質量/原料石炭質量−wet]×100)を5%以下とすることを特徴とする前記(1)〜(4)のいずれかに記載のコークス用石炭の事前処理方法。   (5) In the drying of the raw coal, the moisture content ([moisture mass in raw coal / raw coal mass−wet] × 100) is 5% or less, (1) to (4) above The pre-processing method of the coal for cokes in any one of.

本発明のコークス用石炭の事前処理方法によれば、コークス用石炭を事前に乾燥する際に問題となる、室炉式コークス炉への搬送や装入時の発塵やキャリーオーバーを抑制しつつ、偏析を抑制し、コークス炉内での装入密度を適正な範囲に制御することが可能となる。これにより、室炉式コークス炉に装入する石炭の乾燥度を高め、コークス化する際の乾留熱量を低下するとともに、石炭の装入密度を増加してコークス品質の向上や生産量を増加することが期待できる。   According to the pre-treatment method for coke coal of the present invention, while suppressing the generation of dust and carry-over at the time of transportation to and charging into a chamber-type coke oven, which is a problem when the coke coal is dried in advance. It is possible to suppress segregation and control the charging density in the coke oven to an appropriate range. As a result, the dryness of the coal charged into the chamber-type coke oven is increased, the heat of carbonization during coking is reduced, and the coal charging density is increased to improve the coke quality and increase the production volume. I can expect that.

以下、本発明を実施するための最良の形態を図面に基づいて説明する。
図1は、本発明に係るコークス用石炭の事前処理方法のフローを示す図である。9質量%前後の水分を有する原料石炭(原料炭とも言う)を乾燥分級機1で乾燥し、水分を5質量%以下に低減するとともに、0.3mm以下の粒径が主体の微粉炭を、分級して回収する。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a flow of a pretreatment method for coke coal according to the present invention. The raw coal having moisture of about 9% by mass (also referred to as raw coal) is dried by the drying classifier 1, reducing the moisture to 5% by mass or less, and pulverized coal mainly having a particle size of 0.3 mm or less, Classify and collect.

乾燥して分級する手段としては、キルン等で乾燥した後に振動篩い等で分級する手段も可能であるが、工業的には、乾燥と分級が同時に可能である流動床が最も合理的で好ましい。   As a means for drying and classifying, a means for drying with a kiln or the like and then classification with a vibrating sieve or the like is possible, but industrially, a fluidized bed that can be dried and classified at the same time is most reasonable and preferable.

流動床による乾燥分級では、粉砕等で、先ず、粒径を所定の粒径以内(例えば、10mm以下)に調整した原料石炭を、流動床分級乾燥機に投入し、100〜350℃程度の熱風で石炭を表面水分がなくなるまで流動乾燥するとともに、流動中の原料石炭同士の衝突により擬似粒子を崩壊させ、微粉炭を排ガスとともに上部から排出し、残りの粗粒炭を側部等から排出して、効率良く分級できる。   In dry classification using a fluidized bed, first, raw coal whose particle size is adjusted within a predetermined particle size (for example, 10 mm or less) by pulverization or the like is introduced into a fluidized bed classification dryer, and hot air of about 100 to 350 ° C. In addition, the coal is fluidized and dried until the surface moisture disappears, the pseudo particles are destroyed by collision of the flowing raw material coal, the pulverized coal is discharged from the upper part together with the exhaust gas, and the remaining coarse coal is discharged from the side part, etc. Can be classified efficiently.

また、流動床上部の空塔速度を調整することで、分級したい微粉の粒度を制御することが可能である。微粉炭の粒度は、成型物の強度を確保する観点から、0.3mm以下の粒子の質量割合が40〜95%になるように、空塔速度を調整して制御する。   Moreover, it is possible to control the particle size of the fine powder to be classified by adjusting the superficial velocity above the fluidized bed. The particle size of the pulverized coal is controlled by adjusting the superficial velocity so that the mass ratio of particles of 0.3 mm or less is 40 to 95% from the viewpoint of securing the strength of the molded product.

0.3mm以下の粒子の質量割合が40〜95%になっているかどうかは、例えば、0.3mmの篩で篩って、篩下の割合を算出することで確認できる。一度、所定の空等速度で分級して、上記範囲内に入っていることを確認した後は、その空等速度で分級することで、上記質量割合を上記範囲内に収めることが可能である。   Whether the mass ratio of particles of 0.3 mm or less is 40 to 95% can be confirmed by, for example, sieving with a 0.3 mm sieve and calculating the ratio under the sieve. Once it has been classified at a predetermined empty equal velocity and confirmed to be within the above range, it is possible to keep the mass ratio within the above range by classification at the empty equal velocity. .

分級した微粉炭は集塵機2で回収する。集塵機としては、サイクロン等の固気遠心分離タイプの集塵機や、バグフィルター等が使用可能であるが、集塵能力の高いバグフィルターがより望ましい。   The classified pulverized coal is collected by the dust collector 2. As the dust collector, a solid-air centrifugal type dust collector such as a cyclone or a bag filter can be used, but a bag filter having a high dust collection capability is more desirable.

回収された微粉炭は、スクリューコンベア3を使用して混練機4に供給され、バインダーを添加して混練される。混練機4としては、バインダーを添加した微粉炭を混錬できれば形式を問わないが、ピンミキサーやニーダー等の連続式の混練機がより望ましい。   The recovered pulverized coal is supplied to the kneader 4 using the screw conveyor 3, and is kneaded by adding a binder. The kneading machine 4 may be of any type as long as pulverized coal to which a binder is added can be kneaded, but a continuous kneader such as a pin mixer or a kneader is more preferable.

バインダーとしては、タール、重質油、ピッチ類、生石灰等を利用できるが、室炉式コークス炉から発生するタール滓や、粗タールを使用することが望ましい。混練機4で添加するバインダーの適正量は、バインダーの種類等によっても異なるが、成型物の強度確保及び成型の安定性の観点から、バインダー添加前の微粉炭の質量に対して(分級された微粉炭に対し外数で)5〜15質量%になるように制御することが好ましい。   As the binder, tar, heavy oil, pitches, quicklime, and the like can be used, but it is desirable to use tar soot generated from a chamber furnace coke oven or crude tar. The appropriate amount of the binder to be added by the kneading machine 4 varies depending on the type of the binder and the like, but from the viewpoint of securing the strength of the molded product and the stability of molding (based on the mass of the pulverized coal before the binder addition) It is preferable to control to be 5 to 15% by mass (in terms of the external number with respect to pulverized coal).

次に、バインダーで混練した微粉炭を、成型機5で成型する。成型機5としては、2軸のロール成型機を使用することができる。様々な表面形状(凹凸)の成型ロールを使用することで、成型物の形状を調整することが可能である。   Next, the pulverized coal kneaded with the binder is molded by the molding machine 5. As the molding machine 5, a biaxial roll molding machine can be used. By using molding rolls having various surface shapes (unevenness), the shape of the molded product can be adjusted.

例えば、図2(a)に示すような、表面形状が横溝状の2軸の成型ロールを用い、微粉炭を圧密する2つのロール表面を互いに凸と凸とが相対するようにセットすることで、図2(b)に示すような横溝状(凸凸)の成型物を成型することができる。   For example, as shown in FIG. 2 (a), by using a biaxial forming roll whose surface shape is a transverse groove shape, two roll surfaces for compacting pulverized coal are set so that the convexity and convexity face each other. A lateral groove-shaped (convex convex) molded product as shown in FIG. 2B can be molded.

本発明に係る成型物の形状の例を図2(b)に示すが、粉化抑制、偏析防止及びコークス炉への装入密度の観点から、横溝状や波板状等の板状の成型物とする。板状に成型する場合、微粉炭が成型ロール表面で滑らないようにロール表面に溝を形成し、成型性を向上させる。成型物の形状はロール表面の溝を凹凸面又は凸凸面を合わせた形状を選択できるが、どちらを選択しても構わない。   An example of the shape of the molded product according to the present invention is shown in FIG. 2 (b). From the viewpoint of suppressing pulverization, preventing segregation, and charging density into the coke oven, a plate-shaped molding such as a lateral groove shape or a corrugated plate shape is used. It is a thing. In the case of molding into a plate shape, grooves are formed on the roll surface so that the pulverized coal does not slip on the surface of the molding roll, thereby improving the moldability. The shape of the molded product can be selected from a shape in which grooves on the roll surface are combined with an uneven surface or a convex surface, either of which may be selected.

横波状や波板状の板状の成型物の平均サイズは、成型ロール条件や石炭原料条件、成型直後の落下高さ、及び、搬送条件等によっても異なるが、厚みで2〜25mm、幅で3〜50mm、長さで10〜300mmであれば、本発明の課題である発塵やキャリーオーバーを抑制しつつ、偏析を抑制し、かつ、コークス炉内での装入密度を適正な範囲に制御することが安定的に可能となり好ましい。   The average size of the sheet-like molded product of the transverse wave shape or the corrugated plate shape varies depending on the molding roll conditions, the coal raw material conditions, the drop height immediately after molding, the conveyance conditions, etc., but the thickness is 2 to 25 mm and the width. When the length is 3 to 50 mm and the length is 10 to 300 mm, segregation is suppressed and the charging density in the coke oven is within an appropriate range while suppressing dust generation and carryover, which are the problems of the present invention. It is preferable because it can be stably controlled.

より好ましくは、厚みで3〜15mm、幅で5〜20mm、長さで40〜〜100mmである。   More preferably, the thickness is 3 to 15 mm, the width is 5 to 20 mm, and the length is 40 to 100 mm.

平均値は、成型直後の成型物100〜1000個程度をサンプリングし、厚み、幅、長さをものさし又はノギスにより測定した値を、平均して求めることができる。   The average value can be obtained by sampling about 100 to 1000 molded products immediately after molding and averaging the values measured by measuring the thickness, width and length with calipers.

微粉炭を成型機5で成型した後、乾燥分級機1で分級した残りの粗粒炭と合わせて、コークス炉へ搬送する。当該微粉炭と粗粒炭を単独でコークス炉へ搬送することも可能であるが、コークス品質を安定化させるために、両者を事前に混合すべきであり、搬送設備のコスト低減のためにも、両者を合わせてコークス炉へ搬送することが望ましい。   After the pulverized coal is molded by the molding machine 5, it is transported to the coke oven together with the remaining coarse coal classified by the dry classifier 1. It is possible to transport the pulverized coal and coarse coal alone to the coke oven, but in order to stabilize the coke quality, both should be mixed in advance, and also to reduce the cost of the transport equipment It is desirable to transport both to the coke oven.

また、成型機5の後段に振動篩いを設置し、成型物を篩って、篩い下の微粉を混練機4又は成型機5に戻すことは、微粉を低減するのに有効な手段であるので、必要に応じ、振動篩いを設置すればよい。   Moreover, it is an effective means for reducing fine powder to install a vibration sieve in the subsequent stage of the molding machine 5 and sieve the molded product to return the fine powder under the sieve to the kneading machine 4 or the molding machine 5. If necessary, a vibration sieve may be installed.

なお、成型物の強度にはロールの線圧が影響するが、所要の強度を保つために必要な線圧はロール径やロール回転数等によって変わるため、適宜設定する。   In addition, although the linear pressure of a roll influences the intensity | strength of a molding, since the linear pressure required in order to maintain required intensity | strength changes with roll diameters, roll rotation speeds, etc., it sets suitably.

本発明により、室炉式コークス炉に装入する石炭の乾燥度を高め、コークス化する際の乾留熱量を低下するとともに、石炭の装入密度を増加して、コークス品質や生産量を増加させることが可能となる。   According to the present invention, the dryness of coal charged in a chamber-type coke oven is increased, the heat of carbonization during coking is reduced, the charging density of coal is increased, and the coke quality and production volume are increased. It becomes possible.

(実施例1)
図3に、水分率2%([原料石炭中の水分質量/原料石炭質量−wet]×100)の分級微粉炭の粒度を変化させて成型試験を実施した際の成型物の強度の測定結果を示す。乾燥分級機として流動床を使用し、熱風温度及び風量を変化させて、分級微粉炭の粒度を変化させた。また、分級微粉炭の水分率を2%となるように、加水あるいは乾燥して水分を調整した。
Example 1
Fig. 3 shows the measurement results of the strength of the molded product when the molding test was carried out by changing the particle size of classified pulverized coal with a moisture content of 2% ([moisture content in raw coal / mass of raw material coal-wet] x 100). Indicates. A fluidized bed was used as a dry classifier, and the hot air temperature and air volume were changed to change the particle size of the classified pulverized coal. Further, the moisture was adjusted by adding water or drying so that the moisture content of the classified pulverized coal became 2%.

バインダーとして、タールを、外数で10質量%添加し、プロシェアミキサーで3分間混練した。成型物の形状は、凸凸面を合わせた横溝状であり、直径224mmの横溝ロールで線圧1.5t/cm、ロール回転数12rpmの条件で成型し、試料として使用した。   As a binder, tar was added in an external number of 10% by mass, and kneaded for 3 minutes with a proshear mixer. The shape of the molded product was a horizontal groove shape with convex and convex surfaces combined, and was molded with a horizontal groove roll having a diameter of 224 mm under the conditions of a linear pressure of 1.5 t / cm and a roll rotation speed of 12 rpm, and used as a sample.

強度指標は、実機搬送時の落下条件を模擬した落下試験で成型物を落下させた後の0.3mm以上の粒子割合で評価した。落下強度の目標としては、発塵及びキャリーオーバー防止の観点から80%以上必要である。   The strength index was evaluated based on a particle ratio of 0.3 mm or more after the molded product was dropped by a drop test simulating a drop condition during actual conveyance. The target of the drop strength is 80% or more from the viewpoint of dust generation and carry-over prevention.

図3から分かるように、成型物の強度を保つためには、分級後の微粉炭中の0.3mm以下の粒子の質量割合を40〜95%になるように制御すればよい。   As can be seen from FIG. 3, in order to maintain the strength of the molded product, the mass ratio of particles of 0.3 mm or less in the pulverized coal after classification may be controlled to be 40 to 95%.

更に、微粉炭中の0.3mm以下の粒子の質量割合が40%未満、95%超では、急激に落下強度が落ちることが分る。   Furthermore, it can be seen that when the mass ratio of particles of 0.3 mm or less in the pulverized coal is less than 40% and more than 95%, the drop strength rapidly decreases.

造粒や成型で強度の高い成型物を造るには、核となる粗い粒子の隙間を微粒子で埋めて、緻密な構造とすることが重要である。0.3mm以下の粒子が40%未満では、隙間を埋める微粒子が少ないため、また、95%より多いと、核となる粗い粒子が少ないため、強度を高くできないと考えられる。   In order to produce a molded product with high strength by granulation or molding, it is important to fill a gap between coarse particles as a core with fine particles to form a dense structure. If the particle size is less than 40%, there are few fine particles filling the gap, and if it is more than 95%, there are few coarse particles serving as nuclei, and it is considered that the strength cannot be increased.

なお、水分を平衡含水率までより低減した条件で、同様の試験を行っても、水分率2%の場合と同様に、微粉炭中の0.3mm以下の粒子の質量割合が40%未満、又は、95%超では、急激に落下強度が落ちることが分った。   In addition, even if the same test is performed under the condition where the moisture content is further reduced to the equilibrium moisture content, the mass ratio of particles of 0.3 mm or less in the pulverized coal is less than 40%, as in the case of the moisture content of 2%. Or, it has been found that the drop strength suddenly drops when it exceeds 95%.

(実施例2)
図4に、バインダー添加量を変化させて成型試験を実施した際の成型物の強度の測定結果を示す。乾燥分級機として流動床を使用し、分級微粉炭の水分率が2%となるように、また、分級炭の粒度は、0.3mm以下の粒子が60〜80質量%となるように、熱風温度と風量を調整した。
(Example 2)
In FIG. 4, the measurement result of the intensity | strength of a molding at the time of implementing a molding test by changing the amount of binder addition is shown. A fluidized bed is used as a dry classifier, so that the moisture content of the classified pulverized coal is 2%, and the particle size of the classified coal is hot air so that particles of 0.3 mm or less are 60 to 80% by mass. Temperature and air volume were adjusted.

バインダーとして、タールを使用し、添加量を変えて、プロシェアミキサーで3分間混練した。成型物形状は凸凸面を合わせた横溝状であり、直径224mmの横溝ロールで線圧1.5t/cm、ロール回転数12rpmの条件で成型した試料を使用した。強度指標や目標は上記実施例1と同じである。   Tar was used as a binder, the amount added was changed, and the mixture was kneaded for 3 minutes with a pro-share mixer. The shape of the molded product was a horizontal groove shape with convex and convex surfaces combined, and a sample molded with a horizontal groove roll having a diameter of 224 mm under the conditions of a linear pressure of 1.5 t / cm and a roll rotation speed of 12 rpm was used. The intensity index and target are the same as those in the first embodiment.

図4から分かるように、バインダー添加量を増加する程、成型物の強度を高くできるが、成型物の強度を目標以上にするためには、バインダー添加量を分級微粉炭に対し、外数で5%以上添加しなければならない。また、15%より多く添加すると、混練した原料が成型機5のロールに付着して安定的に成型することができなくなる。   As can be seen from FIG. 4, the strength of the molded product can be increased as the amount of binder added is increased. However, in order to increase the strength of the molded product beyond the target, Add 5% or more. On the other hand, if it is added more than 15%, the kneaded raw material adheres to the roll of the molding machine 5 and cannot be stably molded.

したがって、バインダー添加量は分級微粉炭に対し外数で5〜15質量%になるように制御することが好ましい。   Therefore, it is preferable to control the additive amount of the binder to be 5 to 15% by mass with respect to the classified pulverized coal.

(実施例3)
成型物の形状の最適化を図るために、形状や大きさの異なる各種成型物を使用し、実機コークス炉への搬送条件を模擬した搬送試験を実施した。乾燥分級機として流動床を使用し、分級微粉炭の水分率が2%となるように、また、分級炭の粒度は、0.3mm以下の粒子が60〜80質量%となるように、熱風温度と風量を調整した。
(Example 3)
In order to optimize the shape of the molded product, various types of molded products with different shapes and sizes were used, and a conveyance test simulating the conditions for conveyance to an actual coke oven was conducted. A fluidized bed is used as a dry classifier, so that the moisture content of the classified pulverized coal is 2%, and the particle size of the classified coal is hot air so that particles of 0.3 mm or less are 60 to 80% by mass. Temperature and air volume were adjusted.

バインダーとして、タールを、分級微粉炭に対し外数で10%添加し、プロシェアミキサーで3分間混練した。直径224mmのロールの溝形状を変えて線圧1.5t/cm、ロール回転数12rpmの条件で成型し、試料として使用した。   As a binder, 10% of tar was added to the classified pulverized coal and kneaded for 3 minutes with a pro-share mixer. The groove shape of a roll having a diameter of 224 mm was changed and molded under the conditions of a linear pressure of 1.5 t / cm and a roll rotation speed of 12 rpm, and used as a sample.

試料としては、成型していない混練物、50ccマセック型、15ccマセック型、15ccアーモンド型、5ccアーモンド型、横溝型、波板型の7種類を用意して評価した。それぞれの外観写真を、図5に示す。   As samples, seven types of unmolded kneaded material, 50 cc Macek type, 15 cc Macek type, 15 cc almond type, 5 cc almond type, lateral groove type and corrugated plate type were prepared and evaluated. Each appearance photograph is shown in FIG.

成型していない混練物とは、上記微粉炭にタールを外数で10%添加し、プロシェアミキサーで3分間混練したものである。マセック型とは、四角錐の底面通しを貼り合わせた形状であり、アーモンド型は、楕円状、横溝型はV字状の溝を凸凸面で合わせた形状、波板型は、波板状の溝を凹凸面で合わせた形状である。   The unmolded kneaded material is a product obtained by adding 10% of tar to the above pulverized coal and kneading for 3 minutes with a professional shear mixer. The Macek type is a shape in which the bottoms of a quadrangular pyramid are pasted together, the almond type is an oval shape, the horizontal groove type is a shape in which V-shaped grooves are combined with convex and convex surfaces, and the corrugated plate type is a corrugated plate shape. It is the shape which matched the groove | channel on the uneven surface.

マセック型とアーモンド型は、大きさの異なるものも評価したが、形状は同じであるため、外観写真は省略する。これらの成型物と、水分2%の粗粒炭を3対7の質量割合で混合し、実機コークス炉への搬送条件を模擬した搬送試験を実施し、粉化量、偏析、及び、装入密度を評価した。   The Macek type and almond type were also evaluated for different sizes, but the shape is the same, so the appearance photograph is omitted. These moldings and 2% moisture coarse coal are mixed at a mass ratio of 3 to 7, and a conveyance test simulating the conditions for conveyance to an actual coke oven is performed, and the amount of pulverization, segregation, and charging are performed. Density was evaluated.

図6は、搬送時の粉化量を各種成型炭毎に比較したものである。0.3mm以下の粒子の増加量を粉化量とし、発塵及びキャリーオーバー抑制の観点から、その目標を6%以下とした。粉化防止の観点からは、15ccマセック型、15ccアーモンド型、5ccアーモンド型、横溝状、波板状が望ましい。   FIG. 6 compares the amount of pulverization during conveyance for each type of coal. The amount of increase in particles of 0.3 mm or less was defined as the amount of pulverization, and the target was set to 6% or less from the viewpoint of dust generation and carryover suppression. From the viewpoint of preventing pulverization, a 15 cc macek type, a 15 cc almond type, a 5 cc almond type, a lateral groove shape, and a corrugated plate shape are desirable.

混練物は、分級微粉をバインダーで混練して擬似粒子化しただけのものであるため、搬送する際に粗粒炭と混合されて、混練物中のバインダーが粗粒炭側に移動し、擬似粒子が崩壊して粉化量が増加したと推定される。また、50ccマセック型は、成型物が大きいため、成型物内部まで圧力が充分に伝わらず強度を確保することが難しいことと、落下時の衝撃が大きいため壊れ易いことで、粉化量が増加したと推定される。   Since the kneaded product is simply a mixture of the classified fine powder with the binder to make pseudo particles, it is mixed with the coarse coal when transported, and the binder in the kneaded product moves to the coarse coal side to simulate It is presumed that the amount of pulverization increased due to particle collapse. In addition, the 50cc Macek type has a large molded product, so it is difficult to ensure the strength because the pressure is not sufficiently transmitted to the inside of the molded product, and it is easy to break due to a large impact when dropped, increasing the amount of powder. It is estimated that

したがって、粉化防止のためには、小型のポケット型又は板状の成型物が望ましい。   Therefore, in order to prevent pulverization, a small pocket type or plate-like molded product is desirable.

コークス炉への搬送時に成型物が偏析すると、コークス炉への装入量やコークス品質のバラツキの原因となるので、偏析を低減することは重要である。図7は、搬送時の偏析を各種成型炭毎に比較したものである。   It is important to reduce segregation because segregation of the molded product during conveyance to the coke oven causes variations in the amount of coke oven charged and coke quality. FIG. 7 compares the segregation during transport for each type of coal.

偏析を評価するために、成型物と粗粒炭を3対7の質量割合で混合したものを、コークス炉を模擬した容器に装入し、長手方向に5分割、幅方向に3分割、上下方向に2分割し、9.5mm以上の粒子の質量割合の標準偏差を指標とした。9.5mm以上の粒子に着目したのは、粗粒炭にほとんど存在しないため、成型炭の存在比率を概略表現できるためである。   In order to evaluate segregation, a mixture of a molded product and coarse coal in a mass ratio of 3 to 7 was charged into a container simulating a coke oven, divided into 5 parts in the longitudinal direction, 3 parts in the width direction, top and bottom Divided into two in the direction, the standard deviation of the mass ratio of particles of 9.5 mm or more was used as an index. The reason for focusing on the particles of 9.5 mm or more is that the abundance ratio of the formed charcoal can be roughly expressed because it is hardly present in the coarse coal.

その目標値は、コークス炉への装入量やコークス品質のバラツキを低減するために、5%以下とした。偏析防止の観点からは、混練物、横溝状、波板状が望ましい。マセック型やアーモンド型等のポケット型は、コークス炉や石炭塔等に装入する際に、斜面を転がって隅に偏析する傾向があり、大きさが大きい程、偏析が顕著となる。   The target value is set to 5% or less in order to reduce variations in the amount of coke oven charged and coke quality. From the viewpoint of preventing segregation, a kneaded material, a lateral groove shape, and a corrugated plate shape are desirable. A pocket type such as a Macek type or almond type tends to roll off a slope and segregate into a corner when charged in a coke oven, a coal tower, etc., and segregation becomes more pronounced as the size increases.

一方、横溝状や波板状の板状の成型物は、搬送過程で適度に割れて、粗粒炭の間に刺さったりして転がりにくいため、偏析が小さいと推定される。また、混練物には9.5mm以上の粒子は存在しないため、混練物の偏析は粗粒炭中の9.5mm以上の粒子に起因する。   On the other hand, a horizontal groove-like or corrugated plate-like molded product is presumed to have small segregation because it is cracked appropriately during the conveyance process and is not easily rolled by being stuck between coarse coal. Moreover, since there are no particles of 9.5 mm or more in the kneaded product, segregation of the kneaded product is caused by particles of 9.5 mm or more in the coarse coal.

コークス用石炭を室炉式コークス炉へ装入する際、装入密度が大きい方が、コークスの生産量が増加するとともに、コークス品質が向上するため望ましいが、石炭は、乾留する過程で膨張するため、装入密度が大きすぎると、コークス炉を損傷させることが懸念される。したがって、装入密度を適正な範囲に制御することが重要である。   When charging coke coal into a chamber-type coke oven, a higher charging density is desirable because coke production increases and coke quality improves, but the coal expands during the dry distillation process. Therefore, if the charging density is too large, there is a concern that the coke oven will be damaged. Therefore, it is important to control the charging density within an appropriate range.

図8は、コークス炉装入時の嵩密度を各種成型炭毎に比較したものである。装入密度の目標値は、コークス生産量と品質向上、及び、炉体損傷の観点から0.76〜0.84t/m3の範囲に制御することが望ましい。成型物が大きい程、装入密度も大きくなる傾向があり、装入密度を適正範囲に制御するためには、横溝状や波板状の板状の成型物が望ましい。 FIG. 8 compares the bulk density when charging the coke oven for each type of coal. The target value of the charging density is desirably controlled in the range of 0.76 to 0.84 t / m 3 from the viewpoints of coke production and quality improvement and furnace damage. As the molded product is larger, the charging density tends to increase. In order to control the charging density within an appropriate range, a plate-shaped molded product having a lateral groove shape or a corrugated plate shape is desirable.

成型物が大きい程、装入密度も大きくなるのは、成型物が大きい程、装入物の粒度分布が広くなるためであると考えられる。一方、横溝状や波板状等の板状の成型物は、割れやすく、搬送過程で適度に割れるため、粒度分布が適正範囲となり、装入密度が大きくなり過ぎないと考えられる。   The reason why the charging density increases as the molding increases is that the particle size distribution of the charging increases as the molding increases. On the other hand, a plate-like molded product such as a lateral groove shape or a corrugated plate shape is easy to break and is appropriately cracked in the conveying process. Therefore, it is considered that the particle size distribution falls within an appropriate range and the charging density does not become too large.

以上、粉化抑制、偏析防止及び装入密度の観点から、成型物の形状としては、横溝状や波板状等の板状の成型物が望ましい。   As described above, from the viewpoint of suppression of powdering, prevention of segregation, and charging density, the shape of the molded product is preferably a plate-shaped molded product such as a lateral groove shape or a corrugated plate shape.

本発明のコークス用石炭の事前処理方法のフローを示す図である。It is a figure which shows the flow of the pre-processing method of the coal for cokes of this invention. 本発明の成型物の形状を示す図である。It is a figure which shows the shape of the molding of this invention. 分級微粉中−0.3mm粒子重量割合と成型物強度の関係を示す図である。It is a figure which shows the relationship between -0.3mm particle | grain weight ratio in a classification fine powder, and a molding strength. バインダー添加割合と成型物強度の関係を示す図である。It is a figure which shows the relationship between a binder addition ratio and molding strength. 搬送試験で使用した各種成型炭の形状を示す図である。It is a figure which shows the shape of the various charcoal used by the conveyance test. 各種成型炭の搬送試験時の粉化量を示す図である。It is a figure which shows the pulverization amount at the time of the conveyance test of various charcoal. 各種成型炭の搬送試験時の偏析を示す図である。It is a figure which shows the segregation at the time of the conveyance test of various charcoal. 各種成型炭の搬送試験時のコークス炉装入密度を示す図である。It is a figure which shows the coke oven charging density at the time of the conveyance test of various charcoal.

符号の説明Explanation of symbols

1 乾燥分級機(流動床乾燥機)
2 集塵機(バグフィルター)
3 スクリューコンベア
4 混練機
5 成型機(横溝又は波板状)
1 Drying classifier (fluidized bed dryer)
2 Dust collector (bug filter)
3 Screw conveyor 4 Kneading machine 5 Molding machine (horizontal groove or corrugated plate)

Claims (5)

原料石炭を乾燥して、0.3mm以下の粒子を40〜95質量%含有する微粉炭と、それ以外の粗粒炭とに分級し、その後、当該微粉炭にバインダーを添加して、横溝状や波板状等の板状に成型することを特徴とするコークス用石炭の事前処理方法。   The raw coal is dried and classified into pulverized coal containing 40 to 95% by mass of particles of 0.3 mm or less and other coarse coal, and then a binder is added to the pulverized coal to form a horizontal groove. A method for pretreatment of coal for coke, which is formed into a plate shape such as a sheet or corrugated plate. 前記成型後の微粉炭を、前記粗粒炭と混合してコークス炉に装入することを特徴とする請求項1記載のコークス用石炭の事前処理方法。   The pre-treatment method for coke coal according to claim 1, wherein the pulverized coal after molding is mixed with the coarse coal and charged into a coke oven. 前記乾燥及び分級を、流動床にて行うことを特徴とする請求項1又は2記載のコークス用石炭の事前処理方法。   The method for pretreating coal for coke according to claim 1 or 2, wherein the drying and classification are performed in a fluidized bed. 前記微粉炭に添加するバインダーの量が、バインダー添加前の微粉炭量に対して5〜15質量%であることを特徴とする請求項1〜3のいずれか1項に記載のコークス用石炭の事前処理方法。   The amount of the binder to be added to the pulverized coal is 5 to 15% by mass with respect to the amount of pulverized coal before the addition of the binder. Pre-processing method. 前記原料石炭の乾燥の際、水分率([原料石炭中の水分質量/原料石炭質量−wet]×100)を5%以下とすることを特徴とする請求項1〜4のいずれか1項に記載のコークス用石炭の事前処理方法。   5. The moisture content ([moisture content in raw material coal / mass of raw material coal−wet] × 100) is set to 5% or less when the raw material coal is dried. 5. The pre-processing method of the coal for cokes as described.
JP2006113296A 2006-04-17 2006-04-17 Coke coal pretreatment method Active JP4896571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113296A JP4896571B2 (en) 2006-04-17 2006-04-17 Coke coal pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113296A JP4896571B2 (en) 2006-04-17 2006-04-17 Coke coal pretreatment method

Publications (2)

Publication Number Publication Date
JP2007284557A true JP2007284557A (en) 2007-11-01
JP4896571B2 JP4896571B2 (en) 2012-03-14

Family

ID=38756644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113296A Active JP4896571B2 (en) 2006-04-17 2006-04-17 Coke coal pretreatment method

Country Status (1)

Country Link
JP (1) JP4896571B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136256A (en) * 2009-12-25 2011-07-14 Nippon Steel Corp Method and apparatus for kneading powder, and method of agglomerating the powder
JP2013006957A (en) * 2011-06-24 2013-01-10 Nippon Steel & Sumitomo Metal Corp Method for producing charged coal for coke oven, and method for producing coke
JP2014185327A (en) * 2013-02-21 2014-10-02 Mitsubishi Chemicals Corp Briquette for coke production and coke production method
JP2015189822A (en) * 2014-03-27 2015-11-02 三菱化学株式会社 Briquette for coke production
JP2015218189A (en) * 2014-05-14 2015-12-07 新日鐵住金株式会社 Method for charging coal into coke oven

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993792A (en) * 1982-11-19 1984-05-30 Nippon Steel Corp Adjustment of coal to be charged
JPH093458A (en) * 1995-06-16 1997-01-07 Nippon Steel Corp Pretreatment of coal
JPH10130653A (en) * 1996-09-09 1998-05-19 Nippon Steel Chem Co Ltd Method for pretreating coal for coke making and production of coke
JPH10183136A (en) * 1996-12-26 1998-07-14 Nippon Steel Chem Co Ltd Preliminary treatment of original coal for coke making and production of coke
JPH10287882A (en) * 1997-04-11 1998-10-27 Nippon Steel Chem Co Ltd Previous treatment of raw coal for coke production and production of coke

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993792A (en) * 1982-11-19 1984-05-30 Nippon Steel Corp Adjustment of coal to be charged
JPH093458A (en) * 1995-06-16 1997-01-07 Nippon Steel Corp Pretreatment of coal
JPH10130653A (en) * 1996-09-09 1998-05-19 Nippon Steel Chem Co Ltd Method for pretreating coal for coke making and production of coke
JPH10183136A (en) * 1996-12-26 1998-07-14 Nippon Steel Chem Co Ltd Preliminary treatment of original coal for coke making and production of coke
JPH10287882A (en) * 1997-04-11 1998-10-27 Nippon Steel Chem Co Ltd Previous treatment of raw coal for coke production and production of coke

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136256A (en) * 2009-12-25 2011-07-14 Nippon Steel Corp Method and apparatus for kneading powder, and method of agglomerating the powder
JP2013006957A (en) * 2011-06-24 2013-01-10 Nippon Steel & Sumitomo Metal Corp Method for producing charged coal for coke oven, and method for producing coke
JP2014185327A (en) * 2013-02-21 2014-10-02 Mitsubishi Chemicals Corp Briquette for coke production and coke production method
JP2015189822A (en) * 2014-03-27 2015-11-02 三菱化学株式会社 Briquette for coke production
JP2015218189A (en) * 2014-05-14 2015-12-07 新日鐵住金株式会社 Method for charging coal into coke oven

Also Published As

Publication number Publication date
JP4896571B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5741246B2 (en) Coke oven charging method and coke manufacturing method
US8157193B2 (en) Waterless separation methods and systems for coal and minerals
US8636824B2 (en) Production method for carbonaceous material-containing metal oxide briquettes
JP4896571B2 (en) Coke coal pretreatment method
JP5079449B2 (en) Method for producing agglomerate using roll agglomeration machine and roll agglomeration machine
JP6421666B2 (en) Method for producing sintered ore
JP2006283008A (en) Method for producing blast furnace coke
US20120210824A1 (en) Methods, systems and devices for making cold bonded agglomerates
RU2550874C2 (en) Coal charge preparation for coking
JPH10287882A (en) Previous treatment of raw coal for coke production and production of coke
JP3546096B2 (en) Pretreatment of coal
JP2773994B2 (en) Coking furnace coking method
JP2008133537A (en) Operating method of shaft furnace, and in-furnace pulverization preventive apparatus
JP5320832B2 (en) Vertical furnace operation method and furnace powdering prevention equipment
JPH10183136A (en) Preliminary treatment of original coal for coke making and production of coke
JP3380112B2 (en) Pretreatment method for coal charged in coke oven
AU2015262356B2 (en) Modified coal storage method
JPH10130653A (en) Method for pretreating coal for coke making and production of coke
JP7028046B2 (en) Coke manufacturing method and coal pretreatment equipment used for coke manufacturing
JP2001072982A (en) Pretreatment method for coal for coke making
KR102045597B1 (en) The method for recycling by-product emitted from coal-based iron making process and equipment for hot compacting iron
JP2004307557A (en) Method for manufacturing high-strength coke
RU2058365C1 (en) Method for preparation of coal mixture for coking
JPS5880387A (en) Method for controlling feed coal
JP2003183670A (en) Method for pre-treating coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R151 Written notification of patent or utility model registration

Ref document number: 4896571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350