JP2006255530A - Separation method for foreign matter particle - Google Patents

Separation method for foreign matter particle Download PDF

Info

Publication number
JP2006255530A
JP2006255530A JP2005073642A JP2005073642A JP2006255530A JP 2006255530 A JP2006255530 A JP 2006255530A JP 2005073642 A JP2005073642 A JP 2005073642A JP 2005073642 A JP2005073642 A JP 2005073642A JP 2006255530 A JP2006255530 A JP 2006255530A
Authority
JP
Japan
Prior art keywords
mixed powder
particles
different characteristics
separation operation
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005073642A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Ito
光弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2005073642A priority Critical patent/JP2006255530A/en
Priority to PCT/JP2006/304263 priority patent/WO2006098177A1/en
Priority to TW95108459A priority patent/TWI353886B/en
Publication of JP2006255530A publication Critical patent/JP2006255530A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C7/00Separating solids from solids by electrostatic effect
    • B03C7/02Separators
    • B03C7/06Separators with cylindrical material carriers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving the fact that a separation efficiency is extremely insufficient and does not reach to a practical level regarding many particles in separation of particles by an electrostatic separator and a magnetic separator conventionally. <P>SOLUTION: In the electrostatic separator and the magnetic separator, before the particles are charged with a charge or magnetism in order to separate a mixed powder of particles having different characteristics, aggregate existing in the mixed powder of particles is dispersed. Specifically, the dispersion is performed at the high dispersing condition by an ejector, a pipe or the like. Thereafter, the particles having different characteristics are separated by the electrostatic separator or the magnetic separator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は粉体状の各種鉱物や、各種産業での粉体状中間製品または廃棄物の中から、静電気または磁気を利用して目的物質を分離回収もしくは不要成分を分離除去する際、経済的な分離回収効率もしくは除去効率、さらには実用に充分耐えるレベルの目的成分濃縮率を提供する方法に関する。   The present invention is economical when separating and recovering target substances or separating and removing unnecessary components from various minerals in powder form, powdered intermediate products or wastes in various industries using static electricity or magnetism. The present invention relates to a method for providing a desired separation / recovery efficiency or removal efficiency, and a target component concentration rate that can withstand practical use.

成分や物質の異なった粒子が混在する粉体中から目的物質を分離回収、または不要物質を除去、あるいは目的物質の濃縮を行なう方法には、これらの粒子の比重、磁気的特性(磁性)、電気的特性(誘電率、導電率、帯電性)などの物理的または物理化学的特性の違いを利用して、従来から、比重分離、磁気分離、および静電分離など各種の方法がある。これらの方法の選択には、分離回収もしくは濃縮したい目的物質が、残りの不要物質との特性の違いが何かによって決定される。しかし、これらの方法は、従来多くの場合、目的物質の分離回収効率や濃縮率が低く、産業で実用されるには限界があった。   The method of separating and recovering the target substance from the powder containing particles of different components and substances, removing unnecessary substances, or concentrating the target substance, the specific gravity of these particles, magnetic properties (magnetism), Conventionally, there are various methods such as specific gravity separation, magnetic separation, and electrostatic separation utilizing differences in physical or physicochemical properties such as electrical properties (dielectric constant, electrical conductivity, chargeability). In selecting these methods, the target substance to be separated and recovered or concentrated is determined by the difference in characteristics from the remaining unnecessary substances. However, in many cases, these methods conventionally have a low separation / recovery efficiency and concentration rate of the target substance, and have been limited in practical use in industry.

一方、資源、特に有用鉱物の枯渇問題や有効利用、また各種産業からの副産物や廃棄物のリサイクル利用のための残存有用物質の分離回収あるいは濃縮が、近年極めて重要視され、目的物質が実用に充分耐える分離回収効率と濃縮率、さらには低い設備費ならびにランニングコストのための技術確立が強く望まれている。   On the other hand, in recent years, the separation and recovery or concentration of residual useful substances for recycling and utilization of resources, especially useful minerals, and by-products and waste from various industries has become extremely important, and the target substance has become practical. It is strongly desired to establish technology for separation and recovery efficiency and concentration rate that can withstand sufficiently, as well as low equipment costs and running costs.

このような中、静電分離による方法や磁気分離による方法は設備の建設費とランニングコスト共に低く、かつ広い分野で適用できる可能性があり近年有望視されている。しかし、従来の技術では目的物質の分離回収効率や濃縮率が低く、実用に耐えるに至っていないことが大部分である。
例えば、静電分離による方法では、特許文献1および特許文献2に開示されているような技術が知られている。
特開2004−243154号公報 国際公開2002/76620号パンフレット
Under such circumstances, the method using electrostatic separation and the method using magnetic separation are both promising in recent years because both the construction cost and running cost of equipment are low, and they may be applicable in a wide range of fields. However, most of the conventional techniques have low separation and recovery efficiency and concentration rate of the target substance and have not been practically used.
For example, in the method using electrostatic separation, techniques as disclosed in Patent Document 1 and Patent Document 2 are known.
JP 2004-243154 A International Publication 2002/76620 Pamphlet

本発明は、目的物質の分離回収効率や濃縮度などの分離効率に悪影響を及ぼして実用化を阻害している大きな原因が、従来から周知・常識であった事柄以外にあることを発見し、分離効率を実用化に充分なまでに大幅に向上させるために、その阻害原因を打破する具体的な方法を考案したことにある。   The present invention has discovered that the major cause of the impediment to practical use by adversely affecting the separation efficiency such as the separation and recovery efficiency and concentration of the target substance is something other than what was conventionally known and common sense, In order to greatly improve the separation efficiency enough for practical use, a specific method for overcoming the cause of the inhibition has been devised.

静電分離では、粒子の表面導電性や接触抵抗に影響を与える粒子表面の湿分、あるいはそれに影響を与える空気中の湿度は、目的物質の分離回収効率や濃縮度など分離効率に影響を与える重要な因子であり、乾燥度の高い状態で行なわれる必要があることは周知である。
しかし、実際に乾燥状態で実験を行なってみると、一部の粒子については比較的高い分離効率を発揮するが、多くの粒子については分離効率が極めて不十分で、実用レベルにはまったく到達できなかった。
In electrostatic separation, the moisture on the particle surface that affects the surface conductivity and contact resistance of the particle, or the humidity in the air that affects it affects the separation efficiency such as the separation recovery efficiency and concentration of the target substance. It is well known that it is an important factor and needs to be done in a dry state.
However, when the experiment is actually performed in a dry state, some particles exhibit a relatively high separation efficiency, but many particles have an extremely insufficient separation efficiency, and can reach a practical level at all. There wasn't.

そこで発明者は、水分や湿度以外に大きく影響を及ぼす因子を見つけるために、供給するガスの種類と温度、ガス流速、印加電圧、電界強度、磁気強度、磁気勾配、粉体層の流動化状態など操作条件のほか、粒度分布、粒子表面の化学成分や吸着物質などの影響について調査検討を行なった。その結果、静電分離、磁気分離の何れの場合も、特性の異なる粒子の混合粉体中に球相当直径10μm以下の微粉が多く含まれていると分離効率は大幅に低下することを発見した。これは、このような微粉が多いと粒子の凝集が著しくなり、分離したい性状の異なる粒子、すなわち目的物質と非目的物質が混ざった状態で凝集するために分離効率が悪くなると考察できる。発明者のさらなる調査検討では、10μm以下の微粉が、目的物質と非目的物質のどちらか一方の粒子のみであったとしても、その微粉は微粉であるが故に付着凝集力が強く、他方の性状の大きな粒子表面にも付着し、効率的な静電分離ができず、分離効率を大幅に下げることになることも発見した。   Therefore, in order to find out factors that have a significant effect other than moisture and humidity, the inventor must supply the gas type and temperature, gas flow rate, applied voltage, electric field strength, magnetic strength, magnetic gradient, and fluidized state of the powder layer. In addition to the operating conditions, we investigated and investigated the effects of particle size distribution, particle surface chemical composition, and adsorbents. As a result, in both electrostatic separation and magnetic separation, it was discovered that the separation efficiency is greatly reduced if a mixture of particles with different characteristics contains a lot of fine powder with a sphere equivalent diameter of 10 μm or less. . It can be considered that the agglomeration of particles becomes remarkable when the amount of such fine powder is large, and the separation efficiency deteriorates due to aggregation in a state where particles having different properties to be separated, that is, a target substance and a non-target substance are mixed. According to further investigation and investigation by the inventor, even if the fine powder of 10 μm or less is only one of the target substance and the non-target substance, the fine powder is a fine powder. It has also been found that it adheres to the surface of large particles and cannot effectively perform electrostatic separation, greatly reducing the separation efficiency.

これらの対策として、発明者は次のような方法を考案した。すなわち、静電分離装置または磁気分離装置に供給しようとする粒子の混合粉体を、事前に分散(凝集体を解して、目的物質か非目的物質かの単一性状粒子にすること)し、それが再凝集する前に速やかに分離装置に供給する方法である。具体的には、分散のための手段として、ガス供給圧力がゲージ圧で100kPa〜600kPaのエジェクタ中または当該エジェクタ後方の噴流中に当該混合粉体を供給すること(請求項1)、レイノルズ数が12000以上のガス流れをもつパイプ中に当該混合粉体を供給すること(請求項2)、回転軸に取り付けられた突起状物が5m/s以上の周速度で回転する容器中に当該混合粉体を供給すること(請求項3)、同じ線上にある2つまたは2つ以上の回転軸それぞれに取り付けられた突起状物が回転する回転体を有する容器中に当該混合粉体を供給することで当該混合粉体中の粒子凝集体を分散させる粒子の分離方法であって、2つの回転軸それぞれに取り付けられた突起状物同士が最も接近する部分における当該突起状物同士の回転による相対周速度が、その最大になる位置において5m/s以上であること(請求項4)、分散媒体として球相当直径が1mm〜60mmのボールまたは形状を限定しない固体を充填した容器に当該混合粉体を供給し、当該容器を回転させるかもしくは当該容器内部に設置した回転軸とそれに接合された攪拌翼または攪拌棒を回転させて当該分散媒体を運動させること(請求項5)がある。   As a countermeasure for these, the inventor has devised the following method. In other words, the mixed powder of particles to be supplied to the electrostatic separation device or magnetic separation device is dispersed in advance (disaggregating the particles into unitary particles of the target substance or non-target substance). This is a method of promptly supplying the separation device before re-aggregation. Specifically, as a means for dispersion, the mixed powder is supplied into an ejector having a gas supply pressure of 100 kPa to 600 kPa in gauge pressure or a jet behind the ejector (Claim 1), and the Reynolds number is Supplying the mixed powder into a pipe having a gas flow of 12000 or more (Claim 2), and the mixed powder in a container in which a protrusion attached to a rotating shaft rotates at a peripheral speed of 5 m / s or more. Supplying the body (Claim 3), supplying the mixed powder into a container having a rotating body in which a protrusion attached to each of two or more rotating shafts on the same line rotates. The particle separation method for dispersing the particle aggregates in the mixed powder is a relative circumference by rotation of the projections at the portion where the projections attached to the two rotating shafts are closest to each other. Speed is at its maximum The mixed powder is supplied to a container filled with a ball having a sphere equivalent diameter of 1 mm to 60 mm or a solid that does not limit the shape as a dispersion medium. The dispersion medium may be moved by rotating or rotating a rotating shaft installed inside the container and a stirring blade or a stirring rod joined to the rotating shaft (Claim 5).

本発明により、目的物質粒子と非目的物質粒子の混合粉体の中から、目的物質のみを高い純度(高濃縮度)でかつ高い収率で回収することが可能になり、その結果、回収できた目的物質が有効に活用できるようになり、資源の有効利用、並びに副産物・産廃物の有効利用という観点で、今後の地球規模での資源の有効利用並びに環境対策の面で大きく貢献できる。   The present invention makes it possible to recover only the target substance from the mixed powder of the target substance particles and the non-target substance particles with high purity (high concentration) and high yield. The target substances can be used effectively, and from the viewpoint of effective use of resources and by-products / industrial waste, it can greatly contribute to the future effective use of resources on a global scale and environmental measures.

以下、本発明の具体的な方法を述べる。
事前に分散する第1の方法(請求項1)は、分離したい性状の目的物質粒子と非目的物質粒子が混在している混合粉体(原料粉体)に電荷または磁気を帯びさせて分離する前に、図1および図2にその例を示すようなエジェクタに、空気などのガスを、供給圧力がゲージ圧で100kPa〜600kPa、より望ましくは200kPa〜400kPaで供給し、エジェクタ中の負圧部分もしくはエジェクタ後方の噴流中に原料粉体を供給し、目的物質と非目的物質、すなわち異なった電気的特性(誘電率や導電率など)または磁気的特性をもつ粒子凝集体を充分に分散させることである。なお、この供給圧力は、低すぎると分散が不十分になり、高すぎると部分的に粉砕も同時に起こり微粉が増えてしまい、何れも分離効率上望ましくない。また、供給圧力が過剰の場合には大型のコンプレッサーが必要になり、設備および消費エネルギーの面でも経済的でない。
Hereinafter, a specific method of the present invention will be described.
In the first method of dispersing in advance (Claim 1), the mixed powder (raw material powder) in which the target substance particles and the non-target substance particles having properties to be separated are mixed is separated by being charged or magnetized. Before, a gas such as air is supplied to an ejector whose example is shown in FIGS. 1 and 2 at a supply pressure of 100 kPa to 600 kPa, more preferably 200 kPa to 400 kPa as a gauge pressure, and the negative pressure portion in the ejector Alternatively, supply raw material powder into the jet behind the ejector to sufficiently disperse the target substance and non-target substance, that is, particle aggregates with different electrical characteristics (dielectric constant, conductivity, etc.) or magnetic characteristics. It is. If the supply pressure is too low, the dispersion becomes insufficient. If the supply pressure is too high, pulverization occurs partially at the same time and fine powder increases, both of which are undesirable in terms of separation efficiency. In addition, if the supply pressure is excessive, a large compressor is required, which is not economical in terms of equipment and energy consumption.

事前に分散する第2の方法(請求項2)は、分離したい性状の目的物質粒子と非目的物質粒子が混在している原料粉体に電荷または磁気を帯びさせて分離する前に、レイノルズ数Reが12000以上、より望ましくは40000以上のガス流れをもつパイプ中に原料粉体を供給して、目的物質と非目的物質、すなわち異なった電気的特性(誘電率や導電率など)または磁気的特性をもつ粒子凝集体を分散させることである。   The second method of dispersing in advance (Claim 2) is to provide a Reynolds number before separating the raw material powder in which the target substance particles and the non-target substance particles to be separated are charged or magnetized. Supply raw material powder into a pipe with a gas flow of Re 12000 or more, more preferably 40000 or more, and target and non-target materials, that is, different electrical characteristics (dielectric constant, conductivity, etc.) or magnetic It is to disperse particle aggregates having characteristics.

ここで、レイノルズ数Reは次式で定義される無次元数であって、パイプ内の乱流状態を示し、値が大きくなるほど乱流は強いことを意味する。D, U, ρ,μの単位は任意で、計算したReが無次元になれば良い。
Re = D Uρ/μ
D:パイプの内径
U:パイプ内のガス速度
ρ:ガスの密度
μ:ガスの粘性係数
Here, the Reynolds number Re is a dimensionless number defined by the following equation, which indicates a turbulent state in the pipe, and means that the larger the value, the stronger the turbulent flow. The units of D, U, ρ, and μ are arbitrary, and the calculated Re may be dimensionless.
Re = D Uρ / μ
D: Inner diameter of pipe
U: Gas velocity in the pipe
ρ: Gas density
μ: Gas viscosity coefficient

供給された原料粉体は図3にその概略を示すような当該パイプ中で、レイノルズ数が示すとおり強い乱流(レイノルズ数が3000以上で乱流になる)によって、粒子同士、あるいは粒子とパイプ壁の間で強い衝突が起こり、凝集した粒子が分散される。その際、パイプは並列に複数あっても良い。またパイプの断面形状は限定されず、円形であっても矩形であっても良い。さらに、パイプは、パイプ内を通過するガスの滞留時間が0.005秒以上になるようにその長さを設計すれば良い。   The supplied raw material powder has a strong turbulent flow as shown by the Reynolds number (turbulent flow when the Reynolds number is 3000 or more) in the pipe as schematically shown in FIG. A strong collision occurs between the walls and the agglomerated particles are dispersed. At that time, a plurality of pipes may be provided in parallel. Moreover, the cross-sectional shape of the pipe is not limited, and may be circular or rectangular. Furthermore, the length of the pipe may be designed so that the residence time of the gas passing through the pipe is 0.005 seconds or longer.

事前に分散する第3の方法(請求項3)は、分離したい性状の目的物質粒子と非目的物質粒子が混在している原料粉体に電荷または磁気を帯びさせて分離する前に、回転軸に取り付けられたブレードやピンなどの突起状物が、5m/s以上、望ましくは15〜50m/sの速度で回転する容器中に、連続的または回分式に原料粉体を供給して、目的物質と非目的物質、すなわち異なった電気的特性(誘電率や導電率など)または磁気的特性をもつ粒子凝集体を分散させることである。   The third method of dispersing in advance (Claim 3) is to rotate the rotating shaft before separating the raw material powder in which the target substance particles having properties to be separated and the non-target substance particles are mixed with electric charge or magnetism. The raw material powder is supplied continuously or batchwise into a container in which protrusions such as blades and pins attached to the blade rotate at a speed of 5 m / s or more, preferably 15 to 50 m / s. Dispersing substances and non-target substances, that is, particle aggregates having different electrical characteristics (such as dielectric constant and conductivity) or magnetic characteristics.

図4および図5に、それぞれブレードおよびピンが容器内で回転する構造の例を示す。これらの構造や形状には多くのバリエーションが考えられるが、供給された原料粉体が回転するブレードやピンによって衝撃力やせん断力が与えられる構造であれば、その形状は限定されない。例えば、ピンミルやブレードミルといった高速回転衝撃粉砕機を本発明の分散に応用することができる。ブレードやピンの速度が遅すぎると分散が不十分になり、速度が速すぎると粉砕も同時に起こり微粉が増えてしまい、何れも分離効率上望ましくない。また、回転速度が過剰の場合には設備費および消費エネルギーの面でも経済的でない。   FIGS. 4 and 5 show examples of structures in which the blade and the pin rotate in the container, respectively. Many variations are conceivable for these structures and shapes, but the shape is not limited as long as the supplied raw material powder has a structure in which an impact force or a shear force is applied by a rotating blade or pin. For example, a high-speed rotational impact pulverizer such as a pin mill or a blade mill can be applied to the dispersion of the present invention. If the speed of the blade or pin is too slow, the dispersion will be insufficient, and if the speed is too fast, pulverization will occur simultaneously and fine powder will increase, both of which are undesirable in terms of separation efficiency. Further, when the rotational speed is excessive, it is not economical in terms of equipment cost and energy consumption.

さらに、前記容器において、同じ線上に回転軸を少なくとも2つ設け、それぞれの回転軸に取り付けられた突起状物を回転させ、それぞれの突起状物同士が最も接近する部分における当該突起状物同士の回転による相対周速度を、それが最大になる位置において5m/s以上としてもよい(請求項4)。図6に、回転軸を2つ設けたピンミルの例を示す。図6において軸11aと11bは同じ線上に設けられており、軸11aにはピン10aと10cが、軸11bにはピン10bが取り付けられている。「それぞれの突起状物同士が最も接近する部分」で「それ(相対周速度)が最大になる位置」とは図6で言えばピン10aと10bの間を指し、したがってピン10aと10bの相対周速度が5m/s以上となるように軸11aと11bを回転させる。この場合、ピン10bと10cの相対周速度はピン10aと10bとの相対周速度より小さくなるが、相対周速度が最大になる位置、すなわち突起状物同士が最も接近する部分で回転軸からの半径位置が最も外側、図6で言えばピン10aと10bとの相対周速度が5m/s以上であればよい。軸11aと11bが互いに逆方向に回転してもよく、同じ方向に回転してもよい。また、分散装置の形式は図6に示すようなピン方式に限るものではない。別々に回転する少なくとも2つの回転軸と、それぞれの回転軸に突起状物が取り付けられていればよく、それぞれの突起状物が相対周速度5m/s以上で回転することができればよい。このような容器中に原料粉体を投入することにより、前記と同様の分散効果を得ることができる。   Further, in the container, at least two rotation shafts are provided on the same line, the protrusions attached to the respective rotation shafts are rotated, and the protrusions in the portions where the protrusions are closest to each other are rotated. The relative peripheral speed by rotation may be set to 5 m / s or more at the position where the maximum speed is attained (claim 4). FIG. 6 shows an example of a pin mill provided with two rotating shafts. In FIG. 6, shafts 11a and 11b are provided on the same line. Pins 10a and 10c are attached to shaft 11a, and pin 10b is attached to shaft 11b. “The position where the respective protrusions are closest to each other” refers to the position between the pins 10a and 10b in the case of FIG. 6 and thus the relative position of the pins 10a and 10b. The shafts 11a and 11b are rotated so that the peripheral speed becomes 5 m / s or more. In this case, the relative peripheral speed of the pins 10b and 10c is smaller than the relative peripheral speed of the pins 10a and 10b, but the position where the relative peripheral speed is maximum, that is, the portion where the projections are closest to each other, The radial position may be the outermost side, and the relative peripheral speed between the pins 10a and 10b may be 5 m / s or more in FIG. The shafts 11a and 11b may rotate in opposite directions, or may rotate in the same direction. Further, the form of the dispersing device is not limited to the pin system as shown in FIG. It suffices that at least two rotating shafts that rotate separately and protrusions are attached to the respective rotating shafts, and that each protrusion can rotate at a relative peripheral speed of 5 m / s or more. By introducing the raw material powder into such a container, the same dispersion effect as described above can be obtained.

事前に分散する第4の方法(請求項5)は、分離したい性状の目的物質粒子と非目的物質粒子が混在している原料粉体に電荷または磁気を帯びさせて分離する前に、図7にその例を示すように、分散媒体として球相当直径(体積が同一の球を想定したときのその球の直径)が1mm〜60mm、望ましくは5mm〜40mmのボールを充填した容器において、容器を回転させて、あるいは容器内部に回転軸とそれに接合した攪拌翼または攪拌棒を回転させることによって分散媒体としてのボールを運動させ、当該容器に原料粉体を連続的あるいは回分式に供給して、目的物質と非目的物質、すなわち異なった電気的特性(誘電率や導電率など)または磁気的特性をもつ粒子凝集体を充分に分散させることである。この容器の形状と回転軸の方向には制限がなく、回転軸は水平であっても垂直であってもよい。例えば、ボールミルや媒体撹拌ミルを本発明の分散に応用することができる。ボールの直径は、小さすぎると原料粉体の通過抵抗が大きくなって連続供給が容易でなくなり、また回分式では分散後の粉体排出(ボールとの分離)が容易でない。一方、ボールが大き過ぎると、ボール間の隙間が大きくなるために原料粉体が分散されないまま通り抜けてしまう比率が高くなると共に、ボールの衝撃力が大きくなるために微粉を凝集させる働きも現れるために望ましくない。ボールがさらに大きくなるとシャフトにかかるトルクが過剰になり、シャフトが回転しないことも起こる。ここで、容器に充填する分散媒体は、該ボールと球相当直径が同一のものであればその形状は限定されるものではない。また、その材質は、木、コルク、ゴム、プラスチックス、セラミックス、金属などの中から、原料粉体の凝集の強さなどによって選択されるものである。なお、当該容器内での原料粉体の平均滞留時間は、粉砕が進行して微粉が過剰に生成させないようにする必要があることから、10分以内が望ましい。   In the fourth method of dispersing in advance (Claim 5), before the raw material powder in which the target substance particles having properties to be separated and the non-target substance particles are mixed is separated by charging or magnetizing, FIG. For example, in a container filled with balls having a sphere equivalent diameter (the diameter of the sphere assuming a sphere with the same volume) of 1 mm to 60 mm, preferably 5 mm to 40 mm as a dispersion medium, By rotating or rotating a rotating shaft and a stirring blade or a stirring rod joined to the rotating shaft inside the container, the ball as the dispersion medium is moved, and the raw material powder is supplied continuously or batchwise to the container, The target substance and the non-target substance, that is, particle aggregates having different electrical characteristics (such as dielectric constant and conductivity) or magnetic characteristics are sufficiently dispersed. There is no limitation on the shape of the container and the direction of the rotation axis, and the rotation axis may be horizontal or vertical. For example, a ball mill or a medium stirring mill can be applied to the dispersion of the present invention. If the diameter of the ball is too small, the passage resistance of the raw material powder becomes large and continuous supply becomes difficult, and in the batch type, powder discharge after dispersion (separation from the ball) is not easy. On the other hand, if the balls are too large, the gap between the balls becomes large, so the ratio of the raw material powder passing through without being dispersed becomes high, and the impact force of the balls becomes large, and the function of agglomerating fine powders also appears. Not desirable. When the ball becomes larger, the torque applied to the shaft becomes excessive, and the shaft may not rotate. Here, the shape of the dispersion medium filled in the container is not limited as long as the balls have the same sphere equivalent diameter. Further, the material is selected from wood, cork, rubber, plastics, ceramics, metal, and the like depending on the strength of aggregation of the raw material powder. Note that the average residence time of the raw material powder in the container is preferably within 10 minutes because it is necessary to prevent the fine powder from being excessively generated as the pulverization proceeds.

全国の発電所から発生する石炭灰(フライアッシュ)は年間約1000万トンであり、今後資源の有効活用の観点から灰分の多い低品位炭の使用が増すことになり、フライアッシュの発生量は更に増すことが予想されている。このうち、約60%はセメント製造においてその原料の一部として使用され、その使用可能量はセメントとしての化学成分上、既に限界に来ている。残りの大部分は埋め立て処分されている。この埋め立て処分は環境対策上望ましい姿でないことは言うまでも無い。   Coal ash (fly ash) generated from power stations nationwide is about 10 million tons per year. From the viewpoint of effective use of resources, the use of low-grade coal with high ash content will increase. Further increase is expected. Of this, about 60% is used as part of the raw material in cement production, and the usable amount has already reached its limit due to the chemical composition of cement. Most of the rest is disposed of in landfills. It goes without saying that this landfill disposal is not desirable for environmental measures.

セメント分野でフライアッシュの使用量をさらに増すには、これまでのような原料としてではなく、出来上がったセメントにJISに規定されている範囲で添加混合することである。しかし現状ではフライアッシュ中に残存する未燃炭素(火力発電所で石炭を燃焼したとき、燃えなかった炭素成分が数%以上残存している)がセメントやコンクリートの品質に悪影響を及ぼすために現在ではその添加混合ができていない。   In order to further increase the amount of fly ash used in the cement field, it is necessary to add and mix not only as a raw material but with the finished cement within the range specified by JIS. At present, however, unburned carbon remaining in fly ash (more than a few percent of the carbon component that did not burn when coal is burned at a thermal power plant) adversely affects the quality of cement and concrete. Then, the addition mixing is not completed.

そこで、このようなフライアッシュから、未燃炭素を効率的に分離除去して、フライアッシュ中の未燃炭素含有率を0.5%程度以下にすることができればセメントへの添加混合が可能になる。
このような背景の中、灰と炭素の電気的特性の違いを利用した静電分級が注目されているが、目的物質の濃縮率(灰分の濃縮率、すなわちフライアッシュ中の未燃炭素含有率を少なくすること)と分離回収効率(フライアッシュの歩留まり)の双方とも実用のレベルに達していない。
Therefore, if unburned carbon is efficiently separated and removed from such fly ash, and the unburned carbon content in the fly ash can be reduced to about 0.5% or less, it can be added to the cement.
Against this background, electrostatic classification using the difference in electrical characteristics between ash and carbon has attracted attention. However, the concentration rate of the target substance (concentration rate of the ash content, that is, the unburned carbon content in fly ash) Both the separation and recovery efficiency (fly ash yield) have not reached practical levels.

そこで、本発明の効果を実験的に調べた結果を以下に示す。
この実施例では、未燃炭素含有率3.2質量%のフライアッシュを静電分離装置に供給する前に、分散装置として図1に示すようなエジェクタを用いて空気によって分散させた。なお、分散させた後は、電極間隔65mmの静電分離装置を用い、印加電圧を30kVとし、ガスに乾燥空気(温度70℃、相対湿度10%)を用いて分離を行った。図8はその結果の一部を示す。この図で、供給圧力が0のデータはこの分散装置を使用しない、すなわち従来の場合である。図からわかるように、エジェクタの使用により、未燃炭素含有率は大幅に低減すると共に、歩留まりも大幅に向上することがわかる。また、供給圧力には適切な範囲があることもわかる。
Therefore, the results of experimental investigation of the effect of the present invention are shown below.
In this example, before supplying fly ash having an unburned carbon content of 3.2 mass% to the electrostatic separator, the fly ash was dispersed with air using an ejector as shown in FIG. After the dispersion, separation was performed using an electrostatic separation device with an electrode interval of 65 mm, an applied voltage of 30 kV, and dry air (temperature 70 ° C., relative humidity 10%) as a gas. FIG. 8 shows a part of the result. In this figure, data where the supply pressure is 0 is the case where this dispersing device is not used, that is, the conventional case. As can be seen from the figure, by using the ejector, the unburned carbon content is significantly reduced and the yield is also greatly improved. It can also be seen that the supply pressure has an appropriate range.

これによって、分離した低炭素含有側(灰の濃縮側)の未燃炭素含有率はセメントへの添加混合が可能な値まで達しており、一方で、歩留まりも大幅に向上しているために廃棄対象になる高炭素含有側(炭素の濃縮側)の灰もその量が激減して炭素含有率が高くなるために、場合によっては燃料代替として利用できる可能性も示唆している。   As a result, the unburned carbon content on the separated low carbon content side (ash concentration side) has reached a value that can be added to and mixed with cement, but on the other hand, the yield has been greatly improved and discarded. The amount of ash on the high carbon content side (carbon enrichment side), which is the target, is drastically reduced and the carbon content is increased, suggesting that it may be used as a fuel substitute in some cases.

この実施例では、実施例1と同じフライアッシュを用いて、分散装置として図3に示すようなパイプで分散を行ない、同様の実験を行なったものである。その結果の一部を図9に示す。
この図で、レイノルズ数が1000のデータはこの分散装置を使用しない場合とほぼ等しい値である。図からわかるように、パイプの使用により、未燃炭素含有率は大幅に低減すると共に、歩留まりも大幅に向上することがわかる。
In this example, the same fly ash as in Example 1 was used, and dispersion was performed using a pipe as shown in FIG. 3 as a dispersing device, and a similar experiment was performed. A part of the result is shown in FIG.
In this figure, the data with a Reynolds number of 1000 is almost the same value as when this dispersing device is not used. As can be seen from the figure, the use of pipes significantly reduces the unburned carbon content and significantly improves the yield.

この実施例では、実施例1と同じフライアッシュを用いて、図5に示すようなピンの高速回転型分散装置を試作して、同様の実験を行なったものである。その結果の一部を図10に示す。
この図で、ピンの回転速度が0のデータはこの分散装置を使用しない、すなわち従来の場合である。図からわかるように、この分散装置の使用により、未燃炭素含有率は大幅に低減すると共に、歩留まりも大幅に向上することがわかる。また、ピンの回転速度には適切な範囲があることもわかる。
In this example, the same experiment was performed by making a prototype of a high-speed rotating dispersion device for pins as shown in FIG. 5 using the same fly ash as in Example 1. A part of the result is shown in FIG.
In this figure, the data where the rotational speed of the pin is 0 is the case where this dispersing device is not used, that is, the conventional case. As can be seen from the figure, the use of this dispersing device significantly reduces the unburned carbon content and significantly improves the yield. It can also be seen that there is an appropriate range for the rotational speed of the pin.

この実施例では、実施例1と同じフライアッシュを用いて、図7(d)に示すようなボール運動型分散装置を試作して、同様の実験を行なったものである。ボールの材質はゴムとした。その結果の一部を図11に示す。
この図には記入されていないが、この分散装置を使用しない、すなわち従来の場合のデータは実施例1の供給圧力が0の場合の値と同じである。図からわかるように、この分散装置の使用により、未燃炭素含有率は大幅に低減すると共に、歩留まりも大幅に向上することがわかる。また、ボールには適切な範囲があることもわかる。
In this example, the same experiment was performed using the same fly ash as in Example 1 to produce a ball motion type dispersion apparatus as shown in FIG. 7D. The ball material was rubber. A part of the result is shown in FIG.
Although not shown in this figure, the data in the case where this dispersing device is not used, that is, in the conventional case, is the same as that in the case where the supply pressure in Example 1 is 0. As can be seen from the figure, the use of this dispersing device significantly reduces the unburned carbon content and significantly improves the yield. It can also be seen that the ball has an appropriate range.

この実施例では、鉄製の粉砕媒体を用いたボールミルで粉砕した窒化珪素粉末中に混在する摩耗鉄粉を分離除去するために、請求項3に記載のピンの高速回転型分散装置(内面はすべてセラミックス製)を用いて、磁気分離の実験を行なったものである。その結果の一部を図12に示す。なお、ここでは磁気分離装置として、磁界の強さ500Oeのドラム型磁気分離装置を用いて分離を行った。
この図で、ピンの回転速度が0のデータはこの分散装置を使用しない、すなわち従来の場合である。図からわかるように、この分散装置の使用により、Fe含有率は大幅に低減することがわかる。また、ピンの回転速度には適切な範囲があることもわかる。
In this embodiment, in order to separate and remove the wear iron powder mixed in the silicon nitride powder pulverized by a ball mill using an iron pulverizing medium, the high-speed rotating dispersing device for pins according to claim 3 This is an experiment of magnetic separation using ceramics. A part of the result is shown in FIG. Here, separation was performed using a drum-type magnetic separation device having a magnetic field strength of 500 Oe as the magnetic separation device.
In this figure, the data where the rotational speed of the pin is 0 is the case where this dispersing device is not used, that is, the conventional case. As can be seen from the figure, the Fe content is significantly reduced by using this dispersing device. It can also be seen that there is an appropriate range for the rotational speed of the pin.

エジェクタの構造の概略図を例示する図である。It is a figure which illustrates the schematic of the structure of an ejector. エジェクタの構造の概略図を例示する図である。It is a figure which illustrates the schematic of the structure of an ejector. パイプの構造の概略図を例示する図である。It is a figure which illustrates the schematic of the structure of a pipe. ブレード式分散機の概略図を例示する図である。It is a figure which illustrates the schematic of a blade-type disperser. ピン式分散機の概略図を例示する図である。It is a figure which illustrates the schematic of a pin type | mold disperser. 2軸方式のピン式分散機の概略図を例示する図である。It is a figure which illustrates the schematic of a 2-axis type pin type disperser. ボール充填型分散機の概略図を例示する図である。It is a figure which illustrates the schematic of a ball filling type disperser. エジェクタにより分散した後静電分離装置によってフライアッシュを処理したときの未燃炭素含有率および濃縮フライアッシュ歩留まりを示す図である。It is a figure which shows the unburnt carbon content rate and concentrated fly ash yield when fly ash is processed by the electrostatic separator after being dispersed by the ejector. 分散パイプにより分散した後静電分離装置によってフライアッシュを処理したときの未燃炭素含有率および濃縮フライアッシュ歩留まりを示す図である。It is a figure which shows the unburned carbon content rate and concentrated fly ash yield when fly ash is processed by the electrostatic separator after being dispersed by the dispersion pipe. ピン式分散機により分散した後静電分離装置によってフライアッシュを処理したときの未燃炭素含有率および濃縮フライアッシュ歩留まりを示す図である。It is a figure which shows the unburned carbon content rate and concentrated fly ash yield when fly ash is processed by the electrostatic separator after being dispersed by the pin type disperser. ボール充填型分散機により分散した後静電分離装置によってフライアッシュを処理したときの未燃炭素含有率および濃縮フライアッシュ歩留まりを示す図である。It is a figure which shows the unburned carbon content rate and concentrated fly ash yield when disperse | distributing with a ball filling type disperser and processing fly ash with an electrostatic separator. ピン式分散機により分散した後磁気分離装置によって窒化珪素粉末を処理したときのFe含有率を示す図である。It is a figure which shows Fe content when a silicon nitride powder is processed with a magnetic separation apparatus after disperse | distributing with a pin type disperser.

符号の説明Explanation of symbols

1 圧力計
2 圧縮ガス
3 原料粉体
4 ガス
5 流量計
6 ブレード
7 回転板
8 突起状物
9 モータ
10 ピン
10a ピン
10b ピン
10c ピン
11a 回転軸
11b 回転軸
DESCRIPTION OF SYMBOLS 1 Pressure gauge 2 Compressed gas 3 Raw material powder 4 Gas 5 Flowmeter 6 Blade 7 Rotating plate 8 Projection 9 Motor 10 Pin 10a Pin 10b Pin 10c Pin 11a Rotating shaft 11b Rotating shaft

Claims (5)

特性の異なる粒子の混合粉体から特性の異なる粒子を分離する静電分離操作または磁気分離操作において、当該混合粉体に電荷または磁気を帯びさせて分離する前に、ガス供給圧力がゲージ圧で100kPa〜600kPaのエジェクタ中または当該エジェクタ後方の噴流中に当該混合粉体を供給することで当該混合粉体中の粒子凝集体を分散させることを特徴とする粒子の分離方法。   In an electrostatic separation operation or magnetic separation operation in which particles having different characteristics are separated from a mixed powder of particles having different characteristics, the gas supply pressure is reduced to a gauge pressure before the mixed powder is separated by being charged or magnetized. A method for separating particles, characterized in that particle aggregates in the mixed powder are dispersed by supplying the mixed powder into an ejector of 100 kPa to 600 kPa or a jet behind the ejector. 特性の異なる粒子の混合粉体から特性の異なる粒子を分離する静電分離操作または磁気分離操作において、当該混合粉体に電荷または磁気を帯びさせて分離する前に、レイノルズ数が12000以上のガス流れをもつパイプ中に当該混合粉体を供給することで当該混合粉体中の粒子凝集体を分散させることを特徴とする粒子の分離方法。   In an electrostatic separation operation or magnetic separation operation that separates particles with different characteristics from a mixed powder of particles having different characteristics, a gas having a Reynolds number of 12000 or more is separated before the mixed powder is charged or magnetized. A method for separating particles, comprising supplying the mixed powder into a pipe having a flow to disperse particle aggregates in the mixed powder. 特性の異なる粒子の混合粉体から特性の異なる粒子を分離する静電分離操作または磁気分離操作において、当該混合粉体に電荷または磁気を帯びさせて分離する前に、回転軸に取り付けられた突起状物の最外部が5m/s以上の周速度で回転する回転体を有する容器中に当該混合粉体を供給することで当該混合粉体中の粒子凝集体を分散させることを特徴とする粒子の分離方法。   In an electrostatic separation operation or magnetic separation operation for separating particles having different characteristics from a mixed powder of particles having different characteristics, a protrusion attached to the rotating shaft before the mixed powder is separated by being charged or magnetized. Particles characterized by dispersing particle aggregates in the mixed powder by supplying the mixed powder into a container having a rotating body whose outermost part rotates at a peripheral speed of 5 m / s or more Separation method. 特性の異なる粒子の混合粉体から特性の異なる粒子を分離する静電分離操作または磁気分離操作において、当該混合粉体に電荷または磁気を帯びさせて分離する前に、同じ線上にある2つまたは2つ以上の回転軸それぞれに取り付けられた突起状物が回転する回転体を有する容器中に当該混合粉体を供給することで当該混合粉体中の粒子凝集体を分散させる粒子の分離方法であって、2つの回転軸それぞれに取り付けられた突起状物同士が最も接近する部分における当該突起状物同士の回転による相対周速度が、その最大になる位置において5m/s以上であることを特徴とする粒子の分離方法。   In electrostatic separation operation or magnetic separation operation that separates particles with different characteristics from a mixed powder of particles with different characteristics, before the powder mixture is charged or magnetized and separated, A method for separating particles in which the mixed powder is supplied to a container having a rotating body that rotates a projection attached to each of two or more rotating shafts to disperse particle aggregates in the mixed powder. The relative peripheral speed by the rotation of the projections at the portion where the projections attached to the two rotating shafts are closest to each other is 5 m / s or more at the maximum position. A method for separating particles. 特性の異なる粒子の混合粉体から特性の異なる粒子を分離する静電分離操作または磁気分離操作において、当該混合粉体に電荷または磁気を帯びさせて分離する前に、分散媒体として球相当直径が1mm〜60mmのボールまたは形状を限定しない固体を充填した容器に当該混合粉体を供給し、当該容器を回転させるかもしくは当該容器内部に設置した回転軸とそれに接合された攪拌翼または攪拌棒を回転させて当該分散媒体を運動させることで、当該混合粉体中の粒子凝集体を分散させることを特徴とする粒子の分離方法。   In an electrostatic separation operation or a magnetic separation operation in which particles having different characteristics are separated from a mixed powder of particles having different characteristics, a sphere equivalent diameter is used as a dispersion medium before the mixed powder is separated by being charged or magnetized. The mixed powder is supplied to a container filled with 1 mm to 60 mm balls or solids not limited in shape, and the container is rotated or a rotating shaft installed inside the container and a stirring blade or a stirring rod joined thereto are provided. A method for separating particles, characterized by dispersing particle aggregates in the mixed powder by rotating and moving the dispersion medium.
JP2005073642A 2005-03-15 2005-03-15 Separation method for foreign matter particle Pending JP2006255530A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005073642A JP2006255530A (en) 2005-03-15 2005-03-15 Separation method for foreign matter particle
PCT/JP2006/304263 WO2006098177A1 (en) 2005-03-15 2006-03-06 Method for separating foreign particles
TW95108459A TWI353886B (en) 2005-03-15 2006-03-13 Method for separating foreign particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073642A JP2006255530A (en) 2005-03-15 2005-03-15 Separation method for foreign matter particle

Publications (1)

Publication Number Publication Date
JP2006255530A true JP2006255530A (en) 2006-09-28

Family

ID=36991525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073642A Pending JP2006255530A (en) 2005-03-15 2005-03-15 Separation method for foreign matter particle

Country Status (3)

Country Link
JP (1) JP2006255530A (en)
TW (1) TWI353886B (en)
WO (1) WO2006098177A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124343A (en) * 2016-01-12 2017-07-20 三菱マテリアル株式会社 Production method of fly ash
JP2017176897A (en) * 2016-03-28 2017-10-05 三菱マテリアル株式会社 Method for producing fly ash

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617533B (en) 2016-12-09 2018-03-11 財團法人工業技術研究院 Surface-treated ceramic powder and applications thereof
JP6850983B2 (en) * 2017-01-30 2021-03-31 三菱マテリアル株式会社 How to reduce the amount of unburned carbon in coal ash

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187859A (en) * 1975-01-30 1976-07-31 Toyo Ink Mfg Co RENZOKUKANSHIKI BUNSAN KONGOSOCHI
JP2747520B2 (en) * 1988-12-09 1998-05-06 日清製粉株式会社 Powder dispersing machine
JP3038034B2 (en) * 1991-03-29 2000-05-08 石川島播磨重工業株式会社 Method and apparatus for removing unburned carbon in coal ash
JPH0736888B2 (en) * 1991-07-19 1995-04-26 大平洋機工株式会社 Oscillating dispersion / crushing device
US5944875A (en) * 1996-10-22 1999-08-31 University Of Kentucky Research Foundation Triboelectric separator with mixing chamber and pre-separator
JP2000140700A (en) * 1998-11-12 2000-05-23 Konica Corp Powder separator and powder separation
JP4830196B2 (en) * 2000-12-12 2011-12-07 パナソニック株式会社 Electrostatic sorter for plastic crushed material
JP2004243154A (en) * 2003-02-10 2004-09-02 Taiheiyo Cement Corp Flying ash treatment method and flying ash
JP6906802B2 (en) * 2016-06-30 2021-07-21 株式会社プロスパークリエイティブ Color conversion system, color conversion device and color conversion method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124343A (en) * 2016-01-12 2017-07-20 三菱マテリアル株式会社 Production method of fly ash
JP2017176897A (en) * 2016-03-28 2017-10-05 三菱マテリアル株式会社 Method for producing fly ash

Also Published As

Publication number Publication date
WO2006098177A1 (en) 2006-09-21
TW200702066A (en) 2007-01-16
TWI353886B (en) 2011-12-11

Similar Documents

Publication Publication Date Title
JP4907887B2 (en) Method for separating foreign particles
JP5249750B2 (en) Method and apparatus for the production of dispersed mineral products
Bittner et al. Triboelectric belt separator for beneficiation of fine minerals
JP2010030885A (en) Method for reducing unburnt carbon content in coal ash
CN106269139B (en) A kind of method for improving airflow milling Particle Acceleration performance
JP2006255530A (en) Separation method for foreign matter particle
Daniel et al. Dry coal fly ash cleaning using rotary triboelectrostatic separator
JP2006143532A (en) Method of improving dispersibility of carbon nanotube
US4627579A (en) Particle charging and collecting system
CN105482501A (en) Wet airflow crushing dispersion method of nanometer calcium carbonate
JP2005279489A (en) Crushing and classifying method for unburnt carbon in fly ash and its crushing and classifying device
JP2004243154A (en) Flying ash treatment method and flying ash
JPH10216553A (en) Method and apparatus for grinding
CN103801439A (en) High-speed crushing machine, and machining device and preparation method of ultra-micro graphite powder
JP7295416B2 (en) Method for separating unburned carbon from fly ash
JPH1087356A (en) Coal ash globurizing method and coal ash globurizing device utilizing the method
CN1472261A (en) Surface modifying method for superfine paint powder
EP3687696B1 (en) Concentrating graphite particles by agglomeration with hydrophobic magnetic particles
KR100586184B1 (en) Electrostatic dispersion /classifying apparatus of nano powder production system
JPS6157688A (en) Production of coal-water slurry
Staroń et al. Analysis of the process of coal micronization conducted in order to obtain coal-water liquids
CN116333791A (en) Grinding aid and nano hydrocarbon fuel nano crushing pre-process
FURUYAMA et al. Reducing Copper in ASR by Dry Towermilling and Electrostatic Separation
Zuna Experiment for preparing coal-based low-ash activated carbon
JP2002079126A (en) Clayey, granular or grainy natural mineral product and method for processing product of primary processing (water washing, classification, and/or the like treatment) of the same mineral product, into high purity powdery particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061218

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105