JP6850305B2 - ガス消費部材に可燃性ガスを給送するため、およびこの可燃性ガスを液化するための設備 - Google Patents

ガス消費部材に可燃性ガスを給送するため、およびこの可燃性ガスを液化するための設備 Download PDF

Info

Publication number
JP6850305B2
JP6850305B2 JP2018557009A JP2018557009A JP6850305B2 JP 6850305 B2 JP6850305 B2 JP 6850305B2 JP 2018557009 A JP2018557009 A JP 2018557009A JP 2018557009 A JP2018557009 A JP 2018557009A JP 6850305 B2 JP6850305 B2 JP 6850305B2
Authority
JP
Japan
Prior art keywords
gas
channel
gas stream
flammable gas
flammable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018557009A
Other languages
English (en)
Other versions
JP2019522758A (ja
Inventor
ブルーノ デレトレ,
ブルーノ デレトレ,
ニコラ アカン,
ニコラ アカン,
Original Assignee
イノベイティブ クライオジェニック システムズ, インコーポレイテッド
イノベイティブ クライオジェニック システムズ, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イノベイティブ クライオジェニック システムズ, インコーポレイテッド, イノベイティブ クライオジェニック システムズ, インコーポレイテッド filed Critical イノベイティブ クライオジェニック システムズ, インコーポレイテッド
Publication of JP2019522758A publication Critical patent/JP2019522758A/ja
Application granted granted Critical
Publication of JP6850305B2 publication Critical patent/JP6850305B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

技術分野
本発明は、液化天然ガス(LNG)等の可燃性ガスを処理するための設備の分野に関する。
本発明は、より具体的には、一方では、ガス消費部材に可燃性ガスを給送し、他方では、該可燃性ガスを液化するための設備を対象とする。
技術的背景
液化天然ガスは、極低温温度において、液体/気体二相平衡状態において漏れ止めおよび断熱タンク内に貯蔵される。液化天然ガス貯蔵タンクの断熱障壁は、タンクの内容物を加熱する傾向にある熱流の部位であり、これは、液化天然ガスの蒸発によって反映される。自然蒸発に由来するガスは、概して、これを向上させるようにガス消費部材に動力供給するために使用される。したがって、例えば、メタンタンカでは、蒸発したガスは、船舶を推進させるためのパワートレインまたは船上機器の機能のために要求される電気を供給する発電機に動力供給するために使用される。しかしながら、そのような実践は、タンク内の自然蒸発に由来するガスを向上させることを可能にするが、これは、その量を低減させることを可能にしない。
したがって、従来技術、特に、第US 2015/0 316 208号は、1つまたはそれを上回るガス消費部材を介して自然蒸発に由来するガスの一部を向上させ、自然蒸発に由来するガスの別の部分を液化することの両方を可能にし得る設備を開示している。そのような設備は、タンクのガス状ヘッドスペース内の気相ガスを抜去し、次いで、その中で加熱されるようにこれを熱交換器に運搬する、収集回路を備える。交換器を離れると同時に、加熱されたガス流は、ガス消費部材の操作条件と適合する高圧に圧縮される。その後、圧縮されたガスの第1の部分は、その中で燃焼されるように1つまたはそれを上回る気相ガス消費部材に運搬される一方、圧縮されたガスの第2の部分は、タンクのガス状ヘッドスペース内に収集された気相ガス流に熱を伝達するために、交換器に戻される。そのように冷却され、部分的に液化されたガスの第2の部分は、次いで、膨張デバイス内で減圧され、ジュールトムソン効果を用いて、ガス流の温度は、これを少なくとも部分的に再液化するようにその膨張中にさらに減少する。膨張デバイスを離れると同時に、相分離器が、液相および気相が、液相をタンクの中に運搬し、気相を熱交換器の上流の気相ガス収集回路の中に戻すように送出する前に分離されることを可能にする。
そのような設備は、ガス流の圧縮が、ガス流の1つの部分をガス消費部材の作業条件と適合させることおよびガス流の他の部分の後続再液化を可能にすることの両方のために使用される点において、特に有利である。したがって、設備は、それによって、簡略化され、付加的再液化機能のコストは、限定される。
しかしながら、本タイプの設備は、完全に満足がいくわけではない。特に、ある臨界操作条件下、例えば、タンクが部分的にのみ充填されているとき、再液化収率は、低い。具体的には、タンクが部分的にのみ充填されているとき、タンクのガス状ヘッドスペース内に存在する蒸気の温度は、ガスの平衡温度を非常に大幅に上回って上昇する傾向にある。したがって、タンク内に収集されるガス流と液化されるべき圧縮されたガスの第2の部分との間の熱の交換は、圧縮されたガスの第2の部分の大きい割合を再液化するために不十分であるリスクがある。
さらに、自然蒸発に由来する気相天然ガスは、タンク内に貯蔵される液体状態における液化天然ガスよりも豊富な窒素等の揮発性成分の組成物を有する。したがって、0.5%のモル濃度の窒素を伴う液化天然ガス貨物に関して、自然蒸発に由来するガスは、約14%〜15%の窒素濃度を有する傾向にある。さらに、ジュールトムソン膨張を使用し、その出口において気相が気相ガス収集回路に戻される膨張デバイスの使用は、窒素が設備によって処理されるガス流中に濃縮されることにつながる。したがって、1つまたはそれを上回るガス消費部材に運搬される圧縮されたガスの一部は、20%よりもはるかに高い窒素濃度を有する傾向にある。ここでは、高濃度の窒素は、ガス消費部材内のガスの不完全燃焼およびガス消費部材の動作欠陥につながる。
米国特許出願公開第2015/0316208号明細書
要旨
本発明の基礎を形成するアイデアは、少なくともある臨界操作条件下で、増加された可燃性ガス液化収率を取得することを可能にする、ガス消費部材に可燃性ガスを給送し、該可燃性ガスを液化するための設備を提案することである。
一実施形態によると、本発明は、ガス消費部材に可燃性ガスを給送し、該可燃性ガスを液化するための設備を提供し、本設備は、
−液気二相平衡状態における可燃性ガスを用いて充填されるように意図される内側空間を備える、漏れ止めおよび断熱タンクと、
−タンクの内側空間内に出現し、タンクの内側空間から気相可燃性ガス流を抜去するように配列される吸入口を備える、気相ガス収集回路と、
−第1および第2のチャネルと、第2のチャネルから第1のチャネルに熱を伝達するための熱交換壁とを備え、第1のチャネルおよび第2のチャネルは、それぞれ、入口と、出口とを備える、熱交換器であって、第1のチャネルの入口は、熱交換器内の気相可燃性ガス流を加熱するように、気相ガス収集回路に接続される、熱交換器と、
−熱交換器内の加熱された可燃性ガスを圧縮するように、熱交換器の第1のチャネルの出口に上流で接続され、可燃性ガス流の第1の部分をガス消費部材に運搬し、可燃性ガスの第2の部分を冷却するために可燃性ガス流の第2の部分を熱交換器の第2のチャネルの入口に運搬することが可能な三方向コネクタに下流で接続される、コンプレッサと、
−中間回路を介して熱交換器の第2のチャネルの出口に上流で接続され、タンクにつながる戻り回路に下流で接続される、膨張デバイスであって、中間回路に由来する可燃性ガス流の第2の部分を減圧するように配列される、膨張デバイスとを備え、
本設備は、これがまた、抜去回路を備える冷却デバイスを備え、該抜去回路は、タンクの内側空間内に出現し、タンクの内側空間内の液相可燃性ガス流を抜去するように配列される吸入口を備え、該冷却デバイスは、タンクから抜去された液相可燃性ガス流を蒸発させ、タンクから抜去された液相可燃性ガス流の蒸発の潜熱を使用し、冷却されるべき可燃性ガス流を冷却するように、タンクから抜去された液相可燃性ガス流と、気相ガス収集回路内で循環する気相可燃性ガス流および中間回路内で循環する可燃性ガス流の第2の部分から選定される、冷却されるべき可燃性ガス流との間で熱を伝達するように配列される点において注目すべきである。
したがって、本発明は、タンク内に貯蔵される可燃性ガスの液相を使用し、膨張デバイスの入口における圧縮されたガスの温度をなおもさらに低減させることを提案し、本温度低減は、中間回路内で循環する圧縮されたガス流の第2の部分に対して直接作用するか、または交換器の第2のチャネルの出口における温度が結果として低減されるように熱交換器の第1のチャネルの入口におけるガスの温度を低減させるかのいずれかによって取得されることが可能である。したがって、膨張デバイスの入口におけるガス流の温度を低減させることによって、膨張デバイス内でのその減圧中のその液化度は、実質的に増加される。これは、ある臨界操作条件下で、特に、タンクのガス状ヘッドスペース内に存在する蒸気の温度が、ガスの平衡温度を非常に大幅に上回るとき、増加された再液化収率を取得することを可能にする。
加えて、可燃性ガスが、わずかな割合における窒素を含むLNGまたはLPGタイプのガス状混合物であり、冷却デバイスが、気相ガス収集回路内で蒸発したガス流を運搬するように配列されるとき、そのような設備は、再液化収率を実質的に劣化させることなく、これをガス消費部材の操作条件と適合させるように、ガス消費部材に通されるように意図されるガス流の窒素の希釈を実施することを可能にする。
実施形態によると、そのような設備は、以下の特性のうちの1つまたはそれを上回るものを備え得る。
一実施形態によると、可燃性ガスは、窒素を含むLNGまたはLPGタイプのガス状混合物である。
一実施形態によると、可燃性ガスは、窒素を含むガス状混合物であり、窒素は、ガス状混合物の最も揮発性の成分である。
一実施形態によると、冷却デバイスは、冷却デバイス内の蒸発したガス流を気相ガス収集回路に運搬し、気相ガス収集回路内で循環する可燃性ガス流の窒素含有量を低減させるように配列される。
したがって、可燃性ガスが窒素を含むガス状混合物から構成されるとき、冷却デバイス内の蒸発したガス流は、低減された濃度の窒素等の最も揮発性の化合物を有する、タンクから液相において抜去されたガス流に由来するため、これは、本設備内で処理される気相における窒素濃度を低減させることにつながる。これは、結果として、本設備によって処理されるガス中の窒素濃度を、ガス消費部材の正しい機能と適合する範囲内に保つことを可能にする。加えて、揮発性成分が豊富な組成物を有する本設備の入口における気相ガスが少ないほど、液化収率は、大きくなる。その結果、冷却デバイス内の蒸発したガス流を自然蒸発に由来するガス流と混合することによって、結果として生じる混合物の窒素濃度は、低減され、これは、膨張デバイス内での減圧中に液化度を増加させることを可能にする。
第1の実施形態によると、冷却デバイスは、第1および第2のチャネルと、付加的熱交換器の第1のチャネルから第2のチャネルに熱を伝達するための熱交換壁とを備える、付加的熱交換器を備え、第1のチャネルおよび第2のチャネルは、それぞれ、入口と、出口とを備え、第1のチャネルは、熱交換器および膨張デバイスを接続する中間回路に統合され、第2のチャネルの入口は、冷却デバイスの吸入口に接続され、第2のチャネルの出口は、気相ガス収集回路に接続される。
第1の実施形態変形によると、付加的熱交換器は、熱交換器の上方に重ねられ、付加的熱交換器の第2のチャネルの出口は、熱交換器の第1のチャネルの入口に接続され、したがって、液相ガス流が、重力によって、付加的熱交換器の第2のチャネルの出口から熱交換器の第1のチャネルの入口に流動することができる。
第2の実施形態変形によると、冷却デバイスは、気相ガス収集回路に統合される第1のチャネルと、抜去回路に接続される入口および気相ガス収集回路に接続される出口を備える第2のチャネルとを備える、第2の付加的熱交換器を備える。
第2の実施形態によると、冷却デバイスは、気相ガス収集回路の吸入口と熱交換器の第1のチャネルの入口との間で気相ガス収集回路に統合されるチャンバと、冷却デバイスの抜去回路に接続され、タンクの内側空間から抜去された気相ガス流を冷却し、気相ガス収集回路内で循環する可燃性ガス流の窒素含有量を低減させるように、液相可燃性ガスをチャンバの中に噴霧するように配列される、噴霧部材とを備える。
3つの上記に言及される実施形態のいずれかの変形によると、冷却デバイスは、冷却デバイスの吸入口を介して液相可燃性ガス流を吸引し、これを抜去回路の中に送達し得る、圧送デバイスを備える。
一実施形態によると、本設備は、可燃性ガス流の第1の部分における窒素濃度の代表的測定値を送達し得るガス分析器を備え、制御ユニットは、ガス消費部材の限界動作濃度を下回る、可燃性ガス流の第1の部分における窒素濃度を確実にするように、ガス消費部材に運搬される可燃性ガス流の第1の部分における窒素濃度の代表的測定値の関数として圧送デバイスに対する制御信号を生成するように配列される。
一実施形態によると、ガス分析器は、それからその窒素濃度を推論するように、ガスサンプルの組成を分析することが可能である。別の実施形態によると、ガス分析器は、ガスサンプルの高位発熱量を測定するための機械である。
一実施形態変形によると、制御ユニットは、可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、可燃性ガス流の第1の部分における窒素濃度の代表的測定値およびガス消費部材の限界動作濃度を下回る公称濃度の関数として圧送デバイスに対する制御信号を生成するように配列される。
別の実施形態変形によると、制御ユニットは、
−これが、可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、可燃性ガス流の第1の部分における窒素濃度の代表的測定値およびガス消費部材の限界動作濃度を下回る公称濃度の関数として圧送デバイスに対する制御信号を生成する、窒素濃度優先モードと、
−これが、温度T1を公称温度に抑えるように、膨張デバイスの入口における中間回路内で循環するガス流の第2の部分の温度測定値T1および公称温度の関数として圧送デバイスに対する制御信号を生成する、再液化優先モードとを有し、
制御ユニットは、可燃性ガス流の第1の部分における窒素濃度の代表的測定値の関数として、窒素濃度優先モードから再液化優先モードに切り替わるように配列される。
一実施形態によると、冷却デバイスは、膨張デバイスの入口における中間回路内で循環するガス流の第2の部分の温度T1を測定することが可能なセンサと、少なくとも1つの動作モードにおいて、温度T1を公称温度に抑えるように、温度T1の測定値および公称温度の関数として圧送デバイスに対する制御信号を生成するように配列される制御ユニットとを備える。
第1の変形によると、圧送デバイスは、ポンプを備え、制御ユニットは、制御信号の関数としてポンプを操縦するように配列される。言い換えると、圧送デバイスのポンプによって送達される液相ガス流速は、所望の流速を取得するように変動される。
第2の変形によると、圧送デバイスは、ポンプと、第1に、ポンプの下流の抜去回路に接続され、第2に、タンクの内側空間に戻る、戻りパイプラインと、それぞれ、戻りパイプラインコネクタの下流の抜去回路上および戻りパイプライン上に設置される、2つの弁とを備え、制御ユニットは、制御信号の関数として2つの弁のうちの一方および/または他方を操縦するように配列される。言い換えると、圧送デバイスのポンプは、一定の電力において動作し、2つの弁のうちの一方および他方は、蒸発されるために抜去回路内に運搬される液相ガス流の部分と、戻りパイプラインを介してタンクの中に戻る液相ガス流の部分との間の分配を修正するために作動される。
一実施形態によると、膨張デバイスは、ジュールトムソン弁としても公知の膨張弁である。
一実施形態によると、本設備は、膨張デバイスに上流で接続され、一方では、タンクにつながる戻り回路に、他方では、気相ガス収集回路に接続される戻りパイプに下流で接続される、相分離器を備え、相分離器は、可燃性ガス流の液相を戻り回路に運搬し、可燃性ガス流の気相を戻りパイプに運搬するように配列される。
有利な変形によると、コンプレッサは、多段階コンプレッサである。有利なこととして、コンプレッサは、複数の圧縮段階と、複数の中間熱交換器とを備え、中間熱交換器はそれぞれ、圧縮段階のうちの1つの出口に配置される。
一実施形態によると、本発明はまた、上記に言及される設備を用いて、ガス消費部材に可燃性ガスを給送し、該可燃性ガスを液化するためのプロセスを提供し、本プロセスは、
−気相ガス収集回路の吸入口から熱交換器の第1のチャネルの入口に気相可燃性ガス流を運搬するステップと、
−熱交換器の第2のチャネルから第1のチャネルに熱を伝達するステップと、
−熱交換器の第1のチャネルから退出する可燃性ガス流を圧縮するステップと、
−圧縮された可燃性ガス流の第1の部分をガス消費部材に運搬し、圧縮されたガス流の第2の部分を熱交換器の第2のチャネルの入口に運搬するステップと、
−可燃性ガス流の第2の部分を熱交換器の第2のチャネルから中間回路を介して膨張デバイスに運搬するステップと、
−中間回路に由来する可燃性ガス流の第2の部分を減圧するステップと、
−減圧された可燃性ガス流の第2の部分の少なくとも一部の液相部分をタンクに運搬するステップと、
−タンクの内側空間から液相可燃性ガス流を抜去するステップと、
−タンクから抜去された液相可燃性ガス流を蒸発させ、タンクから抜去された液相可燃性ガス流の蒸発の潜熱を使用し、冷却されるべきガス流を冷却するように、タンクから抜去された液相可燃性ガス流と、気相ガス収集回路内で循環する気相ガス流および中間回路内で循環するガス流の第2の部分から選定される、冷却されるべきガス流との間で熱を伝達するステップとを含む。
一実施形態によると、可燃性ガスは、窒素を含むガス状混合物であり、冷却デバイス内の蒸発したガス流は、気相ガス収集回路に運搬される。
一実施形態によると、可燃性ガス流の第1の部分における窒素濃度を表す変数が、測定され、冷却デバイスの抜去回路内で循環する液相可燃性ガス流の流速は、可燃性ガス流の第1の部分における窒素濃度を表す変数の関数として調節される。
実施形態変形によると、冷却デバイスの抜去回路内で循環する液相可燃性ガス流の流速は、可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、可燃性ガス流の第1の部分における窒素濃度を表す変数および公称濃度の関数として調節される。
一実施形態によると、少なくとも1つの動作モードでは、膨張デバイスの上流の中間回路内で循環するガス流の第2の部分の温度T1が、測定され、冷却デバイスの抜去回路内で循環する液相可燃性ガス流の流速は、温度T1を公称温度に抑えるように、温度T1の測定値および公称温度の関数として調節される。
有利な変形によると、可燃性ガスは、液化天然ガスであり、公称温度T1は、−145〜−160℃である。
一実施形態によると、本発明は、上記に言及される設備を備える船舶を提供する。
一実施形態によると、本発明はまた、可燃性ガスが、極低温移送パイプを通して、浮遊または陸上貯蔵設備から、もしくはそれに、船舶のタンクに、もしくはそれから通される、そのような船舶において装填または排出するためのプロセスを提供する。
一実施形態によると、本発明はまた、可燃性ガスを移送するためのシステムを提供し、本システムは、上記に言及される船舶と、船舶の船体内に設置されるタンクを浮遊または陸上貯蔵設備に接続するように配列される、極低温移送パイプと、極低温移送パイプを通して、浮遊または陸上貯蔵設備から、もしくはそれに、船舶のタンクに、もしくはそれから可燃性ガス流を駆動するためのポンプとを備える。
本明細書は、例えば、以下の項目も提供する。
(項目1)
ガス消費部材に可燃性ガスを給送し、前記可燃性ガスを液化するための設備であって、前記設備は、
−液気二相平衡状態における可燃性ガスを用いて充填されるように意図される内側空間を備える、漏れ止めおよび断熱タンクと、
−前記タンクの内側空間内に出現し、前記タンクの内側空間から気相可燃性ガス流を抜去するように配列される吸入口を備える、気相ガス収集回路と、
−第1および第2のチャネルと、前記第2のチャネルから前記第1のチャネルに熱を伝達するための熱交換壁とを備え、前記第1のチャネルおよび前記第2のチャネルは、それぞれ、入口と、出口とを備える、熱交換器であって、前記第1のチャネルの入口は、前記熱交換器内の気相可燃性ガス流を加熱するように、前記気相ガス収集回路に接続される、熱交換器と、
−前記熱交換器の第1のチャネルの出口において前記可燃性ガス流を圧縮するように、前記熱交換器の第1のチャネルの出口に上流で接続され、前記可燃性ガス流の第1の部分を前記ガス消費部材に運搬し、前記可燃性ガス流の第2の部分を冷却するために前記可燃性ガス流の第2の部分を前記熱交換器の第2のチャネルの入口に運搬することが可能な三方向コネクタに下流で接続される、コンプレッサと、
−中間回路を介して前記熱交換器の第2のチャネルの出口に上流で接続され、前記タンクにつながる戻り回路に下流で接続される、膨張デバイスであって、前記中間回路に由来する前記可燃性ガス流の第2の部分を減圧するように配列される、膨張デバイスと、
を備え、
これがまた、抜去回路を備える冷却デバイスを備え、前記抜去回路は、前記タンクの内側空間内に出現し、前記タンクの内側空間から液相可燃性ガス流を抜去するように配列される吸入口を備え、前記冷却デバイスは、前記タンクから抜去された液相可燃性ガス流を蒸発させ、前記タンクから抜去された液相可燃性ガス流の蒸発の潜熱を使用し、冷却されるべき可燃性ガス流を冷却するように、前記タンクから抜去された液相可燃性ガス流と、前記気相ガス収集回路内で循環する気相可燃性ガス流および前記中間回路内で循環する可燃性ガス流の第2の部分から選定される、冷却されるべき可燃性ガス流との間で熱を伝達するように配列される点において特徴付けられる、設備。
(項目2)
前記可燃性ガスは、窒素を含むガス状混合物であり、前記冷却デバイスは、前記冷却デバイス内の蒸発したガス流を前記気相ガス収集回路に運搬し、前記気相ガス収集回路内で循環する可燃性ガス流の窒素含有量を低減させるように配列される、項目1に記載の設備。
(項目3)
前記冷却デバイスは、第1および第2のチャネルと、付加的熱交換器の前記第1のチャネルから前記第2のチャネルに熱を伝達するための熱交換壁とを備える、付加的熱交換器を備え、前記第1のチャネルおよび前記第2のチャネルは、それぞれ、入口と、出口とを備え、前記第1のチャネルは、前記熱交換器および前記膨張デバイスを接続する前記中間回路に統合され、前記第2のチャネルの入口は、前記冷却デバイスの抜去回路に接続され、前記第2のチャネルの出口は、前記気相ガス収集回路に接続される、項目2に記載の設備。
(項目4)
前記付加的熱交換器は、前記熱交換器の上方に重ねられ、前記付加的熱交換器の第2のチャネルの出口は、前記熱交換器の第1のチャネルの入口に接続され、液相ガス流が、重力によって、前記付加的熱交換器の第2のチャネルの出口から前記熱交換器の第1のチャネルの入口に流動することができる、項目3に記載の設備。
(項目5)
前記冷却デバイスは、前記気相ガス収集回路に統合される第1のチャネルと、前記抜去回路に接続される入口および前記気相ガス収集回路に接続される出口を備える第2のチャネルとを備える、第2の付加的熱交換器を備える、項目3に記載の設備。
(項目6)
前記冷却デバイスは、前記気相ガス収集回路の吸入口と前記熱交換器の第1のチャネルの入口との間で前記気相ガス収集回路に統合されるチャンバと、前記冷却デバイスの抜去回路に接続され、前記タンクの内側空間から抜去された気相ガス流を冷却し、前記気相ガス収集回路内で循環する可燃性ガス流の窒素含有量を低減させるように、液相可燃性ガスを前記チャンバの中に噴霧するように配列される、噴霧部材とを備える、項目2に記載の設備。
(項目7)
前記冷却デバイスは、前記冷却デバイスの吸入口を介して前記液相可燃性ガス流を吸引し、これを前記抜去回路の中に送達し得る、圧送デバイスを備える、項目2−6のうちのいずれか1項に記載の設備。
(項目8)
前記可燃性ガス流の第1の部分における窒素濃度の代表的測定値を送達し得、制御ユニットは、前記ガス消費部材の限界動作濃度を下回る、前記可燃性ガス流の第1の部分における窒素濃度を確実にするように、前記ガス消費部材に運搬される前記可燃性ガス流の第1の部分における窒素濃度の代表的測定値の関数として前記圧送デバイスに対する制御信号を生成するように配列される、ガス分析器を備える、項目7に記載の設備。
(項目9)
前記制御ユニットは、前記可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、前記可燃性ガス流の第1の部分における窒素濃度の代表的測定値および前記ガス消費部材の限界動作濃度を下回る前記公称濃度の関数として前記圧送デバイスに対する制御信号を生成するように配列される、項目8に記載の設備。
(項目10)
前記制御ユニットは、
−これが、前記可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、前記可燃性ガス流の第1の部分における窒素濃度の代表的測定値および前記ガス消費部材の限界動作濃度を下回る前記公称濃度の関数として前記圧送デバイスに対する制御信号を生成する、窒素濃度優先モードと、
−これが、温度T1を公称温度に抑えるように、前記膨張デバイスの入口における前記中間回路内で循環する前記ガス流の第2の部分の温度測定値T1および前記公称温度の関数として前記圧送デバイスに対する制御信号を生成する、再液化優先モードと、
を有し、
前記制御ユニットは、前記可燃性ガス流の第1の部分における窒素濃度の代表的測定値の関数として、前記窒素濃度優先モードから前記再液化優先モードに切り替わるように配列される、項目8に記載の設備。
(項目11)
前記膨張デバイスは、膨張弁である、項目1−6のうちのいずれか1項に記載の設備。
(項目12)
前記膨張デバイスに上流で接続され、一方では、前記タンクにつながる戻り回路に、他方では、前記気相ガス収集回路に接続される戻りパイプに下流で接続される、相分離器を備え、前記相分離器は、前記可燃性ガス流の液相を前記戻り回路に運搬し、前記可燃性ガス流の気相を前記戻りパイプに運搬するように配列される、項目1−6のうちのいずれか1項に記載の設備。
(項目13)
項目1に記載の設備を用いて、ガス消費部材に可燃性ガスを給送し、前記可燃性ガスを液化するためのプロセスであって、
−前記気相ガス収集回路の吸入口から前記熱交換器の第1のチャネルの入口に気相可燃性ガス流を運搬するステップと、
−前記熱交換器の第2のチャネルから第1のチャネルに熱を伝達するステップと、
−前記熱交換器の第1のチャネル(9)から退出する前記可燃性ガス流を圧縮するステップと、
−前記圧縮された可燃性ガス流の第1の部分を前記ガス消費部材に運搬し、前記圧縮されたガス流の第2の部分を前記熱交換器の第2のチャネルの入口に運搬するステップと、
−前記可燃性ガス流の第2の部分を前記熱交換器の第2のチャネルから前記中間回路を介して前記膨張デバイスに運搬するステップと、
−前記中間回路に由来する前記可燃性ガス流の第2の部分を減圧するステップと、
−前記減圧された可燃性ガス流の第2の部分の少なくとも一部の液相部分を前記タンクに運搬するステップと、
−前記タンクの内側空間から液相可燃性ガス流を抜去するステップと、
−前記タンクから抜去された液相可燃性ガス流を蒸発させ、前記タンクから抜去された液相可燃性ガス流の蒸発の潜熱を使用し、冷却されるべきガス流を冷却するように、前記タンクから抜去された液相可燃性ガス流と、前記気相ガス収集回路内で循環する気相ガス流および前記中間回路内で循環するガス流の第2の部分から選定される、冷却されるべきガス流との間で熱を伝達するステップと、
を含む、プロセス。
(項目14)
前記可燃性ガスは、窒素を含むガス状混合物であり、前記冷却デバイス内の蒸発したガス流は、前記気相ガス収集回路に運搬される、項目13に記載のプロセス。
(項目15)
前記可燃性ガス流の第1の部分における窒素濃度を表す変数が、測定され、前記冷却デバイスの抜去回路内で循環する前記液相可燃性ガス流の流速は、前記可燃性ガス流の第1の部分における窒素濃度を表す変数の関数として調節される、項目14に記載のプロセス。
(項目16)
前記冷却デバイスの抜去回路内で循環する前記液相可燃性ガス流の流速は、前記可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、前記可燃性ガス流の第1の部分における窒素濃度を表す変数および前記公称濃度の関数として調節される、項目15に記載のプロセス。
(項目17)
項目1に記載の設備を備える、船舶。
(項目18)
可燃性ガスが、極低温移送パイプを通して、浮遊または陸上貯蔵設備から、もしくはそれに、前記船舶のタンクに、もしくはそれから通される、項目17に記載の船舶において装填または排出するためのプロセス。
(項目19)
可燃性ガスを移送するためのシステムであって、項目17に記載の船舶と、前記船舶の船体内に設置されるタンクを浮遊または陸上貯蔵設備に接続するように配列される、極低温移送パイプと、前記断熱パイプラインを通して、前記浮遊または陸上貯蔵設備から、もしくはそれに、前記船舶のタンクに、もしくはそれから可燃性ガス流を駆動するためのポンプとを備える、システム。
添付される図面を参照して、限定ではなく、単に、例証のために与えられる本発明のいくつかの特定の実施形態の以下の説明から、本発明が、より深く理解され、さらなる目標、詳細、特性、およびそれらの利点が、より明確になる。
図1は、第1の実施形態による、ガス消費部材に可燃性ガスを給送し、該可燃性ガスを液化するための設備の概略図示である。
図2は、第2の実施形態による、設備の概略図示である。
図3は、第3の実施形態による、設備の概略図示である。
図4は、一実施形態変形による、図2の2つの熱交換器の配列を詳細な様式で図示する。
図5は、可燃性ガス流の流量の70%が、その中で再液化されるために熱交換器に戻されるときの液体状態における天然ガス中の窒素濃度の関数として、図2の装置の異なる天然ガス流の窒素濃度を図示するグラフである。
図6は、可燃性ガス流の流量の70%が、その中で再液化されるために熱交換器に戻されるときの図5のものと類似するグラフである。
図7は、図1の設備および図2のものに関する、熱交換器の第2のチャネルの入口に戻る可燃性ガス流の第2の部分の流速の関数として、再液化されたガスの流速とタンクから抜去された液相ガスの流速との間の差異を表すグラフである。
図8は、従来技術による設備および図1または2による設備に関する、熱交換器に戻る可燃性ガス流の第2の部分の流速の関数として、ガス消費部材に運搬されるガス流の第1の部分の窒素濃度を表すグラフである。
図9は、従来技術による設備および図2による設備に関する、熱交換器に戻る可燃性ガス流の第2の部分の流速の関数として、再液化されたガスの流速とタンクから抜去された液相ガスの流速との間の差異を表すグラフである。
図10は、船舶および可燃性ガスを装填/抜取するための移送システムの概略表現である。
実施形態の詳細な説明
説明および請求項では、用語「可燃性ガス」は、一般的性質を有し、単一の純物質から構成されるガスまたは複数の成分から構成されるガス状混合物を優先することなく指す。
図1では、一方では、1つまたはそれを上回るガス消費部材に可燃性ガスを給送し、他方では、可燃性ガスを液化するための設備1が、図示される。そのような設備1は、陸上に、または浮遊構造上に設置され得る。浮遊構造の場合では、設備1は、液化もしくは再ガス化バージのために、またはメタンタンカ等の液化天然ガス貨物船のために意図され得るか、もしくはより一般的に、ガス消費部材を具備する任意の船舶のために意図され得る。
設備1は、3つの異なるタイプの可燃性ガス消費部材、すなわち、バーナ2と、発電機3と、船舶を推進させるための機関4とを備える。
バーナ2は、電力生産設備に統合され得るか、またはガス燃焼ユニット(GCU)に統合され得る。電力生産設備は、特に、蒸気生産ボイラを備え得る。蒸気は、エネルギーを生産するための蒸気タービンに動力供給するか、および/または船舶の暖房網に動力供給するように意図され得る。バーナ2は、その窒素濃度が高い、例えば、標準ガス燃焼ユニットに関して30%〜35%を上回るが、燃料を供給することによってこれを明確に上回り得る、可燃性ガスを用いて機能することが可能である。
発電機3は、例えば、DFDE(二元燃料ディーゼル電気)技術の、例えば、ディーゼル/天然ガス混合動力供給熱機関を備える。そのような熱機関は、ディーゼルおよび天然ガスの混合物を燃焼するか、またはこれらの2つの燃料のうちの一方もしくは他方を使用することができる。そのような熱機関に動力供給する天然ガスは、約数バール〜数十バール、例えば、約6〜8バール絶対値の圧力を有していなければならない。加えて、そのような熱機関の準拠した機能を可能にするために、天然ガスは、約15%〜20%の限界動作濃度を下回る窒素濃度を有していなければならない。
船舶を推進させるための機関4は、例えば、企業MANによって開発された「ME−GI」技術の二元燃料2ストローク低速機関である。そのような機関4は、可燃物としての天然ガスと、これを点火するために天然ガスの噴射前に噴射される、少量のパイロット燃料とを使用する。そのような機関4に動力供給するために、天然ガスは、最初に、150〜400バール絶対値、より具体的には、250〜300バール絶対値の高圧において圧縮されなければならない。加えて、そのような機関は、天然ガスの品質に極端に感受性があり、準拠した機能を可能にするために、天然ガスは、約15%〜20%の閾値を超えない窒素濃度を有していなければならない。
設備1は、1つまたはそれを上回る漏れ止めおよび断熱タンク5a、5b、5c、5dを備える。一実施形態によると、各タンク5a、5b、5c、5dは、膜タンクである。実施例として、そのような膜タンクは、特許出願第WO 140/57221号、第FR 2 691 520号、および第FR 2 877 638号に説明されている。そのような膜タンクは、大気圧に実質的に等しいか、またはそれよりもわずかに高い圧力において可燃性ガスを貯蔵するように意図される。他の代替実施形態によると、各タンク5a、5b、5c、5dはまた、自立タンクであり得、特に、平行六面体、角柱、球形、円筒形、または多重ローブ形状を有し得る。あるタイプのタンク5a、5b、5c、5dは、大気圧よりも実質的に高い圧力におけるガス貯蔵を可能にする。
各タンク5a、5b、5c、5dは、可燃性ガスを用いて充填されるように意図される内側空間を備える。可燃性ガスは、特に、液化天然ガス(LNG)、すなわち、主としてメタンを含むか、また、わずかな割合におけるエタン、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタン、および窒素等の1つまたはそれを上回る他の炭化水素を含む、ガス状混合物であり得る。可燃性ガスはまた、エタンまたは液化石油ガス(LPG)、すなわち、本質的にプロパンおよびブタンならびにわずかな割合における窒素を含む、石油精製に由来する炭化水素の混合物であり得る。
可燃性ガスは、液気二相平衡状態において、各タンク5a、5b、5c、5dの内側空間内に貯蔵される。ガスは、したがって、タンク5a、5b、5c、5dの上側部分に気相において存在し、タンク5a、5b、5c、5dの下側部分に液相において存在する。その液気二相平衡状態に対応する液化天然ガスの平衡温度は、これが大気圧において貯蔵されるとき、約−162℃である。
設備1は、タンク5a、5b、5c、5dのそれぞれのガス状ヘッドスペース内、すなわち、タンクの最大充填高さを上回って出現する吸入口7a、7b、7c、7dを備える気相ガス収集回路6を備える。これらの吸入口7a、7b、7c、7dはそれぞれ、弁24を介して気相ガス収集回路6に接続される。
気相ガス収集回路6は、熱交換器8につながる。熱交換器8は、それぞれ、入口9a、10aおよび出口9b、10bを有する第1および第2のチャネル9、10と、第2のチャネル10から第1のチャネル9に熱を伝達するための熱交換壁とを備える。熱交換を最適化するように、熱交換器8は、向流交換器である。第1のチャネル9上の入口9aは、タンク5a、5b、5c、5d内に収集される自然蒸発に由来するガス流を加熱するように、気相ガス収集回路6に接続される。第1のチャネル9の出口9bは、ガス流を、ガス消費部材の動作と適合する圧力まで圧縮するためのコンプレッサ11に接続される。
示される実施形態では、コンプレッサ11は、多段階コンプレッサである。言い換えると、コンプレッサ11は、複数の圧縮段階11a、11b、11c、11d、11eと、圧縮段階11a、11b、11c、11d、11eのそれぞれの出口において配置される中間熱交換器33a、33b、33c、33dとを備える。中間熱交換器33a、33b、33c、33dは、2つの圧縮段階11a、11b、11c、11d、11e間の圧縮されたガスを冷却することを対象とする。実施例として、熱交換器33a、33b、33c、33dは、特に、海水との交換を提供し、したがって、圧縮されたガス流を海水のものに実質的に等しい温度に至らせることを可能にし得る。
コンプレッサ27は、給送されるように意図される可燃性ガス消費部材の関数として、特に、可燃性ガスがそれに分配されなければならないその最大給送速度および圧力レベルの関数として定寸される。したがって、ガス消費部材のうちの1つが、先に説明されるようなME−GIタイプの機関4であるとき、コンプレッサ11は、コンプレッサ11を離れるガス流が、典型的には、250〜300バール絶対値の圧力を有するように定寸される。
コンプレッサ11の下流に、設備1は、ガス流の第1の部分を船舶を推進させるための機関4に運搬し、ガス流の第2の部分を熱交換器8の第2のチャネル10の入口10aに運搬するための三方向コネクタ12を備える。本三方向コネクタ12は、制御ユニット34によって操縦される。制御ユニット34は、したがって、それぞれ、機関4の可燃性ガス需要および/または再液化されるべきガスの量の関数として、機関4に、および熱交換器8の第2のチャネル10の入口10aに循環するガスの割合を変動することが可能である。
さらに、可燃性ガス消費部材が、示される実施形態のように異なる給送圧力を有する場合では、設備1は、2つの圧縮段階11b、11c間に配置され、したがって、コンプレッサ11の出口の前に、ガス流の一部をガス消費部材に、本場合では、バーナ2および発電機3に迂回させることを可能にする、中間三方向コネクタ13を備える。そのような配列は、いったんこれが十分な数の圧縮段階11a、11bを通過し、該消費部材に対応する給送圧力に到達すると、可燃性ガスを可燃性ガス消費部材に迂回させることを可能にする。
ガス流の第2の部分は、気相ガス収集回路6に由来する気相ガスへのその熱の伝達中、熱交換器8の第2のチャネル10内で冷却される。
熱交換器8の第2のチャネル10の出口10bは、相分離器25に膨張デバイス14を介して接続され、それを通して、可燃性ガス流は、タンク5a、5b、5c、5d内で優勢な圧力に実質的に等しい圧力、例えば、大気圧に近接する圧力まで減圧される。その結果、ガス流は、膨張を受け、これは、ジュールトムソン効果を介して、少なくとも部分的に、その温度の減少およびその液化をもたらす。膨張デバイス14は、例えば、膨張弁である。
時としてミスト分離器と称される、相分離器25は、液相が気相から分離されることを可能にする。下流では、相分離器25は、一方では、タンク5a、5b、5c、5dにつながる戻り回路31に接続され、他方では、気相ガス抜去回路6に接続される戻りパイプ32に接続される。相分離器25は、したがって、可燃性ガスの液相をタンク5a、5b、5c、5dに運搬する一方、気相は、熱交換器8の第1のチャネル9の入口9aに戻される。
設備1はまた、気相ガス収集回路6内で循環する気相ガス流を冷却するための冷却デバイス16を備える。これを行うために、冷却デバイス16は、気相ガス収集回路6に統合され、その内側でタンクのうちの1つ5cから抜去された液相可燃性ガス流が噴霧される、チャンバ20を備える。したがって、噴霧された可燃性ガス流は、蒸発し、タンクのガス状ヘッドスペース内に収集された気相ガス流から熱を取り込む。加えて、液相可燃性ガスの一部の噴霧および蒸発は、少なくとも部分的に、ガス消費部材2、3、4に通されるように意図されるガス流中の最も揮発性の成分、特に、窒素の濃度を低減させることを可能にする。
冷却デバイス16は、抜去回路35を備える。抜去回路35は、その充填レベルにかかわらず、タンク内に貯蔵される可燃性ガスの液相を抜去するように、タンクの基部に近接するタンクの底部部分において、タンク5a、5b、5c、5dのうちの1つの内側空間内に出現する吸入口27を有する。冷却デバイス16はまた、冷却デバイス16の吸入口27を介して液相可燃性ガスを吸引し、これを抜去回路35内で、チャンバ20内に格納される1つまたはそれを上回る噴霧部材21に循環させることが可能な圧送デバイスを備える。
示される実施形態では、圧送デバイスは、
−液相可燃性ガス流を吸引し、これを送達するためのポンプ26と、
−一方では、ポンプ26の下流の抜去回路35に接続され、他方では、タンク5cの内側空間内に出現する、戻りパイプライン37と、
−それぞれ、戻りパイプライン37上および該抜去回路35への戻りパイプライン37の接続の下流の抜去回路35上に設置される、2つの弁38、39とを備える。
冷却デバイス16はまた、圧送デバイスを制御するための制御ユニット36を備える。制御ユニット36は、温度センサ29およびガス分析器40に接続される。センサ29は、中間回路15内に配置され、したがって、膨張デバイス24の入口において、中間回路15内で循環する、圧縮されたガス流の第2の部分の温度測定値T1を送達することが可能である。ガス分析器40は、ガス消費部材2、3、4に通されるように意図されるガス流中の窒素濃度を表す測定値を送達することが可能である。
一実施形態によると、ガス分析器40は、ガス流のサンプルの組成を分析することが可能であり、したがって、ガス消費部材に通されるように意図されるガス流の窒素濃度を判定することが可能である。本場合では、図1に示されるように、ガス分析器40は、好ましくは、熱交換器8の第2のチャネル9の出口9bとコンプレッサ11との間のガスのサンプルを抜去するように配列される。したがって、分析されるガスサンプルは、第1に、予熱され、第2に、大気圧または事実上の大気圧にあり、これは、分析操作を促進する。しかしながら、ガス分析器40は、異なって位置し得る。
別の実施形態によると、ガス分析器40は、可燃性ガスの高位発熱量を測定するための機械である。高位発熱量は、窒素濃度に特徴的であり、発熱量は、ガス流の窒素濃度の代表的測定値である。そのような場合では、ガス分析器40は、有利なこととして、ガス消費部材2、3、4のうちの1つまたはそれを上回るものに統合され得る。
制御ユニット34は、圧送デバイスを制御し、ガス消費部材2、3、4に関する限界動作濃度、すなわち、それを上回るとガス消費部材2、3、4の正しい機能がもはや確実にされない限界窒素濃度を下回る、ガス消費部材2、3、4に通されるように意図されるガス流中の窒素濃度を確実にするように配列される。
第1の予測的アプローチによると、ポンプ26によって送達される液相可燃性ガス流の量は、デジタルモデリングツールを用いて判定される。本デジタルモデリングツールは、一方では、ガス消費部材2、3、4に関する限界動作濃度を下回る、ガス消費部材2、3、4に通されるように意図されるガス流中の窒素濃度を確実にすることを可能にし、他方では、ジュールトムソン減圧中の再液化の程度を最適化することを可能にする、ポンプ26によって送達される公称液相可燃性ガス流の流速を判定することを可能にする。
モデリングツールは、特に、以下の流入パラメータ、すなわち、
−タンク内に貯蔵される可燃性ガスの液相中および/または気相中ならびに/もしくはガス消費部材2、3、4に通されるように意図されるガス流中の個別の窒素濃度、
−気相ガス収集回路6内で循環する気相ガス流の流速、および、
ガス消費部材2、3、4に運搬される圧縮された可燃性ガス流の第1の部分と交換器8に戻される圧縮された可燃性ガス流の第2の部分との間の比率の関数として、抜去された公称液相可燃性ガス流の流速を判定する。
ガス消費部材2、3、4に通されるように意図されるガス流中の窒素濃度が、臨界閾値を下回る限り、制御ユニット36は、再液化優先モードにおいて動作し、抜去された液相可燃性ガス流の流速は、中間回路15内で循環するガス流の第2の部分の温度T1が、公称温度に抑えられるように判定される。したがって、本再液化優先モードでは、可燃性ガス流の流速は、再液化の程度を最適化するように判定される。可燃性ガスが、大気圧において貯蔵される液化天然ガスであるとき、中間回路15内で循環するガス流の第2の部分に関する公称温度は、典型的には、−145℃〜−162℃、例えば、約−160℃である。
対照的に、ガス消費部材2、3、4に通されるように意図されるガス流中の窒素濃度が、臨界閾値を上回るか、またはそれに等しいとき、制御ユニット36は、窒素濃度優先モードにおいて動作し、抜去された液相可燃性ガス流の流速は、ガス消費部材に給送されるように意図されるガス流中の窒素濃度の代表的測定値が、標的濃度に抑えられるように判定される。標的窒素濃度は、それを上回るとガス消費部材2、3、4の正しい機能がもはや確実にされない、動力供給されるべきガス消費部材の限界濃度をわずかに、例えば、約2%〜3%下回って選定される。
第2のアプローチによると、ポンプ26によって送達される液相可燃性ガス流の流速は、例えば、気相ガス収集回路6内で循環するガス流中の窒素濃度の代表的測定値が標的濃度に抑えられるように、PIまたはPIDタイプの調整によって調整される。気相ガス収集回路内で循環するガス流中の標的窒素濃度は、供給されるべきガス消費部材2、3、4の限界濃度の関数として判定される。
一実施形態によると、第1および第2の上記に言及されるアプローチを組み合わせることが、可能である。
さらに、ガス消費部材2、3、4の消費の増加は、熱交換器8の第1のチャネル9の入口9aにおけるガス流中の窒素濃度の一時的増加をもたらす傾向にある。具体的には、交換器8に戻る流れの第2の部分のものと比較したガス消費部材2、3、4に運搬される可燃性ガス流の第1の部分の流速の増加中、過渡現象が、観察され、これは、交換器8の第1のチャネル9の入口9aにおいて、タンクのガス状ヘッドスペースに由来するガス流のために、中間回路32内で循環するガス流を助長し、これは、交換器8の第1のチャネル9の入口9aにおけるガス流の窒素濃度の一過性増加につながる。したがって、一実施形態によると、本現象を補償するために、制御ユニット33は、ガス消費部材2、3、4に運搬されるガス流の第1の部分の流速のドリフトが正であるとき、公称流速を増加させるための補正係数を有する。
第1の実施形態によると、ポンプ26は、一定の流速を与える一定の電力において動作し、制御ユニット36は、制御ユニット33によって判定された公称流速の関数として2つの弁38、39のうちの一方および/または他方を制御するための信号を生成する。したがって、ポンプ26の送達速度は、一定であり、2つの弁38、39のうちの一方および/または他方は、液相可燃性ガス流の噴霧部材21に運搬される部分とタンク5cに戻る部分との間の分配を変動するように調節される。
第2の実施形態によると、弁38は、閉鎖される一方、弁39は、開放され、制御ユニット36は、その送達速度を変動するようにポンプ26を制御するための信号を生成する。
示されない実施形態変形によると、設備1は、チャンバ20の出口において付加的相分離器を備える。そのような相分離器は、第1に、チャンバ20内の蒸発されていない液相をタンク5a、5b、5c、5dにつながる戻り回路31に指向させ、第2に、気相を熱交換器8の第1のチャネル9の入口9aに指向させるように意図される。
図2と関連して、第2の好ましい実施形態による設備1が、示される。これは、冷却デバイス16の特性においてのみ、説明される先述の設備と異なる。
図2では、冷却デバイス16は、中間回路15内で循環する圧縮されたガス流とタンク内に収集される液相ガス流との間の物質の交換を伴わずに熱の伝達を確実にする、付加的熱交換器17を備える。
これを行うために、付加的熱交換器17は、それぞれ、入口18a、19aおよび出口18b、19bを備える、第1および第2のチャネル18、19を備える。熱交換を最適化するために、付加的熱交換器17は、有利なこととして、向流交換器である。第1のチャネル18は、熱交換器8および膨張デバイス14を接続する中間回路15に統合される。言い換えると、第1のチャネル18の入口18aは、熱交換器8の第2のチャネル10の出口10bに接続される一方、第1のチャネル18の出口18bは、膨張デバイス14に接続される。第2のチャネル19の入口19aは、抜去回路35に接続される一方、その出口19bは、気相ガス抜去回路6に接続される。
言い換えると、図2の実施形態は、以下の点において特に有利であり、
−第1に、熱が、中間回路15内で循環する圧縮されたガス流の第2の部分から抜去され、これは、再液化性能に関して特に有利であり、
−第2に、蒸発したガス流が、気相ガス収集回路6内で循環するガス流の中に噴射され、これは、ガス消費部材2、3、4に通されるように意図されるガス流中の窒素濃度を減少させることに関して特に有利である。
図2に表される圧送デバイスは、これが1つのみのポンプ26を備えるため、図1と関連して説明されるものと比較して簡略化される。さらに、設備1は、ガス消費部材2、3、4に通されるように意図されるガス流中の窒素濃度の代表的測定値を送達するためのガス分析器40と、付加的熱交換器17の第1のチャネル18の出口18bにおける、すなわち、膨張デバイス14の入口におけるガス流の第2の部分の温度T1を測定するためのセンサ28とを備える。図1の実施形態のように、制御ユニット36は、ガス消費部材2、3、4の限界動作濃度を下回る、ガス消費部材2、3、4に通されるように意図されるガス流中の窒素濃度を確実にするようにポンプ26を制御するための信号を生成する。
ある操作条件下で、特に、ガス消費部材2、3、4に通されるように意図されるガス流の窒素濃度が高いとき、タンク5a、5b、5c、5dから抜去され、気相ガス収集回路6の中に気相として噴射されるように意図される液相ガス流は、高すぎ、付加的熱交換器17内で完全に蒸発されることができないことが分かり得る。言い換えると、付加的熱交換器17の第2のチャネル19の出口19bにおけるガス流は、液気二相状態にある傾向にある。
したがって、図4に図示される実施形態変形では、付加的交換器17の出口における液気二相状態におけるガス流の可能性として考えられる存在と関連付けられる困難に対処するために、付加的交換器17は、熱交換器8の上方に配置され、したがって、付加的熱交換器17の第2のチャネル19の出口19bにおけるガス流は、重力によって、熱交換器8の第1のチャネル9の入口9aに流動することが可能である。
図5に図示される別の実施形態では、付加的交換器17の出口における液気二相状態におけるガス流の存在を回避するために、冷却デバイス16は、図2と関連して説明される付加的交換器17に加えて、気相ガス収集回路6内で循環するガス流とタンク5a、5b、5c、5dから抜去された液相ガス流との間で熱を伝達する、第2の付加的熱交換器41を備える。
これを行うために、第2の付加的熱交換器41は、気相ガス収集回路6に統合される第1のチャネル42と、抜去回路35に接続される入口43aおよび気相ガス収集回路6に接続される出口43bを備える第2のチャネル43とを備える。
2つの付加的交換器17、41はそれぞれ、個別の弁44、45を介して抜去回路35に接続される。したがって、2つの付加的交換器17、41間のタンク5a、5b、5c、5dから液相として抜去されたガス流の分配が、調節されることが可能である。特に、弁44、45は、過剰な量のガス、すなわち、タンク5a、5b、5c、5dから抜去された液相ガス流の全てがそれに指向された場合に付加的熱交換器17内で蒸発されることが可能ではない量のガスのみが、第2の付加的熱交換器41に指向されるように操縦され得る。
図5は、以下の天然ガス流、すなわち、
−タンクから抜去された気相ガス流(曲線a)、
−先行技術による設備におけるガス消費部材2、3、4に運搬されるように意図される圧縮された可燃性ガス流の第1の部分(曲線b)、および、
−タンク5a、5b、5c、5dから液相として抜去され、付加的熱交換器17内で蒸発されたガスの流速が、再液化収率を最適化するように調節される、図2による設備におけるガス消費部材2、3、4に運搬されるように意図される圧縮された可燃性ガス流の第1の部分(曲線c)、に関する液体状態における天然ガス中の窒素濃度の関数としての窒素濃度を表す。
図5は、タンクから抜去された気相ガス流が−120℃の温度を有し、可燃性ガス流の流量の70%がその中で再液化されるために熱交換器8に戻される操作条件を表す。図5と関連して、熱交換器8の第1のチャネル9の入口9aにおける液体の噴霧は、これをガス消費部材2、3、4の動作モードと適合させるように、ガス消費部材2、3、4に運搬されるように意図されるガス流の窒素濃度を実質的に低減させることを可能にすることが観察される。これはまた、再液化収率を劣化させることなく達成される。
図6は、可燃性ガス流の流量の50%のみが、その中で再液化されるために熱交換器8に戻されるときの類似するグラフを表す。
図7は、その中で再液化されるために熱交換器8に戻る可燃性ガス流の第2の部分の流速の関数として、再液化されたガスの流速とタンクから抜去された液相ガスの流速との間の差異を表すグラフである。図1に図示されるような設備を用いた再液化性能品質は、曲線a上に表され、図2に図示されるような設備を用いたものは、曲線b上に表される。本設備の操作条件は、以下の通りであり、タンク5a、5b、5c、5dから収集された気相天然ガスの窒素濃度は、20%であり、その温度は、−140℃であり、熱交換器8の第1のチャネル9の入口9aにおける天然ガス流の合計流速は、4,700kg/時であり、タンクから抜去された液相天然ガス流の流速は、中間回路22内で循環するガス流の第2の部分の温度T1が−160℃の公称温度に抑えられるように調整される。図7は、したがって、図2の設備の増加された有効性を実証する。
図8は、その中で再液化されるために熱交換器8に戻る可燃性ガス流の第2の部分の流速の関数として、ガス消費部材2、3、4に運搬されるように意図されるガス流の第1の部分の窒素濃度を表す。曲線aは、先行技術の設備を用いた窒素含有量、すなわち、タンクから液相において抜去され、次いで、蒸発されたガスのいかなる流量も、気相ガス収集回路6に追加されないときに対応する一方、曲線bは、ガスが、図1および2に説明されるような設備を用いて、タンク5a、5b、5c、5dから液相において抜去され、蒸発され、気相ガス収集回路6の中に噴射されるときの窒素含有量に対応する。本設備の操作条件は、図7と関連して説明されるものと同じである。したがって、図1および2に図示されるような設備は、これを該ガス消費部材2、3、4の操作条件と適合させるように、ガス消費部材2、3、4に運搬されるガス流の第1の部分の窒素濃度を顕著に低減させることを可能にすることが観察される。
図9は、熱交換器8に戻る可燃性ガス流の第2の部分の流速の関数として、再液化されたガスの流速とタンクから抜去された液相ガスの流速との間の差異を表すグラフである。本設備の操作条件は、図7と関連して説明されるものと同じである。曲線aは、従来技術による設備を用いた再液化性能品質、すなわち、タンク5a、5b、5c、5dから液相において抜去され、次いで、蒸発されたガスのいかなる流量も、気相ガス収集回路に追加されないときに対応する一方、曲線bは、ガスが、図2に説明されるような設備を用いて、タンクから液相において抜去され、蒸発され、気相ガス収集回路の中に噴射されるときの再液化性能品質に対応する。
したがって、図2と関連して説明されるような冷却デバイスの使用は、ガス消費部材2、3、4に通されるように意図されるガス流の窒素濃度を低減させると同時に、可燃性ガス流の第2の部分のある流速値を超えて再液化収率をあまり低減させることなく、可燃性ガス流の第2の部分の該流速値まで再液化収率を増加させることを可能にすることが観察される。
また、タンク5a、5b、5c、5dから抜去された気相における天然ガスの温度が高いほど、再液化収率比較は、従来技術による設備と比較して、図2に説明されるような設備により有利であることに留意されたい。
図10は、液化天然ガス等の可燃性ガスを装填/抜取し、船舶41と浮遊または陸上設備(図示せず)との間のインターフェースを形成するための移送システム40を示す。船舶41は、上記に説明されるように、ガス消費部材に可燃性ガスを給送し、該可燃性ガスを液化するための設備を具備する。実施例として、液密および断熱タンク(図示せず)は、略角柱形態であり、船舶の二重船体内に搭載される。
製品移送は、42と表される浸漬極低温ラインによって確実にされる。船舶41と浮遊または陸上設備との間のインターフェースを形成する移送システム40は、貯蔵/取扱ガントリ44を支える少なくとも1つのプラットフォーム43と、浸漬極低温ライン42を可撓性移送パイプ46に接続することを可能にする全ての機器を取り込むための主要プラットフォーム45とを備える。各可撓性移送パイプ46は、接続モジュール48を通して船舶のマニホールド47に接続されるように意図される。船舶のマニホールド47は、液化ガスの貨物をタンクから、またはそれに移送するために、船舶41の上側デッキ上に配列される装填/抜取パイプラインを用いてタンクに接続される。
ガントリ44の主な機能は、クレーンおよびウインチを用いて、移送部分、すなわち、各接続モジュール48および可撓性移送パイプ46の可動端の取扱および貯蔵を可能にすることである。
ある実施形態によると、移送システムは、3つの平行な可撓性移送パイプ46を備え、そのうちの2つは、浮遊または陸上設備と船舶との間で液化天然ガスを移送することを可能にする一方、第3の移送パイプは、船舶のタンクのガス状ヘッドスペース内の圧力を均衡させるために、ガスを移送することを可能にする。
液化ガスの移送のために必要な圧力を生成するために、船舶41内のオンボードポンプが、使用されるか、そして/または、ポンプが、陸上設備内に設置されるか、ならびに/もしくは、ポンプが、移送システム40に適合される。
本発明は、いくつかの特定の実施形態と関連して説明されたが、これは、それに全く限定されず、これらが本発明の範囲内に該当する場合、説明される手段の全ての技術的均等物およびその組み合わせを備えることが明白である。
動詞「〜を備える」または「〜を含有する」もしくは「〜を含む」およびその活用形の使用は、請求項に記載されるもの以外の要素またはステップの存在を除外しない。
したがって、本技術のいくつかの非限定的実施形態に従って実装される方法および設備は、付番された付記において提示される、以下のように表されることができる。
(付記1)ガス消費部材(2、3、4)に可燃性ガスを給送し、該可燃性ガスを液化するための設備(1)であって、本設備は、
−液気二相平衡状態における可燃性ガスを用いて充填されるように意図される内側空間を備える、漏れ止めおよび断熱タンク(5a、5b、5c、5d)と、
−タンク(5a、5b、5c、5d)の内側空間内に出現し、タンク(5a、5b、5c、5d)の内側空間から気相可燃性ガス流を抜去するように配列される吸入口(7a、7b、7c、7d)を備える、気相ガス収集回路(6)と、
−第1および第2のチャネル(9、10)と、第2のチャネル(10)から第1のチャネル(9)に熱を伝達するための熱交換壁とを備え、第1のチャネル(9)および第2のチャネル(10)は、それぞれ、入口(9a、10a)と、出口(9b、10b)とを備える、熱交換器(8)であって、第1のチャネル(9)の入口(9a)は、熱交換器(8)内の気相可燃性ガス流を加熱するように、気相ガス収集回路(6)に接続される、熱交換器(8)と、
−熱交換器(8)の第1のチャネル(9)の出口において可燃性ガス流を圧縮するように、熱交換器(8)の第1のチャネル(9)の出口(9b)に上流で接続され、可燃性ガス流の第1の部分をガス消費部材(2、3、4)に運搬し、可燃性ガス流の第2の部分を冷却するために可燃性ガス流の第2の部分を熱交換器(8)の第2のチャネル(10)の入口(10a)に運搬することが可能な三方向コネクタ(12、13)に下流で接続される、コンプレッサ(11)と、
−中間回路(15)を介して熱交換器(8)の第2のチャネル(10)の出口(10b)に上流で接続され、タンク(5a、5b、5c、5d)につながる戻り回路(31)に下流で接続される、膨張デバイス(14)であって、中間回路(15)に由来する可燃性ガス流の第2の部分を減圧するように配列される、膨張デバイス(14)と、
を備え、
これがまた、抜去回路(35)を備える冷却デバイス(16)を備え、該抜去回路は、タンク(5a、5b、5c、5d)の内側空間内に出現し、タンク(5a、5b、5c、5d)の内側空間から液相可燃性ガス流を抜去するように配列される吸入口(27)を備え、該冷却デバイス(16)は、タンクから抜去された液相可燃性ガス流を蒸発させ、タンクから抜去された液相可燃性ガス流の蒸発の潜熱を使用し、冷却されるべき可燃性ガス流を冷却するように、タンクから抜去された液相可燃性ガス流と、気相ガス収集回路(6)内で循環する気相可燃性ガス流および中間回路(15)内で循環する可燃性ガス流の第2の部分から選定される、冷却されるべき可燃性ガス流との間で熱を伝達するように配列される点において特徴付けられる、設備(1)。
(付記2)可燃性ガスは、窒素を含むガス状混合物であり、冷却デバイス(16)は、冷却デバイス(16)内の蒸発したガス流を気相ガス収集回路(6)に運搬し、気相ガス収集回路(6)内で循環する可燃性ガス流の窒素含有量を低減させるように配列される、付記1に記載の設備(1)。
(付記3)冷却デバイス(16)は、第1および第2のチャネル(18、19)と、付加的熱交換器(17)の第1のチャネル(18)から第2のチャネル(19)に熱を伝達するための熱交換壁とを備える、付加的熱交換器(17)を備え、該第1のチャネル(18)および該第2のチャネル(19)は、それぞれ、入口(18a、19a)と、出口(18b、19b)とを備え、該第1のチャネル(18)は、熱交換器(8)および膨張デバイス(14)を接続する中間回路(15)に統合され、該第2のチャネル(19)の入口(19a)は、冷却デバイス(16)の抜去回路(35)に接続され、該第2のチャネル(19)の出口(19b)は、気相ガス収集回路(6)に接続される、付記2に記載の設備。
(付記4)付加的熱交換器(17)は、熱交換器(8)の上方に重ねられ、付加的熱交換器(17)の第2のチャネル(19)の出口は、熱交換器(8)の第1のチャネル(9)の入口(9a)に接続され、したがって、液相ガス流が、重力によって、付加的熱交換器(17)の第2のチャネル(19)の出口から熱交換器(8)の第1のチャネル(9)の入口(9a)に流動することができる、付記3に記載の設備。
(付記5)冷却デバイス(16)は、気相ガス収集回路(6)に統合される第1のチャネル(42)と、抜去回路(35)に接続される入口(43a)および気相ガス収集回路(6)に接続される出口(43b)を備える第2のチャネル(43)とを備える、第2の付加的熱交換器(41)を備える、付記3に記載の設備。
(付記6)冷却デバイス(16)は、気相ガス収集回路(6)の吸入口(7a、7b、7c、7d)と熱交換器(8)の第1のチャネル(9)の入口(9a)との間で気相ガス収集回路(6)に統合されるチャンバ(20)と、冷却デバイス(16)の抜去回路(35)に接続され、タンクの内側空間から抜去された気相ガス流を冷却し、気相ガス収集回路(6)内で循環する可燃性ガス流の窒素含有量を低減させるように、液相可燃性ガスをチャンバ(20)の中に噴霧するように配列される、噴霧部材(21)とを備える、付記2に記載の設備。
(付記7)冷却デバイス(16)は、冷却デバイス(16)の吸入口(27)を介して液相可燃性ガス流を吸引し、これを抜去回路(35)の中に送達し得る、圧送デバイス(26)を備える、付記2−6のうちのいずれか1項に記載の設備。
(付記8)可燃性ガス流の第1の部分における窒素濃度の代表的測定値を送達し得、制御ユニット(36)は、ガス消費部材の限界操作濃度を下回る、可燃性ガス流の第1の部分における窒素濃度を確実にするように、ガス消費部材(2、3、4)に運搬される可燃性ガス流の第1の部分における窒素濃度の代表的測定値の関数として圧送デバイス(26)に対する制御信号を生成するように配列される、ガス分析器(40)を備える、付記7に記載の設備。
(付記9)制御ユニット(36)は、可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、可燃性ガス流の第1の部分における窒素濃度の代表的測定値およびガス消費部材の限界動作濃度を下回る公称濃度の関数として圧送デバイス(26)に対する制御信号を生成するように配列される、付記8に記載の設備。
(付記10)制御ユニット(36)は、
−これが、可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、可燃性ガス流の第1の部分における窒素濃度の代表的測定値およびガス消費部材の限界動作濃度を下回る公称濃度の関数として圧送デバイス(26)に対する制御信号を生成する、窒素濃度優先モードと、
−これが、温度T1を公称温度に抑えるように、膨張デバイス(14)の入口における中間回路(15)内で循環するガス流の第2の部分の温度測定値T1および公称温度の関数として圧送デバイス(26)に対する制御信号を生成する、再液化優先モードと、
を有し、
該制御ユニット(36)は、可燃性ガス流の第1の部分における窒素濃度の代表的測定値の関数として、窒素濃度優先モードから再液化優先モードに切り替わるように配列される、付記8に記載の設備。
(付記11)膨張デバイス(23)は、膨張弁である、付記1−10のうちのいずれか1項に記載の設備。
(付記12)膨張デバイス(14)に上流で接続され、一方では、タンクにつながる戻り回路(31)に、他方では、気相ガス収集回路(6)に接続される戻りパイプ(32)に下流で接続される、相分離器(25)を備え、相分離器(25)は、可燃性ガス流の液相を戻り回路(31)に運搬し、可燃性ガス流の気相を戻りパイプ(32)に運搬するように配列される、付記1−11のうちのいずれか1項に記載の設備。
(付記13)付記1−12のうちのいずれか1項に記載の設備を用いて、ガス消費部材に可燃性ガスを給送し、該可燃性ガスを液化するためのプロセスであって、
−気相ガス収集回路(6)の吸入口(7a、7b、7c、7d)から熱交換器(8)の第1のチャネル(9)の入口(9a)に気相可燃性ガス流を運搬するステップと、
−熱交換器(8)の第2のチャネル(10)から第1のチャネル(9)に熱を伝達するステップと、
−熱交換器(8)の第1のチャネル(9)から退出する可燃性ガス流を圧縮するステップと、
−圧縮された可燃性ガス流の第1の部分をガス消費部材(2、3、4)に運搬し、圧縮されたガス流の第2の部分を熱交換器(8)の第2のチャネル(10)の入口(10a)に運搬するステップと、
−可燃性ガス流の第2の部分を熱交換器(8)の第2のチャネルから中間回路(15)を介して膨張デバイス(14)に運搬するステップと、
−中間回路(15)に由来する可燃性ガス流の第2の部分を減圧するステップと、
−減圧された可燃性ガス流の第2の部分の少なくとも一部の液相部分をタンク(5a、5b、5c、5d)に運搬するステップと、
−タンク(5a、5b、5c、5d)の内側空間から液相可燃性ガス流を抜去するステップと、
−タンクから抜去された液相可燃性ガス流を蒸発させ、タンクから抜去された液相可燃性ガス流の蒸発の潜熱を使用し、冷却されるべきガス流を冷却するように、タンクから抜去された液相可燃性ガス流と、気相ガス収集回路(6)内で循環する気相ガス流および中間回路(15)内で循環するガス流の第2の部分から選定される、冷却されるべきガス流との間で熱を伝達するステップと、
を含む、プロセス。
(付記14)可燃性ガスは、窒素を含むガス状混合物であり、冷却デバイス(16)内の蒸発したガス流は、気相ガス収集回路(6)に運搬される、付記13に記載のプロセス。
(付記15)可燃性ガス流の第1の部分における窒素濃度を表す変数が、測定され、冷却デバイス(16)の抜去回路(35)内で循環する液相可燃性ガス流の流速は、可燃性ガス流の第1の部分における窒素濃度を表す変数の関数として調節される、付記14に記載のプロセス。
(付記16)冷却デバイス(16)の抜去回路(35)内で循環する液相可燃性ガス流の流速は、可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、可燃性ガス流の第1の部分における窒素濃度を表す変数および公称濃度の関数として調節される、付記15に記載のプロセス。
(付記17)付記1−12のうちのいずれか1項に記載の設備(1)を備える、船舶(40)。
(付記18)可燃性ガスが、極低温移送パイプ(42、46)を通して、浮遊または陸上貯蔵設備から、もしくはそれに、船舶のタンクに、もしくはそれから通される、付記17に記載の船舶(40)において装填または排出するためのプロセス。
(付記19)可燃性ガスを移送するためのシステムであって、付記17に記載の船舶(40)と、船舶の船体内に設置されるタンクを浮遊または陸上貯蔵設備に接続するように配列される、極低温移送パイプ(42、46)と、断熱パイプラインを通して、浮遊または陸上貯蔵設備から、もしくはそれに、船舶のタンクに、もしくはそれから可燃性ガス流を駆動するためのポンプとを備える、システム。

Claims (15)

  1. ガス消費部材に可燃性ガスを給送し、前記可燃性ガスを液化するための設備であって、前記設備は、
    −液気二相平衡状態における可燃性ガスを用いて充填されるように意図される内側空間を備える、漏れ止めおよび断熱タンクと、
    −前記タンクの内側空間内に出現し、前記タンクの内側空間から気相可燃性ガス流を抜去するように配列される吸入口を備える、気相ガス収集回路と、
    −第1および第2のチャネルと、前記第2のチャネルから前記第1のチャネルに熱を伝達するための熱交換壁とを備える熱交換器であって、前記第1のチャネルおよび前記第2のチャネルは、それぞれ、入口と、出口とを備え、前記第1のチャネルの入口は、前記熱交換器内の気相可燃性ガス流を加熱するように、前記気相ガス収集回路に接続される、熱交換器と、
    −前記熱交換器の第1のチャネルの出口において前記可燃性ガス流を圧縮するように、前記熱交換器の第1のチャネルの出口に上流で接続され、前記可燃性ガス流の第1の部分を前記ガス消費部材に運搬し、前記可燃性ガス流の第2の部分を冷却するために前記可燃性ガス流の第2の部分を前記熱交換器の第2のチャネルの入口に運搬することが可能な三方向コネクタに下流で接続される、コンプレッサと、
    −中間回路を介して前記熱交換器の第2のチャネルの出口に上流で接続され、前記タンクにつながる戻り回路に下流で接続される、膨張デバイスであって、前記膨張デバイスは、前記中間回路に由来する前記可燃性ガス流の第2の部分を減圧するように配列される、膨張デバイスと、
    を備え、
    これがまた、抜去回路を備える冷却デバイスを備え、前記抜去回路は、前記タンクの内側空間内に出現し、前記タンクの内側空間から液相可燃性ガス流を抜去するように配列される吸入口を備え、前記冷却デバイスは、前記タンクから抜去された液相可燃性ガス流を蒸発させ、前記タンクから抜去された液相可燃性ガス流の蒸発の潜熱を使用し、前記中間回路内で循環する可燃性ガス流の第2の部分を冷却するように、前記タンクから抜去された液相可燃性ガス流と前記中間回路内で循環する可燃性ガス流の第2の部分との間で熱を伝達するように配列される点において特徴付けられ
    前記可燃性ガスは、窒素を含むガス状混合物であり、前記冷却デバイスは、前記冷却デバイス内の蒸発したガス流を前記気相ガス収集回路に運搬し、前記気相ガス収集回路内で循環する可燃性ガス流の窒素含有量を低減させるように配列され、
    前記冷却デバイスは、付加的熱交換器を備え、前記付加的熱交換器は、第1および第2のチャネルと、前記付加的熱交換器の前記第1のチャネルから前記第2のチャネルに熱を伝達するための熱交換壁とを備え、前記第1のチャネルおよび前記第2のチャネルは、それぞれ、入口と、出口とを備え、前記第1のチャネルは、前記熱交換器および前記膨張デバイスを接続する前記中間回路に統合され、前記第2のチャネルの入口は、前記冷却デバイスの抜去回路に接続され、前記第2のチャネルの出口は、前記気相ガス収集回路に接続される、設備。
  2. 前記付加的熱交換器は、前記熱交換器の上方に重ねられ、前記付加的熱交換器の第2のチャネルの出口は、前記熱交換器の第1のチャネルの入口に接続され、液相ガス流が、重力によって、前記付加的熱交換器の第2のチャネルの出口から前記熱交換器の第1のチャネルの入口に流動することができる、請求項に記載の設備。
  3. 前記冷却デバイスは、前記気相ガス収集回路に統合される第1のチャネルと、前記抜去回路に接続される入口および前記気相ガス収集回路に接続される出口を備える第2のチャネルとを備える、第2の付加的熱交換器を備える、請求項に記載の設備。
  4. 前記冷却デバイスは、前記冷却デバイスの吸入口を介して前記液相可燃性ガス流を吸引し、これを前記抜去回路の中に送達し得る、圧送デバイスを備える、請求項1〜3のうちのいずれか1項に記載の設備。
  5. 前記可燃性ガス流の第1の部分における窒素濃度の代表的測定値を送達し得、制御ユニットは、前記ガス消費部材の限界動作濃度を下回る、前記可燃性ガス流の第1の部分における窒素濃度を確実にするように、前記ガス消費部材に運搬される前記可燃性ガス流の第1の部分における窒素濃度の代表的測定値の関数として前記圧送デバイスに対する制御信号を生成するように配列される、ガス分析器を備える、請求項に記載の設備。
  6. 前記制御ユニットは、前記可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、前記可燃性ガス流の第1の部分における窒素濃度の代表的測定値および前記ガス消費部材の限界動作濃度を下回る前記公称濃度の関数として前記圧送デバイスに対する制御信号を生成するように配列される、請求項に記載の設備。
  7. 前記制御ユニットは、
    −これが、前記可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、前記可燃性ガス流の第1の部分における窒素濃度の代表的測定値および前記ガス消費部材の限界動作濃度を下回る前記公称濃度の関数として前記圧送デバイスに対する制御信号を生成する、窒素濃度優先モードと、
    −これが、温度T1を公称温度に抑えるように、前記膨張デバイスの入口における前記中間回路内で循環する前記ガス流の第2の部分の温度測定値T1および前記公称温度の関数として前記圧送デバイスに対する制御信号を生成する、再液化優先モードと、
    を有し、
    前記制御ユニットは、前記可燃性ガス流の第1の部分における窒素濃度の代表的測定値の関数として、前記窒素濃度優先モードから前記再液化優先モードに切り替わるように配列される、請求項に記載の設備。
  8. 前記膨張デバイスは、膨張弁である、請求項1〜3のうちのいずれか1項に記載の設備。
  9. 前記膨張デバイスに上流で接続され、一方では、前記タンクにつながる戻り回路に、他方では、前記気相ガス収集回路に接続される戻りパイプに下流で接続される、相分離器を備え、前記相分離器は、前記可燃性ガス流の液相を前記戻り回路に運搬し、前記可燃性ガス流の気相を前記戻りパイプに運搬するように配列される、請求項1〜3のうちのいずれか1項に記載の設備。
  10. 請求項1に記載の設備を用いて、ガス消費部材に可燃性ガスを給送し、前記可燃性ガスを液化するためのプロセスであって、前記可燃性ガスは、窒素を含むガス状混合物であり、前記プロセスは、
    −前記気相ガス収集回路の吸入口から前記熱交換器の第1のチャネルの入口に気相可燃性ガス流を運搬するステップと、
    −前記熱交換器の第2のチャネルから第1のチャネルに熱を伝達するステップと、
    −前記熱交換器の第1のチャネル(9)から退出する前記可燃性ガス流を圧縮するステップと、
    −前記圧縮された可燃性ガス流の第1の部分を前記ガス消費部材に運搬し、前記圧縮されたガス流の第2の部分を前記熱交換器の第2のチャネルの入口に運搬するステップと、
    −前記可燃性ガス流の第2の部分を前記熱交換器の第2のチャネルから前記中間回路を介して前記膨張デバイスに運搬するステップと、
    −前記中間回路に由来する前記可燃性ガス流の第2の部分を減圧するステップと、
    −前記減圧された可燃性ガス流の第2の部分の少なくとも一部の液相部分を前記タンクに運搬するステップと、
    −前記タンクの内側空間から液相可燃性ガス流を抜去するステップと、
    −前記タンクから抜去された液相可燃性ガス流を蒸発させ、前記タンクから抜去された液相可燃性ガス流の蒸発の潜熱を使用し、冷却されるべきガス流を冷却するように、前記タンクから抜去された液相可燃性ガス流と、前記中間回路内で循環するガス流の第2の部分との間で、付加的熱交換器を用いて、熱を伝達するステップと、
    を含む、プロセス。
  11. 前記可燃性ガス流の第1の部分における窒素濃度を表す変数が、測定され、前記冷却デバイスの抜去回路内で循環する前記液相可燃性ガス流の流速は、前記可燃性ガス流の第1の部分における窒素濃度を表す変数の関数として調節される、請求項10に記載のプロセス。
  12. 前記冷却デバイスの抜去回路内で循環する前記液相可燃性ガス流の流速は、前記可燃性ガス流の第1の部分における窒素濃度を公称濃度に抑えるように、前記可燃性ガス流の第1の部分における窒素濃度を表す変数および前記公称濃度の関数として調節される、請求項11に記載のプロセス。
  13. 請求項1に記載の設備を備える、船舶。
  14. 可燃性ガスが、極低温移送パイプを通して、浮遊または陸上貯蔵設備から、もしくはそれに、前記船舶のタンクに、もしくはそれから通される、請求項13に記載の船舶において装填または排出するためのプロセス。
  15. 可燃性ガスを移送するためのシステムであって、前記システムは、請求項13に記載の船舶と、前記船舶の船体内に設置されるタンクを浮遊または陸上貯蔵設備に接続するように配列される、断熱パイプラインと、前記断熱パイプラインを通して、前記浮遊または陸上貯蔵設備から、もしくはそれに、前記船舶のタンクに、もしくはそれから可燃性ガス流を駆動するためのポンプとを備える、システム。
JP2018557009A 2016-05-04 2016-05-04 ガス消費部材に可燃性ガスを給送するため、およびこの可燃性ガスを液化するための設備 Active JP6850305B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2016/030793 WO2017192136A1 (en) 2016-05-04 2016-05-04 Istallation for feeding a gas-consuming member with combustible gas and for liquefying said combustible gas

Publications (2)

Publication Number Publication Date
JP2019522758A JP2019522758A (ja) 2019-08-15
JP6850305B2 true JP6850305B2 (ja) 2021-03-31

Family

ID=60203115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018557009A Active JP6850305B2 (ja) 2016-05-04 2016-05-04 ガス消費部材に可燃性ガスを給送するため、およびこの可燃性ガスを液化するための設備

Country Status (4)

Country Link
JP (1) JP6850305B2 (ja)
KR (2) KR101943256B1 (ja)
CN (1) CN109563969B (ja)
WO (1) WO2017192136A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788183B (zh) 2018-02-07 2024-02-23 韩国化学硏究院 用于抑制tnik的杂环融合苯基化合物及其医疗用途
KR102269975B1 (ko) * 2018-03-19 2021-06-28 바르실라 핀랜드 오이 가스 공급 어셈블리
FR3089274B1 (fr) * 2018-11-30 2022-03-04 Gaztransport Et Technigaz Dispositif de génération de gaz sous forme gazeuse à partir de gaz liquéfié
JP7179650B2 (ja) * 2019-02-27 2022-11-29 三菱重工マリンマシナリ株式会社 ボイルオフガス処理システム及び船舶
WO2021132955A1 (ko) * 2019-12-24 2021-07-01 대우조선해양 주식회사 선박의 액화가스 공급 시스템 및 방법 그리고 선박의 액화가스 연료 공급 시스템
JP7050987B1 (ja) * 2020-10-30 2022-04-08 三菱造船株式会社 浮体
CN112432053A (zh) * 2020-11-19 2021-03-02 深圳市凯丰实业发展有限公司 一种液氮储罐零排放系统装置
FR3119013B1 (fr) * 2021-01-19 2023-03-17 Gaztransport Et Technigaz Système d’alimentation en gaz pour appareils consommateurs de gaz à haute et basse pression
US20230015757A1 (en) * 2021-07-09 2023-01-19 China Energy Investment Corporation Limited System and method with boil-off management for liquefied gas storage

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124100U (ja) * 1990-03-29 1991-12-17
JPH08285194A (ja) * 1995-04-11 1996-11-01 Ishikawajima Harima Heavy Ind Co Ltd 低温液化ガス貯蔵設備
NO20011524L (no) * 2001-03-23 2002-09-24 Leif Hoeegh & Co Asa Fartöy og lossesystem
FI118681B (fi) * 2004-03-17 2008-02-15 Waertsilae Finland Oy Vesikulkuneuvon kaasunsyöttöjärjestely ja menetelmä kaasun tuottamiseksi vesikulkuneuvossa
DE602006005229D1 (de) * 2006-05-23 2009-04-02 Cryostar Sas Verfahren und Vorrichtung zur Rückverflüssigung eines Gasstromes
US8973398B2 (en) * 2008-02-27 2015-03-10 Kellogg Brown & Root Llc Apparatus and method for regasification of liquefied natural gas
FR2993643B1 (fr) * 2012-07-17 2014-08-22 Saipem Sa Procede de liquefaction de gaz naturel avec changement de phase
SG11201504439YA (en) * 2012-12-11 2015-07-30 Daewoo Shipbuilding & Marine Liquefied gas processing system for ship
KR101640768B1 (ko) * 2013-06-26 2016-07-29 대우조선해양 주식회사 선박의 제조방법
WO2015135157A1 (zh) * 2014-03-12 2015-09-17 华为技术有限公司 信道质量指示反馈方法、资源调度信息发送方法和装置
KR101635061B1 (ko) * 2014-04-18 2016-06-30 삼성중공업 주식회사 액화천연가스 하역 시스템
KR101857325B1 (ko) * 2014-05-23 2018-05-11 현대중공업 주식회사 액화가스 처리 시스템
KR101559316B1 (ko) * 2015-04-09 2015-10-20 김한열 연료가스 공급 시스템

Also Published As

Publication number Publication date
WO2017192136A1 (en) 2017-11-09
JP2019522758A (ja) 2019-08-15
KR20190009848A (ko) 2019-01-29
CN109563969A (zh) 2019-04-02
CN109563969B (zh) 2021-02-12
WO2017192136A9 (en) 2018-02-01
KR102190260B1 (ko) 2020-12-11
KR101943256B1 (ko) 2019-01-29
KR20180015161A (ko) 2018-02-12

Similar Documents

Publication Publication Date Title
JP6850305B2 (ja) ガス消費部材に可燃性ガスを給送するため、およびこの可燃性ガスを液化するための設備
JP6628328B2 (ja) ガス処理システムを含む船舶
JP6475871B2 (ja) 船舶の燃料ガス供給システム
US9863370B2 (en) Method of starting gas delivery from a liquefied gas fuel system to a gas operated engine and a liquefied gas fuel system for a gas operated engine
JP6069200B2 (ja) 船舶のためのlng燃料を提供するための方法および装置
CN107110427B (zh) 用于冷却液化气的装置和方法
EP2932147B1 (en) Method of filling a fuel tank with liquefied gas and liquefied gas fuel system
CN108137132A (zh) 气体处理系统及包括其的船舶
JP7183380B2 (ja) 揮発性有機化合物処理システム及び船舶
JP6732946B2 (ja) ガス消費部材に可燃性ガスを給送し、該可燃性ガスを液化するための設備
KR20200012673A (ko) 증발가스 냉각 시스템 및 선박
WO2015048420A1 (en) Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel
JP6498785B2 (ja) 船舶の蒸発ガス処理装置および処理方法
KR20190049211A (ko) 휘발성 유기화합물 처리 시스템 및 선박
JP6821675B2 (ja) 少なくとも1つのエンジンに供給する目的のためボイルオフガスを処理する方法及び装置
KR102200365B1 (ko) 휘발성 유기화합물 처리 시스템 및 선박
KR20170031429A (ko) 연료가스 공급시스템
KR101732551B1 (ko) 연료가스 공급시스템
KR102469960B1 (ko) 벙커링 선박
RU2786300C2 (ru) Устройство получения газа в газообразной форме из сжиженного газа

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200522

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210305

R150 Certificate of patent or registration of utility model

Ref document number: 6850305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250